
PHYSICAL REVIEW D, VOLUME 58, 045016
Supersymmetric sum rules for electromagnetic multipoles
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We derive model-independent, nonperturbative supersymmetric sum rules for the magnetic and electric
multipole moments of any theory withN51 supersymmetry. We find that in any irreducibleN51 supermul-
tiplet the diagonal matrix elements of thel-multipole moments are completely fixed in terms of their off-
diagonal matrix elements and the diagonal (l 21)-multipole moments.@S0556-2821~98!00716-4#

PACS number~s!: 12.60.Jv, 11.30.Pb, 11.55.Hx
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I. INTRODUCTION

Supersymmetry imposes constraints on the magnetic
ments of the particle states@1,2#. These constraints are mod
independent, valid for any massiveN51 andN52 super-
multiplet. They are also in agreement with the results
Ferrara and Remiddi@3#, who showed thatg52 to all orders
in perturbation theory for anyN51 chiral multiplet, and
those of Bilchak, Gastmans, and Van Proeyen@4#, who dem-
onstrated that when spin-1 fields are present supersymm
does not necessarily demandg52, but nevertheless leads t
a relation between theg factors of the spin-1/2 and spin-
particles of the superspin-1/2 multiplet.

The model-independent magnetic dipole moment s
rules were derived in@1# by noting that supersymmetry re
lates the matrix elements of the conserved electromagn
current within the various states of a general massive su
multiplet. By selecting the magnetic dipole term in the m
tipole expansion of the electromagnetic current, the auth
of @1# found, for the gyromagnetic ratios, the following su
rule:

gj 11/25212 jh j ,

gj521~2 j 11!hj ,

gj 21/2521~2 j 12!hj . ~1!

Note thatj is the superspin labeling the massive superm
tiplet which contains states of spins (j 1 1

2 , j , j , j 2 1
2 ). Since

both spin-j states have identical gyromagnetic ratios, we
that all theg factors are determined in terms of a single re
numberhj , corresponding to an off-diagonal magnetic d
pole matrix element between thej 1 1

2 and j 2 1
2 states of the

supermultiplet. In the special casesj 50,1/2, the sum rules
read
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g1/252 ~ j 50!,

g1521h1/2 , g1/25212h1/2 ~ j 5 1
2 !. ~2!

Notice that chiral multiplets (j 50) have a fixed gyromag
netic ratiog52.

In this paper, we generalize the above gyromagnetic r
sum rule to encompass higher multipole moments~both
electric and magnetic!. This is easily done by working
to all orders in the momentum transfer in the appropri
electromagnetic matrix elements. The resulting multip
sum rules have a similar structure as Eqs.~1! and take the
form

T j 11/2
~ l !~e,m!

57
1

M
T j

~ l 21!~m,e!
1

2 j 112 l

l
Hj

~ l !~e,m!
,

T j
~ l !~e,m!

57
1

M
T j

~ l 21!~m,e!
1

2 j 11

l
Hj

~ l !~e,m!
,

T j 21/2
~ l !~e,m!

57
1

M
T j

~ l 21!~m,e!
1

2 j 111 l

l
Hj

~ l !~e,m!
,

~3!

where the electric and magneticl-pole generalization ofg is

denoted byT j
( l )(e,m)

and is defined in Eq.~21! below.1 These
sum rules indicate the general structure imposed by su
symmetry that the electric~magnetic! l-pole moments are
completely determined solely in terms of a single magne
~electric! ( l 21)-pole moment and the real quantityH( l ) pa-
rametrizing an off-diagonal transition between the sp
j 6 1

2 states of the multiplet. Note that the upper and low
signs in Eqs.~3! and subsequent equations correspond to
first and second entries in, e.g., (e,m). This difference in
sign between the electric and magnetic sum rules may

1More precisely these sum rules hold for the generic case 2j > l

11, wherej denotes the superspin. Note thatT j
( l )(e,m)

is meaningless
wheneverl .2 j , as may be inferred from Eq.~21!.
© 1998 The American Physical Society16-1
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understood intuitively from electromagnetic duality whic

exchanges electric and magnetic fields,EW→BW andBW→2EW .
Whenl 51, the magnetic part of the sum rules~3! reduces

to the result of Ferrara and Porrati, Eq.~1!, sinceg is defined

as a ratio: T j
(1)(m)

5gje/2M and T j
(0)(e)

5e. Furthermore,
just as for the magnetic dipole moments, we note that set

Hj
( l )(e,m)

50 yields the ‘‘preferred’’ value for thel-pole mo-
ments,

T j 11/2
~ l !~e,m!

