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Boundary fields and renormalization group flow in the two-matrix model
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We analyze the Ising model on a random surface with a boundary magnetic field using matrix model
techniques. We are able to exactly calculate the disk amplitude, boundary magnetization and bulk magnetiza-
tion in the presence of a boundary field. The results of these calculations can be interpreted in terms of
renormalization group flow induced by the boundary operator. In the continuum limit this RG flow corresponds
to the flow from non-conformal to conformal boundary conditions which has recently been studied in flat space
theories.@S0556-2821~98!04516-0#
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I. INTRODUCTION

Simple statistical mechanical lattice models, such as
Ising model, have been used for many years to gain ins
into the behavior of a wide range of physical systems. T
great utility of such simple models arises from the fact tha
many cases they are exactly solvable. It is a remarkable
that some questions which seem analytically intractable
models on a regular lattice yield exact solutions when
underlying lattice is itself taken to be a random element o
larger statistical ensemble. An example of such a situatio
the Ising model with a bulk magnetic field. Although th
model has not been analytically solved on a fixed lattice,
possible to exactly compute the partition function and m
netization of the model on a random lattice@1#.

In this paper, we consider the Ising model on a rand
lattice in the presence of a magnetic field on the bound
rather than in the bulk. Again, this corresponds to a prob
which does not seem to be analytically solvable on a fix
lattice. Summing over random lattices, however, we find t
the partition function and magnetizations can be calcula
exactly.

The Ising model on a random two-dimensional lattice c
be described in terms of a matrix model. A great deal
technology has been developed to deal with matrix mod
primarily as a tool for studying string theory. The techniqu
we use here were derived in an earlier pair of papers@2,3#,
and are related to methods described in@4,5#. Some of the
results which we describe here appeared in a previous l
@6#.

The Ising model on a regular lattice with a boundary ma

*Email address: carroll@itp.ucsb.edu
†Email address: m.ortiz@ic.ac.uk
‡Email address: wati@princeton.edu; Present address after

gust 1998; Center for Theoretical Physics, Massachusetts Inst
of Technology, Cambridge, Massachusetts 02139
0556-2821/98/58~4!/046006~15!/$15.00 58 0460
e
ht
e
n
ct
r
e
a
is

s
-

y,

d
t
d

n
f
s,
s

ter

-

netic field was studied many years ago@7#. This model has
been of renewed interest recently because in the contin
limit, where the lattice spacing is taken to zero, it gives
simple example of a two-dimensional field theory which
conformal in the bulk but which has boundary conditio
breaking conformal invariance@8,9,10#. The only boundary
conditions for the Ising model which preserve conformal
variance@11# are free boundary conditions~where the bound-
ary field h vanishes!, and fixed spin boundary condition
~whereh56`!. Putting an arbitrary fieldh on the boundary
generates a renormalization group~RG! flow from the free
boundary condition to the fixed boundary condition@12#.

For a matrix model corresponding to fields on a rand
surface, a continuum limit can also be taken. In this limit, t
theory describes conformal matter fields coupled to 2D qu
tum gravity. In this paper we take the continuum limit of th
disk partition function and magnetizations and consider
implications of our results for the resulting theory ofc
51/2 matter coupled to gravity. In particular, we find th
the results are in accord with the hypothesis that the RG fl
which has been understood in flat space is present in
appropriate form in the theory with gravity.

One provocative feature of our results is that as
boundary magnetic field is increased, except for a jump d
continuity when the field becomes nonzero, the expecta
value of the magnetization of a randomly chosen spin in
bulk decreases. This counterintuitive result may be ex
plained in terms of the effects of the matter fields on t
geometry—roughly speaking, the increase in magnetic fi
produces a long ‘‘throat’’ which separates the boundary fr
the bulk and which increases the average distance of a
spin from the boundary, effectively decreasing the bulk m
netization. However, this result is also found to be a fin
volume effect which may depend upon the precise choice
how the random lattice ensemble is defined.

Another context in which this work may be relevant is t
current discussion of D-branes in string theory~see for ex-
ample @13#!. Just as there are two conformally invaria
boundary conditions for the Ising theory, a conformal fie
theory of a single bosonic field can have two conforma
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CARROLL, ORTIZ, AND TAYLOR PHYSICAL REVIEW D 58 046006
invariant boundary conditions: Neumann and Dirichlet. Co
sidering the continuum limit of the Ising model as a sing
free fermion, free and fixed Ising boundary conditions a
related through supersymmetry to Neumann and Dirich
boundary conditions on a bosonic field. The fact that R
flow behaves similarly in flat space and in the presence
fluctuating metric suggests that perhaps Dirichlet bound
conditions in superstring theory naturally arise as an
limit of a non-conformal boundary term.

In Sec. II of this paper we describe the discrete model
will use for the Ising model on a random surface. In Sec.
we apply the methods of@2# to this model, explicitly deriving
a quartic equation satisfied by the disk amplitude and lo
ing the associated critical point. In Sec. IV we take the c
tinuum limit of the disk amplitude. In Sec. V we discuss t
general formalism we will use for calculating magnetiz
tions, and we apply this in Secs. VI and VII to compute t
boundary and bulk magnetizations on the disk. In Sec. V
we discuss implications of our results for renormalizati
group flow, duality, and the effects of gravity on the beha
ior of the matter theory.

II. THE MODEL

A discretized theory ofc51/2 matter coupled to 2D
quantum gravity is described by the Ising model on a r
domly triangulated surface. At the center of each~equilat-
eral! triangle on the surface lives a single Ising spin, coup
to its nearest neighbors. This theory can be described b
matrix model@1# with partition function

Z~g,c!5E DUDV exp„2NS~U,V!…, ~1!

where the action is given by

S5
1

2
Tr~U21V2!2c Tr UV2

g

3
Tr~U31V3!. ~2!

In these expressions,U andV areN3N Hermitian matrices
representing up and down spins respectively,g is a coupling
constant corresponding to a Boltzmann weight for each
angle on the surface, andc describes the coupling betwee
Ising spins.~This c is unrelated to the central charge.! The
partition function can be expanded in a power series ing and
1/N, and the coefficient ofgkN222h is then given by a sum
mation of the Ising partition function over all triangulation
of a genush Riemann surface byk triangles.

We are interested in amplitudes corresponding to vari
boundary conditions on spins living on a genus zero surf
with boundary. For example, the disk amplitude for a co
figuration of plus and minus spins on the boundary, rep
sented by an ordered stringw(U,V) of the matricesU and
V, is given by the large-N limit of the matrix model expec-
tation value,

pw5 lim
N→`

1

N
^Tr w~U,V!&. ~3!
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~Since we will always be interested in the large-N limit,
henceforth we will suppress the explicit 1/N in expectation
values.! Again, pw can be expanded in a power series ing,
with the coefficient ofgk giving the sum over all disk trian-
gulations by k triangles with a boundary having a fixe
length and spin configurationw(1,2).

