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Possible generalization of the superstring action to eleven dimensions
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We suggest aD511 super Poincare´ invariant action for the superstring which has free dynamics in the
physical variables sector. Instead of the standard approach based on the searching for an action with localk
symmetry~or, equivalently, with corresponding first class constraints!, we propose a theory with fermionic
constraints of second class only. Then thek symmetry and the well knownG-matrix identities are not
necessary for the construction. Thus, at the classical level, the superstring action of the type described can exist
in any spacetime dimensions and the known brane scan can be reexamined.@S0556-2821~98!05814-7#

PACS number~s!: 11.25.Pm, 11.30.Pb
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I. INTRODUCTION

A revival of interest in the problem of the covariant fo
mulation of eleven-dimensional superstring is due to
search forM theory~see Refs.@1–5# and references therein!
which is expected to be the underlying quantum theory
the known extended objects. In the strong coupling limit
M theory R11→`, whereR11 is the radius of the 11th di
mension, the vacuum is an eleven-dimensional Minkow
vacuum and the effective field theory isD511 supergravity.
Up to date,D511 supergravity is viewed as the strong co
pling limit of the ten-dimensional type-IIA superstring@1#.
SinceD511 super Poincare´ symmetry survives in this spe
cial point in the moduli space ofM -theory vacua~‘‘uncom-
pactified M theory’’ according to Ref.@5#!, one may ask
about the existence of a consistentD11 quantum theory with
D511 supergravity being its low energy limit. One possib
ity is the supermembrane action@6–8#, but in this case one
faces the problem of a continuous spectrum for the fi
quantized supermembrane@9,10#. By analogy with the ten-
dimensional case, where the known supersymmetric fi
theories can be obtained as the low energy limit of the c
responding superstrings@5#, the other natural candidat
might be aD511 superstring theory. But the problem is th
a covariant formulation for theD511 superstring action is
unknown even at the classical level. The classical Gre
Schwarz~GS! superstring~with manifest space-time supe
symmetry and localk symmetry! can propagate in three
four, six, and ten spacetime dimensions@11# and the standard
approach fails to construct aD511 superstring action.

The crucial ingredient in the construction of the GS s
perstring action is theG-matrix identity

Ga(b
m ~CGm!gd)50. ~1!

It provides the existence of both global supersymmetry
local k symmetry for the action@11,12#. Thek symmetry, in
its turn, eliminates half of the initialu variables as well as
provides free dynamics in the physical variable sector. In
paper we discuss a possibility to construct a classical su
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string action with those two properties in eleven dimensio
Subsequent development of our method may shed light
the problem of constructing the corresponding quant
theory. To elucidate the construction which will be sugges
below let us discuss the problem in the Hamiltonian fram
work, where one finds the well-known fermionic constrain
La50 ~see, for example, Refs.@11,12#! which obey the Pois-
son brackets

$La ,Lb%52i ~ p̂m1P1
m!Gab

m d~s2s8!

22ūg]1udGg(d
m ~CGm!ab)d~s2s8!. ~2!

By virtue of Eq.~1!, the last term in Eq.~2! vanishes forD
53,4,6,10. The resulting equation then means that half of
constraints are first class, which exactly corresponds to thk
symmetry presented in the Lagrangian framework.

The next step is to impose an appropriate gauge. Then
set of functions

La50, ~3!

G1u50 ~4!

is a system of second class@even though Eq.~1! has not been
used#.

The situation changes drastically for theD511 case,
where instead of Eq.~1! one finds@13–15#

10Ga(b
m ~CGm!gd)1Ga(b

mn ~CGmn!gd)50. ~5!

Being appropriate for the construction of the supermembr
action @6#, this identity does not allow one to formulate
D511 superstring with desirable properties. As was sho
by Curtright @13#, the globally supersymmetric action base
on this identity involves, additional toxi , ua , ū ȧ degrees of
freedom in the physical sector. Moreover, it does not poss
a k symmetry that could provide free dynamics@13,14#.

In this paper we suggest aD511 super Poincare´ invariant
action for the classical superstring which has free dynam
in the physical variable sector. Instead of the standard
proach based on the searching for an action with locak
symmetry ~or, equivalently, with corresponding first clas
constraints!, we present a theory in which covariant co
straints like Eqs.~3!, ~4! arise among others. Since it is
© 1998 The American Physical Society05-1
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A. A. DERIGLAZOV AND A. V. GALAJINSKY PHYSICAL REVIEW D 58 046005
system of second class constraints,k symmetry and the iden
tity ~5! are not necessary for the construction. Thus, at
classical level, a superstring of the type described can e
in any spacetime dimension and the known brane scan@4#
can be reexamined. For definiteness, in this paper we dis
the D511 case only.