5T j
~ l !~e,m!

5T j 21/2
~ l !~e,m!

57
1

M
T j

~ l 21!~m,e!
, ~4!

generalizing the notion ofg52 as the preferred value of th
gyromagnetic ratio.

II. DERIVATION OF THE SUM RULES

Derivation of the sum rules~3! follows the method of@1#
and involves the transformation properties of a conser
currentJm that commutes with theN51 supersymmetry al-
gebra. The main complication in obtaining the present res
is the requirement of working to all orders in the multipo
expansion~and, as a result, having to keep track of high
order-in-momentum transfer terms in the matrix element!.

Recall that theN51 algebra has the form$Qa ,Q̄b%
52(gm)abPm , where Q̄5QTC is the Majorana conjugate
andC is the charge conjugation matrix obeyingCgmC215
2gmT andC2521. For a massive single-particle state, w
may work in the rest framePm5(M ,0,0,0). Defining chirali-
ties

g5QR
L
56QR

L
~5!

and helicities

g12Q61/257 iQ61/2, ~6!

the supersymmetry algebra can be recast as follows:

$Q1/2
L ,Q21/2

R %52M , $Q21/2
L ,Q1/2

R %52M , ~7!

while the remaining anticommutators vanish.2 We may res-
cale the supercharges according toq61/2

L,R 51/A2MQ61/2
L,R to

recover the Clifford algebra for two fermionic degrees

2To fix our phase conventions, we work in the Dirac represen
tion for the g matrices and takeg55 ig0g1g2g3 and C5 ig0g2.
The spinors then decompose as&Qa

T5Q1/2
L @1 0 1 0#

1Q21/2
L @0 1 0 1#1Q1/2

R @21 0 1 0#1Q21/2
R @0 1 021#.
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freedom. One can then construct its irreducible represe
tions by starting with a superspin-j Clifford vacuumu j &, an-
nihilated byq61/2

L and acting on it with the creation operato
q61/2

R . As a result, we see that the representation has dim
sion (2j 11)322, where 2j 11 is the degeneracy of th
original spin-j state. The spins of the states are given by
addition of angular momenta,j 3@(1/2)12(0)#, giving
states of spinsj 2 1

2 , j, and j 1 1
2 with degeneracies 1, 2, an

1.
Since the superchargesQ61/2

L,R are operators of spin 1/2
this leads to a shorthand notation for labeling the states
massiveN51 multiplet in the following manner: the spin-j
Clifford vacuum is denoted byu0&: acting on this state with
the normalized superchargeq1/2

R or q21/2
R then results in the

spin ‘‘up’’ or ‘‘down’’ states u↑& or u↓&, respectively. The
action of twoq’s on the Clifford vacuum is denoted byul&.

For N51 supersymmetry, any conserved current co
muting with the supersymmetry generators must belong
real linear multiplet. The components of a real linear mult
let multiplet are„C(x),z(x),Jm(x)…, whereC(x) is a real
scalar andz(x) a Majorana spinor. As a result of curren
conservation,]mJm50, the multiplet consists of four fermi
onic and four bosonic degrees of freedom. The transform
tion properties of the components under a supersymm
variation are given by

dC5 i ēg5z, dz5 i ~glJl1 ig5gl]lC!e,

dJm52 ēgm
l]lz. ~8!

It follows that two successive supersymmetry transform
tions on the conserved currentJm gives

dhdeJm5 i ēgm
ngr~]nJr2 ig5]n]rC!h. ~9!

The matrix elements of this equation between single-part
states which belong to the sameN51 multiplet give rise to
sum rules for the electromagnetic multipoles of the parti
states.

To obtain the connection between the matrix elements
Jm and the terms in the multipole expansion, we first rec
the standard definitions~see, e.g.,@5#! for the electricl-pole
moments,

Qi 1i 2¯ i l
~ l ! 5E d3x~xi 1

xi 2
¯xi 1

!J0~x!2trace, ~10!

and the magneticl-pole moments,

Mi 1i 2¯ i l
~ l ! 52

1

l 11 E d3x~xi 1
xi 2

¯xi l
!¹W •@xW3JW~x!#2trace.

