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We analyze the Ising model on a random surface with a boundary magnetic field using matrix model
techniques. We are able to exactly calculate the disk amplitude, boundary magnetization and bulk magnetiza-
tion in the presence of a boundary field. The results of these calculations can be interpreted in terms of
renormalization group flow induced by the boundary operator. In the continuum limit this RG flow corresponds
to the flow from non-conformal to conformal boundary conditions which has recently been studied in flat space
theories[S0556-282(98)04516-0
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[. INTRODUCTION netic field was studied many years agf. This model has
been of renewed interest recently because in the continuum

Simple statistical mechanical lattice models, such as thémit, where the lattice spacing is taken to zero, it gives a
Ising model, have been used for many years to gain insightimple example of a two-dimensional field theory which is

into the behavior of a wide range of physical systems. Th onformal in the bulk but which has boundary conditions

great utility of such simple models arises from the fact that in?r¢aking conformal invariances,9,10. The only boundary
conditions for the Ising model which preserve conformal in-

many cases they are exgctly solvable. It.is a rgmarkable fa%\riance[ll] are free boundary conditiorthere the bound-
that some questions Whlph seem analytlcally_mtractable foéry field h vanishes and fixed spin boundary conditions
models_on a regL_JIa_r lattice yield exact solutions when th?wherehz + ), Putting an arbitrary fielth on the boundary
underlylng_ Iamce is itself taken to be a random element_ of &enerates a renormalization gro(RG) flow from the free
Iarger_statlsucal en_semble. An example <_Jf such a situation igoundary condition to the fixed boundary conditidr2].
the Ising model with a bulk magnetic field. Although this  For a matrix model corresponding to fields on a random
model has not been analytically solved on a fixed lattice, it issurface, a continuum limit can also be taken. In this limit, the
possible to exactly compute the partition function and magtheory describes conformal matter fields coupled to 2D quan-
netization of the model on a random latticH. tum gravity. In this paper we take the continuum limit of the
In this paper, we consider the Ising model on a randondisk partition function and magnetizations and consider the
lattice in the presence of a magnetic field on the boundaryimplications of our results for the resulting theory of
rather than in the bulk. Again, this corresponds to a problem=1/2 matter coupled to gravity. In particular, we find that
which does not seem to be analytically solvable on a fixedhe results are in accord with the hypothesis that the RG flow
lattice. Summing over random lattices, however, we find thawhich has been understood in flat space is present in an
the partition function and magnetizations can be calculate@ppropriate form in the theory with gravity.
exactly. One provocative feature of our results is that as the
The Ising model on a random two-dimensional lattice carPoundary magnetic field is increased, except for a jump dis-
be described in terms of a matrix model. A great deal ofcontinuity when the_ﬁel_d becomes nonzero, the expectation
technology has been developed to deal with matrix models\t,’)alue of the magnetization of a randomly chosen spin in the
primarily as a tool for studying string theory. The techniquesPUlk decreases This counterintuitive result may be ex-
we use here were derived in an earlier pair of pap2ra], plained in terms of the effects of the matter fields on the

: try—roughly speaking, the increase in magnetic field
and are related to methods described4rb]. Some of the geome o IS
i . ; . roduces a long “throat” which separates the boundary from
results which we describe here appeared in a previous lett he bulk and which increases the average distance of a bulk

[6]. . . . spin from the boundary, effectively decreasing the bulk mag-
The Ising model on a regular lattice with a boundary mag-etization. However, this result is also found to be a finite
volume effect which may depend upon the precise choice of
how the random lattice ensemble is defined.
*Email address: carroll@itp.ucsb.edu Another context in which this work may be relevant is the
'Email address: m.ortiz@ic.ac.uk current discussion of D-branes in string thedgsge for ex-
*Email address: wati@princeton.edu; Present address after Ample [13]). Just as there are two conformally invariant
gust 1998; Center for Theoretical Physics, Massachusetts Institufgoundary conditions for the Ising theory, a conformal field
of Technology, Cambridge, Massachusetts 02139 theory of a single bosonic field can have two conformally
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invariant boundary conditions: Neumann and Dirichlet. Con-(Since we will always be interested in the larigelimit,
sidering the continuum limit of the Ising model as a singlehenceforth we will suppress the explicitNLin expectation
free fermion, free and fixed Ising boundary conditions arevalues) Again, p,, can be expanded in a power seriegjin
related through supersymmetry to Neumann and Dirichletvith the coefficient ofg® giving the sum over all disk trian-
boundary conditions on a bosonic field. The fact that RGgulations byk triangles with a boundary having a fixed
flow behaves similarly in flat space and in the presence of g&ngth and spin configurationw(+,—).
fluctuating metric suggests that perhaps Dirichlet boundary There are two types of conformally invariant boundary
conditions in superstring theory naturally arise as an RGeondition in the Ising theory: “fixed”(corresponding to all
limit of a non-conformal boundary term. boundary spins alignedand “free” (corresponding to an

In Sec. Il of this paper we describe the discrete model weequally weighted sum of all possible boundary spin configu-
will use for the Ising model on a random surface. In Sec. lllrationg. For each of these we can define a generating func-
we apply the methods ¢2] to this model, explicitly deriving  tion which encodes the amplitudes. Fixed boundary condi-
a quartic equation satisfied by the disk amplitude and locattions are described by
ing the associated critical point. In Sec. IV we take the con-
tinuum limit of the disk amplitude. In Sec. V we discuss the *
general formalism we will use for calculating magnetiza- Tbﬁxed(u)=2 (Tr Ukyuk, (4)
tions, and we apply this in Secs. VI and VII to compute the k=0
boundary and bulk magnetizations on the disk. In Sec. VIII . . .
we discuss implications of our results for renormalizationhile free boundary conditions are described by
group flow, duality, and the effects of gravity on the behav-
ior of the matter theory.