Two comments are in order. First, one needs to covar
tize Eq.~4!. The simplest possibility is to introduce an au
iliary variableLm(t,s) subject toL250 and replace Eq.~4!
by LmGmu50. The most preferable formulation seems to
that in which the gaugeL251 is possible. Then Eq.~4! is
reproduced. Unfortunately, it seems to be impossible to
troduce a pure gauge variable with the desired proper
@16–20#. Below, we present a formulation in which only ze
modes of auxiliary variables survive in the sector of physi
degrees of freedom. Since the state spectrum of a strin
determined by the action on the vacuum of oscillator mo
only, one can expect that the presence of the zero modes
be inessential for the case. This fact will be demonstra
within the canonical quantization framework in Secs. II a
IV.

Second, one expects that a model with constraints
Eqs. ~3!, ~4! will possess~if any! off-shell super Poincare´
symmetry in a nonstandard realization. Actually, global
persymmetry which does not spoil the equationLmGmu50
looks likedu;LmGme. On shell, whereL250, only half of
the supersymmetry parametersea are essential.

It is worth mentioning another motivation for this work
As was shown in Refs.@21–25#, an action for the supe
D-brane allowing for the localk symmetry is very compli-
cated. One can hope that our method, being applied to
case, will lead to a more simple formulation.

The work is organized as follows. In Sec. II we prese
and discuss an action for the auxiliary variableLm, which
proves to be a necessary ingredient of our construction
Sec. III a covariant action for the eleven-dimensional sup
string and its local symmetries are presented. In Sec.
within the framework of the Hamiltonian approach we pro
that it has free dynamics. In Sec. V the role of the We
Zumino term presented in the action is elucidated. In Sec
off-shell realization of the super Poincare´ algebra is derived
and discussed. The Appendix contains our spinor conven
for D511.

II. ACTION FOR AUXILIARY VARIABLES
AND THEIR DYNAMICS

As was mentioned in the Introduction, we need to ge
our disposal an auxiliary lightlike variable. So as a prelim
nary step of our construction, let us discuss theD511 Poin-
caréinvariant action

S52E d2sFLm«ab]aAb
m1

1

f
LmLmG , ~6!

which turns out to be a building block of the eleve
dimensional superstring action considered below. H
Lm(sa) is a D511 vector and ad2 scalar, andAa

m(sb) is a
D511 andd2 vector, whilef(sa) is a scalar field. In Eq.
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~6! we have set«ab52«ba, «01521 and it was also sup
posed thats1,@0,p#. From the equation of motiondS/df
50 it follows thatLm is a lightlike vector.

Local symmetries of the action are d52
reparametrizations1 and the following transformations with
the parametersjm(sa), va(sb):

djAa
m5]ajm,

dvAa
m5vaLm,

dvf5
1

2
f2«ab]avb . ~7!

These symmetries are reducible because their combina
with the parameters of a special form,va5]av, jm

52vLm, is a trivial symmetry:dvAa
m52v]aLm, dvf

50 ~note that]aLm50 is one of the equations of motion!.
Thus, Eq.~7! includes 12 essential parameters which cor
spond to the primary first class constraintsp0

m'0, pf'0
in the Hamilton formalism~see below!.

Let us consider the theory in the Hamiltonian framewo
Momenta conjugate to the variablesLm, Aa

m , f are de-
noted by pL

m , pa
m , pf . All equations for determining

the momenta turn out to be the primary constraints

pf50,

p0
m50, ~8!

pL
m50,

p1
m2Lm50. ~9!

The canonical Hamiltonian is

H5E ds1FLm]1A0
m1

1

f
L21lfpf

1lL
mpL

m1l0
mp0

m1l1
m~p1

m2Lm!G , ~10!

wherel* are the Lagrange multipliers corresponding to t
constraints. The preservation in time of the primary co
straints implies the secondary ones

]1Lm50,

L250, ~11!

and equations for determining some of the Lagrange mu
pliers:

l1
m5]1A0

m1
2

f
Lm,

lL
m50. ~12!

The tertiary constraints are absent.

1Note that the coupling to thed52 metricgab(sc) is not neces-
sary due to the presence of the«ab symbol and the supposition tha
the variablef transforms as a densityf8(s8)5det(]s8/]s)f~s!
under reparametrizations.
5-2
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POSSIBLE GENERALIZATION OF THE SUPERSTRING . . . PHYSICAL REVIEW D58 046005
Constraints~9! form a system of second class and can
omitted after introducing the corresponding Dirac brack
~the Dirac brackets for the remaining variables prove to
incide with the Poisson ones!. After imposing the gauge
fixing conditions f52, A0

m50 for the first class con-
straints ~8!, the dynamics of the remaining variables
governed by the equations

Ȧ1
m5p1

m ,

ṗ1
m50, ~13!

~p1
m!250,

]1p1
m50. ~14!

In order to find a correct gauge for the second constrain
Eq. ~14!, let us consider Fourier decomposition of functio
periodical in the intervals,@0,p#:

A1
m~t,s!5Ym~t!1 (

nÞ0
yn

m~t!ei2ns,

p1
m~t,s!5Py

m~t!1 (
nÞ0

pn
m~t!ei2ns. ~15!

