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Duality and superconvergence relation in supersymmetric gauge theories
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Graduate School of Science and Technology, Kobe University, Rokkodai, Nada, Kobe 657, Japan

~Received 29 September 1997; published 28 July 1998!

We investigate the phase structures of variousN51 supersymmetric gauge theories including even the
exceptional gauge group from the viewpoint of superconvergence of the gauge field propagator. Especially we
analyze in detail whether or not a new type of duality recently discovered by Oehme in SU(Nc) gauge theory
coupled to fundamental matter fields can be found in more general gauge theories with more general matter
representations. The result is that in the cases of theories including matter fields inonly the fundamental
representation, Oehme’s duality holds but otherwise it does not. In the former case, a superconvergence
relation might give a good criterion to describe the interacting non-Abelian Coulomb phase without using
information from dual magnetic theory. The problem of the gauge dependence of the results is also disscussed
in the last section.@S0556-2821~98!01212-0#

PACS number~s!: 11.30.Pb, 11.15.Tk
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I. INTRODUCTION

Quark confinement is one of the most mysterious prop
ties in quantum field theory. In spite of its obvious existen
in experiment, the mechanism of confinement has not b
elucidated yet. Of course there have been many challeng
understanding this phenomena. The lattice formulation
QCD, originally proposed by Wilson@1#, is one of them. On
the other hand, chiral symmetry breaking is another prob
which must be solved. In nonsupersymmetric gauge the
it is considered that these two phenomena, confinement
chiral symmetry breaking, are deeply connected and oc
simultaneously in a certain QCD parameter region~strong
gauge coupling or small number of quark flavors, etc.!.

Our main interest here is how the phase structure of Q
changes as the number of quark flavors increases. Nai
we expect the following picture: when the number is sm
the theory is in a confinement phase due to its asympt
freedom property. As the number of flavors is increasi
quarks are deconfined and chiral symmetry is restored be
the theory becomes asymptotically nonfree.

In the intermediate region corresponding to no confi
ment but asymptotic freedom, we can realize the scale inv
ant theory because it is expected there exists a nontrivia
fixed point in this region. The critical value ofNf in SU(3)
QCD where quarks are deconfined and chiral symmetr
restored has been evaluated by many authors. Banks
Zaks first pointed out the existence of such a fixed point@2#.
They evaluated the first two coefficients of the perturbativ
expandedb function which are both gauge and renormaliz
tion scheme independent@3# . They showedNf

crit58.05. Also
Nf

crit57 has been obtained in lattice QCD calculation@4#. On
the other hand, Oehme and Zimmermann expectedNf

crit510
using what they called a superconvergence relation@5#. In
this relation, the anomalous dimension of the gauge field
well as theb function plays an important role. In this way
all the values ofNf

crit in different approaches do not coincid
with each other.

*Email address: tatibana@oct.phys.kobe-u.ac.jp
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Recently Oehme applied his superconvergence argum
to N51 supersymmetric SU(Nc) gauge theory and com
pared it with already known results@6#. The phase structure
of this theory had already been investigated in detail with
help of the so-called ‘‘electric-magnetic’’ duality and holo
morphy by Seiberget al. @7#. Seiberg has insisted on th
existence of an interval corresponding to the interacting n
Abelian Coulomb phase or conformal window where t
theory becomes scale invariant. Consequently, Oeh
showed quantitative agreement between his argument
the results from Seiberg’s duality. Moreover, he found t
important relationship between the original electric SUS
theory and the dual magnetic one, which might be int
preted as a new type of duality. Since superconvergence
guments can apply forboth SUSY and non-SUSY theories
the comparison with exact results by Seiberget al. is very
significant.

In this paper, we apply his method to various supersy
metric gauge theories with other gauge groups and o
matter contents and check whether the relation he fo
holds or not in those cases. In Sec. II, we review the conc
of superconvergence of the gauge field propagator in
nonsupersymmetric case. In Sec. III, we extend the met
in the previous section to the supersymmetric cases
check the Oehme’s duality. Section IV is devoted to su
mary and discussions, where the problem of the gauge
pendence of our results is also disscussed. In the App
dixes, some basic equations are followed.