~11!

While ordinarily defined in terms of spherical tensors~see,
e.g.,@6#!, the above multipole moments, expressed as Ca
sian tensors, are more naturally related to the expansion
the matrix elements ofJm ,

-
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^ j 8,m8,pW uJ0u j ,m,0&5(
l 50

`
1

l !
~ ip ! i 1

~ ip ! i 2
¯~ ip ! i l

^ j 8,m8,0,uTi 1i 2¯ i l
~ l !e

u j ,m,0&,

^ j 8,m8,pW uJi u j ,m,0&5pi^ j 8,m8,0,uLu j ,m,0&2 i e i jkpj(
l 51

`
1

l !
~ ip ! i 2

~ ip ! i 3
¯~ ip ! i l

^ j 8,m8,0,uTki2¯ i l
~ l !m

u j ,m,0&. ~12!
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In particular, thetracelesscomponents ofT( l )(e)
and T( l )(m)

correspond exactly toQ( l ) andM ( l ), respectively. Note tha
the matrix elements ofL are completely determined by cu
rent conservation,L52@(E2M )/p2#J0 .

The multipole moment sum rules are derived by tak
the double-supersymmetry variation of the conserved cur
Jm ,

dhdeJm5@h̄Q,@ ēQ,Jm##

5h̄QēQJm2h̄QJmēQ2 ēQJmh̄Q1JmēQh̄Q,

~13!

and evaluating it between single-particle states^au and ub&.
Since the superchargeQ generates superpartners (Qua&
;uã&), this expression relates matrix elements ofJm be-
tween different states of a supermultiplet in terms
dhdeJm , which is given by Eq.~9!. The electromagneticl-
pole sum rules then follow by using Eq.~12! to expand the
matrix elements in terms of multipoles and then by collect
terms of orderpl . We note that an important simplificatio
occurs since we are only interested in sum rules on the s
multipole moments. This means in practice that all ter
depending explicitly on the contracted momentump2 may be
ignored, as they do not contribute to the staticl-pole mo-

ments~and instead correspond to the trace terms inT( l )(e,m)
!.3

The general double-supersymmetry variation procedur
simplified in practice by choosing the global supersymme
transformation parametersh ande in such a way that severa
terms on the right-hand side of Eq.~13! act as annihilation
operators on the initial or final states and hence may
dropped. In particular, by choosinghL50, we find

^a,pW udhR
deJmub,0&5^a,pW uJmēQh̄RQub,0&

2^a,0u ēQ~p!L21~pW !Jmh̄RQub,0&,

~14!

where Q(p) denotes the Lorentz boost ofQ, namely,Q(p)

5L21(pW )QL(pW ), andua,pW &5L(pW )ua,0&.
By further choosingeL50 and noting from Eq.~9! that

dhR
deR

Jm50, we easily obtain the ‘‘vanishing’’ sum rule

3In principle, supersymmetry would give complete relations b

tween electromagnetic form factorsT( l )(e,m)
(p2) of superpartners.

However, in this case it appears the moments of the ‘‘auxili
field’’ C enter in a nontrivial manner.
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^a,pW uJmēRQh̄RQub,0&50. ~15!

This demonstrates thatall matrix elements of the electro
magnetic current vanish between statesu0& and ul& and,
hence, that there are no off-diagonal moments between
two spin-j states of the supermultiplet.

If instead we chooseeR50 and make use of the fact tha
Q transforms as a spinor,

Q~p!5e1/2v ig0i /2Q5AE1M

2M S I 1
pi

E1M
g0i DQ,

~16!

we obtain from Eq.~14! the expression

^a,pW u i ēLgm
ngl]n~Jl2 ig5]lC!hRub,0&

52M ~ ēLg0hR!^a,pW uJmub,0&

2AE1M

2M
^a,0u ēLQL21~pW !Jmh̄RQub,0&

2
pi

A2M ~E1M !
^a,0u ēLg0iQL21~pW !Jmh̄RQub,0&.

~17!