Then the constraint]1p1
m50 is equivalent topn

m50, nÞ0,
and an appropriate gauge isyn

m50 or, in the equivalent form
]1A1

m50. Thus, physical degrees of freedom of the mo
are the zero modes2 of these variables, and the correspondi
dynamics is

A1
m~t,s!5Ym1Py

mt,

p1
m~t,s!5Py

m5const,

~Py!250. ~16!

Since there are no oscillator variables, the action~6! can be
considered as describing a pointlike object, which propag
freely according to Eq.~16!. The only quantum state is it
ground stateupy0& with massmy

25py0
2 50. As a result, these

degrees of freedom do not make contributions into the s
spectrum of the superstring~see Sec. IV!, and manifest them-
selves in additional degeneracy of the continuous part of
energy spectrum only. The action of such a kind was s
cessfully used before@26,27# in a different context.

Note that in the previous discussion it was assumed
variables of the theory are periodical in the interv
s,@0,p#. For an open world sheet, the stationarity conditi
dSG50 for the Hamiltonian action,

SG5E d2s@pAq̇A2H~q,p!#,

2We are grateful to N. Berkovits and J. Gates for bringing this f
to our attention.
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E dt~LmdA0
mus50

s5p!50. ~17!

Since the variationsdA0
mus50,p are arbitrary, this equation

requiresLmus50,p50. By virtue of Eq. ~9! it leads to the
trivial solution p1

mus50,p50. In contrast, for a closed world
sheet one hasdGAus505dGAus5p for any variableGA and
Eq. ~17! is automatically satisfied. Hence, the model~6! has
a nontrivial solution being determined on the closed wo
sheet only.

III. ELEVEN-DIMENSIONAL SUPERSTRING ACTION
AND ITS LOCAL SYMMETRIES

The D511 action functional to be examined is

S5E d2sH 2gab

2A2g
Pa

mPb
m2 i«ab]axm~ ūGm]bu!

2 iLmc̄Gmu2
1

f
LmLm2Lm«ab]aAb

mJ , ~18!

where u, c are 32-component Majorana spinors andPa
m

[]axm2 i ūGm]au. Let us mention the origin of the term
presented in Eq.~18!. The first two terms are exactly GS
type superstring action written in eleven dimensions. T
meaning of the last two terms has been explained in
previous section. The third and the fourth terms will supp
the appearance of the equationsLmGmu50 and L250.
Thus, the variablesc̄a andf are, in fact, the Lagrange mul
tipliers for these constraints.

Note also that the Wess-Zumino term in theD510 GS
action provides the appearance of the localk symmetry@9#.
In our model it plays a different role, as will be discuss
below.

Let us make a comment on the local symmetry struct
of the action~18!. Local bosonic symmetries ared52 rep-
arametrizations@with the standard transformation laws for a
variables except for the variablef, which transforms as a
density:f8(s8)5det(]s8/]s)f(s)#, Weyl symmetry, and
the transformations with parametersjm(sa) andva(sb) de-
scribed in the previous section.

There is also a fermionic symmetry with paramete
xa(sa),

dc̄5x̄GmLm ,

df52f2~ x̄u!, ~19!

from which only 16 are essential on shell sinceL250. As
shown below, the reducibility of this symmetry produces
special problem for covariant quantization.

Let us present arguments that the action constructed
scribes a free theory. The equations of motion for the the
~18! are

Pa
mPb

m2
1

2
gab~gcdPc

mPd
m!50, ~20a!t
5-3
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A. A. DERIGLAZOV AND A. V. GALAJINSKY PHYSICAL REVIEW D 58 046005
]aS gab

A2g
Pb

m1 i«abūGm]bu D 50, ~20b!

4iPb
m~GmP2ba]au!a1«abub]aug]budGa(b

m CGgd)
m

1 iLm~Gmc!a50, ~20c!

LmGmu50,

L250, ~20d!

]aLm50,

«ab]aAb
m1

2

f
Lm1 i c̄Gmu50, ~20e!

where

P2ba5
1

2S gba

A2g
2«baD .

Multiplying Eq. ~20c! by LmGm one gets

~LmPb
m!P2ba]au50. ~21!

In the coordinate system whereL251, supplemented by the
conformal gauge, it can be rewritten as

~]01]1!u50, ~22!

from which it follows that any solutionu(s) of the system
~20! obeys this free equation.

Thus, Eqs.~20a!–~20c! for the gab, xm, ua variables in
fact coincide with those of the GS string and are accom
nied by LmGmu50. The latter reduces toG1u50 in the
coordinate system chosen. As a result, one expects free
namics in this sector provided that the conformal gauge
been assumed. In the next section we will rigorously pro
this fact by direct calculations in the Hamiltonian fram
work.

