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We suggest @ =11 super Poincar@variant action for the superstring which has free dynamics in the
physical variables sector. Instead of the standard approach based on the searching for an action with local
symmetry(or, equivalently, with corresponding first class constrajnige propose a theory with fermionic
constraints of second class only. Then thesymmetry and the well knowrl -matrix identities are not
necessary for the construction. Thus, at the classical level, the superstring action of the type described can exist
in any spacetime dimensions and the known brane scan can be reexaiBibesh-282198)05814-7

PACS numbds): 11.25.Pm, 11.30.Pb

I. INTRODUCTION string action with those two properties in eleven dimensions.
Subsequent development of our method may shed light on
A revival of interest in the problem of the covariant for- the problem of constructing the corresponding quantum
mulation of eleven-dimensional superstring is due to theheory. To elucidate the construction which will be suggested
search forM theory(see Refs[1-5] and references thergin below let us discuss the problem in the Hamiltonian frame-
which is expected to be the underlying quantum theory fowork, where one finds the well-known fermionic constraints
the known extended objects. In the strong coupling limit ofL ,=0 (see, for example, RefEl1,12) which obey the Pois-
M theory R -, whereR!! is the radius of the 11th di- son brackets
mension, the vacuum is an eleven-dimensional Minkowski

vacuum and the effective field theorys=11 supergravity. {Lo,Lgt=2i(p*+II{)T'%s8(0— )
Up to date,D =11 supergravity is viewed as the strong cou- — et ,
pling limit of the ten-dimensional type-lIA superstrifd]. —2079,0°T 5 5(CI'*) 4py6(c—0").  (2)

SinceD =11 super Poincarsymmetry survives in this spe-
cial point in the moduli space d¥l-theory vacud‘uncom-
pactified M theory” according to Ref[5]), one may ask
about the existence of a consist@nt1 quantum theory with

D =11 supergravity being its low energy limit. One possibil-
ity is the supermembrane acti¢6—8], but in this case one
faces the problem of a continuous spectrum for the firs

By virtue of Eq.(1), the last term in Eq(2) vanishes foD
=3,4,6,10. The resulting equation then means that half of the
constraints are first class, which exactly corresponds tathe
symmetry presented in the Lagrangian framework.

The next step is to impose an appropriate gauge. Then the
tset of functions

guantized supermembraf@,10]. By analogy with the ten- L =0, 3)
dimensional case, where the known supersymmetric field “
theories can be obtained as the low energy limit of the cor- Tte=0 (4)

responding superstringg5], the other natural candidate
might be aD =11 superstring theory. But the problem is thatis a system of second classven though Eq.1) has not been
a covariant formulation for th® =11 superstring action is used.
unknown even at the classical level. The classical Green- The situation changes drastically for thi2=11 case,
Schwarz(G9) superstring(with manifest space-time super- where instead of Eq1) one finds[13—-15
symmetry and locak symmetry can propagate in three,
four, six, and ten spacetime dimensigfi4] and the standard 100%5(CT#) 5+ T A (5(CT#") ,5=0. 6)
approach fails to constructd=11 superstring action. ) ) )
The crucial ingredient in the construction of the GS su-Being appropriate for the construction of the supermembrane

perstring action is th&-matrix identity action [6], this identity does not allow one to formulate a
D =11 superstring with desirable properties. As was shown
% 4(CT#) 5=0. (1) by Curtright[13], the globally supersymmetric action based

on this identity involves, additional %', 6,, 6, degrees of
It provides the existence of both global supersymmetry andreedom in the physical sector. Moreover, it does not possess
local k symmetry for the actiofl1,12. The k symmetry, in  a x symmetry that could provide free dynamids3,14.
its turn, eliminates half of the initiad variables as well as In this paper we suggestia= 11 super Poincar@variant
provides free dynamics in the physical variable sector. In thisction for the classical superstring which has free dynamics
paper we discuss a possibility to construct a classical supein the physical variable sector. Instead of the standard ap-
proach based on the searching for an action with local
symmetry (or, equivalently, with corresponding first class
*Email address: deriglaz@fma.if.usp.br constraintg we present a theory in which covariant con-
TEmail address: galajin@fma.if.usp.br straints like Eqs(3), (4) arise among others. Since it is a
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system of second class constraintsymmetry and the iden- (6) we have set®=—¢P2  £%=—1 and it was also sup-
tity (5) are not necessary for the construction. Thus, at thgosed thair'C[0,7]. From the equation of motioAS/ 5¢
classical level, a superstring of the type described can exist 0 it follows thatA# is a lightlike vector.

