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Supersymmetric sum rules for electromagnetic multipoles
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We derive model-independent, nonperturbative supersymmetric sum rules for the magnetic and electric
multipole moments of any theory witi=1 supersymmetry. We find that in any irreducile=1 supermul-
tiplet the diagonal matrix elements of ttanultipole moments are completely fixed in terms of their off-
diagonal matrix elements and the diagonat ()-multipole moments.S0556-282(198)00716-4
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I. INTRODUCTION g1p=2 (j=0),

Supersymmetry imposes constraints on the magnetic mo- g1=2+hy5, 91o=2+2hy, (j=1). )
ments of the particle stat$,2]. These constraints are model
independent, valid for any massiwe=1 andN=2 super-  Notice that chiral multiplets j.=0) have a fixed gyromag-
multiplet. They are also in agreement with the results ofyetic ratiog=2.
Ferrara and RemiddB], who showed thag=2 to all orders In this paper, we generalize the above gyromagnetic ratio
in perturbation theory for anN=1 chiral multiplet, and sym rule to encompass higher multipole momeisth
those of Bilchak, Gastmans, and Van Proefnwho dem-  electric and magnetic This is easily done by working
onstrated that when spin-1 fields are present supersymmetgy aj| orders in the momentum transfer in the appropriate
does not necessarily demager 2, but nevertheless leads to electromagnetic matrix elements. The resulting multipole
a relation between thg factors of the spin-1/2 and spin-1 suym rules have a similar structure as E9.and take the
particles of the superspin-1/2 multiplet. form

The model-independent magnetic dipole moment sum
rules were derived iil] by noting that supersymmetry re- em me 2j+1—I (em)
lates the matrix elements of the conserved electromagnetic 7?'31/2 =M 7*;' VT 1 H}')
current within the various states of a general massive super-
multiplet. By selecting the magnetic dipole term in the mul-

tipole expansion of the electromagne;tic current, th_e authors FH&™ _ Ii F(=1™e 2j+1 H(|)<evm>,
of [1] found, for the gyromagnetic ratios, the following sum J M ! I !
rule:
X 1 _ (m,e) 2] + 1+ | (e,m)
| YDyt \ (R e R S ¥/()
9j+12=2+2jhj, VIS TG
()
9;=2+(2j+hy, where the electric and magnetipole generalization of is
denoted byﬁj')(e'm) and is defined in Eq21) below?! These
gj-12=2+(2j+2)h;. (1) sum rules indicate the general structure imposed by super-

symmetry that the electriémagneti¢ I-pole moments are
completely determined solely in terms of a single magnetic
(electrig (I—1)-pole moment and the real quantit” pa-
éametrizing an off-diagonal transition between the spin
j=1 states of the multiplet. Note that the upper and lower
signs in Eqs(3) and subsequent equations correspond to the
first and second entries in, e.gg,(n). This difference in
sign between the electric and magnetic sum rules may be

Note thatj is the superspin labeling the massive supermul
tiplet which contains states of sping3,j,j,j—3). Since
both spin} states have identical gyromagnetic ratios, we se
that all theg factors are determined in terms of a single real
numberh;, corresponding to an off-diagonal magnetic di-
pole matrix element between the- 3 andj— 3 states of the
supermultiplet. In the special casgs 0,1/2, the sum rules

read
IMore precisely these sum rules hold for the generic cgsel2
*Email address: giannak@theory.rockefeller.edu, +1, whergj denotes the superspin. Note tﬁép(e’m) is meaningless
jtiu@theory.rockefeller.edu, massimo.porrati@nyu.edu wheneverl >2j, as may be inferred from E@¢21).
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understood intuitively from electromagnetic duality which freedom. One can then construct its irreducible representa-

exchanges electric and magnetic fielfis» B andB— —E.  tions by starting with a superspjr€lifford vacuum|j), an-
Whenl =1, the magnetic part of the sum rulé reduces anh|Iated byd 1, and acting on it with the creation operators
to the result of Ferrara and Porrati, Ef), sinceg is defined  d 4. As a result, we see that the representation has dimen-
as a ratio: 7*].1)(m)=gje/2M and ﬂo)(e):e. Furthermore, ~ SiON (2j+1)x 2%, where 3+1 is the degeneracy of the
just as for the magnetic dipole moments, we note that setting"i9inal spinj state. The spins of the states are given by the

(em) . o Y addition of angular momentaj X [(1/2)+2(0)], giving
{77 =0 yields the “preferred” value for thé-pole mo- (e s'o sping— %, j, andj + % with degeneracies 1, 2, and
ments, 1
Since the superchargeﬁs_L_;lR,2 are operators of spin 1/2,
1 this leads to a shorthand notation for labeling the states of a
Q*j'j(f;;)zﬂ')(e‘m)z']*j'j(f,‘;‘): T 7‘1'*1“'"’9), (4)  massiveN=1 multiplet in the following manner: the spjn-

M Clifford vacuum is denoted bj0): acting on this state with
the normalized supercharggy, or g%, then results in the
spin “up” or “down” states |1) or ||), respectively. The
action of twog's on the Clifford vacuum is denoted gY).