IV. ANALYSIS OF DYNAMICS

From the explicit form of the action functional~18! it
follows that the variableLm can be excluded by making us
of its equation of motion. The Hamiltonian analogue of t
situation is a pair of second class constraintspL

m

50, p1
m2Lm50, which can be omitted after introducin

the associated Dirac bracket~see Sec. II!. The Dirac brackets
for the remaining variables prove to coincide with the Po
son ones and the Hamiltonian looks like

H5E ds1H 2
N

2
~ p̂21P1mP1

m!2N1p̂mP1
m

1p1m~]1A0
m1 i c̄Gmu!1

1

f
~p1

m!21lfpf1l0mp0
m

1lab~pg!ab1lc
apca1Lalu

aJ , ~23!
04600
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wherepm, p0
m , p1

m , pca , (pg)ab are momenta con-
jugate to the variablesxm, A0

m , A1
m , ca , gab , re-

spectively;l* are Lagrange multipliers corresponding to t
primary constraints. In Eq.~23! we also denoted

N5
A2g

g00
,

N15
g01

g00
,

p̂m5pm2 i ūGm]1u,

La[pua2 i ~pm1P1
m!~ ūGm!a50. ~24!

It is interesting to note that the fermionic constrain
La50 obey the algebra~2! and, being considered on the
own ~without taking into account the constraintsūGmp1m
50 which will arise below!, form a system which has no
definite class~this corresponds to the lack ofk symmetry in
the GS action written in eleven dimensions!.

The conservation in time of the primary constraints im
plies the secondary ones

]1p1
m50,

~p1
m!250,

~ ūGm!ap1
m50,

~ p̂m6P1
m!250, ~25!

~ l̄uGm!a~ p̂m1P1
m!1 i ūg]1udlu

bGg(d
m CGba)

m 1
1

2
~ c̄Gm!aLm

2~]1ūGm!a~N1N1!~ p̂m1P1
m!

2
1

2
~ ūGm!a]1~Np̂m1N1P1

m!50. ~26!

At the next step, there arises only one nontrivial equati
From the condition$ūGmp1

m ,H%50 one gets

~ l̄uGm!ap1
m50. ~27!

Equations~26!, ~27! are equivalent to

l̄u5~N1N1!]1ū1
j̃

2
ū, ~28!

S̃a[~c̄Gm!ap1
m1~ ūGm!aD̃m50, ~29!

where we denoted

D̃m5 j̃~ p̂m1P1
m!2]1~Np̂m1N1P1

m!,

j̃5
]1~Np̂m1N1P1

m!p1
m

~ p̂m1P1
m!p1

m
.

5-4
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POSSIBLE GENERALIZATION OF THE SUPERSTRING . . . PHYSICAL REVIEW D58 046005
Thus, we have Eq.~28! for determining the Lagrange multi
plier lu and the tertiary constraintS̃a50. One can check tha
there are no more constraints in the problem.

Hamiltonian equations of motion for the variable
„gab,(pg)ab…, (f,pf), (A0

m ,p0
m), (ca,pc

a) look like
]0q5lq , ]0pq50, while for other variables one has

]0A1
m5]1A0

m1
2

f
p1

m1 i c̄Gmu,

]0p1
m50, ~30a!

]0xm52Np̂m2N1P1
m2 i ūGmlu ,

]0pm52]1~NP1
m1N1p̂m!1 i ūGmlu ,

~30b!

]0ua52lu
a . ~30c!

Note that equations]0pua5••• have been omitted sinc
they follow from the constraintsLa50 and other equations

To go further, note that the constraints (pg)ab50 form
nonvanishing Poisson brackets with theS̃a from Eq. ~29!. A
modification which splits them out of other constraints is

~p̃g!ab[~pg!ab1
1

2~ p̂1P1!p1

~pcGmGnu!~ p̂m1P1
m!Tab

n ,

with Tab
n being defined by the equality$(pg)ab ,S̃a%

5Tab
m ( ūGm)a . Hence, the constraints (p̃g)ab50 are first

class and one can adopt the gauge choicegab5hab. The full
set of constraints can now be rewritten in a more simple fo

pf50,

p0
m50, ~31a!

~p1
m!250,]1p1

m50,~ p̂m6P1
m!250,

La50,

ūGmp1m50,

pca50,

Sa[c̄Gmp1m1~ ūGm!aDm50, ~31b!

where

Dm[j~ p̂m1P1
m!2]1pm,

j[
]1p̂mp1m

~ p̂n1P1
n!p1n

. ~32!

Now, let us impose gauge fixing conditions to the fi
class constraints~31a!. The choice consistent with the equ
tions of motion is
04600
t

f52,

A0
m52 i E

0

s

ds8c̄Gmu.

After that, dynamics for the remaining variables looks lik

]0ca5lc
a ,

]0pca50,

pca50,

Sa50, ~33a!