II. SUPERCONVERGENCE RELATION

Here we shall consider the asymptotic behavior of
gluon propagator at large momentum with the help of
renormalization group~RG! analysis.

First of all, following Oehme and Zimmermann@5#, we
introduce the operator

Amn
a []mAn

a2]nAm
a , ~1!

whereAm
a (m51, . . . ,4, anda51, . . . ,Nc

221! is the SU(Nc)
gauge field whose two point function is generally given b
© 1998 The American Physical Society15-1
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^0uTAm
a ~x!An

b~y!u0&

5E d4ke2 ip•~x2y!
dab

i F S dmn2
kmkn

k2 D D~k2!1a
kmkn

k4 G .

~2!

a is the gauge parameter.
Using Eqs.~1! and ~2!, we obtain

^0uTAmn
a ~x!Ars

b ~y!u0&5E d4ke2 ip•~x2y!
dab

i
~kmkrdns

2kmksdnr2knkrdms

1knksdmr!D~k2!. ~3!

Scalar functionD(k2) is called the ‘‘transverse gluon struc
ture function.’’ Below we shall restrict our consideration
the asymptotic behavior of this functionD(k2) at large mo-
mentum.

For that purpose, first we give the normalization conditi
for D(k2) as follows:

k2D~k2!51 at k25m2, ~4!

wherem is the normalization point. Then we can write th
structure function in the form

D5D~k2,g,m2!. ~5!

g is the gauge coupling constant.
Now, for convenience, let us introduce the dimensionl

function R defined by

R[k2D~k2,g,m2!5RS k2

m2
,gD . ~6!

Then the Callan-Symanzik equation~RG equation! for the
R function in the Landau gauge (a50) is given as

u
]R~u,g!

]u
5b~g2!

]R~u,g!

]g2
1g~g2!R~u,g!, ~7!

where u[k2/m2 and b(g2) and g(g2) are theb function
and the anomalous dimension of the gluon field, resp
tively. In the region of the small gauge coupling consta
~i.e., at large momentum!, they are of the form

b~g2!5g4~b01b1g21••• !,

g~g2!5g2~g01g1g2
••• !, ~8!

where

b052
1

16p2 S 11

3
Nc2

2

3
Nf D ,

g052
1

16p2 S 11

6
Nc2

4

3
Nf D . ~9!
04501
s
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Nf denotes the number of quark flavors.
Oehme and Zimmermann solved Eq.~7! in the following

way ~see Appendix A!:

RS k2

m2
,gD 5R~1,Q! expF E

g2

Q2

dxg~x!b21~x!G . ~10!

Here the effective RG-invariant coupling consta
Q(k2/m2,g) is defined through the equation

u
]Q2~u,g!

]u
5b~g2!

]Q2~u,g!

]g2
. ~11!

For large momentum, we can show that

Q2S k2

m2
,gD '2

1

b0ln~k2/m2!
. ~12!

b0 is the first coefficient of theb function defined in Eq.~9!.
Now we would like to obtain the asymptotic behavior

the R function given by Eq.~10!. By substituting Eqs.~8!
and ~9! into Eq. ~10!, we get the following result~see Ap-
pendix B!:

RS k2

m2
,gD 5S Q2

g2 D g0/b0

expF E
g2

Q2

dxt~x!G ,

'CVS ln
k2

m2D 2g0 /b0

, ~13!

where

CV5~g2ub0u!2g0 /b0expF E
g2

Q2

dxt~x!G . ~14!

Here the functiont(x) is the regular part ofg(x)/b(x) at
x50.

Thus leading asymptotic behavior of theR function at
large momentum was determined. Similarly, for theD func-
tion, we find

Dasymp~k2!'CVk22S ln
k2

m2D 2g0 /b0

. ~15!

We can conclude here that the asymptotic behavior of
transverse gluon propagator drastically changes due to
sign of g0 ~or, equivalently, the sign ofg0 /b0!. If g0,0, it
converges. Ifg0.0, it diverges, where we have assumed t
asymptotic freedom of the theory which meansb0,0.

