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Duality and superconvergence relation in supersymmetric gauge theories
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We investigate the phase structures of variblis1 supersymmetric gauge theories including even the
exceptional gauge group from the viewpoint of superconvergence of the gauge field propagator. Especially we
analyze in detail whether or not a new type of duality recently discovered by Oehme M. Sguge theory
coupled to fundamental matter fields can be found in more general gauge theories with more general matter
representations. The result is that in the cases of theories including matter fiedtdyithe fundamental
representation, Oehme’s duality holds but otherwise it does not. In the former case, a superconvergence
relation might give a good criterion to describe the interacting non-Abelian Coulomb phase without using
information from dual magnetic theory. The problem of the gauge dependence of the results is also disscussed
in the last section.S0556-282(98)01212-Q

PACS numbgs): 11.30.Pb, 11.15.Tk

I. INTRODUCTION Recently Oehme applied his superconvergence argument
to N=1 supersymmetric SU;) gauge theory and com-
Quark confinement is one of the most mysterious properpared it with already known resuli§]. The phase structure
ties in quantum field theory. In spite of its obvious existenceof this theory had already been investigated in detail with the
in experiment, the mechanism of confinement has not beehelp of the so-called “electric-magnetic” duality and holo-
elucidated yet. Of course there have been many challenges faorphy by Seiberget al. [7]. Seiberg has insisted on the
understanding this phenomena. The lattice formulation ogxistence of an interval corresponding to the interacting non-
QCD, originally proposed by Wilsoft], is one of them. On  Apelian Coulomb phase or conformal window where the
the other hand, chiral symmetry breaking is another problentheory becomes scale invariant. Consequently, Oehme
which must be solved. In nonsupersymmetric gauge theoryshowed quantitative agreement between his argument and
it is considered that these two phenomena, confinement anfle results from Seiberg’s duality. Moreover, he found the
chiral symmetry breaking, are deeply connected and occCUmportant relationship between the original electric SUSY
simultaneously in a certain QCD parameter registiong  theory and the dual magnetic one, which might be inter-
gauge coupling or small number of quark flavors, Jetc. preted as a new type of duality. Since superconvergence ar-
Our main interest here is how the phase structure of QCLyuments can apply faboth SUSY and non-SUSY theories,
changes as the number of quark flavors increases. Naivele comparison with exact results by Seibetl. is very
we expect the following picture: when the number is small,significant.
the theory is in a confinement phase due to its asymptotic In this paper, we app|y his method to various supersym-
freedom property. As the number of flavors is increasingmetric gauge theories with other gauge groups and other
quarks are deconfined and chiral symmetry is restored befoli@atter contents and check whether the relation he found
the theory becomes asymptotically nonfree. holds or not in those cases. In Sec. I, we review the concept
In the intermediate region corresponding to no confineof superconvergence of the gauge field propagator in the
ment but asymptotic freedom, we can realize the scale invarhonsupersymmetric case. In Sec. lll, we extend the method
ant theory because it is expected there exists a nontrivial Iy the previous section to the supersymmetric cases and
fixed point in this region. The critical value ®f; in SU(3)  check the Oehme’s duality. Section IV is devoted to sum-
QCD where quarks are deconfined and chiral symmetry isnary and discussions, where the problem of the gauge de-
restored has been evaluated by many authors. Banks apéndence of our results is also disscussed. In the Appen-

Zaks first pointed out the existence of such a fixed pdht  dixes, some basic equations are followed.
They evaluated the first two coefficients of the perturbatively

expandeds function which are both gauge and renormaliza-
tion scheme independef&] . They showedN$™=8.05. Also
N‘IE’“=7 has been obtained in lattice QCD calculatidh On Here we shall consider the asymptotic behavior of the
the other hand, Oehme and Zimmermann expebtft=10  gluon propagator at large momentum with the help of the
using what they called a superconvergence relaffinin  renormalization grougRG) analysis.

this relation, the anomalous dimension of the gauge field as First of all, following Oehme and Zimmermaris], we
well as theg function plays an important role. In this way, introduce the operator

all the values oN$™ in different approaches do not coincide

with each other. =0, A= d,AL, 1)

II. SUPERCONVERGENCE RELATION

whereA%(u=1,...,4,anda=1,... N;—1)is the SUN,)
*Email address: tatibana@oct.phys.kobe-u.ac.jp gauge field whose two point function is generally given by
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« is the gauge parameter.
Using Egs.(1) and(2), we obtain

e
(OITAL 085, )10) = [ dike P00 Sk ko,
—K,Ky3,,—k,K,8
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Scalar functionD (k?) is called the “transverse gluon struc-
ture function.” Below we shall restrict our consideration to
the asymptotic behavior of this functid(k?) at large mo-

mentum.