Prred X) = go (Tr(U+V)¥)x, (5)

Il. THE MODEL
) ) The Ising model in this set of variables is symmetric under
A discretized theory ofc=1/2 matter coupled t0 2D jyterchange ofJ andV (corresponding to the symmetry un-
quantum gravity is described by the Ising model on a ranger gpin reversal The generating function for fixed bound-
domly triangulated surface. At the center of edeluilat- 51y conditions can therefore also be described by summing
era) triangle on the surface lives a single Ising spin, coupled,er amplitudes with alV’s on the boundary.
to its nearest neighbors. This theory can be described by a ap aiternative coupling of discretized= 1/2 matter to 2D

matrix model[1] with partition function quantum gravity is obtained by considering the dual Ising
model on a random surfadd4]. The partition function of
_ the dual model is defined once again as a sum over surfaces
Z(g,c)= | bUDV exp(—NSU,V)), 1 ) _ ;
(9.0) f NS ) @ with Ising spins at the face of each plaquette, where now the

plaguettes may be polygons with arbitrary numbers of sides,
where the action is given by but the coordination number at each vertex is constrained to
be equal to three. Such a configuration is equivalent through
1 S g 3.\ duality to a triangulation in the original theory, but with
S=5 TrUT+VH)—c TrUV=o Tr(U+V").  (2)  gpins’located at vertices rather than on faces. The dual model
may also be described as a theory of two matrieand,

In these expressiont} andV areNx N Hermitian matrices  With action

representing up and down spins respectivglis a coupling ( ) ~

constant corresponding to a Boltzmann weight for each tri- 1-c g

angle on the surface, ardddescribes the coupling between S= 2 Tr X2+ Try?- 3 Tr(X+3XY?).

Ising spins.(This c is unrelated to the central charg&he (6)

partition function can be expanded in a power serieg &amd

1/N, and the coefficient o§*N?~2" is then given by a sum- There are once again two types of conformally invariant

mation of the Ising partition function over all triangulations boundary conditions, fixed and free. In the dual model the

of a genush Riemann surface bk triangles. matrix variablesX andY do not refer to the state of indi-
We are interested in amplitudes corresponding to variousidual spins, but rather to the relative state of two spins

boundary conditions on spins living on a genus zero surfacacross an edgeX denotes an edge separating two equal

with boundary. For example, the disk amplitude for a con-spins, whileY denotes a boundary between two opposite

figuration of plus and minus spins on the boundary, represpins. The generating function for fixed boundary conditions

sented by an ordered string(U,V) of the matricedJ and is therefore

V, is given by the largéN limit of the matrix model expec-

(1+c)
2

©

tation value, . ok
Bied )= 2, (Tr XK (7)
1 =
pw= lim —=(Tr w(U,V)). 3
N N while free boundary conditions are described by
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g, S S= % T 2h)— 2 2h RZ
¢free(u):k20 <Tr(x+Y)k>Uk. (8 r(cost{2h) —c)Q*+ (cosh2h) +c)

—2 sinh(2h)QR]— 3 Tr{cosh3h)(Q3+3QR?)
Note that the dual model is symmetric undér —Y; it is 12
therefore the generating function for free boundary condi- —sinh(3h)(3Q2R+R3)]. (12)
tions which has an alternative description in these variables,
as a sum ove(Tr(X—Y)X). (Amplitudes with an odd num-
ber of boundaryY’s vanish identically).

Although the original and dual formulations of the Ising
model represent different couplings to 2D gravity, there is a % o
simple transformation that relates the original acti@n to #(q,h)= (Tr(e"U+e "V)kygk= > (Tr QX\gk.
the dual action(6): k=0 k=0

In this set of variables we can calculate the generating func-
tion for disk amplitudes with al)’s on the boundary,

(13

1
X——(U+V) This generating function describes boundary conditions
V2 which interpolate between fixed and free. The paramieter
can be thought of as a boundary magnetic field applied to

1 otherwise free boundary conditions; for=0 we recover
Y—>E(U—V) ©) biee in the original model, while foh=*o the boundary
spins are all driven to one value and we reco¥gf.y. Note

g—g/va. that although thén— * oo limit appears to be singular, this is

just an issue of normalization, which can be absorbed by a

As a consequence, the partition functions for the two model O”Staf‘t rescaling of. Indeed, we shall see_that although
e critical value ofg goes to zero ak— o with the cho-

on surfaces with no boundaries are identical. This does no o - .

however, guarantee that all correlation functions in the twoéen normalization, all quantities of !ntgre(sluch as¢ for
theories agree, since the transformati®n has a nontrivial examplg are well behaved in these limits.

action on the states and operators of the theory. For example,

the disorder operatoy in the dual theory is taken into the !ll. LOOP EQUATIONS FOR CORRELATION FUNCTIONS
spin operatot) —V in the original theory. Similarly, the role

of free and fixed boundary conditions is interchanged; we,
have

The process of calculating the generating functib(y)
as described and essentially carried oufdh without the
explicit solution being written down. Here we will review
the basics of that procedure, and examine the solution in
(10) detail. (The discussion if2] was framed in terms of non-
commuting variables; for our purposes here we may skip
Dired X) = Prixed V2X). directly to functions of a single variable.
We begin by defining an additional set of generating func-
The (Kramers-Wannier, or J-duality of the model relates a tions ¢éq.)(d). These functions describe disks whose
specified statéfixed, free, or with additional operator inser- boundaries include a fixed string of matrice$éQ,R), plus
tions) in the original form of the model to the same state inany number of additionaD’s:
the dual version. Although in the discrete version of the
theory, this duality symmetry is explicitly violated by finite ”
volume effects, it seems likely that the duality symmetry is d’w(q,r)(q):kZO (Tr w(Q,R)QM gk (14
restored for all correlation functions in the continuum limit. -
Evidence for duality in the continuum limit at genus zero
was presented ifl5,3], and the issue of higher genus was
explored in[16,17,18. o
Our interest in this paper is in non-conformally-invariant _ k
boundary conditions, which may be thought of as arising¢rqr(q) k§=:0 (Tr RQRM)q 9
from the introduction of boundary fields or couplings. We
the_refore consider.the original model in a new set of matrix :qur+qprqrq+qurqrqq+qsprqrqqq+'" )
variablesQ, R, defined by (16)

afixed( u)= ;/J’free( u/v2),

For example, we have

Q=e"U+e "V, Recall thatp,,q ry is the amplitude for a disk with boundary
(11) v (@n 1S T
specified by the stringv(q,r); thus p, corresponds to a
R=e'U—-e "V. single boundary edge labelleg p, corresponds to a single
boundary edge labelled, and po=1 corresponds to no
Substituting these into the original acti¢?), we obtain boundaries.
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By this procedure we can derive a closed system

Q
° Q _ Q of eight independent equations in the quantities
Q Q - e -;{_ e (¢v¢r ad’rr ad’rqr v¢rrr v¢rqqr v¢rqrr v¢rrrr):
Q
Q

b= 1+ﬁq2¢2+aq¢rr+aDq¢+2d¢r

QQQ QQQ b= yq¢>+ by +bD]b+2eDy b,
+ +
° Ry Q ° Qq < Q qu’r:7¢+Bq¢¢r+d¢rqr+a¢rrr

2
o o o 0 +aDq¢,+qu<;/>”
2 Q e Q 2
+ + Dq¢r:qu¢+ﬁ¢r+:8q¢Dq¢r+d¢rqqr
@ Q e Q 3
ox Q to Q +a¢rqrr+aDq¢r+qu¢rqr
FIG. 1. Decomposition ok, . Removal of the external edge Dqdbrr=vyp ¢+ yd + BAdd by +d g
markedR on the left hand side leads to one of the possibilities (19
shown on the right hand side, depending on whether that edge was +ad -|—aD§q§rr + qu¢m

connected to another exterior edge or an interior triangle.