Let us consider such a case whereb0 and g0 are both
negative, i.e., the ratiog0 /b0 is positive. For the scalar par
of the transverse gluon propagatorD(k2), we can apply the
Lehmann representation:

D~k2!5E
0

`

dm2
r~m2!

m22k2
, ~16!
5-2



as

in
ne
re
n

ur
D
e

it
his
n
t

is

ve
f
-
a

ee
th
a

d

i-
lt
r-

ith
e

by
er
n

eck

the
in-
d

ual
he

-
per-

e

m
tion
n

ric

ters

s to
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wherer(k2) is called the spectral function and is given
the absorptive part of theD function:

pr~k2!5ImD~k2!5k22ImR~k2!. ~17!

Therefore, for the limitk2→2`, we find

rasymp'2
g0

b0
CVk22S ln

k2

m2D 2g0 /b021

. ~18!

Combining Eqs.~15!, ~16! and ~18! with a kind of sum rule
called the superconvergence relation, we can obtain~see Ap-
pendix C!

E
0

`

dm2r~m2!50 for
g0

b0
.0. ~19!

We can show that the superconvergence relation obta
here gives some circumstantial evidence for color confi
ment. In Ref.@8#, it was said that the superconvergence
lation is connected with various interpretations of color co
finement, such as metric cancellation, the bag model pict
and the area law behavior of the Wilson loop in lattice QC

On the contrary, in the region where the superconv
gence relation does not hold~i.e., b0,0 andg0.0!, quarks
are deconfined and chiral symmetry restored. Moreover,
expected that there exists a nontrivial IR fixed point in t
region, preventing the gauge coupling from becoming stro
enough to confine quarks or cause them to condense. In
following section, we will restrict our considerations to th
interval in supersymmetric gauge theories.

III. DUALITY AND SUPERCONVERGENCE RELATION
IN VARIOUS N51 SUSY GAUGE THEORIES

In the previous section, we discussed the supercon
gence relation~a kind of sum rule for the spectral function o
the transverse gluon propagator! and commented on its rela
tion with color confinement. There, the essential point w
that there exists a region in which we have asymptotic fr
dom of the theory but no confinement. In such a region,
theory may have a nontrivial infrared fixed point at a nonv
nishing value of the gauge coupling.

On the other hand, Oehme recently applied the metho
the superconvergence relation toN51 supersymmetric
gauge theory@SU(Nc) gauge theory with a fundamental ch
ral supermultiplet ofNf flavors# @6# and compared the resu
with the one Seiberget al. already obtained using holomo
phy and ‘‘electric-magnetic’’ duality@7#. Oehme insisted in
Ref. @6# that his result is in quantitative agreement w
Seiberg’s duality argument. Moreover, he showed that th
was an interesting relationship between the coefficientsb0
andg0 ~defined in the previous section! of the original~elec-
tric! theory and those of the dual~magnetic! theory. This
may be considered as a new type of duality.

Thus in this section, we first review the analysis
Oehme in Ref.@6# and then try to apply his method to oth
models ofN51 SUSY gauge theories, which have differe
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gauge groups and different matter representations, to ch
Oehme’s duality. That is the main purpose of this paper.

A. Oehme’s analysis inN51 SU„Nc… gauge theory
with massless matter fields in the fundamental representation

of Nf flavors

In this case, the one loop coefficientsb0 andg0 are given
by

b052
1

16p2
~3Nc2Nf !,

g052
1

16p2 S 3

2
Nc2Nf D . ~20!

If we demandb0,0 ~asymptotic freedom! and g0.0 ~de-
confinement!, then we will have the following result:

3

2
Nc,Nf,3Nc . ~21!

This interval corresponds to the one Seiberg called
interacting non-Abelian Coulomb phase or conformal w
dow. The theory in this interval has a nontrivial infrare
fixed point and becomes scale invariant.

On the other hand, as is well known, we have the d
magnetic description for the original electric theory in t
region ~21!. The gauge group of dual theory isGdual

5SU(Nf2Nc) with Nf
dual5Nf flavors of magnetic chiral su

perfields and a certain number of singlet massless su
fields. In this dual theory, the one-loop coefficientsb0

d and
g0

d are

b0
d52

1

16p2
~2Nf23Nc!,

g0
d52

1

16p2 S 1

2
Nf2

3

2
NcD . ~22!

From Eqs.~20! and ~22!, we can extract the relation

b0
d~Nf !522g0~Nf !,

b0~Nf !522g0
d~Nf !. ~23!