in any spacetime dimension and the known brane $dan Local symmetries of the action ared=2
can be reexamined. For definiteness, in this paper we discugeparametrizatiosand the following transformations with
the D =11 case only. the parameter§”(c?), w,(o°):

Two comments are in order. First, one needs to covarian-
tize Eq.(4). The simplest possibility is to introduce an aux-
iliary variable A“(r,0) subject toA?=0 and replace Eq4) S A= w,AH,
by A ,I'#6=0. The most preferable formulation seems to be
that in which the gaugd ~ =1 is possible. Then Ed4) is 1,5
reproduced. Unfortunately, it seems to be impossible to in- S,0= §¢ &7 0wy - @)
troduce a pure gauge variable with the desired properties
[16—20. Below, we present a formulation in which only zero These symmetries are reducible because their combination
modes of auxiliary variables survive in the sector of physicawith the parameters of a special formy,=d,w, &*
degrees of freedom. Since the state spectrum of a string is —@A*, is a trivial symmetry:5,AL=—wd,A¥, 6,0
determined by the action on the vacuum of oscillator modes=0 (note thatd,A*=0 is one of the equations of motipn
only, one can expect that the presence of the zero modes willhus, Eq.(7) includes 12 essential parameters which corre-
be inessential for the case. This fact will be demonstrategpond to the primary first class constraipgg~0, w7 ,~0
within the canonical quantization framework in Secs. Il andin the Hamilton formalism(see below.

V. Let us consider the theory in the Hamiltonian framework.

Second, one expects that a model with constraints likdlomenta conjugate to the variablas’, A%, ¢ are de-
Egs. (3), (4) will possess(if any) off-shell super Poincare noted byp%k, p5, 4. All equations for determining
symmetry in a nonstandard realization. Actually, global suthe momenta turn out to be the primary constraints
persymmetry which does not spoil the equatibpl™*6=0

5§A'§: 035'“,

looks like 66~ A ,I'*€. On shell, where\2=0, only half of ms=0,

the supersymmetry parametet$ are essential. ph=0, 8
It is worth mentioning another motivation for this work.

As was shown in Refs[21-25, an action for the super pi=0,

D-brane allowing for the locak symmetry is very compli-

cated. One can hope that our method, being applied to that pi—A#=0. 9

case, will lead to a more simple formulation.

The work is organized as follows. In Sec. Il we present
and discuss an action for the auxiliary varial¢, which 1
proves to be a necessary ingredient of our construction. In H:f do
Sec. Il a covariant action for the eleven-dimensional super-
string and its local symmetries are presented. In Sec. IV
within the framework of the Hamiltonian approach we prove
that it has free dynamics. In Sec. V the role of the Wess- o )
Zumino term presented in the action is elucidated. In Sec. Vivhere, are the Lagrange multipliers corresponding to the
off-shell realization of the super Poincaatgebra is derived constraints. The preservation in time of the primary con-
and discussed. The Appendix contains our spinor conventiont@ints implies the secondary ones
for D=11. 9, A*=0,

The canonical Hamiltonian is

1
A#o, AL+ $A2+ NgTy

FNEPAHAGPE T AL(PT =A%), (10

2_
II. ACTION FOR AUXILIARY VARIABLES A“=0, 11
AND THEIR DYNAMICS and equations for determining some of the Lagrange multi-
As was mentioned in the Introduction, we need to get aP!lers:
our disposal an auxiliary lightlike variable. So as a prelimi-

2
nary step of our construction, let us discusshe 11 Poin- N =0.Af+ EAM'
careinvariant action

S=—f d?c

WhiCh turns out to be a bqilding b"?Ck of the eleven- ingte that the coupling to the=2 metricg?®(o°) is not neces-
dimensional superstring action considered below. Her&ary due to the presence of th&? symbol and the supposition that

A*(0®) is aD=11 vector and @2 scalar, anth%(c®) isa  the variables transforms as a densit’ (o) = det(do" /30") H()
D=11 andd2 vector, while¢(c?) is a scalar field. In Eq. under reparametrizations.

