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Multiple scattering expansion of the self-energy at finite temperature
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An often used rule that the thermal correction to the self-energy is the thermal phase-space times the forward
scattering amplitude from target particles is shown to be the leading term in an exact multiple scattering
expansion. Starting from imaginary-time finite-temperature field theory, a rigorous expansion for the retarded
self-energy is derived. The relationship to the thermodynamic potential is briefly discussed.
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I. INTRODUCTION

At a temperature much lower than the particle mass, i
physically reasonable to expect that the leading order t
mal correction to the physical self-energy be given by
forward scattering amplitude integrated over the therm
phase-space of the lighter particle. For instance, in the lit
ture, the thermal self-energy of a particle is often written
@1–3#

ST~p!52E d3k

~2p!32Elight
n~Elight!

3T~k1p→k1p!, ~1!

whereElight5Ak21mlight
2 is the energy of the lighter particl

with massmlight , n(Elight) is a Bose or Fermi distribution
function, andT(k1p→k1p) is the forward scattering am
plitude related to the usualf by

T~k1p→k1p!58pAs f~k,p!. ~2!

For QED, Eq.~1! has been derived in Ref.@4# to ordera, and
for QCD, Eq. ~1! has been derived to study hard therm
loops in Refs.@5–7#. The minus sign on the right hand sid
of Eq. ~1! stems from the fact that the scattering amplitude
defined to be2 i times an N-point correlation function
whereas the self-energy is defined to bei times a 2-point
correlation function.

A merit of this method is that one can simply take t
scattering amplitudes from experiment. In reactions invo
ing strong couplings, this may be the only reliable way
calculating the thermal correction to the real part of the s
energy@8#. As the density and temperature become high
Eq. ~1! needs higher order corrections. In this paper, we s
with the imaginary-time formulation of relativistic finite
temperature field theory and obtain an exact expression
the thermal self-energy.

There are a variety of finite-temperature field theo
methods used in literature. The real-time method was
investigated by Schwinger and Keldysh and later in a sligh
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different and modern form by many people@9–13#. The
imaginary-time method was introduced by Matsubara@14#
and through analytic continuation can be related to the r
time method@15#. Of course any equilibrium Green functio
can be calculated using any of the methods, given the a
lytic relations between them.

There are, however, situations where one particu
method is more economical. For instance, if one would l
to study time-ordered real-time correlation functions, t
real-time method is very much the natural choice. If o
would like to study a response function~a retarded function!,
the most economical way would be to compute t
imaginary-time correlation function with Matsubara freque
cies and then analytically continue the result.

In this paper we are interested in the retarded correla
functions. We would like to use the imaginary-time metho
However, since the imaginary time is a fictitious parame
introduced to deal with the temperature, it is not easy to g
physical insight by just looking at the end result of the ima
nary time calculation. A way to remedy this difficulty wa
developed by one of the present authors@16# based on earlier
works @17–19#. There, a diagrammatic method to calcula
the spectral density of two-point functions in a scalar the
was presented, starting from the imaginary-time formulat
of finite temperature field theory. Subsequently it was us
to calculate the leading order hydrodynamic coefficients i
scalar theory@20#. In this paper the above work is extende
to the calculation ofN-point retarded functions.

The analysis in this paper is based on the fact that ap
ing the analytic continuation

in→k01 i e ~3!

to each of the independent external Matsubara frequen
produces the~Fourier transformed! retarded correlation func
tion @13,21#. When the chemical potentials all vanish, th
operation produces the physical retarded function. Howe
with non-zero chemical potentials one must be more care

In the imaginary-time formalism, finite density is dea
with by using an effective Hamiltonian

K̂[Ĥ2(
a

maQ̂a , ~4!
© 1998 The American Physical Society13-1
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SANGYONG JEON AND PAUL J. ELLIS PHYSICAL REVIEW D58 045013
wherema is the chemical potential associated with each c
served chargeQ̂a . Hence, the retarded function produced
using Eq.~3! corresponds to the retarded correlation funct
of ŵK(t)[eiK̂ tŵe2 iK̂ t. But the physical retarded function i
a correlation function ofŵH(t)[eiĤ tŵe2 iĤ t, not ŵK(t). For-
tunately, there is a simple relation between the two. In m
cases the fields of interest are charge eigenstates. Then

ŵK~ t !5eimwtŵH~ t !, ~5!

where

mw5(
a

maqa ~6!

is the total chemical potential associated with the fieldw
carrying conserved chargesqa . In momentum space, the tw
retarded functions are related by@22#

GwH

Ret~$k%!5GwK

Ret~$k2mw%!, ~7!

where we used a shorthand notation,k2mw[(k02mw ,k).
As is shown in Sec. II B, this shift also has the effect
separating the purely dynamic part of the theory and
purely statistical part.

This paper is organized as follows. In Sec. II a brief de
vation is given for the diagrammatic rules to compute
arbitrary retarded function. Section III presents a derivat
of the self-energy formula using the results from Sec. II.
an example, the self-energy of an electron at the one-l
level is worked out in Sec. IV. Finally, we conclude in Se
V. Appendices A and B list some relevant facts about
finite temperature propagators used in this paper. Appen
C deals with derivative couplings. Appendix D amplifies t
discussion of the thermodynamic potential in Sec. III.