. . L . dr=ap+t YQ¢¢r+e¢rqr+b¢rrr
We will also introduce a derivative operator, vhich

acts on power series ig. Its effect is to annihilate terms +bDj ¢, +eDy by
independent ofy, and to remove one power of from all
other terms: (;brqr: apqd"" Yér+va ¢Dq¢r+ e(f’rqqr
K 0 for k=0, +b¢rqff+ng¢r+qu¢rqr
Dgd"=1 k-1 (17)
4 q for k=1. ¢rrr:apr¢+a¢r+')’qd’d’rr"'ed’rqrr
The action of ) on a generating function is to remove any +0rrrr +bDEhr + Dby -

constant term and divide the remainderdpyFor example, . . . .
by P (In [2] we listed ten equations in these variables, but the

Dyb=q X p—1) last two were not linearly independent from the first eight.
a¢=d ' Here we have defined the new variables
Dip=0"*(¢—1-pyq),
K K (18 a= 7—czlcosti2h) —c]
qu’r:qil(qsr_ P,
2
and so on. B=1—gzlcoshzh)+c]

We can now derive a set of loop equations which relate
these functions to each other, by considering the possible 2
outcomes of removing a marked edge on the boundary. For V=12 sinh(2h)
example, let us examine the effect of removing the edge
markedR from the disks represented k¥, (q). Since ¢,

represents a sum over various triangulated geometries of the a= Lz[coshh—i—c cosh3h)]

disk, we can consider the effect of removiRgrom each of 2(1=¢c% (20)
the terms separately. For each term, there are two basic pos-

sibilities: the edge might be identified with another edge b= — 9 [sinhh—c sinh(3h)]
elsewhere on the boundary, or it might belong to a triangle. 2(1-¢c?)

In the first case, removing the marked edge and the one it

was connected to leaves two disconnected triangulations, _ g inhh . h

both with allQ’s on the boundary and therefore representing d=- 2(1-c?) [sinhh+¢ sinh(3h)]

¢(q). In the second case, removing the triangle reveals two

new boundary edges, which may be marked with ®/s, g

two R’s, or oneQ and oneR; these alternatives relate the e= m[COShh_C cosh3h)].

initial generating function to @z) ¢, and Qu¢,. This

decomposition ofp, is shown schematically in Fig. 1. The The set of equationél9) is completely algebraic, since we
amount which each term contributes ¢ can be derived can replace the derivative operators with algebraic functions
from the action(12), as detailed if2]. as in Egs(18).
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Note that we can cut down somewhat on the number of Prr = a+2epq +bpy +bpyq-
undetermined variables by looking at Eq¢$9) order by or-
der. These give the following relations: Furthermore, each of these amplitudes may be expressed as a
sum of amplitudes in the original Ising model; for example,
Pq=apy +apgqt2dpg, 2D p,=e"p,+e "p,=2(coshh)p,. We use these relations to
eliminate everything bup,=p, andpz=pyuu-
Pqq= B+ aPqrr+aPgqqt 2dPgqr It is now a straightforward but tedious exercise to solve
the systen{19) by deriving a single quartic equation féras
Pr=Dbpr +bpgqt2epy, a function ofq, h, ¢, g, p; andps. The quartic is given by
Par= Y+ bPgrr b Pggqt2€ Pyqr fap+ 303+ ,0%+ 0+ 1,=0, (22
pqr:7+2dpqrr+aprrr+apqqr with

f4=2g°[1—cost(6h)]q®,

f3=—4g° cosh3h)q®+4g?[ cosh4h) +cosh2h) + c(3—cosh6h))]q®
+2g[c? cosl{9h)+c cosk7h)—(1+3c?)cosi3h)—(1+5c)coshh)]q’,

f,=—g*g?+4g3 costth) — 2c cosh3h)]q®
+g°[4c? cosh(6h)+ 12c cosi4h)—2(1—5c)cosh2h)—(3—23c?)]q*
+2g[ —2¢? cosi{7h)—2c(1+ 2¢)cosh5h) — (5¢+ 13c®)cosh3h) + (1— 4c— 19¢?)coshh) ]g°
+2[c® cosh8h) +c(2c+2c3+g?)coshbh) + (c+2¢?+5¢3— g%+ 2p,g°) cosh 4h)
+(2c+4c?+6c3+g%—2p,g°) cosi2h)+ c(1+4c+2c3—g?)]q°,

f,=—2cg*+2cg¥5 costih) + ¢ cosh3h)]q—2cg?[2c cosl{4h)+4(1+c)cosk2h)+(5+3c?)]g?
+2g[c?(1+c)cosi5h)+c(1+6¢c—5¢3+3g?)cosi3h)+ (6¢+2¢2—4c3— g%+ 2p,g°)coshkh) ]q°
+2[—c?(c—c3+g?)coshibh)+2c(—c+c®—2g%+ p,g°)cosi{4h)
+(—c—2c?+c3+2¢*+g%—2p,03—6¢p;g%)cosi2h) + (— c+ ¥+ g2—5¢2g®— 2p,0°) 1g*
+2g[c?(1—p;g)cosi7h)+c(1— p;g+2cp,g)cosi5h)
+3c(c?+ pyg)cosh3h) + (— 1+ 4c?+2p,g+2cp,g+ c?pyg)costih)1q®,

fo=2cg*+2cg’[ —c cosk3h)+(—5+2p;g)costih)]q
+g%[2c?(2— p,g)cost{4h)+2c(4+4c—3p,g—3cp,g)cosh2h) + (10c— 6¢3+ 4p,g— 14cp; g — 39°— 4p39°) 19?
+2g[c?(—1—c+p1g+cpig)cosh5h)+c(—1—6¢+5¢3—3p,g+ 13cp,g-+ 392+ 4psg°)cosh3h)
+(—6c—2c%+4c3—4p,g+13cp;g+2c?p,g+c3pg+ 392+ 4psg3)coshh) 1g®
+[2¢%(c—c®+p,g—3cpyg—g°— psg®)costi6h) +2c(2c— 2¢%+2p,g— 6ep g — g°— p1g°— 2pag®)coshi4h)
+2(c+2c?—c®—2¢*+pyg—cpg— 6¢2p1g—g°— 2cg’+ p1g®+cpyg®— pag® — 2cpsg®— pig*) costi2h)
+(2c—2c°+2p,g—6cp;g+2c?pyg—6c°p;g—g>—c’g*—2p;9°— 2p3g°— 2¢%psg° + 2pig*) 1g*. (23