A =0. (12

1
b . .
A*e™Pd AL+ ¢A” AR, (6)  The tertiary constraints are absent.
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Constraintg9) form a system of second class and can beyields
omitted after introducing the corresponding Dirac brackets
(the Dirac brackets for the remaining variables prove to co- f dr(A“SAL|7=T)=0. 17)
incide with the Poisson ongsAfter imposing the gauge- 01o=0
fixing conditions ¢=2, A{=0 for the first class con-
straints (8), the dynamics of the remaining variables is
governed by the equations

Since the variations’A}|, o, are arbitrary, this equation

requiresA*|,_,,=0. By virtue of Eq.(9) it leads to the

trivial solution p}|,-o,=0. In contrast, for a closed world

Ab=pt, sheet one ha§FA|q:0= 5FA_|(,%7T for any variablel'* and
Eq. (17) is automatically satisfied. Hence, the mod®l has

a nontrivial solution being determined on the closed world

"
p1=0, (13 sheet only.
2__
(p1)°=0, Ill. ELEVEN-DIMENSIONAL SUPERSTRING ACTION
AND ITS LOCAL SYMMETRIES

The D =11 action functional to be examined is
In order to find a correct gauge for the second constraint in b
Eq. (14), let us consider Fourier decomposition of functions 2 -g° . ab -
9. (1), s= | d% TTATIE — i £220,X*( 60T 3, 0)

periodical in the intervab-C[0,7]: 2V—g
i — 1
Af(r,0)=YH()+ 2 yh(1)e?”, —IARYTHO— Z AFAF— AP, AL, (18)
n#0 (Z') b
. where 6, ¢ are 32-component Majorana spinors aHd
" — pM ) i2no -
Pi(7.0) PV(TH;O Pn(7)e=. (19 =g x*—i160I'*d,6. Let us mention the origin of the terms

presented in Eq(18). The first two terms are exactly GS-
Then the constraing;p5=0 is equivalent tqpA=0, n#0, type superstring action written in eleven dimensions. The
and an appropriate gaugeyié=0 or, in the equivalent form, mea_ning of the last two terms has been explain.ed in the
9;A=0. Thus, physical degrees of freedom of the modelPrevious section. The third anq the fourth terms will supply
are the zero modésf these variables, and the correspondingth® appearance of the equations,I',6=0 and A?=0.
dynamics is Thus, the variableg® and ¢ are, in fact, the Lagrange mul-
tipliers for these constraints.
Af(7,0)=YH +P{r, Note also that the Wess-Zumino term in tbe=10 GS
action provides the appearance of the laeaymmetry[9].
py(7,0)=P{=const, In our model it plays a different role, as will be discussed
below.
(Py)2=o. (16) Let us make a comment on the local symmetry structure
of the action(18). Local bosonic symmetries adk=2 rep-
Since there are no oscillator variables, the act®ncan be  arametrizationfwith the standard transformation laws for all
considered as describing a pointlike object, which propagategariables except for the variabkg, which transforms as a
freely according to Eq(16). The only quantum state is its density: ¢’ (o') =det(do’/do) ()], Weyl symmetry, and
ground statep,o) with massm§= p§o=0. As a result, these the transformations with parametef$(o?®) andw,(o®) de-
degrees of freedom do not make contributions into the statgcribed in the previous section.
spectrum of the superstrifigee Sec. 1Y, and manifest them- There is also a fermionic symmetry with parameters
selves in additional degeneracy of the continuous part of thg*(s2),
energy spectrum only. The action of such a kind was suc-

cessfully used beforf26,27] in a different context. 5E=;F"A,“
Note that in the previous discussion it was assumed that _
variables of the theory are periodical in the interval Sp=—*(x9), (19

oC[0,7]. For an open world sheet, the stationarity condition

5S-=0 for the Hamiltonian action, from which only 16 are essential on shell sindé=0. As

shown below, the reducibility of this symmetry produces no
special problem for covariant quantization.