II. N-POINT RETARDED CORRELATION FUNCTIONS

In this section, as a prelude to the self-energy calculat
diagrammatic rules to calculate an arbitraryN-point retarded
function are derived starting from imaginary-time finite tem
perature field theory. The derivation here closely follo
Ref. @16#. Details omitted for the sake of brevity and rea
ability can be found in that reference and references ther
The rules derived here coincide with the rules obtained
Evans@13# who used the real-time method and the analy
relations betweenN-point functions. For simplicity, only
theories involving no derivative couplings are conside
here. However, the argument given here can be straigh
wardly generalized to theories with derivative coupling
such as chiral perturbation theory, as indicated in Appen
C.
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A. Euclidean correlation functions

It is known that performing Matsubara frequency sums
an Euclidean Feynman diagram produces terms corresp
ing to old-fashioned time-ordered perturbation theory@18#.
Here, therefore, we provide conventions and definitio
along with a sketch of a proof, but not the details. A detai
derivation for a relativistic case can be found in Ref.@16# and
a non-relativistic version can be found in Ref.@17#.

The standard Feynman rules use the momentum sp
Feynman propagator. For our purposes, it is more conven
to use mixed propagators which are functions of time a
spatial momentum. As shown in Appendix A, the mixe
propagator for both bosons and fermions can be represe
by

Gz~t,k!5E dv

2p
Nz~v! @e2vt rz

1~k!u~t!

1evtrz
2~k!u~2t!#. ~8!

Herev[k0, and the spectral densities are labeledrz
6(k) or

rz
6(v,k), as convenient. The labelz distinguishes boson o

fermion, $B,F%. The statistical factorNz(v) is

Nz~v!511~21!znz~v!, ~9!

where (21)B[1 and (21)F[21 and

nz~v!5
1

evb2~21!z . ~10!

Explicit forms for the spectral densities are not of interest
this section. What is important for us is that they satisfy

rz
1~v,k!52rz

2~2v,k! ~11!

due to the periodicity or antiperiodicity ofGz(t,k) in t. A
few relevant facts about the spectral densities are given
Appendices A and B.

The Feynman rules in this mixed space of imaginary-ti
and momentum are almost identical to the standard mom
tum space Feynman rules. The differences are:
imaginary-timet j labels each vertex including the extern
ones. Each line connecting two vertices labeled by the tim
ta andtb represents a propagatorGz(ta2tb ,uku) if the mo-
mentum flows fromtb to ta . If the momentum flows from
ta to tb , the line representsGz(tb2ta ,uku). The direction
of the momentum should follow the direction of charge flo
Instead of the sum over all loop frequencies, there are in
grations over allt j ’s from 0 to b. At each vertex where an
external field operator extracts external frequencyin j an ad-
ditional factor of exp(injtj) is present. Hence, the contribu
tion of a connected Feynman diagramG with a total of V
11 vertices andN11 external operator insertions has th
following schematic form:
3-2
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CN11
~G! ~$ql ,in l%!5E

0

b

)
i 50

V

dt i expS i(
l 50

N

n lt l D E )
LPG

d3kL

~2p!3 AV11
N11

3 )
aPG

E dva

2p
Nza

~va!@e2va~ta2tb!rza

1 ~ka!u~ta2tb!1eva~ta2tb!rza

2 ~ka!u~tb2ta!#. ~12!
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Here the independent spatial loop momenta are denote
kL , and the quantityAV11

N11 includes all the factors from in
teraction vertices such as coupling constants,g matrices, and
symmetry factors. We suppress Lorentz indices, if there
any, since they are not relevant for the moment. A given l
in the Feynman diagram running between vertices actin
timesta andtb is denoted bya.

We know that as the temperature goes to zero the resu
the time integrations must be that of old-fashioned tim
ordered perturbation theory. That is,

lim
b→`

CN11
~G! ~$ql ,in l%!5 (

Gs,G
lim

b→`

CN11
~Gs!

~$ql ,in l%!,

~13!

wheres represents a given permutation of the vertices a
Gs represents a time-ordered diagram for that permuta
whose value is given by

lim
b→`

CN11
~Gs!

~$ql ,in l%!

5E )
LPG

d3kL

~2p!3 )
aPG

S E dva

2p
u~va! rza

ss~ka! D
3AV11

N11 )
intervals
V> j >1

~L j
s2 in j

s!21. ~14!

Here we omit the overall frequency-conserving Kroneckerd.
The signss5$1,2% depends on both the time orderingand
the direction of the charge flow. If the charge flows in t
same direction as the time a1 sign is assigned, otherwis
ss52. If there are no conserved charges the distinction
without significance. The prefactorAV11

N11 is the same as be
fore. The time ordering also determines the frequency
nominator (L j

s2 in j
s). Given a time orderings, L j

s is given
by the sum of frequencies of all lines crossing thej th inter-
val I j

s

L j
s5 (

aPI j
s

va . ~15!

Similarly, n j
s is the net external frequency flowing out of th

diagram above the intervalI j
s

n j
s5 (

V> l> j
n l . ~16!