The analytic solutions to such an expression are of coursef the continuum limit. The critical values of the quantities
rather unwieldy, but fortunately they are also of little interestc, g, p; andp3 are well known[1,3]:
to us. Instead, we are interested in the expansiah afound
the critical point of the model, which encodes the continuum c :i(_ 1+247) (24)
limit of the theory.(See[3] for a discussion of the extraction ¢ 27 '
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0.=3"92/10(—1+27)%?, (25) 0=[729+(z, cosh %1+ 2z, coshh)(g./gc)
+(z5 cosh 4+ 2z5 cosh h+2,)(q./9.)%]3
1
9cP1c=g (3~ J7), (26) X[729+ (z, cosh hi+z, coshh)(q./g.)
+(z5 cosh 4+ 2z5 cosh h+25)(q./9.)?], (29
and where
1 2,=541-27)
UcP3c=7mn (—699+40x 737, (27)
100 22: — 1458
We would now like to find the critical value af for any 3= 6(10+7\/7)
given boundary fielch. The critical point is defined as the
radius of convergence of the power series expansion for the 2,=2(262— 11\/7)
generating function, interpreted physically as the point where
boundaries with an infinite number of segments begin to z5=18(— 16+ 5\/7)
dominate. The generating functions for fixed boundary con-
ditions, pryeq(U) in the original model andbgyeq(X) in the 25=2(784-83\7). (30)

dual model, obey cubic equations, and the critical point is . o _ . _

simply the value ok or u for which the cubic has repeated The critical p(_)lnt is the solution obtained by _sett_mg the

roots. For the quartic this story is slightly more complicated.cuPed guadratic to zero; one root of the quadratic will be the
Figure 2 shows a numerically generated plot of the reaf'itical point forh=0, and the second fér<0. Forh=0 the

part of the solutions to the quartic, as a functiongpffor  critical value is

exph)=5/3 and the other parameters at their critical values. 14 2:7)e™

Only three distinct curves are visible, as two of the solutions q.(h) = 9el )e (31)

have identical real parts. At three points on the graph the 1+(—1+\7)e?+(2+\7)e*’

curves intersect, representing multiple rootsgaiscreases,

there is first a triple root, then a double root, and anothewhereas, foh<0,

triple root. To decide which of these represents the actual

critical point, we follow the behavior of the physical solution 3 ge(1+27)e "

asq is increa_sed fr_om zero algng the real axis, and look for Ge(h) = 1+ (—1+7)e 2+ (2+ 7)e 4’

a branch point(which will indicate the radius of conver-

gence. From the definition of the generating function we 5o that althoughg.(h) is continuous ath=0, it is non-

know that the physical solution is the one which equals ongnalytic there.

atq=0. Asq is increased, the first triple root does not rep-  The corresponding critical value @f is

resent a branch point for this solution, and is therefore not

(32

the critical point. A similar situation holds for the double (362"~ 1)(1+ (= 1+ 7)e2+ (2+ 7)e™
root; even though the physical solution is one of the double ®c(h)= 10e5 -
roots, one can verify numerically that circling the double (33)
root in the complexg plane does not take you to a distinct
Riemann sheet, and hence this value is not a branch point. 25
The critical value ofg is therefore at the second of the two 20
triple roots, as indicated by the poifd) in the figure. s
To discover an analytic expression for the critical value
d., We note that at this point the quartic can be factored into ) 10
the form 0.5
0.0
fald— M)($— 0 ¥)*=0, (28) e

where ¢ is the triple root andp™® is the single root. Set-
ting the coefficients of Eq(28) equal to those of Eq(22) FIG. 2. The four roots of the quartic, as a functiongpf The
yields a set of equations from which we can eliming®®  ycheq fine represents two roots which are complex conjugates of
and ¢ to obtain a single octic equation fgg as a function  each other. Moving from left to right, we find the triple root “a,”

of h. Happily, this octic factors into the product of two qua- the double root “b,” and the triple root “c” which is the critical

dratics(one of which is cubed It is most conveniently writ-  point. The physical branch is the one that goes to 1j aes to
ten in terms ofg./g.: zero.
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Note that as expected.—0 ash—o, but ¢, is finite and z

non-zero for allh.

IV. CONTINUUM LIMIT AND DISK AMPLITUDE

Z= ﬁ, (39)

and the functiond(Z,T) is given by

_ / /
To extract information about the theory in the continuum D(Z,T)=(Z+Z*=4T)B+(Z2-Z*-4T)*". (40)

limit, we analyze the behavior of the discrete model in the

vicinity of the critical point. The coupling constaatis set to Forh>0,

the critical valuec. given by Eq.(24); deviations from this e2"(1+e?)

value would correspond to introducing a mass for the Majo- a(h)= , (41)
rana fermion in the continuum limit of the Ising model, 1+(—1+\7) e+ (2+\7)e™"

which we do not examine in this paper. We then trade the
independent variableg and q for new variablest and z,

defined by
g=gce™ <,

q=qgce <

but this function is discontinuous dt=0. If we take the
continuum limit in Eq.(22) after h is set to zero(cf. the
calculation in[3]), we find that¢ is given by Eq.(37) with

(34 1

a(0) (42

Y. REN)

wheree is a small parameter indicating the distance from the The universal part of is the first non-analytic term, and
critical point. The expansions @f; andp; in powers ofeare  appears at ordes™. By virtue of the discontinuity inx(h),

then given by

3—7 22+ 107
= \/— 1- \/—ezt

both the numerical coefficient of the universal term, and the
amplitude of¢ as a function ofz, are discontinuous.
The universal part can be converted into the asymptotic