For that purpose, first we give the normalization condition

for D(k?) as follows:

k’D(k¥)=1 at k?=pu?, 4

where w is the normalization point. Then we can write the

structure function in the form
D=D(k?g,u?). (5)

g is the gauge coupling constant.

Now, for convenience, let us introduce the dimensionless

function R defined by

R=k’D(k*g,x%) =R

k2 )

—.9]. (6)
PE

Then the Callan-Symanzik equatiéRG equationfor the

R function in the Landau gaugex&0) is given as

JR(u,
(g%%w(gz)mu.gx @

u«9R(u,g) B

ou

whereu=k? u? and 8(g?) and y(g?) are theg function

and the anomalous dimension of the gluon field, respec-
tively. In the region of the small gauge coupling constant

(i.e., at large momentumthey are of the form

B(9%)=g*(Bo+ Lg%+ ),

(9% =0%(yo+y19% - ), (8)
where
_ 1 11 2
ﬁo _167T2 ?Nc_ng ]
1 11 4
Y05 T 1o & Ne=3N¢ . 9

PHYSICAL REVIEW D 58 045015

N; denotes the number of quark flavors.
Oehme and Zimmermann solved Ed@) in the following
way (see Appendix A

2 2
Q _
Rl —.0|=R(1Q) exp[ f > dxy(0B )| (10
m g
Here the effective RG-invariant coupling constant
Q(k?/ u?,g) is defined through the equation
dQ%(u,g) ,.9Q%(u,9)
u—5— ~ B9 )&—gz' 11
For large momentum, we can show that
QZ( < ) - (12
_,g ~——
u? Boln(K?/ u?)

Bo is the first coefficient of thg function defined in Eq(9).

Now we would like to obtain the asymptotic behavior of
the R function given by Eq.10). By substituting Eqs(8)
and (9) into Eq. (10), we get the following resultsee Ap-
pendix B:

K2 2\ 7o/Bo 2
Rl —.9 —(Q—z) ex fQ dx7(x)
® 9 ¢
K2 ~v0/Bo
)7
where
2
CumtaflBly e [t a9
g

Here the functionr(x) is the regular part ofy(x)/B(x) at
x=0.

Thus leading asymptotic behavior of th function at
large momentum was determined. Similarly, for hdunc-
tion, we find

K2\ 70 1Bo
) (15

Dasym,gk2)~cvk—2( |nE

We can conclude here that the asymptotic behavior of the
transverse gluon propagator drastically changes due to the
sign of y, (or, equivalently, the sign ofq/B8g). If y,<0, it
converges. Ifyy>0, it diverges, where we have assumed the
asymptotic freedom of the theory which mea®g<0.

Let us consider such a case whe#g and y, are both
negative, i.e., the ratigrg/ By is positive. For the scalar part
of the transverse gluon propaga®tk?), we can apply the
Lehmann representation:

p(m?)
m2_ k2 !

D(k?)= f:dmz (16)
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where p(k?) is called the spectral function and is given asgauge groups and different matter representations, to check

the absorptive part of thB function: Oehme’s duality. That is the main purpose of this paper.
mp(k?)=ImD(k?) =k 2ImR(Kk?). (17) A. Oehme’s analysis inN=1 SU(N.) gauge theory
with massless matter fields in the fundamental representation
Therefore, for the limitk®— — o, we find of N; flavors
. 2\ —y0/Bo-1 A In this case, the one loop coefficiem®g and y, are given
~— 2 Cyk 2 In— 18 Y
Pasymp Bo \% ( ,U«Z) (18
Combining Eqgs(15), (16) and(18) with a kind of sum rule Bo=~ 1@,.,2(3NC_Nf)’
called the superconvergence relation, we can olfgr Ap-
pendix Q 1 /3
o Yo 7o 16772(5NC_N*)' (20
J dm?p(m?)=0 for —>0. (19
0 Bo

If we demandB,<0 (asymptotic freedomand y,>0 (de-

) ~confinement, then we will have the following result:
We can show that the superconvergence relation obtained

here gives some circumstantial evidence for color confine-

ment. In Ref[8], it was said that the superconvergence re- §Nc<Nf<3Nc- (21)

lation is connected with various interpretations of color con-

finement, such as metric cancellation, the bag model picture, This interval corresponds to the one Seiberg called the

and the area law behavior of the Wilson loop in lattice QCD.interacting non-Abelian Coulomb phase or conformal win-
On the contrary, in the region where the superconverdow. The theory in this interval has a nontrivial infrared

gence relation does not holde., 8,<0 andy,>0), quarks  fixed point and becomes scale invariant.