In this limit the external frequenciesn l are continuous.
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Comparing Eq.~14! and Eq.~12! one sees that one shou
keep all factors ofNz(va) since

lim
b→`

Nz~va!5u~va!. ~17!

Then for Eq.~14! to be true, there cannot be any addition
factors of exp$6b(ivi% in the finite temperature result sinc
they will make the result diverge due to the fact that frequ
cies can be both positive and negative. The structure of
integrand in Eq.~12! also dictates that vanishing contribu
tions such as exp$2bu(iviu% or 1/bn cannot occur. Then the
only feasible non-zero temperature result is Eq.~14! with
u(va) replaced byNza

(va). That is,

CN11
~G! ~$ql ,in l%!5 (

Gs,G
CN11

~Gs!
~$ql ,in l%!, ~18!

where

CN11
~Gs!

~$ql ,in l%!

5E )
LPG

d3kL

~2p!3 )
aPG

S E dva

2p
Nza

~va!rza

ss~ka! D
3AV11

N11 )
intervals
V> j >1

~L j
s2 in j

s!21, ~19!

again omitting the overall frequency-conservin
Kronecker-d.

B. Retarded correlation functions

The (N11)-point retarded function is defined by@23#

R~x;$xi%!

[(
s

u~ t2ts1
! )

j 51

N21

u~ ts j
2ts j 11

!

3^@ . . . @@ŵ~x!,ŵs1
~xs1

!#,ŵs2
~xs2

!#, . . . ,ŵsN
~xsN

!#&,

~20!

wheret5x0 is the fixed largest time,i runs from 1 toN, and
(s indicates the sum over all possible permutation

$t1 ,t2 ,...,tN%. The operatorŵ can be any field in the theory
When two fermionic quantities are involved, the commuta
3-3
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SANGYONG JEON AND PAUL J. ELLIS PHYSICAL REVIEW D58 045013
becomes an anti-commutator. The angular bracket repres
the thermal average. From here on, we always denote bv
the vertex at fixed timet.

Several authors@13,21# have shown that the following
analytic continuation of the (N11)-point imaginary-time
correlation function leads to the retarded function:

in l→ql
01 i e for lÞv

inv→qv
01 iNe, ~21!

where at vertices other than the fixed time vertexv the fre-
quencies areinjected, and atv the frequency isextractedso
that the frequency is conserved, including the small ima
nary part:

qv
01 iNe5(

lÞv
~ql

01 i e!. ~22!

The contribution of a Feynman diagramG to the retarded
functionRN11

(Gv) ($ql%) ~subscriptv signifies thatv is the fixed
vertex! is then

RN11
~Gv!

~$ql%!5 (
Gs,G

E )
LPG

d3kL

~2p!3

3 )
aPG

S E dva

2p
Nza

~va!rza

ss~ka! DAV11
N11

3 )
intervals

V> j >v11

~L j
s2qj

s1 i e!21

3 )
intervals
v> j 8>1

~L j 8
s

2qj 8
s

2 i e!21. ~23!

The L j
s were defined in Eq.~15! and the quantitiesqj

s refer
to the net external frequency flowing out of the diagra
above the given interval

qj
s5 (

V>v l> j
ql

0. ~24!

Here we chronologically label the vertices by$t0 ,¯ ,tV%
and the interval betweent j andt j 21 is the j th interval. Also,
a product without a factor is defined to be 1. Note the cha
in the sign of thee term when crossing thevth interval. The
sign depends on whether the interval is above or below
vertex v which extractsiNe. Intervals where no externa
frequencies flow in or out have noi e to start with, but it is
not hard to make the internal frequencies slightly off the r
axis to make a consistent assignment of the imaginary p
@16#.

We would like to express Eq.~23! in terms of uncut and
cut propagators in analogous fashion to the Cutkosky
proach at zero temperature. To that end, notice that if all
1 i e ’s in the frequency denominators were2 i e and all the
Nza

(va) wereu(va), then the expression would be exact
that of old-fashioned real-time perturbation theory. When
04501
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time orderings are summed, this expression just reprodu
the Feynman diagram expression. Hence when all the s
imaginary parts are2 i e, all we need to do to sum the time
ordered terms is to change the zero temperature propag

Gz
0~k!5E dv

2p i
u~v!S rz

1~v,uku!
v2k02 i e

1
rz

2~v,uku!
v1k02 i e D ~25!

to the finite temperature one

Gz~k![E dv

2p i
Nz~v!S rz

1~v,uku!
v2k02 i e

1
rz

2~v,uku!
v1k02 i e D ,

~26!

see Appendix B. Then

DN11
~G! ~$ql%![ (

Gs,G
E )

LPG

d3kL

~2p!3

3 )
aPG

S E dva

2p
Nza

~va!rza

ss~va ,ukau! DAV11
N11

3 )
intervals
V> j >1

~L j
s2qj

s2 i e!21

52 i ~ i !V11E )
LPG

d4kL

~2p!4 AV11
N11 )

aPG
Gza

~ka!.

~27!