]0A1
m5p1

m ,

]0p1
m50,

~p1
m!250,

]1p1
m50, ~33b!

]0xm52pm,

]0pm52]1]1xm,

~ p̂m6P1
m!250, ~33c!

]0u52]1u2
j

2
u, La50, ~ ūGm!ap1m50. ~33d!

The sector~33a! includes 32116 independent constraint
from which the first class ones can be picked out as follo

~pcGm!ap1m50. ~34!

As was mentioned above, the reducibility of the constrai
does not spoil the covariant quantization program. Actua
let us impose the following covariant~and redundant! gauge-
fixing conditions for the constraints~34!:

Sa
1[

1

~ p̂1P1!p1

c̄Gm~ p̂m1P1m!50. ~35!

Then the set of equationsSa50, S1
a50 is equivalent to

S8[c̄2
1

2~ p̂1P1!p1

ūGmDmGn~ p̂n1P1n!, ~36!

the latter forming nondegenerate Poisson brackets toge
with the constraintspca50:

$pca ,Sb8 %52Cab . ~37!

After passing to the Dirac brackets associated with the s
ond class functionspca , Sa8 , the variablesc, pc can be
dropped.

To proceed further, we impose the gauge]1A1
m50 for the

constraints in Eq.~33b!, and pass to an appropriately chos
5-5
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A. A. DERIGLAZOV AND A. V. GALAJINSKY PHYSICAL REVIEW D 58 046005
coordinate system. By making use of the Lorentz trans
mation one can consider a coordinate system wherePy

m

5(1,0, . . .,0,1) ~note that this is an admissible procedu
within the canonical quantization approach since the Lore
transformation is a particular example of a canonical on!.
To get the dynamics in the final form, we pass to the lig
cone coordinatesxm→(x1,x2,xi), i 51,2, . . .,8,10, ua

→(ua ,ū8ȧ ,ua8 ,ū ȧ), a,ȧ51,•••,8 and impose the gauge
fixing conditions

x15P1t,

p152P15const, ~38!

to the Virasoro first class constraints remaining in Eqs.~33c!.
The equationūGmp1m50 acquires now the formG1u50
and it is easy to show that 32116 constraints La
50, G1u50 are second class. A solution isua

5(ua,0,0,ū ȧ) with ua and ū ȧ beingSO(8) spinors of oppo-
site chirality. In the gauge chosen, the relation (p̂m

1P1
m)p1mÞ0 holds which correlates with the assumpti

made above in Eqs.~32!, ~35!. For the remaining variable
one gets the free field equations

]0xi52pi ,

]0pi52]1]1xi ,

~]01]1!ua50,

~]01]1!ū ȧ50. ~39!

Moreover,ua and ū ȧ form two pairs of self-conjugate vari
ables under the Dirac brackets associated with the constr
from Eq. ~33d!:

$ua ,ub%5
i

A8P1
dab ,

$ū ȧ ,ū ḃ%5
i

A8P1
d ȧḃ . ~40!

Let us look shortly at the spectrum of the theory. The grou
state of the full theoryupy0 ,p0 ,0&5upy0&up0&u0& is a direct
product of vacua, wherePy

2upy0&50, up0& is a vacuum for
zero modes of the variablesxm,pm, while throughu0& are
denoted vacua for bosonic and fermionic oscillator mod
From Eq.~40! it follows that zero modes of theua ,ū ȧ vari-
ables form the Clifford algebra which is also the symme
algebra of a ground state. A representation space is 256
mensional which corresponds to the spectrum of theD511
supergravity@29#. The excitation levels are then obtained
acting with oscillators on the ground state. One notes
zero modesYm,Py

m manifest themselves in additional dege
eracy of the continuous energy spectrum only.
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V. COMMENT ON THE WESS-ZUMINO TERM
IN THE D511 SUPERSTRING ACTION

For the D510 GS superstring the Wess-Zumino ter
provides the localk symmetry@11,12#, which leads to free
dynamics for physical variables. Since there is nok symme-
try in our construction, it is interesting to elucidate the mea
ing of this term in theD511 action suggested. Let us con
sider the action~18! with the second term omitted. Canonic
analysis for this model turns out to be very similar to th
made above and we present results only.

Instead of Eqs.~24!, ~28!, ~29! one finds

La[pua2 i ~ ūGm!apm50,

l̄u5
N~P1p1!1N1~pp1!

~pp1!
]1ū,

S̃[@~pp1!c̄2]1ūGr~NP1
r1N1pr!Gnpn#Gmp1

m50.
~41!