There are two types of conformally invariant bounda
condition in the Ising theory: ‘‘fixed’’~corresponding to all
boundary spins aligned! and ‘‘free’’ ~corresponding to an
equally weighted sum of all possible boundary spin config
rations!. For each of these we can define a generating fu
tion which encodes the amplitudes. Fixed boundary con
tions are described by

f̃fixed~u!5 (
k50

`

^Tr Uk&uk, ~4!

while free boundary conditions are described by

f̃ free~x!5 (
k50

`

^Tr~U1V!k&xk. ~5!

The Ising model in this set of variables is symmetric und
interchange ofU andV ~corresponding to the symmetry un
der spin reversal!. The generating function for fixed bound
ary conditions can therefore also be described by summ
over amplitudes with allV’s on the boundary.

An alternative coupling of discretizedc51/2 matter to 2D
quantum gravity is obtained by considering the dual Is
model on a random surface@14#. The partition function of
the dual model is defined once again as a sum over surf
with Ising spins at the face of each plaquette, where now
plaquettes may be polygons with arbitrary numbers of sid
but the coordination number at each vertex is constraine
be equal to three. Such a configuration is equivalent thro
duality to a triangulation in the original theory, but wit
spins located at vertices rather than on faces. The dual m
may also be described as a theory of two matricesX andY,
with action

S5
~12c!

2
Tr X21

~11c!

2
Tr Y22

ĝ

3
Tr~X313XY2!.

~6!

There are once again two types of conformally invaria
boundary conditions, fixed and free. In the dual model
matrix variablesX and Y do not refer to the state of indi
vidual spins, but rather to the relative state of two sp
across an edge;X denotes an edge separating two eq
spins, whileY denotes a boundary between two oppos
spins. The generating function for fixed boundary conditio
is therefore

f̂fixed~x!5 (
k50

`

^Tr Xk&xk, ~7!

while free boundary conditions are described by
6-2
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BOUNDARY FIELDS AND RENORMALIZATION GROUP . . . PHYSICAL REVIEW D 58 046006
f̂ free~u!5 (
k50

`

^Tr~X1Y!k&uk. ~8!

Note that the dual model is symmetric underY→2Y; it is
therefore the generating function for free boundary con
tions which has an alternative description in these variab
as a sum over̂Tr(X2Y)k&. ~Amplitudes with an odd num-
ber of boundaryY’s vanish identically.!

Although the original and dual formulations of the Isin
model represent different couplings to 2D gravity, there i
simple transformation that relates the original action~2! to
the dual action~6!:

X→
1

&

~U1V!

Y→
1

&

~U2V! ~9!

ĝ→g/&.

As a consequence, the partition functions for the two mod
on surfaces with no boundaries are identical. This does
however, guarantee that all correlation functions in the t
theories agree, since the transformation~9! has a nontrivial
action on the states and operators of the theory. For exam
the disorder operatorY in the dual theory is taken into th
spin operatorU2V in the original theory. Similarly, the role
of free and fixed boundary conditions is interchanged;
have

f̃fixed~u!5f̂ free~u/& !,
~10!

f̃ free~x!5f̂fixed~&x!.

The ~Kramers-Wannier, or T-! duality of the model relates a
specified state~fixed, free, or with additional operator inse
tions! in the original form of the model to the same state
the dual version. Although in the discrete version of t
theory, this duality symmetry is explicitly violated by finit
volume effects, it seems likely that the duality symmetry
restored for all correlation functions in the continuum lim
Evidence for duality in the continuum limit at genus ze
was presented in@15,3#, and the issue of higher genus w
explored in@16,17,18#.

Our interest in this paper is in non-conformally-invaria
boundary conditions, which may be thought of as aris
from the introduction of boundary fields or couplings. W
therefore consider the original model in a new set of ma
variablesQ, R, defined by

Q5ehU1e2hV,
~11!

R5ehU2e2hV.

Substituting these into the original action~2!, we obtain
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S5 1
4 Tr@„cosh~2h!2c…Q21„cosh~2h!1c…R2

22 sinh~2h!QR#2
g

12
Tr@cosh~3h!~Q313QR2!

2sinh~3h!~3Q2R1R3!#. ~12!

In this set of variables we can calculate the generating fu
tion for disk amplitudes with allQ’s on the boundary,

f~q,h!5 (
k50

`

^Tr~ehU1e2hV!k&qk5 (
k50

`

^Tr Qk&qk.

~13!

This generating function describes boundary conditio
which interpolate between fixed and free. The parameteh
can be thought of as a boundary magnetic field applied
otherwise free boundary conditions; forh50 we recover
f̃ free in the original model, while forh56` the boundary
spins are all driven to one value and we recoverf̃fixed. Note
that although theh→6` limit appears to be singular, this i
just an issue of normalization, which can be absorbed b
constant rescaling ofq. Indeed, we shall see that althoug
the critical value ofq goes to zero ash→6` with the cho-
sen normalization, all quantities of interest~such asf for
example! are well behaved in these limits.

III. LOOP EQUATIONS FOR CORRELATION FUNCTIONS

The process of calculating the generating functionf(q)
was described and essentially carried out in@2#, without the
explicit solution being written down. Here we will review
the basics of that procedure, and examine the solution
detail. ~The discussion in@2# was framed in terms of non
commuting variables; for our purposes here we may s
directly to functions of a single variable.!

We begin by defining an additional set of generating fun
tions fw(q,r )(q). These functions describe disks who
boundaries include a fixed string of matricesw(Q,R), plus
any number of additionalQ’s:

fw~q,r !~q!5 (
k50

`

^Tr w~Q,R!Qk&qk. ~14!

For example, we have

f rqr~q!5 (
k50

`

^Tr RQRQk&qk ~15!

5prqr1qprqrq1q2prqrqq1q3prqrqqq1¯ .
~16!

Recall thatpw(q,r ) is the amplitude for a disk with boundar
specified by the stringw(q,r ); thus pq corresponds to a
single boundary edge labelledq, pr corresponds to a single
boundary edge labelledr , and p051 corresponds to no
boundaries.
6-3
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CARROLL, ORTIZ, AND TAYLOR PHYSICAL REVIEW D 58 046006
We will also introduce a derivative operator Dq which
acts on power series inq. Its effect is to annihilate terms
independent ofq, and to remove one power ofq from all
other terms:

Dqqk5H 0 for k50,

qk21 for k>1.
~17!

The action of Dq on a generating function is to remove an
constant term and divide the remainder byq. For example,

Dqf5q21~f21!,

Dq
2f5q22~f212pqq!,

~18!