This may be viewed as the new type of duality Oehm
first discovered in Ref.@6#. Note here that the variableNf on
both sides refers to matter fields with different quantu
numbers, i.e., one is electric, the other magnetic. Equa
~23! might also be interpreted as follows: originally i
Seiberg’s duality argument the interval~21! was determined
from the requirement of asymptotic freedom in both elect
and magnetic theories, which meansb0,0 andb0

d,0. We
believe here, however, that we can find a set of parame
describing the interval~21! only from those of the original
electric theory. Then anomalous dimensiong0 might be a
candidate. Below we shall give the same consideration
5-3
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MOTOI TACHIBANA PHYSICAL REVIEW D 58 045015
various gauge theories with various matter representation
check whether a new type of duality~23! proposed by Oe-
hme is satisfied.

B. G5SO„Nc… with fundamental matters of Nf flavors

Next we shall investigate the case of SO(Nc) gauge
theory with massless superfields ofNf flavors in the funda-
mental representation. In this caseb0 andg0 are given by@9#

b052
1

16p2
@3~Nc22!2Nf #,

g052
1

16p2 F3

2
~Nc22!2Nf G . ~24!

Requiringb0,0 andg0.0, we obtain

3
2 ~Nc22!,Nf,3~Nc22!. ~25!

This is the very same region corresponding to the confor
window discussed in Ref.@10#. Then corresponding dua
magnetic theory isGdual5SO(Nf2Nc14) gauge theory
with fundamental matter fields ofNf flavors. Dual one-loop
coefficients become as

b0
d52

1

16p2
@2Nf23~Nc22!#,

g0
d52

1

16p2 F1

2
Nf2

3

2
~Nc22!G . ~26!

Thus we can conclude

b0
d~Nf !522g0~Nf !,

b0~Nf !522g0
d~Nf !. ~27!

In this case we find Oehme’s duality also holds.

C. G5Sp„2Nc… with fundamental matter fields of Nf flavors

This theory also has a magnetic description with cert
values ofNc and Nf . Dual gauge theory isGdual5Sp(2Nf
22Nc24) with fundamental matter superfields ofNf flavors
@11#. The one-loop coefficients of both theories are given
follows:

G5Sp~2Nc! ‘‘electric’’ N51 SUSY,

b052
1

16p2
@3~2Nc12!22Nf #,

g052
1

16p2F3

2
~2Nc12!22Nf G , ~28!

and
04501
to

al

n

s

G5Sp~2Nf22Nc24! ‘‘magnetic’’ N51 SUSY,

b0
d52

1

16p2
@4Nf23~2Nc12!#,

g0
d52

1

16p2FNf2
3

2
~2Nc12!G . ~29!

From Eqs.~28! and ~29!, we get the resultsb0
d522g0 and

b0522g0
d in this case, too.

D. G5G2 with fundamental matter fields of Nf flavors

This case may be a little nontrivial. Original electr
gauge theory hasG5G2 with Nf flavors of massless supe
fields in the fundamental representation. In this case@12#,

b052
1

16p2
~122Nf !,

g052
1

16p2
~62Nf !. ~30!

Then the interval 6,Nf,12 corresponds to the interactin
non-Abelian Coulomb phase as discussed in Ref.@12#. A
magnetic description exists in this interval. Dual magne
gauge theory hasGdual5SU(Nf24) with fundamentalNf
massless matter fields. The one-loop coefficients are g
by

b0
d52

1

16p2
@3~Nf24!2Nf #52

1

16p2
~2Nf212!,

g0
d52

1

16p2 F3

2
~Nf24!2Nf G52

1

16p2 S 1

2
Nf26D .

~31!

Comparing Eq.~30! with Eq. ~31!, we can come to the con
clusion that Oehme’s duality is satisfied. This seems to b
rather nontrivial check for this duality.