The factor2 i ( i )V11 comes from havingV integrals with
2 i e. The phasei V11 can be absorbed intoAV11

N11 by adding
a factor ofi to the coupling constant at each vertex as in
usual diagram rules, e.g., see Peskin and Schroeder@24#
whose conventions we follow.

We would like to apply this argument to each of the6 i e
parts of the product inRN11

(Gv) ($ql%). In order to do so, the two
parts must be separated from each other so that the
common to both parts can be regarded as external ones.
is achieved by using the identity

05 )
j 5v11

V

~U j2 i e!212 )
j 5v11

V

~U j1 i e!21

2 i (
l 5v11

V

2pd~Ul ! )
k5 l 11

V

~Uk1 i e!21

3 )
j 5v11

l 21

~U j2 i e!21. ~28!

Here allU j ’s are real, a sum without a summand is 0 and
product without a factor is 1. This identity follows directl
from 2p id(x)5(x2 i e)212(x1 i e)21. We refer to the
lines corresponding to the interval ind(Ul) as the cut lines.

Using the above identity and performing the relevant
summation of time ordered terms on both sides of the cut,
obtain
3-4
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RN11
~Gv!

~$ql%!5DN11
~G! ~$ql%!1 (

Gv,̄G

RN11
~Gv !̄

~ $ql%!, ~29!

where

RN11
~Gv !̄

~ $ql%!52 i ~2 i !V1~ i !V2E )
LPG

d4kL

~2p!4 AV11
N11

3 )
cut lines

c

@Nzc
~kc

0!rzc

sc~kc!#

3 )
aPG1

Gza
~ka!* )

a8PG2

Gza8
~ka8!, ~30!

and the sum is over the cut diagramsGv .̄ The uncut propa-
gatorGz corresponds to the lines in the sideG2 which con-
tains v, and Gz* corresponds to the lines in the other si
G1 . For the cut lines the direction of time flow isfrom G2

to G1 . HereV6 denotes number of vertices inG6 . Again,
the factors (2 i )V1( i )V2 can be absorbed intoAV11

N11 by in-
cluding a factor ofi in the contribution of each vertex inG2

and a factor of2 i in the contribution of each vertex inG1 .
So far, nothing has been dependent on the presenc

chemical potentials. When chemical potentials are pres
Eq. ~29! corresponds to the retarded function of fiel
ŵK(t)5eiK̂ tŵe2 iK̂ t with K̂5Ĥ2(amaQ̂a . As explained in
Sec. I, there is a simple relation betweenŵK and ŵH ,
ŵK(t)5eimwtŵH(t). Hence, to convert a retarded function
the ŵK to the corresponding retarded function of theŵH , all
one has to do is to shift each external frequency fromq to
q2mw if it corresponds to the particle of the species and
q1mw if it corresponds to the anti-particle. These shifts ha
important simplifying consequences. Due to charge con
vation, not only energy-momentum, but also chemical pot
tial has to be conserved at each vertex. Hence, shifting
external frequencyq0→q02mw is equivalent to shiftingall
internal frequenciesl 0→ l 02ma according to the speciesa.

The significance of these internal frequency shifts is t
they remove the chemical potential dependence from
spectral densities. For instance, when the chemical pote
is non-zero, the spectral density of the bosonic propag
appearing in Eq.~23! is ~see Appendix A!

rB
1~k0!5sgn~k01m!2pd„~k01m!22Ek

2
…, ~31!

where Ek5Ak21m2. By shifting k0→k02m, rB
1(k02m)

becomes independent ofm, while the same change will mak
the statistical factor becomenB(v2m).1

For small chemical potentials such thatmz.umzu, even
more simplification is possible because in that case,u(E
6m)5u(E) andu(2E6m)5u(2E). Then

1These internal shifts also have a simplifying effect on derivat
couplings. The derivative] t present at an interaction vertex yield
l 01m which becomes simplyl 0 after the shift of internal frequen
cies.
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Nz~k02m!5u~k0!1~21!z sgn~k0!nz~ uk02mu!, ~32!

when k056Ek . Consequently, the chemical potential on
appears in the statistical factors. In this way we achieve
separation of the statistical part and the purely dynamic p
of the particle propagation.~For a slightly different ap-
proach, see@25#.!

We can now state diagrammatic rules for calculating
arbitraryN-point retarded function with small chemical po
tentials (umzu,mz), see Appendix B for further details. Fo
convenience, we denote the thermal phase space facto
scalar bosons by

GB~k!5nB~ uk02mu!2pd~k22m2! ~33!

and for spin-12 fermions

GF~k!52nF~ uk02mu!~kmgm1m!2pd~k22m2!. ~34!

Define the cut propagators for scalar particles

DB
6~k!5u~6k0!2pd~k22m2!1GB~k!, ~35!

and for fermions,

DF
6~k!5u~6k0!2p~kmgm1m!d~k22m2!1GF~k!.

~36!

For scalar particles, the uncut propagators are given by

GB~k!5
i

k22m21 i e
1GB~k! and

GB* ~k!5
2 i

k22m22 i e
1GB~k! ~37!

and for spin-12 fermions, they are given by

GF~k!5
i ~kmgm1m!

k22m21 i e
1GF~k! and

GF* ~k!5
2 i ~kmgm1m!

k22m22 i e
1GF~k!. ~38!