are deconfined and chiral symmetry restored. Moreover, itis On the other hand, as is well known, we have the dual

expected that there exists a nontrivial IR fixed point in thismagnetic description for the original electric theory in the

region, preventing the gauge coupling from becoming strongegion (21). The gauge group of dual theory i€y,

enough to confine quarks or cause them to condense. In theSU(N;—N,) with N{“®=N; flavors of magnetic chiral su-

following section, we will restrict our considerations to this perfields and a certain number of singlet massless super-

interval in supersymmetric gauge theories. fields. In this dual theory, the one-loop coefficier$ and
3 are
Ill. DUALITY AND SUPERCONVERGENCE RELATION
IN VARIOUS N=1 SUSY GAUGE THEORIES d 1
BY=— —(2N;=3N,),

In the previous section, we discussed the superconver- 167
gence relatiorfa kind of sum rule for the spectral function of
the transverse gluon propaggtand commented on its rela- d 1 /1 3
tion with color confinement. There, the essential point was Yo~ T 160212 1 ENC (22)
that there exists a region in which we have asymptotic free-
dom of the theory but no confinement. In such a I’egion, th¢rom Eqs(zo) and (22)’ we can extract the relation
theory may have a nontrivial infrared fixed point at a nonva-
nishing value of the gauge coupling. BANH=—2%,(Ny),

On the other hand, Oehme recently applied the method of
the superconvergence relation td=1 supersymmetric Bo(Ng)=—2y3(Ny). (23

gauge theorySU(N.) gauge theory with a fundamental chi-
ral supermultiplet oN; flavorg| [6] and compared the result ~ This may be viewed as the new type of duality Oehme
with the one Seibergt al. already obtained using holomor- first discovered in Ref.6]. Note here that the variabMy on
phy and “electric-magnetic” duality7]. Oehme insisted in both sides refers to matter fields with different quantum
Ref. [6] that his result is in quantitative agreement with numbers, i.e., one is electric, the other magnetic. Equation
Seiberg’s duality argument. Moreover, he showed that theré23) might also be interpreted as follows: originally in
was an interesting relationship between the coefficights Seiberg’s duality argument the interv@l) was determined
andy, (defined in the previous sectipof the original(elec-  from the requirement of asymptotic freedom in both electric
tric) theory and those of the du#éiagneti¢ theory. This and magnetic theories, which meg8g<0 andﬁg<0. We
may be considered as a new type of duality. believe here, however, that we can find a set of parameters
Thus in this section, we first review the analysis bydescribing the interval21) only from those of the original
Oehme in Ref[6] and then try to apply his method to other electric theory. Then anomalous dimensiggy might be a
models ofN=1 SUSY gauge theories, which have different candidate. Below we shall give the same considerations to
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various gauge theories with various matter representations to  G=Sp2N;—2N.—4) “magnetic’ N=1 SUSY,
check whether a new type of dualit23) proposed by Oe-

hme is satisfied. 1
Bo=— o2 N 3(2Nc+2)],

772

B. G=SO(N.) with fundamental matters of N; flavors

Next we shall investigate the case of $QJ gauge 78: _
theory with massless superfields ¥f flavors in the funda- 1672
mental representation. In this ca8gandy, are given by[9]

[Nf—g(chJrz) . (29)

From Egs.(28) and(29), we get the result@l=— 2y, and
Bo=—2v3 in this case, too.

1
Bo=— 1 5[3(Ne=2) =Ny,
D. G=G, with fundamental matter fields of N; flavors

3 This case may be a little nontrivial. Original electric
[E(Nc—z)— Nf}_ (24  gauge theory ha& =G, with N; flavors of massless super-

Yo= —
1672 fields in the fundamental representation. In this dds&,
Requiring 8,<0 andyy>0, we obtain
° ° Bo=— o5 (12-Ny),
3(Ng—2)<N;<3(Ng—2). (25) m
This is the very same region corresponding to the conformal Yo=— 5(6—Ny). (30
window discussed in Refl10]. Then corresponding dual 16w

magnetic theory isGy,,=SON;—N.+4) gauge theory
with fundamental matter fields df; flavors. Dual one-loop
coefficients become as

Then the interval 6:N;<<12 corresponds to the interacting
non-Abelian Coulomb phase as discussed in REP]. A
magnetic description exists in this interval. Dual magnetic
gauge theory ha&y,,=SU(N¢—4) with fundamentalN;

Bl=— 1 [2N;—3(Ne—2)] massless matter fields. The one-loop coefficients are given
1672 by

1 (1 3 Jers ! [3(N¢—4)—N¢] ! (2N;—12)

d_ il A T _ 0o~ — =)~ Nf =7 —— f—14),

Th lud S ! [S(N 4) N} ! <1N 6)

us we can conclude =— =(Nj—4)—N;|=— =N;—6].