For N=1 supersymmetry, any conserved current com-
muting with the supersymmetry generators must belong to a
IIl. DERIVATION OF THE SUM RULES real linear multiplet. The components of a real linear multip-

Derivation of the sum rule€3) follows the method of1]  let multiplet are(C(x),{(x),J.(x)), whereC(x) is a real
and involves the transformation properties of a conservedcalar andf(x) a Majorana spinor. As a result of current
current],, that commutes with thél=1 supersymmetry al- conservationg“J, =0, the multiplet consists of four fermi-
gebra. The main complication in obtaining the present result§Nic and four bosonic degrees of freedom. The transforma-
is the requirement of working to all orders in the multipole tion properties of the components under a supersymmetry
expansionand, as a result, having to keep track of higher-variation are given by
order-in-momentum transfer terms in the matrix elements

Recall that theN=1 algebra has the fordQ,,Qg}
=2(¥") apP where Q=Q'C is the Majorana conjugate
andC is the charge conjugation matrix obeyi@y*C 1= 83,=— ey, (. (8)
—y*T and C?= —1. For a massive single-particle state, we
may work in the rest fram@#=(M,0,0,0). Defining chirali-
ties It follows that two successive supersymmetry transforma-

tions on the conserved curredy gives

generalizing the notion aj=2 as the preferred value of the
gyromagnetic ratio.

SC=ieysl, 6L=i(Y*I+iys¥,C)e,

ysQR=*+ QR (5) 8,8, =1€v,"v"(d,3,~iv53,3,C) 7. 9)
The matrix elements of this equation between single-particle
and helicities states which belong to the sarile=1 multiplet give rise to
sum rules for the electromagnetic multipoles of the particle
states.
Y2Qu1=FiQu1p, (6) To obtain the connection between the matrix elements of

J,, and the terms in the multipole expansion, we first recall
the standard definitionsee, e.g.[5]) for the electricl-pole
the supersymmetry algebra can be recast as follows: moments,

{Q52.Q%2=2M, {Q";.Qft=2M, (@) ity 4= f d(xi, X, %) Jo(x) ~trace, (10

] o ) . and the magnetit-pole moments,
while the remaining anticommutators vanfskive may res-

cale the supercharges accordinggbf,=1//2MQ4L%, to | 1 , L
recover the Clifford algebra for two fermionic degrees of Mi(l?z--.ilz_m f d>Xx(xi, Xi, X ) V- [ XX I(x)] - trace.

(11)

2To fix our phase conventions, we work in the Dirac representa\While ordinarily defined in terms of spherical tensgsee,
tion for the y matrices and takeys=iy°y*y?y® and C=iy%. e.g.,[6]), the above multipole moments, expressed as Carte-

The spinors then decompose as/2Q]=QY,[1010  siantensors, are more naturally related to the expansions for
+Q-,[0100+QF[—1010+QR,J010-1]. the matrix elements af,,,
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.y ;2 . = 1 . . . .y ’ (e .
(i",m ’p|JO|J’m’O>:|ZO 7 (P (ip)iy~(ip)i (i"m",0)Ti i i [1,m.0),

iqioiy

o

. - . . . 1 . . . mo
(i",m’,pl3ili,m,0)=pi(j’,m",0Alj.mO) —iejp; 2, {7 (iP)i,(ip)iy =(iP)i(i"m",0fTic.. [§,m.0). (12)

In particular, thetracelelsscompolnents ofl'('l)(e) and TO™ (@,p|d,€rQ7rQ|B,0)=0. (15
correspond exactly t@) andM ", respectively. Note that
the matrix elements ol are completely determined by cur- This demonstrates thatll matrix elements of the electro-
rent conservation\ = —[(E—M)/p?]J,. magnetic current vanish between statés and |[) and,
The multipole moment sum rules are derived by takinghence, that there are no off-diagonal moments between the
the double-supersymmetry variation of the conserved curreritvo spinj states of the supermultiplet.
Jus If instead we chooseg=0 and make use of the fact that
L Q transforms as a spinor,
6,06, =[7Q,[€Q,J,]] ,
N N1 20201 oo O 1/20' 40112 E+M P Oi
=7QeQJ,~ 7QJ,€Q—€QJ, 7Q+J,QmQ, QP =e 7 2Q= |5 |1+ e 7| Q
(13 (16)

and evaluating it between single-particle statesand|B8).  we obtain from Eq(14) the expression
Since the supercharg® generates superpartner€)|e)

~|a@)), this expression relates matrix elementsJof be-  (a,plie, v,”"d,(I\—iv59xC) 7gl B,0)
tween different states of a supermultiplet in terms of o .