Dqf r5q21~f r2pr !,

and so on.
We can now derive a set of loop equations which rel

these functions to each other, by considering the poss
outcomes of removing a marked edge on the boundary.
example, let us examine the effect of removing the ed
markedR from the disks represented byf r(q). Sincef r
represents a sum over various triangulated geometries o
disk, we can consider the effect of removingR from each of
the terms separately. For each term, there are two basic
sibilities: the edge might be identified with another ed
elsewhere on the boundary, or it might belong to a triang
In the first case, removing the marked edge and the on
was connected to leaves two disconnected triangulati
both with allQ’s on the boundary and therefore represent
f(q). In the second case, removing the triangle reveals
new boundary edges, which may be marked with twoQ’s,
two R’s, or oneQ and oneR; these alternatives relate th
initial generating function to Dq

2f, f rr , and Dqf r . This
decomposition off r is shown schematically in Fig. 1. Th
amount which each term contributes tof r can be derived
from the action~12!, as detailed in@2#.

FIG. 1. Decomposition off r . Removal of the external edg
markedR on the left hand side leads to one of the possibilit
shown on the right hand side, depending on whether that edge
connected to another exterior edge or an interior triangle.
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By this procedure we can derive a closed syst
of eight independent equations in the quantit
(f,f r ,f rr ,f rqr ,f rrr ,f rqqr ,f rqrr ,f rrrr ):

f511bq2f21aqf rr 1aDqf12df r

f r5gqf21bf rr 1bDq
2f12eDqf r

Dqf r5gf1bqff r1df rqr1af rrr

1aDq
2f r1dDqf rr

Dq
2f r5gpqf1bf r1bqfDqf r1df rqqr

1af rqrr 1aDq
3f r1dDqf rqr

Dqf rr 5gprf1gf r1bqff rr 1df rqrr
~19!

1af rrrr 1aDq
2f rr 1dDqf rrr

f rr 5af1gqff r1ef rqr1bf rrr

1bDq
2f r1eDqf rr

f rqr5apqf1gf r1gqfDqf r1ef rqqr

1bf rqrr 1bDq
3f r1eDqf rqr

f rrr 5aprf1af r1gqff rr 1ef rqrr

1bf rrrr 1bDq
2f rr 1eDqf rrr .

~In @2# we listed ten equations in these variables, but
last two were not linearly independent from the first eigh!
Here we have defined the new variables

a5
2

12c2 @cosh~2h!2c#

b5
2

12c2 @cosh~2h!1c#

g5
2

12c2 sinh~2h!

a5
g

2~12c2!
@coshh1c cosh~3h!#

~20!

b52
g

2~12c2!
@sinh h2c sinh~3h!#

d52
g

2~12c2!
@sinh h1c sinh~3h!#

e5
g

2~12c2!
@coshh2c cosh~3h!#.

The set of equations~19! is completely algebraic, since w
can replace the derivative operators with algebraic functi
as in Eqs.~18!.

as
6-4
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Note that we can cut down somewhat on the numbe
undetermined variables by looking at Eqs.~19! order by or-
der. These give the following relations:

pq5aprr 1apqq12dpqr ~21!

pqq5b1apqrr1apqqq12dpqqr

pr5bprr 1bpqq12epqr

pqr5g1bpqrr1bpqqq12epqqr

pqr5g12dpqrr1aprrr 1apqqr
r
s

um
n

04600
f prr 5a12epqrr1bprrr 1bpqqr .

Furthermore, each of these amplitudes may be expressed
sum of amplitudes in the original Ising model; for examp
pq5ehpu1e2hpv52(coshh)pu . We use these relations t
eliminate everything butp15pu andp35puuu .

It is now a straightforward but tedious exercise to so
the system~19! by deriving a single quartic equation forf as
a function ofq, h, c, g, p1 andp3 . The quartic is given by

f 4f41 f 3f31 f 2f21 f 1f1 f 050, ~22!

with
f 452g2@12cosh~6h!#q8,

f 3524g3 cosh~3h!q514g2@cosh~4h!1cosh~2h!1c„32cosh~6h!…#q6

12g@c2 cosh~9h!1c cosh~7h!2~113c2!cosh~3h!2~115c!cosh~h!#q7,

f 252g4q214g3@cosh~h!22c cosh~3h!#q3

1g2@4c2 cosh~6h!112c cosh~4h!22~125c!cosh~2h!2~3223c2!#q4

12g@22c2 cosh~7h!22c~112c!cosh~5h!2~5c113c3!cosh~3h!1~124c219c2!cosh~h!#q5

12@c3 cosh~8h!1c~2c12c31g2!cosh~6h!1~c12c215c32g212p1g3!cosh~4h!

1~2c14c216c31g222p1g3!cosh~2h!1c~114c12c32g2!#q6,

f 1522cg412cg3@5 cosh~h!1c cosh~3h!#q22cg2@2c cosh~4h!14~11c!cosh~2h!1~513c2!#q2

12g@c2~11c!cosh~5h!1c~116c25c313g2!cosh~3h!1~6c12c224c32g212p1g3!cosh~h!#q3

12@2c2~c2c31g2!cosh~6h!12c~2c1c322g21p1g3!cosh~4h!

1~2c22c21c312c41g222p1g326cp1g3!cosh~2h!1~2c1c51g225c2g222p1g3!#q4

12g@c2~12p1g!cosh~7h!1c~12p1g12cp1g!cosh~5h!

13c~c21p1g!cosh~3h!1~2114c212p1g12cp1g1c2p1g!cosh~h!#q5,

f 052cg412cg3@2c cosh~3h!1~2512p1g!cosh~h!#q

1g2@2c2~22p1g!cosh~4h!12c~414c23p1g23cp1g!cosh~2h!1~10c26c314p1g214cp1g23g224p3g3!#q2

12g@c2~212c1p1g1cp1g!cosh~5h!1c~2126c15c323p1g113cp1g13g214p3g3!cosh~3h!

1~26c22c214c324p1g113cp1g12c2p1g1c3p1g13g214p3g3!cosh~h!#q3

1@2c2~c2c31p1g23cp1g2g22p3g3!cosh~6h!12c~2c22c312p1g26cp1g2g22p1g322p3g3!cosh~4h!

12~c12c22c322c41p1g2cp1g26c2p1g2g222cg21p1g31cp1g32p3g322cp3g32p1
2g4!cosh~2h!

1~2c22c512p1g26cp1g12c2p1g26c3p1g2g22c2g222p1g322p3g322c2p3g312p1
2g4!#q4. ~23!
s
The analytic solutions to such an expression are of cou
rather unwieldy, but fortunately they are also of little intere
to us. Instead, we are interested in the expansion off around
the critical point of the model, which encodes the continu
limit of the theory.~See@3# for a discussion of the extractio
se
t
of the continuum limit.! The critical values of the quantitie
c, g, p1 andp3 are well known@1,3#:

cc5
1

27
~2112A7!, ~24!
6-5
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CARROLL, ORTIZ, AND TAYLOR PHYSICAL REVIEW D 58 046006
gc5329/2A10~2112A7!3/2, ~25!

gcp1c5
1

5
~32A7!, ~26!

and

gcp3c5
1

100
~2699140373/2!. ~27!