For gauge bosons, setm50 in each of the scalar particl
propagator, and multiply by (2gmn) ~Feynman gauge!. Note
that all of the cut and uncut propagators can be written a
zero-temperature, zero-density part plus a common ther
phase space factor. Not surprisingly, the zero tempera
parts of the propagators all coincide with the zer
temperature Cutkosky rule propagators@26#.

We call the region where the fixed vertexv sits the un-
shaded region and the other half the shaded region. The r
to calculate the retarded functions ofŵH are:

~1! Draw all topologically distinct cut diagrams includin
totally uncut ones, keeping the largest time always
the unshaded side. Disconnected pieces produced by
cutting are allowed.

~2! Assign momenta to the lines according to the flow of t
conserved charges, if there are any.

e

3-5
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SANGYONG JEON AND PAUL J. ELLIS PHYSICAL REVIEW D58 045013
~3! Use the usual Feynman rules for the unshaded side
signingGz(k) to the uncut lines.

~4! Use the complex conjugate Feynman rules for
shaded side assigningGz* (k) to the uncut lines. Theg
matrices are not to be complex conjugated.

~5! If the momentumk of a cut line crosses from the un
shaded region to the shaded region, assignDz

1(k).
~6! If the momentumk of a cut line crosses from the shade

region to the unshaded region, assignDz
2(k).

~7! Divide by the symmetry factor if applicable. There is a
overall factor of2 i .

Equation~29! and the above diagrammatic rules are the m
results of this section. As shown in Appendix C, this sa
set of rules also apply when there are derivative couplin

As an example of applying the rules, consider a sca
theory with a2gf3 interaction in the Lagrangian. The dia
gram shown in Fig. 1 yields the expression

CFig.1~k!5~2 i !~2 ig !4~ ig !2E d4l

~2p!4

d4p

~2p!4

d4q

~2p!4

3DB
1~ l !DB

1~p!DB
2~q!DB

2~ l 1p2q!

3GB~ l 1p2q2k!GB~ l 2k!GB~p2q!GB* ~ l 1p!.

~39!

Note that atT50, the contribution of this diagram is zer
because the cut part then represents a process where
physical particles annihilate each other into the vacuum.
non-zero temperature, this diagram gives a non-zero co
bution because it can also represent scattering betw
physical particles in the thermal medium.

III. MULTIPLE SCATTERING EXPANSION
OF THE SELF-ENERGY

In this section, we present the multiple scattering exp
sion for the thermal contribution to the self-energy. The
tarded self-energy is, of course, a retarded 2-point funct
From the previous section~see also Appendix B! we know
that as long asma.umau, all propagators satisfy

Dz~k!5Dz
0~k!1Gz~k! ~40!

FIG. 1. A typical finite temperature cut diagram in a scalargf3

theory. Each cut line contributesDB
1 or DB

2 according to its orien-
tation. In the unshaded~shaded! region, an uncut propagator con
tributesGB(GB* ), and an interaction vertex contributes a factor
2 ig( ig).
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whereGz(k) is the thermal phase space factor common to
four cut and uncut propagators, andDz

0(k) is the zero tem-
perature, zero density propagator.

Using Eq.~40! we can now expand the expression~29!
for the self-energy in the number ofGz’s. The coefficients in
this expansion involveonly the zero temperature propaga
tors. Hence, the coefficient function is either a zer
temperature Feynman diagram or a zero-temperature Cu
sky diagram. External momenta for this coefficient functi
are provided by the self-energy momentum,k, and the ther-
mal particle momenta from theGz’s.

We would like to relate the coefficients of the expansi
to the physical zero-temperature scattering amplitudes. In
der to do so, we need to ensure that in the expansion
consider:

~1! Symmetry factors are all correctly accounted for.
~2! Disconnected parts cancel.
~3! Self-energy insertions do not cause divergences.
~4! Additional polarization factors needed for the extern

thermal particles are all correctly provided.
~5! When fermions are involved, the overall sign for an i

dividual Feynman diagram is correctly produced.

We present the result of the expansion first and deal with
above points later in Secs. III A–III C.

We emphasize that the formal expansion in the numbe
Gz’s can be always made. To be useful, however, the se
must be truncated. When the temperature and the density
low so thatT!uma6mau for all particle speciesa, one may
order the expansion with respect to the relative strength
e2(ma2ma)/T ande2(ma1ma)/T. The first few terms of such a
virial expansion will be a good approximation as long as
densities and the temperature stay low. As the densities
the temperature grow so that the minimum ofuma6mau is no
longer small compared to the temperature, we lose contro
the approximation because, potentially, an infinite numbe
terms in the expansion become important.

The diagrams that provide the thermal contributions to
retarded self-energy,ST

Ret, can be separated into thre
groups, as depicted in Fig. 2. Group~a! contains no cut,
group~b! contains cuts that do not separate the two exter

FIG. 2. Diagrams that contribute to the self-energy. The up
row is illustrated in more detail in the lower row.
3-6
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vertices, and group~c! contains cuts that do separate the tw
external vertices.