9P 5 9 form of the disk amplitudes(l,a) for fixed boundary length
| and disk area. These forms of the amplitude are related
1/3 5/3
n 5755+ 25(7) £8/% 434 5 (1l+5\/7) £10/35/3 through a Laplace transform
36 216
1 ~
+0O(e4?) (35) 552" (h) 64’3¢(z/a(h),5t)=f dlf dae ?"g(l,a).
and (43
 —699+40x a2 Inverting the Laplace transform, we have
gps= 100 ~ 5
¢(|,a): (a(h)l)l/3(al5)77/3e75(a(h)l) la
4(121-5x7%%) _  9x5" 2537
— et+ €343
25 2
_ [ L3p~73g—L7A (44)
3X 52/3 ,
+ " L0353 O 4t2). (36) 25/3 7
with the rescalings
These expansions may be substituted into the qu@a;
which may then be solved fop as a sum of increasing L=a(h)l A:E (45)
powers ofe. We obtain ' 5°

3+2(—2+\7)e+(1+2\7)e*" .
€

¢: ¢C(h)_ 1%4h

. 1 . 2431+ 4" +e*")
5% 2Pa(h) € 15a(h)(1—e™)

" eP7(2T+2%)® .
D2 (4T)%3

O(€?),

Up to an irrelevant multiplicative constant, this is precisely
the form of the disk amplitude when the boundary conditions
are conforma[19,4,20,3 (i.e., withh=0 or h= *«); how-
ever, the boundary lengthis rescaled by the factaw(h)
which depends discontinuously on the boundary magnetic
field. Note that this amplitude includes an extra factod of
corresponding to a marked point on the boundary.

37)

V. EXPECTATION VALUES

where for convenience we have rescaled the variables to

T=>5t

and

Now that we have defined the continuum limit of the

(38) model and computed the disk amplitude, we would like to

calculate a number of correlation functions related to the
boundary and bulk magnetizations in the theory. In this sec-
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tion we describe the formalism necessary to perform sucland
calculations efficiently.
An example of the type of calculation we need to perform o
is the limiting value of the boundary magnetization on a disk > (Ag)n gk (52)
with a large number of triangles and boundary segments. The n.k=0
boundary magnetization for a spin on the boundary of a disk

with k boundary edges and triangles is given by The universal behaviors of these two sums give the Laplace
. h . oK1 transforms of the two function§(n,k) andg(n,k) with re-
(m) _(Tre"U—e "V)(e'U+e V)" ), (a6) Specttoz andt. For example
n.k (Tr(e"U+e ")k, '

where by( ), we indicate a sum over triangulations re- 3 (- qug”~j dkf dne <Me™ k2 (n k) =F (t,2),
stricted to geometries with spins(the coefficient ofy” in an k=0 '
expansion ing). The quantity(m) is defined to be the large (53
n andk limit of Eq. (46).
More generally, we define the expectation value of anwhere the subscript” indicates the universal part. In or-

operator in a specified stateas der to recover the functiorfsandg, it suffices to perform an
(A= i (AP)n (47) inverse Laplace transform on the universal p&riét,z) and
k—o0, N (P G,(t,2) of the sums to obtain the functiofiéa,l), for which

where (), is taken to mean the sum over all triangula-
tions, with appropriate weights, witm triangles andk Fu(t,z)zf dlf dae 2" (a,l) (54
boundary edges.A¢), \ is the same quantity, but with the
weights adjusted by the operatdr. _
For the cases we are considering in this pagds a sum  and similarlyg(a,l). Thus
over all triangulations, with weights determined by the
boundary magnetic field. Thus, for zero fielgljis simply a ~
sum which is equally weighted for all boundary configura- Ay= g(a,l). (55)
tions (free boundary conditionswhereas for infinite(posi- F(a,l)
tive) h, the only boundary configurations with non-zero
weight are those with all spins pointing ufixed boundary
conditions. When A represents a boundary spin operator,
for example, then for each configuration the boundary spin is
evaluated at a particular site, and the weight acquiresla VI. BOUNDARY MAGNETIZATION
depending on whether that spin is up or down. Wheis a i ) i i ,
bulk spin operator, the spin is evaluated at a site in the bulk. " this section we will apply the discussion above to com-
The limits in Eq.(47) can be understood in terms of the pute the one- and two-po_mt boundary magnetizations in the
asymptotic behavior of Ay, and (), . For largen,k ~ Presence of a boundary field.
these functions scale asymptotically as

We shall see this explicitly in the following sections.

A. One-point boundary magnetization

-n—k
~ f(n,k 48 o L
(¥Ini=0e"de TNk “9 The boundary magnetizatiofm) is given by the large
and ) n,k limit of
A ~d."q; “g(n,k). 49
< ¢>n,k gC qC g( ) ( ) _<Tr(th—e_hV)(th +e_hv)k_1>n
Thus 0 Mk (TreU+e ™), (0
ny
(A~ lim ?(—k (50)
keoon, noe [(MK) We may follow the route described in the previous section

to compute{m). The first step, the critical expansion ¢fin

For largen andk, it is appropriate to replace the number of the continuum limit, was given in Eq37). The other quan-
triangles and boundary edges by the area and length varjity we need to expand is

ablesa= €?n andl = ek, so tha.A) will appear as a function

of a,l. o
The continuum limit of an operator expression of this type =qb, = 2 (Tr RQYHg<HL, (57)
can be easily determined by taking the continuum limits of ' =

the quantities#) and{A¢). Consider the continuum limits

of the sums ” Whenh=0, ¢, vanishes by symmetry. When+0, we can
nk 51 computeg,(h) by solving a linear combination of the first
n%o (¥)nigd 61 two loop equations 0f19). From these it follows that
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_(1-eM[(c—e”+ce™+ce)(1- ¢)+2p;e°"g—24%q7(1+ e +e')]

r cq+e?'q+ g+ cethq— 2e%g , (58
and hence, expanding and multiplying gye™ %, we obtain
(@)1 VDM - (4-3(7)e) (€M -D@EH(L42\T)e?) (D@D
r= 10eh 10e" € 5% 27321+ e2M) €
2433+ (2+\7)e™M)(1+ 462"+ &) [ 3Z(2T+Z2) D ,
- 156211 22 7 (4T)"? +0(€9). (59
|
The universal part ofy, is equal to that of¢, up to an a.(h) (e?"—1)(3+2e?+ J7e)
h-dependent constant. There is therefore no need to explic- (m)=— ao(h) = 1+ (=11 \e? "+ (24 7)™’
ity compute ?}r(a,l), the inverse Laplace transform of ¢ ( e+ ( e 63)

¢ (Z,T), in order to determine the boundary magnetization.

We need only compute the ratio of the universal parts to ge}nere we have used E@Y) for g.(h). This confirms the
thel andA independent resulfor h>0) result obtained in Eq(60).