We would now like to find the critical value ofq for any
given boundary fieldh. The critical point is defined as th
radius of convergence of the power series expansion for
generating function, interpreted physically as the point wh
boundaries with an infinite number of segments begin
dominate. The generating functions for fixed boundary c
ditions, f̃fixed(u) in the original model andf̂fixed(x) in the
dual model, obey cubic equations, and the critical poin
simply the value ofx or u for which the cubic has repeate
roots. For the quartic this story is slightly more complicate

Figure 2 shows a numerically generated plot of the r
part of the solutions to the quartic, as a function ofq, for
exp(h)55/3 and the other parameters at their critical valu
Only three distinct curves are visible, as two of the solutio
have identical real parts. At three points on the graph
curves intersect, representing multiple roots; asq increases,
there is first a triple root, then a double root, and anot
triple root. To decide which of these represents the ac
critical point, we follow the behavior of the physical solutio
asq is increased from zero along the real axis, and look
a branch point~which will indicate the radius of conver
gence!. From the definition of the generating function w
know that the physical solution is the one which equals o
at q50. As q is increased, the first triple root does not re
resent a branch point for this solution, and is therefore
the critical point. A similar situation holds for the doub
root; even though the physical solution is one of the dou
roots, one can verify numerically that circling the doub
root in the complexq plane does not take you to a distin
Riemann sheet, and hence this value is not a branch p
The critical value ofq is therefore at the second of the tw
triple roots, as indicated by the point~c! in the figure.

To discover an analytic expression for the critical val
qc , we note that at this point the quartic can be factored i
the form

f 4~f2f~1!!~f2f~3!!350, ~28!

wheref (3) is the triple root andf (1) is the single root. Set-
ting the coefficients of Eq.~28! equal to those of Eq.~22!
yields a set of equations from which we can eliminatef (1)

andf (3) to obtain a single octic equation forqc as a function
of h. Happily, this octic factors into the product of two qu
dratics~one of which is cubed!. It is most conveniently writ-
ten in terms ofqc /gc :
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05@7291~z1 cosh 3h1z2 coshh!~qc /gc!

1~z3 cosh 4h12z3 cosh 2h1z4!~qc /gc!
2#3

3@7291~z1 cosh 3h1z2 coshh!~qc /gc!

1~z5 cosh 4h12z5 cosh 2h1z6!~qc /gc!
2#, ~29!

where

z1554~122A7!

z2521458

z356~1017A7!

z452~262211A7!

z5518~21615A7!

z652~784283A7!. ~30!

The critical point is the solution obtained by setting t
cubed quadratic to zero; one root of the quadratic will be
critical point forh>0, and the second forh<0. Forh>0 the
critical value is

qc~h!5
gc~112A7!e3h

11~211A7!e2h1~21A7!e4h
, ~31!

whereas, forh<0,

qc~h!5
gc~112A7!e23h

11~211A7!e22h1~21A7!e24h
, ~32!

so that althoughqc(h) is continuous ath50, it is non-
analytic there.

The corresponding critical value off is

fc~h!5
~3e2h21!„11~211A7!e2h1~21A7!e4h

…

10e6h .

~33!

FIG. 2. The four roots of the quartic, as a function ofq. The
dashed line represents two roots which are complex conjugate
each other. Moving from left to right, we find the triple root ‘‘a,’
the double root ‘‘b,’’ and the triple root ‘‘c’’ which is the critical
point. The physical branch is the one that goes to 1 asq goes to
zero.
6-6
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Note that as expected,qc→0 ash→`, but fc is finite and
non-zero for allh.

IV. CONTINUUM LIMIT AND DISK AMPLITUDE

To extract information about the theory in the continuu
limit, we analyze the behavior of the discrete model in t
vicinity of the critical point. The coupling constantc is set to
the critical valuecc given by Eq.~24!; deviations from this
value would correspond to introducing a mass for the Ma
rana fermion in the continuum limit of the Ising mode
which we do not examine in this paper. We then trade
independent variablesg and q for new variablest and z,
defined by

g5gce
2e2t,

~34!

q5qce
2ez

wheree is a small parameter indicating the distance from
critical point. The expansions ofp1 andp3 in powers ofe are
then given by

gp15
32A7

5 F12
22110A7

9
e2t

1
51/3~55125A7!

36
e8/3t4/31

55/3~1115A7!

216
e10/3t5/3G

1O~e4t2! ~35!

and

gp35
2699140373/2

100

2
4~12125373/2!

25
e2t1

9351/3

2
e8/3t4/3

1
3352/3

4
e10/3t5/31O~e4t2!. ~36!

These expansions may be substituted into the quartic~22!,
which may then be solved forf as a sum of increasing
powers ofe. We obtain

f5fc~h!2
312~221A7!e2h1~112A7!e4h

10e4h eZ

1
1

5327/3a~h!
e4/3F1

24/3~114e2h1e4h!

15a~h!~12e4h!

3Fe5/3Z~2T1Z2!F

F22~4T!4/3 G1O~e2!, ~37!

where for convenience we have rescaled the variables to

T55t ~38!

and
04600
e

-

e

e

Z5
z

a~h!
, ~39!

and the functionF(Z,T) is given by

F~Z,T![~Z1AZ224T!4/31~Z2AZ224T!4/3. ~40!

For h.0,

a~h!5
e2h~11e2h!

11~211A7!e2h1~21A7!e4h
, ~41!

but this function is discontinuous ath50. If we take the
continuum limit in Eq.~22! after h is set to zero~cf. the
calculation in@3#!, we find thatf is given by Eq.~37! with

a~0!5
1

&~11A7!
. ~42!

The universal part off is the first non-analytic term, and
appears at ordere4/3. By virtue of the discontinuity ina(h),
both the numerical coefficient of the universal term, and
amplitude off as a function ofz, are discontinuous.

The universal part can be converted into the asympt
form of the disk amplitudef̃( l ,a) for fixed boundary length
l and disk areaa. These forms of the amplitude are relate
through a Laplace transform

1

5327/3a~h!
e4/3F„z/a~h!,5t…5E dl E dae2zl2taf̃~ l ,a!.

~43!

Inverting the Laplace transform, we have

f̃~ l ,a!5
1

25)p
„a~h!l …1/3~a/5!27/3e25„a~h!l …2/a

5
1

25)p
L1/3A27/3e2L2/A, ~44!

with the rescalings

L5a~h!l , A5
a

5
. ~45!