Consider first the diagrams depicted in Fig. 2~a!. The dia-
grams in this group are solely made of the uncut propag
Gz( l )5Gz

0( l )1Gz( l ), whereGz
0( l ) is the zero temperatur

Feynman propagator andGz( l ) is the thermal phase spac
factor. When the expansion in the number ofGz is made, the
coefficients are obviously the zero temperature Feynman
grams whose external momenta are supplied by the s
energy momentum and the thermal particle momenta fr
the Gz’s. That is, the coefficients correspond to matrix e
ments of the scattering operatorT, with the S-matrix given
by S511 iT. Hence, the expansion of the first group of t
diagrams can be written as

ST
~a!~k!52 (

n>2,s

1

S$ l i
s%
E )

i 51

n21

dG i
s

3^k,$ l i
s %uT uk,$ l i

s %&conn

1~disconnected diagrams!, ~41!

where

dG i
s[

d3l i

~2p!32Ei
nz i

~Ei2sm i !, ~42!

with Ei5Al i
21mi

2 ands511 for a particle and21 for an
antiparticle. In Eq.~41! the symmetry factor is denoted b
S$ l i

s% ; this will be discussed in the following subsection.

Next consider the diagrams of Fig. 2~b! shown schemati-
cally in the upper row and in more detail in the lower ro
To express these diagrams in terms of the scattering oper
we define an operatorTk such that

^k,$ l i
s%uTku$pi%&

[^k,$ l i
s %uT u$pi%&

2@disconnected parts involvingd~k2pi !#

and

^$pi%uTkuk,$ l i
s %&

[^$pi%uT uk,$ l i
s%&

2@disconnected parts involvingd~k2pi !#. ~43!

We also define

Dk[T2Tk . ~44!

The coefficients originating from expanding a cut diagram
this second group must also contain a cut with the sa
restriction that the two external vertices should always be
the unshaded region. Hence, the coefficient functions are
zero temperature Cutkosky diagrams with the same res
tion. We know that the zero temperature Cutkosky diagra
represent matrix element ofT †T. Hence, the expansion o
this group of diagrams must be
04501
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ST
~b!~k!5 i (

n>2,s

1

S$ l i
s%
E )

i 51

n21

dG i
s

3(
$pj %

^$ l i
s %uT †u$pj%&^k,$pj%uT uk,$ l i

s %&uconn

1~disconnected diagrams!

5 i (
n>2,s

1

S$ l i
s %
E )

i 51

n21

dG i
s^k,$ l i

s %uDk
†Tkuk,$ l i

s %&uconn

1~disconnected diagrams!. ~45!

The third group of diagrams contain a cut that separa
the external vertices as shown in Fig. 2~c!. Noting that the
external frequencyk flows out of the unshaded region an
the cut-line frequencies flow into the shaded region, we
write

ST
~c!~k!5 i (

n>2,s

1

S$ l i
s %
E )

i 51

n21

dG i
s

3 (
$pj %

^$ l i
s %uT †uk,$pj%&^k,$pj%uT u$ l i

s %&uconn

1~disconnected diagrams!

5 i (
n>2,s

1

S$ l i
s %
E )

i 51

n21

dG i
s^k,$ l i

s %uDk
†Dkuk,$ l i

s %&uconn

1~disconnected diagrams!. ~46!

Ignoring the disconnected diagrams which will later
shown to cancel, the three contributions yield

ST
Ret~k!5ST

~a!~k!1ST
~b!~k!1ST

~c!~k!

52 (
n>2,s

1

S$ l i
s %
E )

i 51

n21

dG i
s

3^k,$ l i
s %u~T2 iDk

†T !uk,$ l i
s %&conn

52 (
n>2,s

1

S$ l i
s %
E )

i 51

n21

dG i
s

3^k,$ l i
s %uT k

†Suk,$ l i
s %&conn, ~47!

using ^k,$ l i
s %uTk uk,$ l i

s %&conn5^k,$ l i
s %uT uk,$ l i

s %&conn, Eq.
~44! and the identityT5T †S5T †(11 iT ).

We can now show that Eq.~1! is the lowest order approxi
mation of the expansion~47!. Without self-energy insertions
the matrix element̂k,l uDk

†T uk,l &conn vanishesprovidedthat
the momentuml represents a stable particle which cann
decay atT50. The lightest particle in a theory is certain
stable. Hence, Eq.~1! holds at the lowest order in the densi
expansion.
3-7
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To check the consistency of Eq.~47!, consider the imagi-
nary part,

Im ST
Ret~k!52

1

2 (
n>2,s

1

S$ l i
s %

3E )
i 51

n21

dG i
s^k,$ l i

s%u~T k
†Tk2Dk

†Dk!

3uk,$ l i
s %&conn. ~48!

Here we used the unitarity condition ImT5 1
2T †T to get Eq.