8,8.,, which is given by Eq(9). The electromagnetit =2M (e Y’ nr)(a,p|J .| B,0)

pole sum rules then follow by using E(L2) to expand the

matrix elements in terms of multipoles and then by collecting E+M

(@,00€, QL™ Y(p)J,, 7xQ|B,0)

terms of ordemp'. We note that an important simplification B 2M

occurs since we are only interested in sum rules on the static :

multipole moments. This means in practice that all terms _ p — OiNg —1, v —
depending explicitly on the contracted momentpfmay be 2M(E+M) (a,0eLy”' QL™ H(p)J,7rQIB,0).

ignored, as they do not contribute to the stdtjgole mo-
ments(and instead correspond to the trace termg(i®™).3 (17

. Th.e. gerjeral do_uble—supersymmetry variation procedure iEquation(l?) can be simplified significantly if we ignong?
simplified in practice by choosing the global supersymmetry(; e ' trace terms which do not contribute to the electromag-
transformation parametergande in such a way that several petic multipole sum rules. After some manipulation, the time

terms on the right-hand side of EAL3) act as annihilation anq space components of B47) can be written as follows:
operators on the initial or final states and hence may be

dropped. In particular, by choosing =0, we find 1 o -
) o m<a10|€LQL7 (p)JomrQ|B,0)
(,p]8,.8:,18.0)=(a.p|3,€Q7=Q| 3.,0) B )
— (P —1y 2N — =(6Ly°nR)(a,p|Jo|ﬂ,O>

—(@,0€Q"™L™(p)J, 7rQ|B,0), N
(14 — i €k M (eL¥*nR)(.p|Ji| B,0),
where Q) denotes the Lorentz boost 6§, namely, Q(P) L
=L Y(p)QL(p), and|a,p)=L(p)|a,0). m<a,o|?LQL*1(5)Ji;RQ|,3,o>

By further choosinge, =0 and noting from Eq(9) that

070l =0, we easily obtain the “vanishing” sum rule

= (e’ nr){a,p|Ji| B,0)

N -
3In principle, supersymmetry would give complete relations be- ik om (eL7*7R)(a,Pl ol 8,0), (18)

tween electromagnetic form factoé®™(p?) of superpartners. _ N _
However, in this case it appears the moments of the “auxiliarywhere we have omitted terms explicitly proportionalpé
field” C enter in a nontrivial manner. Note in particular that matrix elements Gfdo not enter.
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We now use the explicit multipole expansion of the ma- (-1 |T |J +1,j-1)
trix elements, Eqs(12), and equate terms of the same order ' 33’ 3 )72
in p. Because of the explicit factor @f in Egs.(18), we see 1 @@= 2= =1)] jyem
that multipole terms of orddrandl — 1 are explicitly related; - \/?] @ H; .
heuristically, Eq.(18) states that th&pole moment of a su-
perpartner is given by the sarh@ole moment of the original (22

state plus a correction based on the opposétectric/

magnetis (1—1)-pole. Explicill, at orde, p, ---p,, we Recall that in Eq.(19) both («,0] and |B,0) denote the

) spin{ Clifford vacuum statéj,m,0), which may be abbrevi-
find ated as|0). By choosing the spinor parametergy and e,
appropriately, we then relate the electromagnetic multipoles
of the different members of th&l=1 massive multiplet.

— (a0 QTfll): m|)|;RQ| B,0) With a total of two ng and twoe, parameters, we find
I I
(e,m) (e,m) (m,e)
_(eL»y 77R)<a 0|T|)em |ﬁ 0> <T|Tg:§,3 |T>:<O|Tg;3 |O>+2M 2| — <O|T(I l) |O>1
L
| (m,e) 0 (em) _ (l)(e,m) | | (- 1)(me
+m(EL3"177R)<CY 0|T(I 31).I |8,0) (UT33..3 [1)=(0|T53.3 |O>_2M T <O|T 0),
L1 oT!-1"18,0 Thos 11)= kT BB
—m 21—1 lz(eLy 77R)<a | Jigi |13 > <T| 333 |l> 2M 2| < | | >'
(19) (l)(e,m) I (| 1)(m,e)
where the indicesq,i,,...,i, are to be explicitty symme-

here= in the indices denote the combinatiotis- ix?, and
trized, and all tensor quantities are assumed traceless. No\évge states?) and|) are implicitly understood in terms of the
that the last term in Eq(19) is responsible for subtracting Clebsch-Gordan combination of spin-¥8pin- . This is the
out the trace E,rﬁ?q the spinxispin-—1) combination main result of our paper. The matrix elements of the
(EL777R)XT(I v electric (magneti¢ multipole moment between different