Up to an irrelevant multiplicative constant, this is precise
the form of the disk amplitude when the boundary conditio
are conformal@19,4,20,3# ~i.e., with h50 or h56`!; how-
ever, the boundary lengthl is rescaled by the factora(h)
which depends discontinuously on the boundary magn
field. Note that this amplitude includes an extra factor ol
corresponding to a marked point on the boundary.

V. EXPECTATION VALUES

Now that we have defined the continuum limit of th
model and computed the disk amplitude, we would like
calculate a number of correlation functions related to
boundary and bulk magnetizations in the theory. In this s
6-7



uc

rm
is
T
is

e-

a

a-

e

he

a

ro

or
n

ul
e

of
va

pe
o

ace

-

m-
the

ion

t

CARROLL, ORTIZ, AND TAYLOR PHYSICAL REVIEW D 58 046006
tion we describe the formalism necessary to perform s
calculations efficiently.

An example of the type of calculation we need to perfo
is the limiting value of the boundary magnetization on a d
with a large number of triangles and boundary segments.
boundary magnetization for a spin on the boundary of a d
with k boundary edges andn triangles is given by

^m&n,k5
^Tr~ehU2e2hV!~ehU1e2hV!k21&n

^Tr~ehU1e2hV!k&n
, ~46!

where by ^ &n we indicate a sum over triangulations r
stricted to geometries withn spins~the coefficient ofgn in an
expansion ing!. The quantitŷ m& is defined to be the large
n andk limit of Eq. ~46!.

More generally, we define the expectation value of
operator in a specified statec as

^A&5 lim
k→`, n→`

^Ac&n,k

^c&n,k
, ~47!

where ^c&n,k is taken to mean the sum over all triangul
tions, with appropriate weights, withn triangles andk
boundary edges.̂Ac&n,k is the same quantity, but with th
weights adjusted by the operatorA.

For the cases we are considering in this paper,c is a sum
over all triangulations, with weights determined by t
boundary magnetic field. Thus, for zero field,c is simply a
sum which is equally weighted for all boundary configur
tions ~free boundary conditions!, whereas for infinite~posi-
tive! h, the only boundary configurations with non-ze
weight are those with all spins pointing up~fixed boundary
conditions!. WhenA represents a boundary spin operat
for example, then for each configuration the boundary spi
evaluated at a particular site, and the weight acquires a61
depending on whether that spin is up or down. WhenA is a
bulk spin operator, the spin is evaluated at a site in the b

The limits in Eq.~47! can be understood in terms of th
asymptotic behavior of̂Ac&n,k and ^c&n,k . For largen,k
these functions scale asymptotically as

^c&n,k;gc
2nqc

2kf ~n,k! ~48!

and
^Ac&n,k;gc

2nqc
2kg~n,k!. ~49!

Thus

^A&; lim
k→`, n→`

g~n,k!

f ~n,k!
. ~50!

For largen andk, it is appropriate to replace the number
triangles and boundary edges by the area and length
ablesa5e2n andl 5ek, so that̂A& will appear as a function
of a,l .

The continuum limit of an operator expression of this ty
can be easily determined by taking the continuum limits
the quantitieŝ c& and ^Ac&. Consider the continuum limits
of the sums

(
n,k50

`

^c&n,kg
nqk ~51!
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n,k50

`

^Ac&n,kg
nqk. ~52!

The universal behaviors of these two sums give the Lapl
transforms of the two functionsf (n,k) andg(n,k) with re-
spect toz and t. For example

(
n,k50

`

^c&n,kq
kgn;E dkE dne2e2nte2ekzf ~n,k!5Fu~ t,z!,

~53!

where the subscript ‘‘u’’ indicates the universal part. In or
der to recover the functionsf andg, it suffices to perform an
inverse Laplace transform on the universal partsFu(t,z) and
Gu(t,z) of the sums to obtain the functionsf̃ (a,l ), for which

Fu~ t,z!5E dlE dae2zl2ta f̃ ~a,l ! ~54!

and similarlyg̃(a,l ). Thus

^A&5
g̃~a,l !

f̃ ~a,l !
. ~55!

We shall see this explicitly in the following sections.

VI. BOUNDARY MAGNETIZATION

In this section we will apply the discussion above to co
pute the one- and two-point boundary magnetizations in
presence of a boundary field.

A. One-point boundary magnetization

The boundary magnetization̂m& is given by the large
n,k limit of

^m&n,k5
^Tr~ehU2e2hV!~ehU1e2hV!k21&n

^Tr~ehU1e2hV!k&n
. ~56!

We may follow the route described in the previous sect
to computê m&. The first step, the critical expansion off in
the continuum limit, was given in Eq.~37!. The other quan-
tity we need to expand is

c r[qf r5 (
k50

`

^Tr RQk&qk11. ~57!

Whenh50, f r vanishes by symmetry. WhenhÞ0, we can
computef r(h) by solving a linear combination of the firs
two loop equations of~19!. From these it follows that
6-8
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f r5
~12e2h!@~c2e2h1ce2h1ce4h!~12f!12p1e2hg22f2q2~11e2h1e4h!#

cq1e2hq1e4hq1ce6hq22e3hg
, ~58!

and hence, expanding and multiplying byqce
2ez, we obtain

c r5
~e2h21!„211~32A7!e2h2~423A7!e4h

…

10e6h 2
~e2h21!„31~112A7!e2h

…

10e6h eZ1
~e2h21!„31~21A7!e2h

…

5327/3e2h~11e2h!
e4/3F

2
24/3

„31~21A7!e2h
…~114e2h1e4h!

15e2h~11e2h!2 Fe5/3Z~2T1Z2!F

F22~4T!4/3 G1O~e2!. ~59!
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The universal part ofc r is equal to that off, up to an
h-dependent constant. There is therefore no need to ex
itly compute c̃ r(a,l ), the inverse Laplace transform o
c r(Z,T), in order to determine the boundary magnetizati
We need only compute the ratio of the universal parts to
the l andA independent result~for h.0!

^m&5
c̃ r

f̃
5

~e2h21!„31~21A7!e2h
…

„11~211A7!e2h1~21A7!e4h
…

. ~60!

Note that̂ m& is independent ofl andA, and is continuous a
h50. ~Note also that the expression given in@6# contains a
typographical error in the numerator.!

In this particular case, there happens to be a simple a
ment that giveŝm& more directly than the computation ou
lined above. In the largek limit,

^Qk&n;qc~h!2kgc
2nf ~n,k!. ~61!

Differentiating both sides with respect toh, we obtain

k^Qk21R&n;k@2qc~h!2~k11!qc8~h! f ~n,k!1O~1/k!#gc
2n ,

~62!

from which it follows directly that, in the largek limit,
04600
ic-

.
et

u-

^m&52
qc8~h!

qc~h!
5

~e2h21!~312e2h1A7e2h!