Srzf dzo[pAqA—H(q,p)], Let us present arguments that the action constructed de-
scribes a free theory. The equations of motion for the theory
(18) are
2We are grateful to N. Berkovits and J. Gates for bringing this fact ATTH 1 CATT ATT Y
to our attention. a1, = 5 Gan(9 e M) =0, (209
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g2b . wherep”, pg, PIs Pyer (7g)ap @re momenta con-
Ja ?H’g-i-isabﬁrﬂﬁbﬁ =0, (20D jugate to the variables®, A4, ALY, ¢,, Gap, re-
9 spectively;\, are Lagrange multipliers corresponding to the

. i ints. In Eq2 I
4|H§(F“P’ba&aa9)a+sabe%ae’/abﬁél“{j(ﬁCF’;&) primary constraints. In Eq23) we also denoted

+IA#(T ) =0, (200 N= I
goo !
A#TH0=0,
g01
A2=0, (200 leﬁ,
dA#*=0, R —
p#=p*—iol'*9,0,
2 — _
oA TG AT O=0, (209 L= Pooi(p*+ II4)(0T) =0, (24)
where It is interesting to note that the fermionic constraints
L.=0 obey the algebré2) and, being considered on their
1( g own (without taking into account the constrainéd™*p;
—ba_ ba . . . . d
P =3 \/_—g_s =0 which will arise below, form a system which has no
definite clas<this corresponds to the lack af symmetry in
Multiplying Eq. (200 by A ,T'* one gets the GS action written in eleven dimensions
g The conservation in time of the primary constraints im-
(A“H{)‘)P‘baaa9=0. (21 plies the secondary ones
In the coordinate system whefe =1, supplemented by the d1p1=0,
conformal gauge, it can be rewritten as 5
(p1)°=0,

(do+3d1)0=0, (22

. o : (6I'%) ,p1=0,
rom which it follows that any solutiord(o) of the system

(20) obeys this free equation.

Thus, Eqgs.(208—(200 for the g2°, x*, #* variables in
fact coincide with those of the GS string and are accompa- 1
nied by A ,I'*0=0. The latter reduces tb" =0 in the ()\oru)a(I3M+Hllt)+igvalgé)\gpx;(gcrna)+_WFM)QAM
coordinate system chosen. As a result, one expects free dy- 2
namics in this sector provided that the conformal gauge has
been assumed. In the next section we will rigorously prove
this fact by direct calculations in the Hamiltonian frame- 1 _ .
work. - E( OI'#) ,d.(Np*+N4115)=0. (26)

(p*=114)?=0, (25)

— (9167 #) o(N+Nyp) (p~+T14)

IV. ANALYSIS OF DYNAMICS At the next step, there arises only one nontrivial equation.

From the explicit form of the action functiondl®) it  From the conditio 6I'“p4,H}=0 one gets
follows that the variable\* can be excluded by making use _
of its equation of motion. The Hamiltonian analogue of the (N gl'*) oP1=0. (27)
situation is a pair of second class constrairps*
=0, p;*—A*=0, which can be omitted after introducing
the associated Dirac bracksee Sec. )l The Dirac brackets %
for the remaining variables prove to coincide with the Pois- No=(N+N;)a,0+=6, (28)

Equations(26), (27) are equivalent to

son ones and the Hamiltonian looks like 2
N . . S,=(yI'*) pt+(r*),D*=0, (29)
H:j dal[_E(pz—i_HlMH/{)_NlpMHlf !
where we denoted
_ 1 - “
+P1, (91 AL+ iyl 6) + g(pff)2+ Ny s+ No,Pb DA=E(p*+114) — 91(Np*+ N, I1#),
~ 1(Np“+ N, IT#) p#
+ N7 g)ap T Ay Pyat Lok |, 23) fo— UM
(p#+1017)pf
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Thus, we have Eq28) for determining the Lagrange multi- $=2,
plier A , and the tertiary constrai®,= 0. One can check that " R
there are no more constraints in the problem. Apg=-—lI fo do’yI'*6.