Equation~17! can be simplified significantly if we ignorep2

~i.e., trace! terms which do not contribute to the electroma
netic multipole sum rules. After some manipulation, the tim
and space components of Eq.~17! can be written as follows:

1

2M
^a,0u ēLQL21~pW !J0h̄RQub,0&

5~ ēLg0hR!^a,pW uJ0ub,0&

2 i e i jk

pj

2M
~ ēLgkhR!^a,pW uJi ub,0&,

1

2M
^a,0u ēLQL21~pW !Ji h̄RQub,0&

5~ ēLg0hR!^a,pW uJi ub,0&

2 i e i jk

pj

2M
~ ēLgkhR!^a,pW uJ0ub,0&, ~18!

where we have omitted terms explicitly proportional top2.
Note in particular that matrix elements ofC do not enter.

-
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We now use the explicit multipole expansion of the m
trix elements, Eqs.~12!, and equate terms of the same ord

in pW . Because of the explicit factor ofpj in Eqs.~18!, we see
that multipole terms of orderl andl 21 are explicitly related;
heuristically, Eq.~18! states that thel-pole moment of a su-
perpartner is given by the samel-pole moment of the origina
state plus a correction based on the opposite~electric/
magnetic! ( l 21)-pole. Explicitly, at orderpi 1

pi 2
¯pi l

, we
find

1

2M
^a,0u ēLQTi 1i 2¯ i l

~ l !~e,m!
h̄RQub,0&

5~ ēLg0hR!^a,0uTi 1i 2¯ i l
~ l !~e,m!

ub,0&

7
l

2M
~ ēLg i 1hR!^a,0uTi 2i 3¯ i l

~ l 21!~m,e!
ub,0&

6
l

2M

l 21

2l 21
d i 1i 2

~ ēLg jhR!^a,0uTji 3¯ i l
~ l 21!~m,e!

ub,0&,

~19!

where the indicesi 1 ,i 2 ,...,i l are to be explicitly symme-
trized, and all tensor quantities are assumed traceless.
that the last term in Eq.~19! is responsible for subtractin
out the trace from the spin-13spin-(l 21) combination

( ēLgW hR)3T( l 21)(m,e)
.

Because of rotational invariance, eachl-pole moment may
be completely characterized by a single quantity—essent
a reduced matrix element according to the Wigner-Eck
theorem. In particular, for a single-particle state of spinj and
z-component m, we define the reducedl-pole moment

T j
( l )(e,m)

by

^ j ,m8uTi 1i 2¯ i l
~ l !~e,m!

u j ,m&

5T j
~ l !~e,m!

^ j ,m8u~J( i 1
Ji 2

¯Ji l )
2trace!u j ,m&.

~20!

The sum rules may now be established by examining
i 1 ,i 2 ,...i l53,3,...,3 components of Eq.~19!. Furthermore,
the spin-j angular momenta manipulations are simplified
picking the particularm5 j state in the matrix elements, i
which case Eq.~20! may be reexpressed as

^ j , j uT33̄ 3
~ l !~e,m!

u j , j &5
~2 j !~2 j 21!¯@2 j 2~ l 21!#

~ l
2l !

T j
~ l !~e,m!

.

~21!

With the same motivation we define the multipole transiti

momentsHj
( l )(e,m)

as
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^ j 2 1
2 , j 2 1

2 uT33̄ 3
~ l !~e,m!

u j 1 1
2 , j 2 1

2 &

5
1

A2 j

@~2 j !~2 j 21!¯~2 j 2~ l 21!!#

~ l 21
2l !

Hj
~ l !~e,m!

.

~22!

Recall that in Eq.~19! both ^a,0u and ub,0& denote the
spin-j Clifford vacuum stateu j ,m,0&, which may be abbrevi-
ated asu0&. By choosing the spinor parametershR and eL
appropriately, we then relate the electromagnetic multipo
of the different members of theN51 massive multiplet.
With a total of twohR and twoeL parameters, we find

^↑uT33̄ 3
~ l !~e,m!

u↑&5^0uT33̄ 3
~ l !~e,m!

u0&7
l

2M

l

2l 21
^0uT33̄ 3

~ l 21!~m,e!
u0&,

^↓uT33̄ 3
~ l !~e,m!

u↓&5^0uT33̄ 3
~ l !~e,m!

u0&6
l

2M

l

2l 21
^0uT33̄ 3

~ l 21!~m,e!
u0&,

^↑uT33̄ 3
~ l !~e,m!

u↓&57
l

2M

l 21

2l 21
^0uT23¯3

~ l 21!~m,e!
u0&,

^↓uT33̄ 3
~ l !~e,m!