70T tem2(2 T 16212
BA(Np)=—270(Ny), (31)
g Comparing Eq(30) with Eqg. (31), we can come to the con-

Bo(Ng)=—2y5(N¢). (27)  clusion that Oehme's duality is satisfied. This seems to be a

rather nontrivial check for this duality.
In this case we find Oehme’s duality also holds.

E. G=SU(N.),SO(N,),Sp(2N.) with massless adjoint matter

C. G=Sp(2N) with fundamental matter fields of Ny flavors A short time after the discovery of original non-Abelian
This theory also has a magnetic description with certairdualities by Seibergt al, Kutasov extended Seiberg’s argu-
values ofN, andN;. Dual gauge theory i§4,,=Sp(2N;  ment to SUN.) gauge theory including not only the funda-
—2N.—4) with fundamental matter superfieldshf flavors ~ mental but also the adjoint matter superfigl@]. In this case
[11]. The one-loop coefficients of both theories are given aghe dual magnetic theory becomes an SN(2 N;) gauge
follows: theory with Ny massless matter fields in the fundamental
representation and an adjoint field and a certain number of
G=Sp(2N.) “electric” N=1 SUSY, singlet massless matter fields. Then the one-loop coefficients
in both theories are of the form

1
Bo=— 16772[3(2NC+ 2) = 2N¢],

Bo=— 16772(2Nc_Nf)a
= §(2N +2)—2N (28) 11
T P T 0=~ 75| g Ne Ny (32)
and and

045015-4



DUALITY AND SUPERCONVERGENCE RELATIONN . .. PHYSICAL REVIEW D 58 045015

then investigated whether a new type of duality recently pro-

gg: - ! 2(2Nf—3Nc), posed by Oehme iN=1 supersymmetric gauge theory also
16m holds in other gauge theories which have different gauge
1 1 groups and different matter contents. As a result, we found
782 — _< — _Nc> (33 that in the cases of gauge groups with matter fieldky in
1672\ 2 the fundamental representation, Oehme’s duality was satis-

o _ fied while in those of theories including adjoint or antisym-
We find in this case Oehme’s duality checked above does n@hetric tensor matter fields, it was not. The reason may be as
hold. follows: when we add an adjoint field to a theory, we can add
A similar analysis can be done for S&) and Sp(N;)  a superpotential. The model without a superpotential will
gauge groups with adjoint fieldsl4] and leads us to the presumably flow in the infrared to a fixed point, while adding
same results, i.e., Oehme’s duality condition is also not saihe superpotential drives the system to a new fixed point

isfied in these cases. [13]. Kutasov's duality holds only in the model with a su-
perpotential. On the other hand, in the superconvergence ar-
F. G=SU(N,) with an antisymmetric tensor field gument in which we evaluatg, and vy, in Eq. (8), we can-

not distinguish the theory with a superpotential from the one
without it because the contribution of the superpotential to
the B function is a higher order one. Actually it appears not

As the final example, we investigate the theory G&f
=SU(N.) with an antisymmetric tensor field originally dis-
cussed in Ref[15]. Remarkably the dual magnetic gauge . -
group does not become simple in this case. And this theory i& Bo but in By in Eq(8).

also attractive as a model of supersymmetry breakir. Also we have to consider the problem of the gauge de-
The one-loop coefficients in the original electric theory Péndence of our methddé]. Originally the gluon propaga-
are tor was unphysical, because it depended on the gauge param-

eter @. In this paper, we chose Landau gauge=0) for
convenience. Certainly the value 8f does not depend on

Bo=— 16772(2NC_Nf+3)' the specific gauge choice while that @f does. Therefore
even if we obtain the resulyy<<O in the Landau gaugey,
1 /1 >0 might be realized when we move to other gauges. If so,
Yo= 1672 ENC_Nf+3 : 34 our superconvergence argument based on the valug, of

might not be believed. We shall reconsider this point on

For N;>5, dual magnetic gauge theory exists. It is repre-another occasion.