Hamiltonian equations of motion for the variables

(@ (7g)an).  (d.7mg),  (A5.pE), (47.py) look like  After that, dynamics for the remaining variables looks like
dod=MN\q, doPq=0, while for other variables one has

501,06(:)\3,
2 _
®— B M 2
AL =31A5+ ¢p1+|¢1“ 0, 30P ya=0,
aopfzoi (30@ pzﬂazol
Joxt=—NpP“— NI =i 0T\, S0 (333
R — AL =pl,
Jop*=— 3y (NTTA+ Ny p#) +i 6T #\ o
a00“= _)\g . (30C) (p/f)zzo,
Note that equationgypy,=--- have been omitted since Ji0E=0 (33
they follow from the constraintk ,=0 and other equations. 1P =0
To go further, note that the constlaintsgoabzo form pR——y
nonvanishing Poisson brackets with Bgfrom Eqg.(29). A
modification which splits them out of other constraints is AoPr= — 3191X*,
~ 1 -~ AN+ TTHY2 —
7o) ap= (T apt —————— (P, TET70) (P*+ T4 T, (p#=17)*=0, (339
( g)ab ( g)ab 2(p+H1)p1(p¢' )(p 1) ab g
with T2, being defined by the equality{(mg)ap,S.} dof==—010—56, L,=0, (6I'*)spy,=0. (330
=TL,(6I'%),. Hence, the constraints}(_,)abzo are first ) ) .
class and one can adopt the gauge chgfte= 72°. The full The sector(33g includes 32- 16 independent constraints
set of constraints can now be rewritten in a more simple fornffom which the first class ones can be picked out as follows:
W¢:O, (pi//rﬂ)apl,uzo' (34)

As was mentioned above, the reducibility of the constraints
does not spoil the covariant quantization program. Actually,
let us impose the following covariafénd redundantgauge-
fixing conditions for the constraini84):

P65 =0, (31a

(P)?=0,d,pf=0,(p*=111)?=0,

L.,=0,
St=———yI'*(p,+11;,)=0. (35)
glwpm:o, (p+1I)py : g
0,,=0 Then the set of equatior,=0, S!',=0 is equivalent to
pa—
— _ — 1 — ~
S,=uyl'*py,+(6I'*),D, =0, (31b S'=¢— ————6I'*D  I'"(p,+114,), 36
Ir/, plp, " 11[/ 2(p+1_[1)p1 s (p 1 ) ( )
where ) )
the latter forming nondegenerate Poisson brackets together
D#=g(p“+I14) — d,p*, with the constraintg,,,=0:
~ {p avS,}:_Ca : (37)
_ (91pﬂp1,u (32) ’ p g
&= (p” +Hf)p1y' After passing to the Dirac brackets associated with the sec-

ond class functiongp,,, S,, the variablesy, p, can be

Now, let us impose gauge fixing conditions to the firstdropped.
class constrainté313. The choice consistent with the equa-  To proceed further, we impose the gaugé;'=0 for the
tions of motion is constraints in Eq(33b), and pass to an appropriately chosen
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coordinate system. By making use of the Lorentz transfor- V. COMMENT ON THE WESS-ZUMINO TERM
mation one can consider a coordinate system wiefe IN THE D=11 SUPERSTRING ACTION

=(1,0,...,0,1) (note that'this is an admissible procedure For the D=10 GS superstring the Wess-Zumino term

‘f)rovides the locak symmetry[11,12, which leads to free
dynamics for physical variables. Since there issnsymme-
try in our construction, it is interesting to elucidate the mean-

transformation is a particular example of a canonical)one
To get the dynamics in the final form, we pass to the light-

H m + v i P a

cone cglordw)at_ex —(XTxTx), 1=1.2,...810, 0% 00 o this term in theD =11 action suggested. Let us con-
—(0a,0'a,05.,02), @aa=1,--,8 and impose the gauge- sider the actiori18) with the second term omitted. Canonical
fixing conditions analysis for this model turns out to be very similar to that

- made above and we present results only.