In the coordinate system wherePy
m5(1,0, . . .,0,1) the ana-

logue of Eqs.~33c!, ~33d! reads

]0xm52pm2 i
]1x1

p1
~ ūGm]1u!,

]0pm52]1P1
m ,

~pm6P1
m!250,

]0u52
]1x1

p1
]1u,

La50,G1u50, ~42!

provided that the conformal gauge has been chosen.
To impose a gauge for the first class constraints (pm

6P1
m)250, consider a one-parameter set of equations3

x15P1~t1cs!,

p152P15const,

c5constÞ61, ~43!

which leads to the following dynamics for variables of th
physical sector:

]0xi52pi ,

]0pi52]1]1xi ,

~]02c]1!u50. ~44!

3The valuec561 is not admissible since in that case the Poiss
brackets of the constraints (pm6P1

m)250 and the gauges~43! van-
ish.
5-6
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One can check that it is impossible to get rid of the num
c by making use of some other gauge choice for thegab and
A1

m variables.
Thus, omitting the Wess-Zumino term in Eq.~18! one

arrives at the theory which possesses all the properties o
model~18! with the only modification in the last equation o
Eqs. ~39!: (]02c]1)u50 with c a constant. Depending o
the gauge chosen it can take any value exceptc561.
Hence, the dynamics is not manifestlyd52 Poincare´ cova-
riant, provided thatu is ad52 scalar. It is the Wess-Zumin
term which corrects this inconsistency.

VI. OFF-SHELL REALIZATION OF THE D511 SUPER
POINCARÉ ALGEBRA

It is convenient first to recall some facts relating to t
D510 GS superstring. Off-shell realization of the sup
Poincare´ algebra for that case includes the Poincare´ transfor-
mations accompanied by the supersymmetries

dua5ea,

dxm52 i ūGme. ~45!

Being considered on their own, in the gaugeG1u50 these
transformations are reduced to trivial shifts for variables
the physical sector:

dū ȧ5 ē ȧ ,

dxi50. ~46!

To get on-shell realization of the supersymmetry algeb
one needs to consider a combination of thee and k trans-
formations de1dk(e) , which does not violate the gaug
G1u50. These transformations are~see, for example
Ref. @28#!

dū ȧ5 ē ȧ1
1

P1
]2xi ḡ i

ȧaea ,

dxi52 iA2~ ūḡ ie!. ~47!

We turn now to theD511 case. Off-shell realization o
the super Poincare´ algebra for the action~18! includes the
Poincare´ transformations in the standard realization and
following supersymmetries with a 32-component spinor
rameterea:

du5L̃e,

dxm52 i ūGmL̃e,

dAm
a522i eab

gbc

A2g
~ ūP̃cG

me!

22i ]axn~ ūGnGme!22~ ūe!~ ūGm]au!,
04600
r

he

r

f

,

e
-

dc̄5 i eab@ ēGm~]aūGm]bu!22]aū~]būe !#,

df52 if2~ c̄e!, ~48!

whereL̃[LmGm, P̃c[Pc
mGm. The action is invariant up

to total derivative terms. These transformations are the a
logue of Eq.~45! since in the physical sector they are r
duced todua5A2ea8 , dū ȧ52A2ē ȧ

8 , dxi50.
To find a global supersymmetry of the action~18! corre-

sponding to Eq.~47! let us consider the following ansatz:

du5L̃P̃ce
c,

df52 if2~ c̄P̃ce
c!,

dxm54i ~LPc!~ ūGmec!12i ~ ūP̃ce
c!Lm, ~49!

where we denoted

ea
a[P2abea b ,

P2ab5
1

2S gab

A2g
2«abD ,

~LPc![LmPc
m. ~50!

Variation of the GS part of the action~18! under these trans
formations looks like

dSGS5«ab@28~ ūGmec!~]aūGm]bu!~LPc!

24~ ūP̃ce
c!~]aūL̃]bu!12~]aūGmL̃P̃ce

c!

3~ ūGm]bu!1~ ūGmL̃P̃ce
c!~]aūGm]bu!#

22iP2ba@4~ ūP̃ce
c!~]aLPb!

12~]aūL̃ec!~PbPc!2~ ūL̃]aP̃bP̃ce
c!#. ~51!

After integrating by parts, reordering theL̃ andP̃ terms, and
making use of the identities

P2abP2cd5P2cbP2ad,

~]aūGm]bu!~LPc!52
1

2
]aūGm$L̃,P̃c%]bu, ~52!

it proves to be possible to represent all the terms in Eq.~51!

either asKL̃u or ]aLmTma with K andT being certain co-
efficients. These terms can evidently be canceled by ap
priate variations of thec̄ and Am

a variables. The final form
for these variations is
5-7
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dAa
m58~ ūGrec!~ ūGmPc

nGnr]au!

25~ ūP̃ce
c!~ ūGm]au!23~ ūGmGnP̃ce

c!~ ūGn]au!

24i«adP
2bd@~ ūGmec!~PbPc!22~ ūP̃ce

c!Pb
m#,

dc̄5 i«ab$2~]aūP̃ce
c!]bū28~]aūP̃c]bu!ēc

28]a@~ ūGmec!]būGmnPn
c#15~ ū]aP̃ce

c!]bu

13~ ūGm]bu!ēc]aP̃cG
m1~]aūGm]bu!ēcP̃cG

m%

22iP2ba@ ēc]aP̃cP̃b22ēcPb]aPc#. ~53!