11~211A7!e2h1~21A7!e4h
,

~63!

where we have used Eq.~31! for qc(h). This confirms the
result obtained in Eq.~60!.

A graph of the boundary magnetization is shown in Fig
~bold curve!. As expected, with no field the magnetization
zero, and for an infinite field the magnetization is 1. Th
result is compared with the boundary magnetization on
half-plane in flat space, computed by McCoy and Wu@7#
~dashed curve!. Whereas in flat space the magnetizati
scales ash ln h for small h, leading to a divergence in th
magnetic susceptibility at the critical temperature, on a r
dom surface we find that the magnetization is linear ah
50, with a finite susceptibility

x5]h^m&uh505
112A7

3
. ~64!

B. Two-point boundary magnetization

Having computed the magnetization at a single point
the boundary of the disk in the presence of a boundary m
netic field, we would now like to compute the correlatio
between two spins on the boundary of the disk, which
separated byk and l edges in the two directions around th
boundary. To compute the two point magnetization,
^m2&5
^Tr~ehU2e2hV!~ehU1e2hV!k~ehU2e2hV!~ehU1e2hV! l&n

^Tr~ehU1e2hV!k1 l 12&n
, ~65!
we need expressions for

S~q1 ,q2![q1q2s~q1 ,q2! ~66!

where
s~q1 ,q2!5 (
k50

`

(
l 50

`

^Tr RQkRQl&q1
kq2

l , ~67!

and for
6-9
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r~q1 ,q2!5 (
k50

`

(
l 50

`

^Tr Qk1 l 12&q1
k11q2

l 11 . ~68!

Again, using the loop equation techniques of@2#, one can
derive the following set of equations fors @here, a derivative
Dqi

denotes a combinatorial derivative as in Eq.~17!, where

all variables other thanqi are held constant#:

s~q1 ,q2!5bDq1

2 f̄~q1 ,q2!1e„Dq1
s~q1 ,q2!

1Dq2
s~q1 ,q2!…1af~q1!f~q2!

1gf̄~q1 ,q2!„f~q1!q11f~q2!q2…

1bs r~q1 ,q2!

f̄~q1 ,q2!5bDq2

2 f~q2!12eDq2
f r~q2!

1bf rr ~q2!1aDq1

2 f̄~q1 ,q2!q1

1d„Dq1
s~q1 ,q2!1Dq2

s~q1 ,q2!…q1

1gf~q1!f~q2!q11gf~q2!2q2

1bf̄~q1 ,q2!q1„f~q1!q1

1f~q2!q2…1aq1s r~q1 ,q2!

f~q1!511aDq1

2 f~q1!q112dDq1
f r~q1!q1

1af rr ~q1!q11bf~q1!2q1
2

f~q2!511aDq2

2 f~q2!q212dDq2
f r~q2!q2

1af rr ~q2!q21bf~q2!2q2
2

f r~q1!5bDq1

2 f~q1!12eDq1
f r~q1!

1bf rr ~q1!1gf~q1!2q1

f r~q2!5bDq2

2 f~q2!12eDq2
f r~q2!

1bf rr ~q2!1gf~q2!2q2 ,

FIG. 3. Boundary magnetization̂m& as a function of boundary
field h in flat space~dotted line! and on a random surface~bold
line!.
04600
where

s r~q1 ,q2!5 (
k50

`

(
l 50

`

^Tr RQkRQlR&q1
kq2

l ~69!

and

f̄~q1 ,q2!5 (
k50

`

(
l 50

`

^Tr QkRQl&q1
kq2

l . ~70!

It is easily verified thatf̄(q1 ,q2) is given by

f̄~q1 ,q2!5
q1Dq1

f r~q1!2q2Dq2
f r~q2!

q12q2
. ~71!

An expression fors(q1 ,q2) in terms off(q1), f(q2) and
p1 and p3 can be obtained by solving these equations. T
expression is too long to be included here. On the other h
r(q1 ,q2) can be directly expressed in terms off(q1) and
f(q2) in a very simple way as

r~q1 ,q2!5
q2q1

2Dq1

2 f~q1!2q1q2
2Dq2

2 f~q2!

q12q2

511
q2f~q1!2q1f~q2!

q12q2
. ~72!

Armed with expressions fors(q1 ,q2) andr(q1 ,q2), it is
then straightforward, if rather tedious, to obtain the critic
expansions ofS andr. They are given by

S~Z1 ,Z2 ,T!5sc1
~e2h21!2~31~21A7!e2h!2

20321/3e4h~11e2h!2

3FF~Z1 ,T!2F~Z2 ,T!

Z12Z2
Ge1/31O~e2/3!

~73!

and

r~Z1 ,Z2 ,T!5rc1
1

20321/3a~h!2

3FF~Z1 ,T!2F~Z2 ,T!

Z12Z2
Ge1/31O~e2/3!.

~74!

As in the case of the one-point magnetization, the univ
sal parts ofS and r depend onZ1 , Z2 , andT in the same
way. Consequently, the ratio of the Laplace transforms
these universal parts will simply be theh-dependent ratio of
the universal parts themselves. It follows that the two-po
boundary magnetization,

^m2&5
S̃

r̃
5

~e2h21!2
„31~21A7!e2h

…

2

„11~211A7!e2h1~21A7!e4h
…

2
, ~75!
6-10
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is precisely the square of the one-point magnetization.
find an absence of polynomial corrections to this result~at
least to the first subleading order!, indicating that correla-
tions between boundary spin operators decay exponenti
as one would expect in analogy with the flat space theor

VII. BULK MAGNETIZATION

The expectation value of the bulk magnetization in t
presence of a boundary magnetic field, on a disk with bou
ary lengthk and arean, is given by

^M &5
^Tr~ehU1e2hV!k

•Tr~U2V!&n

^Tr~ehU1e2hV!k
•Tr~U1V!&n

. ~76!

This can be evaluated by considering cylinder amplitu
with one boundary having a boundary magnetic field, and
other with a single boundary edge. The second bound
represents a marked point on the bulk. Although the sec
boundary corresponds to only a single edge rather tha
edges as would be appropriate for a triangle correspondin
a single spin, this distinction should not be relevant in
continuum limit where the boundary becomes pointlik
Again, a quantity such as Eq.~76! can be computed by th
method of loop equations@3#.

To compute the magnetization, we require two punctur
disk amplitudes:

t~h!5 (
k50

`

^Tr~ehU1e2hV!k Tr~U2V!&qk ~77!

and

l~h!5 (
k50

`

^Tr~ehU1e2hV!k Tr~U1V!&qk. ~78!

As in Eq. ~14!, we define functions related tot but with
additional words corresponding to sequences of spins on
outer boundary:

tw~q,r !~q!5 (
k50

`

^Tr w~Q,R!Qk
•Tr~U2V!&qk. ~79!