Because of rotational invariance, edgbole moment may members of the supermultiplet are given in terms of the ma-
be completely characterized by a single quantity—essentiallytix elements of thd-electric (magneti¢ multipole moment

a reduced matrix element according to the Wigner-Eckargnd the (—1)-magnetic(electrig multipole moment be-
theorem. In particular, for a single-particle state of §pgmd  tween the Clifford vacuum.

Zcomponentm, we define the reduced-pole moment Finally by, carrying out the addition of the superspito
7™ b the supersymmetry generated spin, we find the following
i y
sum rules:
| (e,m)_ I (e,m) | (e,m) | (e,m) 1 (e, m) (e,m)
(J,m’ |T|(|12 |||J m) e =T ~H" 7{)1/2 =7} J) ,
,m) . , . m m m,
:/ﬁjl) em<J7m |(J(i1Jiz”'Ji,)_”aC9|l:m>- H}I) e, ) ,Z—(| )& ) 7—(| 1)(m.e) ' (24)
(20)

which may be written in a completely equivalent form as
presented in Eq(3). Note that both spinf-states carry iden-
The sum rules may now be established by examining th&ical I-pole moments, as may be established using the same
i1,iz,...;1=3,3,...,3 components of Eq19). Furthermore, argument as ifl].
the spinf angular momenta manipulations are simplified by

picking the particulam=j state in the matrix elements, in

which case Eq(20) may be reexpressed as While the sum rules were derived for generic supergpin
it is important to realize that angular momentum selection
rules forbid both diagonalZ{"’) and nondiagonal ") I-

Ill. DISCUSSION

mem (2j)(2)=1)---[2]=(1=1)] T{|)(e,m)

{, J|-|-33 3 |j.)= - pole electromagnetic moments whenever2j. For =1
(i) ! (dipole momenyt the magnetic sum rules reduces to that of
(21) Ref.[1], while the electric sum rule gives rise to the relation
between electric dipole momen&DM'’s):
With the same motivation we define the multipole transition q d; q d;
moments’HJ(')(e'm) as 1= 2j+1 di-ve dj+ 2j+1° @9
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where(j,m|d|j,m)=d;m. HereM is the mass ofV anda is an arbitrary constantv,

The special casep=0 andj=1/2 are noteworthy. For andV, are defined as ifiL]. The term proportional ta is the
j =0 only dipole moments are allowdtbr the spin-1/2 par- only superfield expression that contributes to the magnetic
ticle), in which case the gyromagnetic ratio of the spin-1/2dipole. Expanding in components, indeed, one finds a term
particle in the supermultiplet ig=2, as shown by Ferrara proportional to
and Remidd[3]. For j=1/2 (massive vector multiplgtonly
dipole and quadrupole moments are allowed. Robifiéjt
and Bilchak, Gastmans, and Van Proej#hshowed that the f d*x WErWE . (29)
electric quadrupole of the spin-1 particle is completely deter- .
mined in terms of its anomalous magnetic dipole moment.

Our sum rule reproduces this result. Indeed, by settingrhe magnetic-dipole contribution comes by setting
j=1/2 andl=2 in Eqg. (3) we find the following relation ~ , ,,—j i (i j=1,2,3). On the other hand, by settipg=0,

between electric quadrupole and magnetic dipole: v=i (i=1,2,3), one finds a contribution to the electric quad-
) 1 - rupole, since on shell and at Ilow momenta

(e m _ U i .

7%= o 7™, 26) 9, WF=0=MW°~igW"

Since the conventional quantum definition of the electric . , [ T
quadrupole moment is given bng=<j,j|fd3x(322 f d*x VVO*WIFOi:M f d*x WHW'9;F
—12)3o(X)|j,j) and is related 07 by Qi=i(2]
—1)7‘1-2)@, the above relation may in fact be rewritten as

(cf. [4])

+---  (on shel). (30

No other quadrupole term can be written in superfields;
(27) therefore, the electric quadrupole is completely determined
by the magnetic dipole, as explicitly found|i4] and implied
by our sum rules.

e
Qi1=—(9:1—1) Mz

[where theg-factor sum rule(1) was also useld This result
can be understood in the following way. The action of a
massive, charged vector multipMt coupled to a real, mass-
less vector multiple¥ can be written in superfields &§] ACKNOWLEDGMENTS
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