A graph of the boundary magnetization is shown in Fig. 3
(bold curve. As expected, with no field the magnetization is

b, (e®"-1)(3+(2+ \/;)ezh) zero, and for an infinite field the magnetization is 1. This
(m=_—= . (600 result is compared with the boundary magnetization on a
¢ (1+(-1+ \/;)82h+(2+ \/;)e“h) half-plane in flat space, computed by McCoy and Wi

(dashed curye Whereas in flat space the magnetization

Note that{m) is independent df andA, and is continuous at Scales as In h for small h, leading to a divergence in the
h=0. (Note also that the expression given[8l contains a magnetic susceptlplllty at the critical te_mp_eratL_Jre,_ on a ran-
typographical error in the numeratpr. dom s.urfacg we find thgt.t'he magnetization is lineahat
In this particular case, there happens to be a simple argu= 0. With a finite susceptibility
ment that givegm) more directly than the computation out-
lined above. In the largk limit,
1+247
X=n{mM)|h=0= 3 (64)

(Q9n~0ac(h) ~*gc "f(n,k). (61)

. . . ) . B. Two-point boundary magnetization
Differentiating both sides with respect lp we obtain

Having computed the magnetization at a single point on
the boundary of the disk in the presence of a boundary mag-
k(QXIR),~K[ — ge(h) ~®* Vg’ (h)f(n,k)+O(1k) g, ", netic field, we vyould now like to compute th.e corre_lation
62) between two spins on the boundary of the disk, which are
separated bk andl edges in the two directions around the
from which it follows directly that, in the largk limit, boundary. To compute the two point magnetization,

. (Tre"U—e "V)(e"U+e "V)¥e"U—-e "V)(e"U+e "V)'),
(m%)= Tr(eU+e VK177, :

(65

we need expressions for

o(qr,a)=2 > (TrRGRA)dfa;, (67
2(01,92)=01020(d1,02) (66)

where and for
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FIG. 3. Boundary magnetizatiofm) as a function of boundary
field h in flat space(dotted ling and on a random surfad@old
line).

p<q1,qz>=k§0 go (Tr Q" 1*2)gk g5, (68)

Again, using the loop equation techniques[&f, one can
derive the following set of equations for[here, a derivative
Dy, denotes a combinatorial derivative as in Etj), where

all variables other than; are held constaifit

a(d1,d2)=bD $(dy,0,) +e(Dg, (0, 02)
+Dg,0(d1,02)) + ad(ds) $(dz)
+y(01,092) ($(A1) A1+ $(02)d2)
+bo(d:1,02)

$(d1,02)=bDj_¢(d2) +2€Dq,br(d2)
+br(dz) +aD3 $(as1,02)0s
+d(Dg,0(d1,92) +Dg,0(d1,02))d1
+7¢(01) $(2) 01+ Y(d2) %02

+B¢(01,02)91(4(A1)0;
+ ¢(d2)d2)+ag,0,(d;1,92)

¢(qy)=1+aDj $(d;)dy+2dDq ¢ (d1)a;
+ady (qy)ar+ Be(dr) s’
$(02)=1+aD; $(dz)d+2dDq,d:(d2)d,
+ag(g2)d2+ Bb(d2)%0,°
¢¢(d1)=bDj ¢(qy)+2eDqg Br(0y)
+be (dy) +y(ay)’dy

¢1(d2) =bD]_¢(0y) +2eDq,¢r(dy)

+b () + ¥p(d2)%d2,

PHYSICAL REVIEW D 58 046006

where
or(au.d2)= 2 > (TrRGRQR)id; (69
and
#(d1,02)= 2 2, (Tr QRQ)aa;. (70
It is easily verified that?(ql,qz) is given by
— Q1Dq1¢r(Q1)_q2Dq2¢r(qZ)
#(d1,92) = . (7D

q:1—0q2

An expression foro(q4,q,) in terms of $(q4), ¢(q,) and

p; andp; can be obtained by solving these equations. The
expression is too long to be included here. On the other hand
p(d1,92) can be directly expressed in terms ¢tq;) and
#(Qg,) in a very simple way as

0293D5, #(d1) — 195D, B(qy)
d1—0z

14 A20(d1) —d16(0) .
di1— 02

p(d1,92) =

(72)

Armed with expressions far(q;,q9,) andp(q4,q,), itis
then straightforward, if rather tedious, to obtain the critical
expansions oB, andp. They are given by

("= 1)%(3+(2+\7)e*)?
20x 2% (1+e™")?

(2, )~ D(Z,,T)
% Z,-7,

E(Zl,ZZ,T):O'C'F

61/3+ O( 62/3)
(73
and

1
P(Zl-zzaT):Pc"” 20X 21 3a(h)2

% q)(zliT)_(I)(ZZ7T)

13, 213y
Z,-7, € O(e™)

(74)

As in the case of the one-point magnetization, the univer-
sal parts of¥ andp depend orZ,, Z,, andT in the same
way. Consequently, the ratio of the Laplace transforms of
these universal parts will simply be thedependent ratio of
the universal parts themselves. It follows that the two-point
boundary magnetization,

= (79

> S (" -1)2E+H(2+T)e)?
{ >_7) A+ (—1+7)e?+ (24 7)e*n)?’
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i_s precisely the square of th.e one-poi_nt magne';ization. We DéTrZ Y(PqT+tqd) + BT+ BA(T, + bT) +dTrqqr
find an absence of polynomial corrections to this resaitt

least to the first subleading ordeindicating that correla- +a7,qrr+aDgrr+qur,qr+quq¢, (80)
tions between boundary spin operators decay exponentially,
as one would expect in analogy with the flat space theory.
P 9y P y DqTrr:7(pr7+tr¢)+77r+Bq(T¢rr+¢7'rr)+dTrqrr
VII. BULK MAGNETIZATION +at +aD; 7 + dDg T +Cqdbyy

The expectation value of the bulk magnetization in the
presence of a boundary magnetic field, on a disk with bound- ~ Trqr = a(Pq7+1q¢) + y7 + yA(7Dg b + Dy )

ary lengthk and arean, is given by +ergqt bTrq"+bD§Tr+qur,q,+chq¢,

_(Tr(e"U+e "V)*-Tr(U-V)),
(M)= (Tr(e"U+e "W)X Tr(u+V)),’

(76 T =a(p 7+t @)+ ar + yq(7d + 1)+ ETrqrr

2
This can be evaluated by considering cylinder amplitudes + D7 +bDg 7 +€DgTrr + Cr by
with one boundary having a boundary magnetic field, and the
other with a single boundary edge. The second boundarwhere
represents a marked point on the bulk. Although the second
boundary corresponds to only a single edge rather than 3 te=(Tr Q- THU—-V)), t,=(TrR-TrU-V)). (8D
edges as would be appropriate for a triangle corresponding to
a single spin, this distinction should not be relevant in the
continuum limit where the boundary becomes pointlike.As before,p,=(Tr Q), p,=(Tr R), and the various con-
Again, a quantity such as E¢76) can be computed by the stants take the same values as in 8d).