~48! from the second line of Eq.~47!. The cut diagrams
leading to expression~48! must contain cuts that separate t
two external vertices. Also the diagrams corresponding
T k

†Tk must have the external momentumk entering the un-
shaded region, while those corresponding toDk

†Dk must have
the external momentumk exiting the unshaded region. I
Ref. @16# it is shown that these cut diagrams are exactly
diagrams that gives the spectral density of the 2-point co
lation function. The retarded self-energy is the negative o
2-point retarded correlation function with a real spectral d
sity ~see Appendix A!. This implies that

Im SRet~k!52
1

2
xS~k!, ~49!

wherexS(v) is the spectral density for the self-energy. Th
is consistent with Eq.~48!.

Equation~47! can quickly be used to make contact wi
the thermal (T.0) part of the thermodynamic grand pote
tial; for a more rigorous discussion see Appendix D. W
need to close off the diagrams of Fig. 2 by including a pro
gator for the external linek. The zero temperature part wi
give a contribution that can be included in the scatter
matrices, while the finite temperature part gives an additio
dG integration and the symmetry factor must be approp
ately adjusted. We note that in Eq.~47! T k

†S
5T k

†(m50
` ( iT †)m. When the propagator fork is included,

T k
† is no longer distinguished fromT †, but we must include

a factor of (m11)21 in the sum in order to avoid multiple
counting. Thus we have2 i (m50

` ( iT †)m11/(m11)5 i ln(1
2iT †). Thus the thermal part of the grand potential can
written

VT

V
52 i (

n>2,s

1

S$ l i
s%
E )

i 51

n

dG i
s

3^$ l i
s %u ln~12 iT †!u$ l i

s%&conn

5 i (
n>2,s

1

S$ l i
s%
E )

i 51

n

dG i
s

3^$ l i
s%u ln~11 iT!u$ l i

s%&conn, ~50!

whereV denotes the volume of the system and in the l
step we have used the reality ofV. We have also assume
that the physical mass of the particles is used in the pro
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gators so that diagrams with a single thermal weighting
superfluous. Equation~50! agrees with Norton’s version@27#
of the expression originally given by Dashen, Ma, and Be
stein @25#.

A. Symmetry factors

There are two issues involving the symmetry factor,S$ l i
s% ,

arising in the equations above. One involves the symme
factor due to the self-interaction. For instance, the two-lo
diagram in alf4 theory shown in Fig. 3 has the symmet
factor ofS2-loop53! since the three internal lines are equiv
lent to each other. Our density expansion inevitably redu
the symmetry of this diagram. One needs to show that
expansion in the number ofGz automatically generates th
symmetry factor associated with the reduced symmetry
such cases. The second issue involves identical partic
When there arem identical particles in the final state, th
m-body phase-space includes a factor of 1/m!. Our expan-
sion must also automatically account for this factor.

To see that the symmetry factors are correctly genera
we label each line in a diagram byl a and each vertex byta
and regard them as distinguishable. The symmetry grouG
of a given Feynman diagram then represents the perm
tions of the internal lines and the vertices that does
change the shape of the diagram@28#. The orderqG of this
group is the symmetry factor for the diagram. For examp
the symmetry group of the two-loop diagram in Fig. 3 is t
full permutation group of the three identical lines. Henc
S2-loop5qG53!.

Consider a cut diagram for the self-energy. The dens
expansion essentially amounts to the sum of all poss
ways of mixing the zero-temperature propagators and
thermal phase space factors without totally disconnecting
diagram. In such ‘‘divided diagrams’’ the lines and the ve
tices in the original diagram are apportioned into the therm
part ~which solely consists ofGz’s! and the zero-temperatur
part.

In general this partitioning will reduce the symmet
group of the original groupG to a subgroupS. The reduced
symmetry groupS is then a product group consisting of th
symmetry groupsSz and St of the two parts. Here the sub
script ‘‘z’’ represents the zero-temperature part, and the s
script ‘‘t’’ represents the thermal part. In other words th
symmetry group is now

S5Sz^ St . ~51!

The order of this product group is of courseqS5qz3qt ,
whereqz and qt are the order of the subgroupsSz and St ,
respectively. We must show that the density expansion a

FIG. 3. A 2-loop diagram in scalarlf4 theory.
3-8
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matically generates the symmetry factorqS5qz3qt associ-
ated with the reduced diagram.

It is well known in group theory thatthe order of a sub-
group is a factor of the order of the full group@29#. That is,
qG /qS5r is an integer. We would like to show that there a
exactlyr different partitions of the original lines and vertice
that result in the same divided diagram. Then we show
the correct symmetry factor is produced for each individ
diagram in our expansion.

To see how it works out, suppose the symmetry groupG
of the original diagram is of orderqG , and when divided into
zero-temperature and thermal parts, the symmetry group
duces to a subgroupS of orderqS . Consider the right coset

G/S5$Sg1 ,Sg2 ,¯ ,SgqG
%, ~52!

where eachgiPG is a permutation acting on the intern
vertices and the lines that do not change the shape of
original diagram. Since the identity must be an element oG
and theSgi ’s are either identical or disjoint, we can rewrit

G/S5$S1 ,S2 ,¯ ,Sr%, ~53!

where S15S, the Si ’s are all disjoint, eachSi has qS ele-
ments, andr 5qG /qS @29#.