X"=P"r, Instead of Eqs(24), (28), (29) one finds

pt=—P"=const, (38) L,=pg.—i(6*), p*=0,
— NAILpy) +Ny(ppy) | —
to the Virasoro first class constraints remaining in E§80). 0= ca S 10,

(PP
SE[(ppl)w—alﬁF”(NH’HNlp”)F”p”]F“pi‘=0-( )
41

The equation?l““pluzo acquires now the forni =0
and it is easy to show that 3216 constraintsL,
=0, I''9=0 are second class. A solution i®*

= (6,,0,00,) with 6, and 6, beingSO(8) spinors of 0PPO- | the coordinate system wheR¥= (1,0, . ..,0,1) the ana-

site chirality. In the gauge chosen, the relatiop”( logue of Eqs(330¢), (33d reads
+117)p1,#0 holds which correlates with the assumption

made above in Eq€32), (35). For the remaining variables Coxt
one gets the free field equations doxH=—pr—i o (60I'%9,0),
doxi=—pl.
0% P dop*=—d,117,
dop' = — 919,X,

(p114)2=0,
((?O+(9l) 0a=01

(dg+ 1) 6,=0. (39
J— — +p—
Moreover, 8, and 6, form two pairs of self-conjugate vari- L.=0.I""6=0, (42

ables under the Dirac brackets associated with the constrai

from Eq. (330): nEﬁowded that the conformal gauge has been chosen.

To impose a gauge for the first class constraimg (
+114)?=0, consider a one-parameter set of equafions

i
{02, 00} = 5 San: x*=P*(r+ca),

+_ _pt_
{; g} i S w0 p"=—P7"=const,
1 Opy = ab -
a Jsp+ 2 c=constt £ 1, (43

Let us look shortly at the spectrum of the theory. The groundvhich leads to the following dynamics for variables of the
state of the full theorypy,Po,0)=|pyo)|Po)|0) is a direct  physical sector:
product of vacua, Wheré’§|pyo>=0, |po) is a vacuum for

zero modes of the variableg‘,p#, while through|0) are doX'=—p,
denoted vacua for bosonic and fermionic oscillator modes. ) )
—_— I — I
From Eq.(40) it follows that zero modes of the, , 6, vari- doP =~ d191X.,
ables form the Clifford algebra which is also the symmetry
algebra of a ground state. A representation space is 256 di- (dp—Cd1)6=0. (44)

mensional which corresponds to the spectrum ofhell

supergravity 29]. The excitation levels are then obtained by

acting with oscillators on the ground state. One notes that3The valuec=+1 is not admissible since in that case the Poisson
zero modesy*,P{ manifest themselves in additional degen- brackets of the constraintpf = I14)?=0 and the gauge@3) van-
eracy of the continuous energy spectrum only. ish.
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One can check that it is impossible to get rid of the number 5Z:i6ab[:l—~,u((9 51“”%0)—2& g(abge)]
¢ by making use of some other gauge choice forghand a a '
Af variables. o —

Thus, omitting the Wess-Zumino term in E(L8) one 8p=—i¢"(ye), (48)
arrives at the theory which possesses all the properties of the
model(18) with the only modification in the last equation of whereA=A JTH ﬁ =I1.*I'“. The action is invariant up
Egs. (39): (do—cd1) #=0 with ¢ a constant. Depending on o total derivative terms. These transformations are the ana-

the gauge chosen it can take any value exaepttl. |ogue of Eq.(45) since in the physical sector they are re-
Hence, the dynamics is not manifestly-2 Poincarecova-  4,ced 1056, = \/‘ea, 56 \/Ef_a Sxi=0.

riant, provided that is ad=2 scalar. It is the Wess-Zumino

term which corrects this inconsistency. To find a global supersymmetry of the acti¢iB) corre-

sponding to Eq(47) let us consider the following ansatz:

VI. OFF-SHELL REALIZATION OF THE D=11 SUPER

POINCARE ALGEBRA 60=AlIle°
It is convenient first to recall some facts relating to the R
D=10 GS superstring. Off-shell realization of the super S¢p=—id*(yllce),
Poincarealgebra for that case includes the Poindaa@sfor-
mations accompanied by the supersymmetries 5x”=4i(AHC)(EFMECH2i(§ﬁce°)A“, (49)
06%=€", where we denoted
SXH=—i 6T *e. (45) a_

Being considered on their own, in the gaugéd=0 these

transformations are reduced to trivial shifts for variables of a1 g?° )
the physical sector: pT®=5 —&®,
v—49
50,= ez,
(AT ) =AM M. (50
ox'=0. (46)