method of loop equations]. The equation$80) can now be used to expresgh) as a
To compute the magnetization, we require two puncturedpolynomial function of¢(h). However, this equation will
disk amplitudes: also contain a number of unknown correlation functions

tqqs tqqqs trs tr @ndt,,, some of which appear explicitly in

Egs.(80) and some of which arise from the derivativesmof
T(h)=k2 (Tre"U+e "k Triu—-V))g*  (77) Siﬂce( )
=0

©

and Dqr=q~Y(7—1), ©2

[’

A(h)= go (Tr(e"U+e ")k TrU+V))gk. (79 Dir=q"2(r—1-tqq),

As in Eg. (14), we define functions related te but with ?nd SO on. ASI’D in tze ccémputation th’ thﬁse corrglatiop
Lo ' . . nctions can be reduced to a much smaller number of un-
additional words corresponding to sequences of spins on ﬂ‘kgnowns by expanding Eq€80) order-by-order. It turns out
outer boundary: that after using all the relations i80) [cf. Eq. (21)], two
o extra relations are required between
Tuan(@= 2 (TrwQRIQTHU-V)a". (79

t,=(TrU-TruU), tu,,=(TrusTru), @

The first step in computing the bulk magnetization is now
to derive a set of eight independent equations which close on t,=(TrV-Tr U), t,,,=(TrV3.Tr U).
the quantities €, 7., 7rr , Trqr » Trrr + Trqqr » Trqrr + Trrer )

The first extra relation comes from the calculation &) of

7=2p9%¢7+aqr, +aDyr+2d7, +Cqq¢ the critical expansion of

7 =2yq¢7+ b7, +bD;7+2eDy7 +C b 1
Wo=(THU=V)-TrHU=V))=t,~t,, (84
T =att yq(7é + ¢Tr)+e7rqr+ b7

2
+bDy 7 +€Dq7r + ¢ ¢y which is given by

DqTr:77+,8q(7¢r+¢Tr)+d7'rqr+a7'rrr 1+2\/7 ys a2 -
+aD?r, +dDg 7y, +Cody Wo=—¢— (1457 +0(t?)). (85)
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The second relation is obtained by differentiating the matrix PR
integral expression fop; with respect tog: 5gp1=w (87)
tuuu+tvvv
agpl:T' (86 can be used to obtain the critical expansionygp, .
Armed with these extra relations, we have all the infor-
Then mation required to expandin e. We obtain

2439 (1+27)2(1+ (— 1+ J7)e®+ (2+7)e*Mz
-

1551+ ™) (@(Z,T)+ (4T €O, 8

As discussed in Sec. V, the quantity of interest is the inverse Laplace transform of the universalmpaiten in this case
by

2
(1+2 \/7) 9c L2/3A—5/3e—L2/A.

7(L,A)= 89
( 502w ®9)
Here, we have introduced rescaled area and boundary length parameters a¢i).Eq.
It is much easier to compute the critical expansion\ ¢ii) since it is directly related t@(h) via
A(h)=dge(h). (90
This gives an expansion
22— 1427 A+ (—1+V7)e®"+ (2+V7)e*MA(Z, T
L2 VT) (A +( th) 2h( V7)e'MA( ) 254 (1) -
81g.e(1+e ")
where
Z—\Z?—4T) B~ (Z+ yZ2—4T)*3
AZ,T)= ( ) ( ) . (92

Z°—4T

The leading term ir\ has an inverse Laplace transform Distler-Kawai (DDK) description of Liouville theory
[21,22. The gravitationally dressed scaling dimension of the
K(LA) = (—1+247) | 137~ 413g-L7IA ©3) bulk magnetization field id = 1/6. By analogy with the flat
' 5><37727TgC : space theory we expect that the bulk magnetization should
scale agM)~d 22 whered is a measure of the distance
The bulk magnetization in the continuum limit is then from the boundary. This is precisely the behavior seen in
given by (94), sinceA/L has dimensions of length.

M>: M:LlBA*lB. (94)

ALA) Let us summarize the implications of the results we have
derived in the previous sections.

VIII. DISCUSSION

The numerical values of the coefficients sfand X have
exactly cancelled. Although it may appear that the magneti-
zation can be greater than one, this formula is valid in the
continuum limit, for whichA~L?>1. We also notice that In Sec. IV we computed the disk amplitude in the pres-
this form of the magnetization is independentiacéxcept for  ence of a boundary magnetic field as a function of the disk
the dependence on the scaling facigh) incorporated irl. areaa, the boundary length, and the boundary field. We

At h=0, this magnetization is discontinuous and vanishesdiscovered that the result could be written in terms of the two
One nice feature of this result is that it correctly reproducesariablesA=a/5 andL = «(h)l, in which case the disk am-
the scaling behavior expected after the magnetization operglitude took on precisely the form of the analogous function
tor has been gravitationally dressed according to thevhen the boundary conditions are conformally invariant.
Knizhnik-Polyakov-Zamolodchikov (KPZ) and David- Thus, the effect of a boundary field on this amplitude

A. Renormalization group flow
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freebe’s  U+V X+Y, X-Y B. The dual picture
><\_Jalmes As discussed in Sec. Il, the Ising model on a random
fixedbe's ULV X lattice can also be formulated in the dual picture, in terms of
. . matricesX andY, whereX denotes an edge separating two
Lsing dual Lsing equal spins and’ an edge separating two opposite spins. We

have seen in the introduction that the change of variables
FIG. 4. The duality map that interchanges free and fixed bound-
ary conditions. Note that for the Ising model, there are two fixed

states and only one free state, whereas the opposite is true of the UHE(X"’Y)

dual model. (95)
amounts to a rescaling of the boundary length by an V—>i(X—Y)

h-dependent factor. In Sec. VII, meanwhile, we found that V2

the bulk magnetization as a functionaf| andh could also ) . )
be expressed in terms @ and L, and that its functional N the action for the Ising model leads to the dual action.

form was the same as in the presence of an infinite boundar|uS any calculations in the original model can be reinter-
field. reted in terms of the dual model. We shall now discuss the

@uals of our results for the boundary and bulk magnetizations
in the presence of a boundary magnetic field.