E. G5SU„Nc…,SO„Nc…,Sp„2Nc… with massless adjoint matter

A short time after the discovery of original non-Abelia
dualities by Seiberget al., Kutasov extended Seiberg’s argu
ment to SU(Nc) gauge theory including not only the funda
mental but also the adjoint matter superfield@13#. In this case
the dual magnetic theory becomes an SU(2Nf2Nc) gauge
theory with Nf massless matter fields in the fundamen
representation and an adjoint field and a certain numbe
singlet massless matter fields. Then the one-loop coeffici
in both theories are of the form

b052
1

16p2
~2Nc2Nf !,

g052
1

16p2 S 1

2
Nc2Nf D ~32!

and
5-4
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b0
d52

1

16p2
~2Nf23Nc!,

g0
d52

1

16p2 S 2
1

2
NcD . ~33!

We find in this case Oehme’s duality checked above does
hold.

A similar analysis can be done for SO(Nc) and Sp(2Nc)
gauge groups with adjoint fields@14# and leads us to the
same results, i.e., Oehme’s duality condition is also not
isfied in these cases.

F. G5SU„Nc… with an antisymmetric tensor field

As the final example, we investigate the theory ofG
5SU(Nc) with an antisymmetric tensor field originally dis
cussed in Ref.@15#. Remarkably the dual magnetic gaug
group does not become simple in this case. And this theo
also attractive as a model of supersymmetry breaking@15#.

The one-loop coefficients in the original electric theo
are

b052
1

16p2
~2Nc2Nf13!,

g052
1

16p2 S 1

2
Nc2Nf13D . ~34!

For Nf.5, dual magnetic gauge theory exists. It is rep
sented as the product gauge group SU(Nf23)^ Sp(Nf24)
with five species of dual quark superfields: a field transfor
ing as a fundamental under both groups, a conjugate a
symmetric tensor, fundamental andNf antifundamentals of
SU(Nf23), andNc1Nf24 fundamentals of Sp(Nf24).

Then one-loop coefficients in each group are given as

b0
d52

1

16p2 S 2Nf2
9

2D ,

g0
d52

1

16p2 S 1

2
Nf23D in SU~Nf23! ~35!

and

b0
d52

1

16p2 S 5

2
Nf2

1

2
Nc2

9

2D ,

g0
d52

1

16p2 S Nf2
1

2
Nc2

3

2D in Sp~Nf24!. ~36!

Thus we conclude from these equations that Oehme’s du
relation also does not hold in this final example.

IV. DISCUSSIONS

In this paper, we discussed the superconvergence rela
following the original work by Oehme and Zimmermann a
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then investigated whether a new type of duality recently p
posed by Oehme inN51 supersymmetric gauge theory als
holds in other gauge theories which have different gau
groups and different matter contents. As a result, we fou
that in the cases of gauge groups with matter fieldsonly in
the fundamental representation, Oehme’s duality was sa
fied while in those of theories including adjoint or antisym
metric tensor matter fields, it was not. The reason may be
follows: when we add an adjoint field to a theory, we can a
a superpotential. The model without a superpotential w
presumably flow in the infrared to a fixed point, while addin
the superpotential drives the system to a new fixed po
@13#. Kutasov’s duality holds only in the model with a su
perpotential. On the other hand, in the superconvergence
gument in which we evaluateb0 andg0 in Eq. ~8!, we can-
not distinguish the theory with a superpotential from the o
without it because the contribution of the superpotential
the b function is a higher order one. Actually it appears n
in b0 but in b1 in Eq.~8!.

Also we have to consider the problem of the gauge
pendence of our method@16#. Originally the gluon propaga-
tor was unphysical, because it depended on the gauge pa
eter a. In this paper, we chose Landau gauge (a50) for
convenience. Certainly the value ofb0 does not depend on
the specific gauge choice while that ofg0 does. Therefore
even if we obtain the resultg0,0 in the Landau gauge,g0
.0 might be realized when we move to other gauges. If
our superconvergence argument based on the value og0
might not be believed. We shall reconsider this point
another occasion.
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APPENDIX A: PROOF OF EQ. „10…

In this appendix, we prove Eq.~10!. The starting point is

u
]R~u,g!

]u
5b~g2!

]R~u,g!

]g2
1g~g2!R~u,g!. ~A1!

Here we defineR̃ as follows:

R̃[R̃@Q2~u,g!,g#5R~u,g!. ~A2!