Variation of the GS part of the actiqi8) under these trans-
To get on-shell realization of the supersymmetry algebraformations looks like
one needs to consider a combination of thand « trans-
formations 5.+ 6 which does not violate the gauge _ abr o AT\ 5 Al
K(e) 0Sgs= 8(OI'*€%)(9,0T *0,0) (ATl
rte=o. These transformations arésee, for example, Ses=e" 1~ 8( /(% o0 (AlLe)

Ref.[28]) — 4(0T1,€%) (950N 3 0) + 2( 30T A 11 ,€%)
- — 1 — s TTERTT .C s
50,= est F‘ul - ea X(OT*3,0) + (0T “ATI €%) (9,07 *d,6)]
— 2iP P 4( A1 ,€%)(9,ATl})

&X'=—i\2(67 ). “7) +2(9,0A €)(TIT) — (A AT IT.€%)].  (51)

We turn now to theD=11 case. Off-shell realization of
the super Poincaralgebra for the actiort18) includes the  After integrating by parts, reordering theandIl terms, and
Poincaretransformations in the standard realization and themaking use of the identities
following supersymmetries with a 32-component spinor pa-

rametere®: p-abp-cd_ p-cbp-ad
50:7\6, o 1 -
_ (0,601T%3,0)(All) = — EaaHF“{A,HC}abG, (52
Oxt=—i0l'*Ae,
be it proves to be possible to represent all the terms in(Ed).
SAH = — i€y —— (01‘[ [#€) either asK A 0 or 9,A#T#? with K and T being certain co-
\/_ efficients. These terms can evidently be canceled by appro-
. o priate variations of they and A? variables. The final form
—2i9,X"(0'"'T*e)—2(0e)(OT*9,0), for these variations is
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5A§=8(§F”e°)(gF”H’CTV”(9a6) EFGB)R Grant No. 95-829A.G.), and FAPESPA.D. and

— 5(OT1.€%) (0T 9,0) — 3(AT AT "1 €°) (6T "0, )
APPENDIX

T —bdr 7 Yy s
AigagP > L(O1 ) (Tpllc) —2( 011 e)TTE], In this appendix we describe the minimal spinor represen-

tation of the Lorentz grousQ(1,10) which is known to

S=1822[2( 9,011 .€%) 3, 0— 8( 0,011 .9, 0) € have dimension /2. For this aim, it suffices to find eleven
_ _ o~ 32x32 I'* matrices satisfying the equatidni*T"”+T""T#
—85[(O1'#€°) 3, 0T ' TT17]+5( 09,11 €%) Iy 0 =—29*, u,v=01,...10, p*'=(+,—,...,—). A
_ o~ _ . convenient way is to use the well-known> @6 I matrices
+3(0I#9,0) €% 11 I+ (9,61 %y, 0) eI .I'#} of the SO(1,9) group which we denote as
o~ o~ _ m Tmap _ . - .
—2iP b . 1T, Ty — 28T, 2,11 ]. (53) Iag, '™, m=0,1,...,9.Their explicit form is
Note that the complicated transformation law for thevari- o= ( s 0 )
able might be predicted, since one of the Lagrangian equa- 0 1
tions of motion is
~ _18 0
~ ~ . o=
(Ap) = —4I1,P 20,0, +1£2°0P0,079,6°T L 4(CT#) 5. 0 -1
(59)
0o v
. ~ X i . aa
Thus, transformation of theé\ ¢ part of the ¢ variable is F'=(_i_ 0 )
dictated by this equation and the transformation laws for the aa
x and ¢ variables. .
Being reduced to the physical sector, E49) looks as i 0 7Yaa
follows: i o/’
Y aa
80,=— \/E(P+ea— X yiaé:;-l— a_x%e, 1, O
"o )
— — — — 0 -1
60,=— \/E(P+Eé+ (?,XI;;ae{;—o'?,Xlofé), 8
' o -~ (1.8 O
X=2\2iP"(6y'e' — 0y €), (55) P=lo 1) (A1)

and seems to be the analogue of Ety).