Note that the complicated transformation law for thec vari-
able might be predicted, since one of the Lagrangian eq
tions of motion is

~L̃c!a524P̃bP2ba]aua1 i«abub]aug]budGa(b
m ~CGm!gd) .

~54!

Thus, transformation of theL̃c part of thec variable is
dictated by this equation and the transformation laws for
x andu variables.

Being reduced to the physical sector, Eq.~49! looks as
follows:

dua52A2~P1ea2]2xig i
aȧē ȧ

81]2x10ea8,

dū ȧ52A2~P1ē ȧ1]2xi ḡ ȧa
i

ea82]2x10ē ȧ
8!,

dxi52A2iP1~ug i ē82 ū ḡ ie8!, ~55!

and seems to be the analogue of Eq.~47!.
To summarize, in this paper we have suggested a s

Poincare´ invariant action for the superstring which class
cally exists in any spacetime dimension. As compare w
the GS formulation for theN51,D510 superstring action
the only difference is an additional infinite degeneracy in
continuous part of the energy spectrum, related to the z
modesYm,Py

m . Since supersymmetry is realized in the phy
cal subspace~55!, one also gets the corresponding repres
tation in the space of functions on that subspace. This all
one to expect a supersymmetric spectrum of quantum st
Analysis of this situation in terms of oscillator variables
well as the critical dimension will be presented in a separ
publication.

Note added:After this work was completed, there ap
peared a paper by Bars and Deliduman@30# where a covari-
ant action for a superstring in a space with a nonstand
signature (D22,2) was suggested.
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APPENDIX

In this appendix we describe the minimal spinor repres
tation of the Lorentz groupSO(1,10) which is known to
have dimension 2[D/2]. For this aim, it suffices to find eleve
32332 Gm matrices satisfying the equationGmGn1GnGm

522hmn, m,n50,1, . . .,10, hmn5(1,2, . . . ,2). A
convenient way is to use the well-known 16316 G matrices
of the SO(1,9) group which we denote a

Gab
m , G̃mab, m50,1, . . . ,9.Their explicit form is

G05S 18 0

0 18
D ,

G̃05S 218 0

0 218
D ,

G i5S 0 g i
aȧ

ḡ i
ȧa 0 D ,

G̃ i5S 0 g i
aȧ

g̃ i
ȧa 0 D ,

G95S 18 0

0 218
D ,

G̃95S 18 0

0 218
D , ~A1!

whereg i
aȧ , ḡ i

ȧa[(g i
aȧ)

T are realSO(8)g matrices@29#,

g i ḡ j1g j ḡ i52d i j 18 , ~A2!

where i ,a,ȧ51, . . . ,8. As a consequence, the matrice

Gm, G̃m are real and symmetric and obey the algebra

$Gm,G̃n%522hmn1, ~A3!

wherehmn5(1,2, . . . ,2). Then a possible realization fo
the D511 G matrices is

Gm5H S 0 Gm

G̃m 0 D ,S 116 0

0 2116
D J , ~A4!

wherem50,1, . . .,10. The properties ofGm, G̃m induce the
following relations forGm:

~G0!T52G0,

~G i !T52G i ,

~Gm!* 5Gm, ~A5!
5-8
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$Gm,Gn%522hmn132,

wherehmn5(1,2, . . . ,2). The charge conjugation matri

C[G0,

C2152C,

C2521 ~A6!

can be used to construct the symmetric matrices: (CGm)T

5CGm.
The next step is to introduce the antisymmetrized pr

ucts

Gmn5
1

2
~GmGn2GnGm!, ~A7!

which have the following explicit form in terms of the co
respondingSO(1,9) andSO(8) matrices:

~A8!
04600
-

~A9!

where i 51,2, . . . ,8 andG0i , G09, G0,10 are symmetric,
whereasG i j , G i9, G i ,10, G9,10 are antisymmetric. Be-
sides, these matrices are real and, as a consequence o
~A5!, obey the commutation relations of the Lorentz algeb

Under the action of the Lorentz group aD511 Dirac
spinor is transformed as

du5
1

4
vmnGmnu. ~A10!

Since theGmn matrices are real, the reality conditionu* 5u
is compatible with Eq.~A10! which defines a Majorana
spinor. To construct Lorentz-covariant bilinear combin
tions, note that

dū52
1

4
vmnūGmn,

ū[uTC. ~A11!

Then the combinationc̄Gmu is a vector under the action o
the D511 Lorentz group

d~c̄Gmu!52vm
n~c̄Gmu!. ~A12!