First, let us discuss the boundary conditions correspond-
ing to the weights

Taken together, these results imply the existence of an R
flow to the conformally invariant boundary condition with an
infinite boundary fieldh is a relevant operator which goes to
+oo in the infrared(in this context, as the disk area and
length grow large Further evidence is provided by the dis- (Tr QMY=(Tre"(X+Y)+e "(X=Y))")
continuity in the rescaling function dt=0: any imposed .
boundary field, no matter how small, leads to magnetization =(Tr(coshth)X+sinh(h)Y)") (96)

in the bulk of the same form as that expected in the presencghcre we have dropped factors for notational simplic-

of fixed boundary conditions. , _ ity. In the dual variablesh=0 corresponds to fixed bound-
A related phenomenon has previously been derived foéry conditions, whilédh= =+ corresponds to the two types of
the flat-space Ising model on a half-plane geomg?®.9.  free boundary conditions X Y)". Thus, in this picturen
Again, one can compute the magnetization of a point in thgyjays the role of a “boundary freedom field” rather than a
bulk in the presence of a boundary field; however, ratheboundary magnetic field. In the limi—0 the boundary
than depending on the area of the surface and length of theondition is fixed(all X’s), while in the limitsh— =, the
boundary(both of which are infinite for the half-plajethe  boundary conditions are a pair of free boundary conditions
magnetization is a function of the distance from the bounduwith different signs in the weights assigned to configurations
ary. (In quantum gravity, where we sum over all geometrieswith an odd number of’s on the boundary. These fixed and
it would be conceivable but much more difficult to computefree boundary conditions in the dual model are of course
any quantity as a function of, say, minimum geodesic disprecisely the Kramers-Wannier duals of the free and fixed
tance from the boundary. Computing anything “at a fixedboundary conditions of the spin representatisae Fig. 4.
point” is even more problematic, and not really well-defined Correspondingly{11], a spin operator in the original vari-
in the absence of additional fielflChatterjee and Zamolod- ables is transformed into a disorder operator in the dual vari-
chikov [9] show that the asymptotic form of the bulk mag- ables.
netization depends on the distance from the boundary as Our results in Sec. VI for the boundary magnetization can
y~8in the presence of any nonzero boundary field, just as ithus be reinterpreted as a calculation of the expectation value
does for fixed boundary conditiof&3]. Our results demon- of the boundary disorder operator. We see that as the bound-
strate that this RG flow is preserved in an appropriate formary freedom field is increased, so the expectation value of the
after coupling the theory to quantum gravity. boundary disorder operator

(TrE"(X+Y)—e "(X=Y))(e"(X+Y)+e "(X=Y))*) (Tr(sinhh)X+ coslth)Y)(costh)X+sinh(h)Y)),
(= (Tr(e"(X+Y)+e "(X=Y))k+1) B (Tr(coshh)X+sinh(h)Y)** 1)

97

tends to 1. Ath=0 the boundary condition is fixed and so, tion goes along similar lines, and we conclude that the bulk
by symmetry, the boundary disorder must vanish. disorder in the presence of a boundary freedom field is given
The dualization of the calculation of the bulk magnetiza-by the expression
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(D)=LY3p~13 (98) AN 1 é\\‘;/ N
| ) ) S /
Y. SN 4

except whend=0, when the bulk disorder also vanishes Ve 7

identically. There is a striking consequence of this result. In @ ®

the Ising model inJ, V variables, the coupling of a bound-

ary magnetic field was seen to induce renormalization group FIG. 5. The relative weight of geometries of different shapes
flow from free to fixed boundary conditions. On the otherchanges with boundary magnetic fiehd Roughly speaking, for
hand, when a boundary freedom field is coupled in the dudgrgeh, geometries of typéa) are suppressed relative to tyfis.
formulation of the model, the renormalization group flow is

from fixed to free boundary conditions. This change in the The effect of gravity is therefore to soften the initial im-
direction of the renormalization group flow is a natural Con-pa of the houndary field. It is natural to interpret this soft-
sequence of the Kramers-Wannier duality of the system. Thgning as being due to the interaction between the spins and
duality symmetry implies that the ground state degeneraciege geometry: the coupling between spins and the boundary
of the free and fixed states are swapped under the dualiije|q changes the relative weighting of different geometries,
transformation, and so the reversal of RG flow is consistenyyhich changes in turn the effect of the neighboring spins on
with Affleck and Ludwig's g-theoreni12]. In general, one any one boundary site, leading to a more gradual increase in
expects that the RG flow of the theory should be towards théne boundary magnetization as a function of boundary field.
conformal boundary condition with smaller degeneracy, so it A related aspect of our results is that the bulk magnetiza-
is natural that the direction of the flow switches under thetion is seen to decrease when a nonzero boundary magnetic
duality transformation. As we see, this result seems to holdield is increasedat least asymptotically, for large argast
in the theory equally well after coupling to quantum gravity. first this seems implausible, and indeed at a fixed point in flat
space, the bulk magnetization cannot behave in this way.
However, the sum over geometries provides a possible ex-
] ) ) ] planation for this unusual effect. The expectation value of a
On any fixed lattice, the introduction of an external mag-gpin in the bulk naturally depends not only on the magnitude
netic field on the boundary leads to a direct effect on thesf the poundary field, but also on the average distance of the
Ising spins, as there are no other degrees of freedom Withoint from the boundary. Therefore, the decrease in the bulk
which to interact. It is therefore natural to expect that cou-magnetization can arise if the boundary field alters the rela-
pling to quantum gravity, which introduces the local geom-tjye weights of different geometries in such a way as to move
etry as an additional degree of freedom, will lead to quanti-y typical interior point further away from the bounddag in
tative changes in the response of the spins to the boundamg_ 5.
field, and indeed this is what we have observed. We have therefore verified that a number of features of
The calculation of the boundary magnetization in Sec. Vlhe |sing model in flat space are maintained in the presence
can be compared with the results that_ have been obtained quantum gravity, while also demonstrating that the dy-
flat space by McCoy and Wir]. They find that the magne- pamjcal geometry does have a measurable effect. It would be
tization scales a$ Inh for small h, and as a result, the jnteresting to check more directly that the explanations we
magnetic susceptibility diverges at the critical temperature. p5ye given for these phenomena are correct, for example by

On the other hand, we have seen in Egf) that the mag- ymerical simulation methods such as those described re-
netic susceptibility at the critical temperature is finite whencently in[24].

the Ising model is defined on a random lattice. It seems

likely th_at_ _the exact numerical vaI_u(eG4) _of t_he magnetic ACKNOWLEDGMENTS
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C. The effects of gravity
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