The first step in computing the bulk magnetization is n
to derive a set of eight independent equations which close
the quantities (t,t r ,t rr ,t rqr ,t rrr ,t rqqr ,t rqrr ,t rrrr ):

t52bq2ft1aqt rr 1aDqt12dt r1cqqf

t r52gqft1bt rr 1bDq
2t12eDqt r1crf

t rr 5at1gq~tf r1ft r !1et rqr1bt rrr

1bDq
2t r1eDqt rr 1crf r

Dqt r5gt1bq~tf r1ft r !1dt rqr1at rrr

1aDq
2t r1dDqt rr 1cqf r
04600
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Dq
2t r5g~pqt1tqf!1bt r1bq~tf r1ft r !1dt rqqr

1at rqrr 1aDq
3t r1dDqt rqr1cqDqf r ~80!

Dqt rr 5g~prt1t rf!1gt r1bq~tf rr 1ft rr !1dt rqrr

1at rrrr 1aDq
2t rr 1dDqt rrr 1cqf rr

t rqr5a~pqt1tqf!1gt r1gq~tDqf r1fDqt r !

1et rqqr1bt rqrr 1bDq
3t r1eDqt rqr1crDqf r

t rrr 5a~prt1t rf!1at r1gq~tf rr 1ft rr !1et rqrr

1bt rrrr 1bDq
2t rr 1eDqt rrr 1crf rr ,

where

tq[^Tr Q•Tr~U2V!&, t r[^Tr R•Tr~U2V!&. ~81!

As before,pq5^Tr Q&, pr5^Tr R&, and the various con-
stants take the same values as in Eq.~19!.

The equations~80! can now be used to expresst(h) as a
polynomial function off(h). However, this equation will
also contain a number of unknown correlation functionstq ,
tqq , tqqq , t r , t rr andt rrr , some of which appear explicitly in
Eqs.~80! and some of which arise from the derivatives oft,
since

Dqt5q21~t21!,
~82!

Dq
2t5q22~t212tqq!,

and so on. As in the computation off, these correlation
functions can be reduced to a much smaller number of
knowns by expanding Eqs.~80! order-by-order. It turns out
that after using all the relations in~80! @cf. Eq. ~21!#, two
extra relations are required between

tu[^Tr U•Tr U&, tuuu[^Tr U3
•Tr U&,

~83!

tv[^Tr V•Tr U&, tvvv[^Tr V3
•Tr U&.

The first extra relation comes from the calculation in@3# of
the critical expansion of

w0[
1

2
^Tr~U2V!•Tr~U2V!&5tu2tv , ~84!

which is given by

w05
112A7

5
„1152/3e4/3t21O~e2t3!…. ~85!
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The second relation is obtained by differentiating the ma
integral expression forp1 with respect tog:

]gp15
tuuu1tvvv

3
. ~86!

Then
n
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th
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e
ce
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th
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x
]gp15

] tp1

23ge2t2 ~87!

can be used to obtain the critical expansion of]gp1 .
Armed with these extra relations, we have all the info

mation required to expandt in e. We obtain
t5
24/3gc~112A7!2

„11~211A7!e2h1~21A7!e4h
…Z

15e2h~11e2h!„F~Z,T!1~4T!2/3
…

e21/31O~e0!. ~88!

As discussed in Sec. V, the quantity of interest is the inverse Laplace transform of the universal part oft, given in this case
by

t̃~L,A!5
~112A7!2gc

50&p
L2/3A25/3e2L2/A. ~89!

Here, we have introduced rescaled area and boundary length parameters as in Eq.~45!.
It is much easier to compute the critical expansion ofl(h) since it is directly related tof(h) via

l~h!5]gf~h!. ~90!

This gives an expansion

l5
22/3~2112A7!„11~211A7!e2h1~21A7!e4h

…L~Z,T!

81gce
2h~11e2h!

e22/31O~e21/3!, ~91!

where

L~Z,T!5
~Z2AZ224T!1/32~Z1AZ224T!1/3

AZ224T
. ~92!
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The leading term inl has an inverse Laplace transform

l̃~L,A!5
~2112A7!

5337/2pgc
L1/3A24/3e2L2/A. ~93!

The bulk magnetization in the continuum limit is the
given by

^M &5
t̃~L,A!

l̃~L,A!
5L1/3A21/3. ~94!

The numerical values of the coefficients oft̃ and l̃ have
exactly cancelled. Although it may appear that the magn
zation can be greater than one, this formula is valid in
continuum limit, for whichA;L2@1. We also notice tha
this form of the magnetization is independent ofh except for
the dependence on the scaling factora(h) incorporated inL.
At h50, this magnetization is discontinuous and vanish
One nice feature of this result is that it correctly reprodu
the scaling behavior expected after the magnetization op
tor has been gravitationally dressed according to
Knizhnik-Polyakov-Zamolodchikov ~KPZ! and David-
i-
e

s.
s
a-
e

Distler-Kawai ~DDK! description of Liouville theory
@21,22#. The gravitationally dressed scaling dimension of t
bulk magnetization field isD51/6. By analogy with the flat
space theory we expect that the bulk magnetization sho
scale aŝ M &;d22D whered is a measure of the distanc
from the boundary. This is precisely the behavior seen
~94!, sinceA/L has dimensions of length.

VIII. DISCUSSION

Let us summarize the implications of the results we ha
derived in the previous sections.

A. Renormalization group flow

In Sec. IV we computed the disk amplitude in the pre
ence of a boundary magnetic field as a function of the d
areaa, the boundary lengthl , and the boundary fieldh. We
discovered that the result could be written in terms of the t
variablesA5a/5 andL5a(h) l , in which case the disk am
plitude took on precisely the form of the analogous functi
when the boundary conditions are conformally invaria
Thus, the effect of a boundary field on this amplitu
6-12
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amounts to a rescaling of the boundary length by
h-dependent factor. In Sec. VII, meanwhile, we found th
the bulk magnetization as a function ofa, l andh could also
be expressed in terms ofA and L, and that its functional
form was the same as in the presence of an infinite boun
field.

Taken together, these results imply the existence of an
flow to the conformally invariant boundary condition with a
infinite boundary field;h is a relevant operator which goes
6` in the infrared~in this context, as the disk area an
length grow large!. Further evidence is provided by the di
continuity in the rescaling function ath50: any imposed
boundary field, no matter how small, leads to magnetiza
in the bulk of the same form as that expected in the prese
of fixed boundary conditions.