In various calculations the properties

c̄Gmu52 ūGmc,

c̄GmGnu5 ūGnGmc,

c̄GmGnGru52 ūGrGnGmc ~A13!

are also useful.
It is possible to decompose aD511 Majorana spinor in

terms of itsSO(1,9) andSO(8) components. Namely, from
Eq. ~A8! it follows that the decomposition

u5~ ūa ,ua!, ~A14!

wherea51, . . .,16, holds. Hereu andū are Majorana-Weyl
spinors of opposite chirality with respect to theSO(1,9) sub-
group of theSO(1,10) group. Further, from the third equa
tion in Eq. ~A8! it follows that in the decomposition
5-9
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u5~ua ,ū ȧ
8 ,ua8 ,ū ȧ!, ~A15!

wherea,ȧ51, . . . ,8, thepairsua , ua8 andū ȧ
8 , ū ȧ areSO(8)

spinors of opposite chirality.
It is convenient to define theD511 light-coneG matrices
ys

tt.

e
,’’

04600
G i5S 0 G i

G̃ i 0 D , G105S 116 0

0 2116
D , ~A16!

wherei 51, . . . ,8.Then the equationG1u50 has a solution

u5~ua,0,0,ū ā!. ~A17!

Besides, under the conditionG1u50 the identities

ūG1]1u5 ūG i]1u5 ūG10]1u50,

~ ūGm]1u!Gmu50 ~A18!

hold.
-

’’

s-

ll,

ys.
@1# E. Witten, Nucl. Phys.B443, 85 ~1995!.
@2# M. J. Duff, Int. J. Mod. Phys. A11, 5623~1996!.
@3# J. H. Schwarz, ‘‘Lectures on Superstring andM -Theory Du-

alities,’’ hep-th/9607201.
@4# M. J. Duff, ‘‘Supermembranes,’’ hep-th/9611203.
@5# P. K. Townsend, ‘‘Four Lectures on M -Theory,’’

hep-th/9612121.
@6# E. Bergshoeff, E. Sezgin, and P. K. Townsend, Ann. Ph

~N.Y.! 185, 330 ~1988!.
@7# I. Bars, C. N. Pope, and E. Sezgin, Phys. Lett. B198, 455

~1987!.
@8# M. J. Duff, P. S. Howe, T. Inami, and K. S. Stelle, Phys. Le

B 191, 70 ~1987!.
@9# B. de Wit, J. Hoppe, and H. Nicolai, Nucl. Phys.B305, 545

~1988!.
@10# B. de Wit, M. Luscher, and H. Nicolai, Nucl. Phys.B320, 135

~1989!.
@11# M. B. Green and J. H. Schwarz, Phys. Lett.136B, 367~1984!.
@12# L. Brink and M. Henneaux,Principles of String Theory~Ple-

num, New York, 1988!.
@13# T. Curtright, Phys. Rev. Lett.60, 393 ~1987!.
@14# E. Sezgin, ‘‘Superp-Form Charges and Reformulation of th

Supermembrane Action in Eleven Dimensions
hep-th/9512082.

@15# A. A. Deriglazov and A. V. Galajinsky, Mod. Phys. Lett. A12,
1517 ~1997!.
.

@16# N. Berkovits, ‘‘A Problem with the Superstring Action of De
riglazov and Galajinsky,’’ hep-th/9712056.

@17# H. Nishino and E. Sezgin, Phys. Lett. B388, 569 ~1996!.
@18# I. Bars, Phys. Rev. D55, 2373~1997!.
@19# I. Bars and C. Kounnas, ‘‘A New Supersymmetry,

hep-th/9612119; Phys. Rev. D56, 3664~1997!.
@20# I. Rudychev and E. Sezgin, Phys. Lett. B415, 363 ~1997!.
@21# P. K. Townsend, Phys. Lett. B373, 68 ~1996!.
@22# M. Cederwall, A. von Gussich, B. E. W. Nilsson, and A. We

tenberg, Nucl. Phys.B490, 163 ~1997!.
@23# M. Cederwall, A. von Gussich, B. E. W. Nilsson, P. Sinde

and A. Westenberg, Nucl. Phys.B490, 179 ~1997!.
@24# M. Aganagic, C. Popesku, and J. H. Schwarz, Nucl. Ph

B495, 99 ~1997!.
@25# P. Pasti, D. Sorokin, and M. Tonin, Phys. Lett. B398, 41

~1997!.
@26# A. A. Deriglazov and A. V. Galajinsky, Phys. Lett. B386, 141

~1996!.
@27# A. A. Deriglazov and A. V. Galajinsky, Phys. Rev. D54, 5195

~1996!.
@28# M. Kaku, Introduction to Superstrings~Springer-Verlag, Ber-

lin, 1988!.
@29# M. B. Green, J. H. Schwarz, and E. Witten,Superstring Theory

~Cambridge University Press, Cambridge, England, 1987!.
@30# I. Bars and C. Deliduman, Phys. Rev. D56, 6579~1997!.
5-10