sented as the product gauge group B 3)® Sp(N;—4)

with five species of dual quark superfields: a field transform- ACKNOWLEDGMENTS

ing as a fundamental under both groups, a conjugate anti-
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167
d 1 1 . APPENDIX A: PROOF OF EQ. (10
Yo= T ENf—S in SU(N;—3) (35
16w In this appendix, we prove E@10). The starting point is
and
dR(u,g) dR(u,9)
1/5 1 9 U— 0 =B — S +¥(@)R(ug). (A
d= - “Nj— =Ng— 7
BO 167T2 2 f 2 [ 2 ’

Here we defineR as follows:

.1 103
Yo= Nf_ENc_E in SPN¢—4). (36

~ 16n2 R=R[Q?(u,9),9]=R(u,9). (A2)
Then we find that Eq(7) can be rewritten as
Thus we conclude from these equations that Oehme’s duality
relation also does not hold in this final example. Q% 4R IR Q% 4R _
UW a_QZ =B P +F a—QZ + vR. (A3)
IV. DISCUSSIONS g g 9l 297, u

In this paper, we discussed the superconvergence relatiddn the other hand, the effective coupling const@ntis
following the original work by Oehme and Zimmermann andthrough Eq.(11): i.e.,
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Q? 2 APPENDIX C: PROOF OF SUPERCONVERGENCE
u—— =B(9%)—u- (A4) RELATION (19)

In this appendix, we prove EL9), the superconvergence
Substituting relatior/A4) into Eq. (A1), we obtain relation which is the main subject of this paper. To do so, let
us use Eqgs(15), (16), and(18) and combine them.

JR(Q%9% - First multiplying Eq.(16) into k2,
02[3(92)&—(;2 +1@RQ%g?),  (A5)
= kZp(m?)
21 ( 1k2) = 2
and we can easily solve this equation: kD (k%)= fo d —K2 (€D
R(Q%,g?)=R(Q? Q2)exp{ szdx v(X) (A6) Then we can show the following results:
’ ’ B(X) |
lim [LHS of Eg. (C1)]
Moreover, by definition, K2 —oo
= = lim k?D(k®)= lim k%D k2
R(1,92) — R[QZ(l,QZ),QZ], o ( ) P asymr( )
Q*(19%)=0¢> (A7) 2|~ 7olfo ”
5 = lim Cy|In— =0 for —>0, (C2
From these equations we obtaRiQ?(1,9%),9°]=R(1,Q%) K2 oo Bo
and finally we have the result
on the other hand,
R k—z,g2 ~R(1Q)ex dex7( 'l QED. lim [RHS of Eq.(C1)]
Mz IB(X) K2 —w
(A8 = k%p(m?)
= lim f dn?
APPENDIX B: PROOF OF EQ. (13) WITH EQ. (14) W20 m?—k?
_ In this appendix, we evaluate E(L0) proveo_l in A_pp_en- o —(M2=Kk2)p(m?) + m2p(m2)
dix A at large momentum and show that Ef3) is satisfied. = |im f dm >
For that purpose we first separate the integrand of(IE): —k
Y B 100 = 22 4 7(x), (B1) - —f dm2p(m?)+  lim f de ™M) g
Box 0 o o w2

-1
where7(x) corresponds to the regular partefx) 5"°(x) al  Here we compute in detail more the integration in the last
nearlyx=0. Note here that at large momentum, the functionsgg|ymn:

B(x) and y(x) are given by Eq(8), respectively, in which

g? is replaced by. m p( 2)
Then it is not difficult to show Eqg13) and(14). In fact I|m J' dr‘n2 Y

[here we puR(1,Q)=1]
k2 2 2 _ m P(m ) * m*p(m?)
(M ol )—ex% JQ dX[;TO ex;{ Jng dxr(x) |, B I|m (J dm’—,— jAzdmZ m2—k2 |’

1Bo " m2 m2)
QZ Yo QZ :o+ Ilm f dm2 pasymF(
:(E ex ng dx7(x) |, Palisn It T
2 K2\ 1" 70'Po 02 i focdmz_(YO/BO)CV[ln(mZ/MZ)]yo/ﬁol
~| olBoln| = ex fgz dxr(x)| . 2 o
k2 —7v0/Bo =0. (C4)
ECV In—2 , (BZ) - -
Compared with both sides of E¢C1), we have the result
that
where
i “dm2p(m?)=0. QE.D. c5
Cv=(gzlﬂol)"°/ﬁ°eXDUf dxr(x)|. Q.E.D. (B3) fo p(m9H=0. Q (C5)
g
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