To summarize, in this paper we have suggested a sup
Poincareinvariant action for the superstring which classi-
cally exists in any spacetime dimension. As compare with
the GS formulation for thé&N=1,D=10 superstring action, . ]
the only difference is an additional infinite degeneracy in theVhere i.a,a=1,....,8. As aconsequence, the matrices
continuous part of the energy spectrum, related to the zerd™, T'™ are real and symmetric and obey the algebra
modesY*,P{ . Since supersymmetry is realized in the physi-

yherey'as, V=7 T are realSQ(8)y matrices[29],

Yyl +ylyi=26811g, (A2)

cal subspacé55), one also gets the corresponding represen- {rm,fn}: —27™M1, (A3)
tation in the space of functions on that subspace. This allows
one to expect a supersymmetric spectrum of quantum stateshere ™"=(+,—, ... ,—). Then a possible realization for

Analysis of this situation in terms of oscillator variables asthe D=11T matrices is
well as the critical dimension will be presented in a separate

publication. 0 I' /1, o0
Note added:After this work was completed, there ap- Pe=ol~ ol'lo —1.[ (A4)
peared a paper by Bars and Delidunj&0] where a covari- r 16

ant action for a superstring in a space with a nonstandard ~
signature D —2,2) was suggested. whereuw=0,1, . . .,10. The properties of ™, I'™ induce the

following relations forl™*:
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POSSIBLE GENERALIZATION OF THE SUPERSTRING ...

{F”,F“}= — 27" s,

wheren**=(+,—, ...,—). The charge conjugation matrix
C=r?,
cl=-c,
c?=-1 (AB)

can be used to construct the symmetric matric&F4) "
=CI'*.

The next step is to introduce the antisymmetrized prodwhereasl''/,

ucts
1
F’“’=§(F“F”—F’T”“), (A7)

which have the following explicit form in terms of the cor-
respondingSQ(1,9) andSO(8) matrices:

o rOi 0
™= 0 710

0 ¥
y 0

¥ o
SN L
0 [ Joo |’
0 e
0
0 —9 0
i9 =i
rlh(r 0)_ y 0
Lo T 0 -y’
0 .
y 0

PHYSICAL REVIEW %38 046005

0 -y

(A9)

1‘*09’
%10 are antisymmetric. Be-
sides, these matrices are real and, as a consequence of Eq.
(A5), obey the commutation relations of the Lorentz algebra.

Under the action of the Lorentz group@2=11 Dirac
spinor is transformed as

wherei=1,2,...,8 andl'%,
I‘i9, I‘i,lO,

%10 are symmetric,

1
60= Zwﬂ,,l“’”’ﬁ.

(A10)
Since thel'*” matrices are real, the reality conditiatf =0

is compatible with Eq.(A10) which defines a Majorana
spinor. To construct Lorentz-covariant bilinear combina-
tions, note that

1
50: - Zw’uy

or+?,

9=0'C. (A11)

Then the combinationT'#6 is a vector under the action of
the D=11 Lorentz group

S(YT#8)=—w*,(yI'*0). (A12)
In various calculations the properties
YIHo=— Ty,
YIET 9= U T Hy,
YTHTTP o= — T PT T Hih (A13)

are also useful.

It is possible to decomposea=11 Majorana spinor in
terms of itsSO(1,9) andS(Q(8) components. Namely, from
Eq. (A8) it follows that the decomposition

6=(6,,60%, (A14)
wherea=1, . . .,16, holds. Her® and 6 are Majorana-Weyl
spinors of opposite chirality with respect to t8€X1,9) sub-

group of theSO(1,10) group. Further, from the third equa-
tion in Eq. (A8) it follows that in the decomposition

046005-9
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—(0.0. 0.0 0 I
0=(0,,0.6;,63), (A15) Fi:(fi 0), rl°=<156 0 ) AL6)
wherea,a=1, ... 8, thepairs6,, 6, and6’, 6, areSQ(8) 10
spinors of opposite chirality.
It is convenient to define th® =11 light-conel’ matrices wherei=1, ... ,8.Then the equatiolf * =0 has a solution
1z O _
. 0 0 0 0=1(6,,0,00,). (A17)
I*=—=(I+TI%)=2| —— :
V2 0 0 . N —
0 ; 0 Besides, under the conditidn™ #=0 the identities
— 13
§F+(910:§Fi(910:§[‘10(910:0,
0
0 o 1 _
r*=—£«r°—rﬁ)=v5 I a8 (6T *3,6)T*6=0 (A18)
2 -1; 0 0
0 0 hold.
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