u↑&57
l

2M

l 21

2l 21
^0uT13¯3

~ l 21!~m,e!
u0&, ~23!

where6 in the indices denote the combinationsx16 ix2, and
the statesu↑& andu↓& are implicitly understood in terms of th
Clebsch-Gordan combination of spin-1/23spin-j . This is the
main result of our paper. The matrix elements of thel-
electric ~magnetic! multipole moment between differen
members of the supermultiplet are given in terms of the m
trix elements of thel-electric ~magnetic! multipole moment
and the (l 21)-magnetic~electric! multipole moment be-
tween the Clifford vacuum.

Finally by, carrying out the addition of the superspinj to
the supersymmetry generated spin, we find the follow
sum rules:

T j 11/2
~ l !~e,m!

5T j
~ l !~e,m!

2Hj
~ l !~e,m!

, T j 21/2
~ l !~e,m!

5T j
~ l !~e,m!

1Hj
~ l !~e,m!

,

Hj
~ l !~e,m!

5
l

2 j FT j
~ l !~e,m!

6
1

M
T j

~ l 21!~m,e!G , ~24!

which may be written in a completely equivalent form
presented in Eq.~3!. Note that both spin-j states carry iden-
tical l-pole moments, as may be established using the s
argument as in@1#.

III. DISCUSSION

While the sum rules were derived for generic superspij,
it is important to realize that angular momentum select
rules forbid both diagonal (T j

( l )) and nondiagonal (Hj
( l )) l-

pole electromagnetic moments wheneverl .2 j . For l 51
~dipole moment!, the magnetic sum rules reduces to that
Ref. @1#, while the electric sum rule gives rise to the relatio
between electric dipole moments~EDM’s!:

dj 11/25dj2
dj

2 j 11
, dj 21/25dj1

dj

2 j 11
, ~25!
6-4
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where^ j ,mud3
eu j ,m&5djm.

The special casesj 50 and j 51/2 are noteworthy. For
j 50 only dipole moments are allowed~for the spin-1/2 par-
ticle!, in which case the gyromagnetic ratio of the spin-1
particle in the supermultiplet isg52, as shown by Ferrara
and Remiddi@3#. For j 51/2 ~massive vector multiplet!, only
dipole and quadrupole moments are allowed. Robinett@7#
and Bilchak, Gastmans, and Van Proeyen@4# showed that the
electric quadrupole of the spin-1 particle is completely de
mined in terms of its anomalous magnetic dipole mome
Our sum rule reproduces this result. Indeed, by set
j 51/2 and l 52 in Eq. ~3! we find the following relation
between electric quadrupole and magnetic dipole:

T 1
~2!~e!

52
1

M
T 1/2

~1!~m!
. ~26!

Since the conventional quantum definition of the elec
quadrupole moment is given byQj5^ j , j u*d3x(3z2

2r 2)J0(x)u j , j & and is related toT (2)(e)
by Qj5 j (2 j

21)T j
(2)(e)

, the above relation may in fact be rewritten
~cf. @4#!

Q152~g121!
e

M2 ~27!

@where theg-factor sum rule~1! was also used#. This result
can be understood in the following way. The action of
massive, charged vector multipletW coupled to a real, mass
less vector multipletV can be written in superfields as@1#

S5S E d2u Wa
1Wa21aE d4u WDaW†e2VVa1c.c.D

1M2E d4u e2VW†W. ~28!
ys

04501
r-
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HereM is the mass ofW anda is an arbitrary constant;Wa
6

andVa are defined as in@1#. The term proportional toa is the
only superfield expression that contributes to the magn
dipole. Expanding in components, indeed, one finds a te
proportional to

E d4x Wm* WnFmn . ~29!

The magnetic-dipole contribution comes by setti
m,n5 i , j ( i , j 51,2,3). On the other hand, by settingm50,
n5 i ( i 51,2,3), one finds a contribution to the electric qua
rupole, since on shell and at low momen
]mWm50⇒MW0' i ] iW

i :

E d4x W0* WiF0i5
i

M E d4x Wj* Wi] jF0i

1¯ ~on shell!. ~30!

No other quadrupole term can be written in superfiel
therefore, the electric quadrupole is completely determin
by the magnetic dipole, as explicitly found in@4# and implied
by our sum rules.
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