A related phenomenon has previously been derived
the flat-space Ising model on a half-plane geometry@7,8,9#.
Again, one can compute the magnetization of a point in
bulk in the presence of a boundary field; however, rat
than depending on the area of the surface and length o
boundary~both of which are infinite for the half-plane!, the
magnetization is a function of the distance from the bou
ary. ~In quantum gravity, where we sum over all geometri
it would be conceivable but much more difficult to compu
any quantity as a function of, say, minimum geodesic d
tance from the boundary. Computing anything ‘‘at a fix
point’’ is even more problematic, and not really well-defin
in the absence of additional fields.! Chatterjee and Zamolod
chikov @9# show that the asymptotic form of the bulk ma
netization depends on the distance from the boundary
y21/8 in the presence of any nonzero boundary field, just a
does for fixed boundary conditions@23#. Our results demon-
strate that this RG flow is preserved in an appropriate fo
after coupling the theory to quantum gravity.

FIG. 4. The duality map that interchanges free and fixed bou
ary conditions. Note that for the Ising model, there are two fix
states and only one free state, whereas the opposite is true o
dual model.
o,

a
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B. The dual picture

As discussed in Sec. II, the Ising model on a rand
lattice can also be formulated in the dual picture, in terms
matricesX andY, whereX denotes an edge separating tw
equal spins andY an edge separating two opposite spins. W
have seen in the introduction that the change of variable

U→
1

&

~X1Y!

~95!

V→
1

&

~X2Y!

in the action for the Ising model leads to the dual actio
Thus any calculations in the original model can be reint
preted in terms of the dual model. We shall now discuss
duals of our results for the boundary and bulk magnetizati
in the presence of a boundary magnetic field.

First, let us discuss the boundary conditions correspo
ing to the weights

^Tr Qn&5^Tr„eh~X1Y!1e2h~X2Y!…n&

5^Tr„cosh~h!X1sinh~h!Y…n& ~96!

where we have dropped factors of& for notational simplic-
ity. In the dual variables,h50 corresponds to fixed bound
ary conditions, whileh56` corresponds to the two types o
free boundary conditions, (X6Y)n. Thus, in this pictureh
plays the role of a ‘‘boundary freedom field’’ rather than
boundary magnetic field. In the limith→0 the boundary
condition is fixed~all X’s!, while in the limitsh→6`, the
boundary conditions are a pair of free boundary conditio
with different signs in the weights assigned to configuratio
with an odd number ofY’s on the boundary. These fixed an
free boundary conditions in the dual model are of cou
precisely the Kramers-Wannier duals of the free and fix
boundary conditions of the spin representation~see Fig. 4!.
Correspondingly@11#, a spin operator in the original vari
ables is transformed into a disorder operator in the dual v
ables.

Our results in Sec. VI for the boundary magnetization c
thus be reinterpreted as a calculation of the expectation v
of the boundary disorder operator. We see that as the bo
ary freedom field is increased, so the expectation value of
boundary disorder operator

-
d
the
^d&n,k5
^Tr„eh~X1Y!2e2h~X2Y!…„eh~X1Y!1e2h~X2Y!…k&

^Tr„eh~X1Y!1e2h~X2Y!…k11&
5

^Tr„sinh~h!X1cosh~h!Y…„cosh~h!X1sinh~h!Y…k&n

^Tr„cosh~h!X1sinh~h!Y…k11&n
~97!
ulk
ven
tends to 1. Ath50 the boundary condition is fixed and s
by symmetry, the boundary disorder must vanish.

The dualization of the calculation of the bulk magnetiz
 -

tion goes along similar lines, and we conclude that the b
disorder in the presence of a boundary freedom field is gi
by the expression
6-13
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^D&5L1/3A21/3 ~98!

except whend50, when the bulk disorder also vanish
identically. There is a striking consequence of this result
the Ising model inU, V variables, the coupling of a bound
ary magnetic field was seen to induce renormalization gr
flow from free to fixed boundary conditions. On the oth
hand, when a boundary freedom field is coupled in the d
formulation of the model, the renormalization group flow
from fixed to free boundary conditions. This change in t
direction of the renormalization group flow is a natural co
sequence of the Kramers-Wannier duality of the system.
duality symmetry implies that the ground state degenera
of the free and fixed states are swapped under the du
transformation, and so the reversal of RG flow is consist
with Affleck and Ludwig’s g-theorem@12#. In general, one
expects that the RG flow of the theory should be towards
conformal boundary condition with smaller degeneracy, s
is natural that the direction of the flow switches under
duality transformation. As we see, this result seems to h
in the theory equally well after coupling to quantum gravi

C. The effects of gravity

On any fixed lattice, the introduction of an external ma
netic field on the boundary leads to a direct effect on
Ising spins, as there are no other degrees of freedom
which to interact. It is therefore natural to expect that co
pling to quantum gravity, which introduces the local geo
etry as an additional degree of freedom, will lead to qua
tative changes in the response of the spins to the boun
field, and indeed this is what we have observed.

The calculation of the boundary magnetization in Sec.
can be compared with the results that have been obtaine
flat space by McCoy and Wu@7#. They find that the magne
tization scales ash ln h for small h, and as a result, the
magnetic susceptibilityx diverges at the critical temperatur
On the other hand, we have seen in Eq.~64! that the mag-
netic susceptibility at the critical temperature is finite wh
the Ising model is defined on a random lattice. It see
likely that the exact numerical value~64! of the magnetic
susceptibility x depends on the discretization scheme
have used, and is not universal. However, we expect the
thatx is a finite constant to be universal~independent of the
specific discretization scheme chosen!, although in the ab-
sence of calculations in alternative schemes, this remai
conjecture.
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The effect of gravity is therefore to soften the initial im
pact of the boundary field. It is natural to interpret this so
ening as being due to the interaction between the spins
the geometry; the coupling between spins and the bound
field changes the relative weighting of different geometri
which changes in turn the effect of the neighboring spins
any one boundary site, leading to a more gradual increas
the boundary magnetization as a function of boundary fie

A related aspect of our results is that the bulk magneti
tion is seen to decrease when a nonzero boundary mag
field is increased~at least asymptotically, for large areas!. At
first this seems implausible, and indeed at a fixed point in
space, the bulk magnetization cannot behave in this w
However, the sum over geometries provides a possible
planation for this unusual effect. The expectation value o
spin in the bulk naturally depends not only on the magnitu
of the boundary field, but also on the average distance of
point from the boundary. Therefore, the decrease in the b
magnetization can arise if the boundary field alters the re
tive weights of different geometries in such a way as to mo
a typical interior point further away from the boundary~as in
Fig. 5!.

We have therefore verified that a number of features
the Ising model in flat space are maintained in the prese
of quantum gravity, while also demonstrating that the d
namical geometry does have a measurable effect. It woul
interesting to check more directly that the explanations
have given for these phenomena are correct, for exampl
numerical simulation methods such as those described
cently in @24#.
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FIG. 5. The relative weight of geometries of different shap
changes with boundary magnetic fieldh. Roughly speaking, for
largeh, geometries of type~a! are suppressed relative to type~b!.
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