Then we find that Eq.~7! can be rewritten as

u
]Q2

]u U
g

]R̃

]Q2U
g

5bS ]R̃

]g2U
u

1
]Q2

]g2U
u

]R̃

]Q2U
u
D 1gR̃. ~A3!

On the other hand, the effective coupling constantQ is
through Eq.~11!: i.e.,
5-5
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u
]Q2

]u U
g

5b~g2!
]Q2

]g2 u . ~A4!

Substituting relation~A4! into Eq. ~A1!, we obtain

05b~g2!
]R̃~Q2,g2!

]g2
1g~g2!R̃~Q2,g2!, ~A5!

and we can easily solve this equation:

R̃~Q2,g2!5R̃~Q2,Q2!expF E
g2

Q2

dx
g~x!

b~x!G . ~A6!

Moreover, by definition,

R~1,g2!5R̃@Q2~1,g2!,g2#,

Q2~1,g2!5g2. ~A7!

From these equations we obtainR̃@Q2(1,g2),g2#5R(1,Q2)
and finally we have the result

RS k2

m2
,g2D 5R~1,Q!expF E

g2

Q2

dx
g~x!

b~x!G . Q.E.D.

~A8!

APPENDIX B: PROOF OF EQ. „13… WITH EQ. „14…

In this appendix, we evaluate Eq.~10! proved in Appen-
dix A at large momentum and show that Eq.~13! is satisfied.
For that purpose we first separate the integrand of Eq.~10!:

g~x!b21~x!5
g0

b0x
1t~x!, ~B1!

wheret(x) corresponds to the regular part ofg(x)b21(x) at
nearlyx50. Note here that at large momentum, the functio
b(x) andg(x) are given by Eq.~8!, respectively, in which
g2 is replaced byx.

Then it is not difficult to show Eqs.~13! and~14!. In fact
@here we putR(1,Q)51#

RS k2

m2
,g2D 5expF E

g2

Q2

dx
g0

b0xGexpF E
g2

Q2

dxt~x!G ,

5S Q2

g2 D g0 /b0

expF E
g2

Q2

dxt~x!G ,

'Fg2ub0u lnS k2

m2D G2g0 /b0

expF E
g2

Q2

dxt~x!G ,

[CVS ln
k2

m2D 2g0 /b0

, ~B2!

where

CV5~g2ub0u!2g0 /b0expF E 2

Q2

dxt~x!G . Q.E.D. ~B3!

g

04501
s

APPENDIX C: PROOF OF SUPERCONVERGENCE
RELATION „19…

In this appendix, we prove Eq.~19!, the superconvergenc
relation which is the main subject of this paper. To do so,
us use Eqs.~15!, ~16!, and~18! and combine them.

First multiplying Eq.~16! into k2,

k2D~k2!5E
0

`

dm2
k2r~m2!

m22k2
. ~C1!

Then we can show the following results:

lim
k2→2`

@LHS of Eq. ~C1!#

5 lim
k2→2`

k2D~k2!5 lim
k2→2`

k2Dasymp~k2!

5 lim
k2→2`

CVS ln
k2

m2D 2 g0/b0

50 for
g0

b0
.0, ~C2!

on the other hand,

lim
k2→2`

@RHS of Eq. ~C1!#

5 lim
k2→2`

E
0

`

dm2
k2r~m2!

m22k2

5 lim
k2→2`

E
0

`

dm2
2~m22k2!r~m2!1m2r~m2!

m22k2

52E
0

`

dm2r~m2!1 lim
k2→2`

E
0

`

dm2
m2r~m2!

m22k2
. ~C3!

Here we compute in detail more the integration in the l
column:

lim
k2→2`

E
0

`

dm2
m2r~m2!

m22k2

5 lim
k2→2`

S E
0

L2

dm2
m2r~m2!

m22k2
1E

L2

`

dm2
m2r~m2!

m22k2 D ,

501 lim
k2→2`

E
L2

`

dm2
m2rasymp~m2!

m22k2
,

5 lim
k2→2`

E
L2

`

dm2
2~g0 /b0!CV@ ln~m2/m2!#2g0 /b021

m22k2

50. ~C4!

Compared with both sides of Eq.~C1!, we have the result
that

E
0

`

dm2r~m2!50. Q.E.D. ~C5!
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