Operating withsiPS1 on the diagram does not change t
partition of the lines and vertices sinceS15S is the symme-
try group of the divided diagram. However, the otherSi ’s
must contain at least one element that corresponds to a
ferent partition. Then there existhi ’s such thathiPG and

Si5Shi5$hi ,s2hi ,s3hi ,¯ ,sqS
hi%. ~54!

Here,siPS, s15I , andh15I . SinceSi and Sj are disjoint
for iÞ j , we havehiÞhj . The number ofhi ’s is then equal
to r 5qG /qS . Also each element ofSi is related tohi by an
element ofS. This implies that all elements inSi correspond
to the same partition of the lines and vertices. Hence the t
number of inequivalent partitions of the internal lines a
vertices is exactly the same as the number ofhi ’s. Conse-
quently, when our density expansion is made, the coeffic
of a divided diagram isr /qG51/(qz3qt). Thus the symme-
try factor associated with the symmetry of the divided d
gram is always correctly produced by the density expans

As a simple example, consider the 2-loop diagram sho
in Fig. 3. If one of the lines is opened out so that it carrie
thermal phase space factor as shown in the first of Fig. 4,
symmetry group is reduced to the permutation of the t
remaining lines so that the overall factor becomes 1/
Originally, qG53!, and nowqS52!. The ratioqG /qS53 of
course corresponds to the three choices we can make w
selecting a line to open out.

FIG. 4. Density expansion of the 2-loop diagram in Fig. 3. T
dot at the end of a line denotes that the line corresponds to a the
particle.
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If two lines from the diagram in Fig. 3 are opened out a
carry thermal weightings, we produce the second diagram
Fig. 4. The symmetry group of the reduced diagram is
trivial identity. Hence, the symmetry factor associated w
the reduced diagram is 1. However, since there are o
3C253 choices of picking a pair of lines, the overall fact
for the second diagram in Fig. 4 is only 3/3!51/2!. This is
as it should be because the thermal lines have a reflec
symmetry.

To make the connection between opened-up self-ene
diagrams, such as those in Fig. 4, and theT-matrices label
the latter with 2k’s, m initial momentapi andm final mo-
mentaqi . Eventually, we identifypi5qi and integrate over
the thermal phase-space of allpi ’s to make the contribution
to the self-energy. Suppose that allpi and qi belong to the
same species. Then the matrix elements

T ~k,p1 ,...,pm ;k,q1 ,...,qm!

and

T ~k,ps1
,...,psm

;k,qs1
,...,qsm

!,

wheres is one of them! permutation of$1,...,m%, corre-
spond to the same self-energy diagram when thepi ’s are
integrated over the thermal phase space.

Even though there arem! such permutations, the numbe
of distinctT(k,$p%;k,$q%) need not equalm!. For some per-
mutations, the above two expressions may not only give
same contribution to the self-energy, but actually be
same even before the integration. If we reconnect thepi ver-
tices with theqi vertices, the resulting diagram is a se
energy diagram. Hence the number of permutations giv
rise to the sameT must be equal to the orderqt of the sym-
metry group St of the reconnected part of the diagram
Hence, the coefficient of this reconnected diagram is giv
by m!/(qt3qz) whereqz is the symmetry factor associate
with the T.

Comparing this with 1/(qt3qz) which we had for the
opened-up self-energy diagram, we see that a diagram
erated from the self-energy is smaller by a factor ofm! than
an actual scattering amplitude diagram. The generalizatio
the many species case is immediate. Thus if each par
speciesi hasmi external thermally-weighted lines, the ove
all factor for the opened-up self-energy diagram is 1/S$ l i

s%

51/P imi !.

B. Disconnected parts

Suppose that, when the internal lines are opened out
given thermal weightingsGz , we get a disconnected piec
containing at least one internal vertex. As long as this d
connected piece does not contain the largest time vertex
cuts for this diagram, including the case with no cuts at
are possible with the rest of the original diagram being k
common. For the isolated subdiagram, this situation co
sponds to having all the frequency denominators in Eq.~28!
and summing over all time orderings. Consequently, the
contribution of such a disconnected part vanishes. In

al
3-9
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real-time method this cancellation is referred to as the v
ishing of the sum of all circlings@9#.

For an elementary example, consider the sum of all
and uncut propagators depicted in Fig. 5. The sum is

~2 i !2Gz~k!1~ i !2Gz* ~k!1~2 i !~ i !Dz
2~k!

1~ i !~2 i !Dz
1~k!50, ~55!

where all the propagators are zero-temperature ones. F
the structure of the propagators~35!–~38!, it is clear that the
sum is always zero.

C. Self-energy insertions

For simplicity we only consider scalar particles without
chemical potential. The argument presented here can be
eralized immediately to other cases. Self-energy inserti
are potentially hazardous when the propagators have pol
all four k056Ek6 i e. This is the case for us due to th
addition of the thermal phase space factor to the usual z
temperature propagators@c.f. Eqs.~35!–~38!#. The product of
any two propagators with the same argument then cont
pinching poles.

To show that in fact the pinching pole contributions
cancel, consider the diagrams shown in Fig. 6. They di
only in the manner of cutting. Representing the blobs in
first and third diagrams byC(k) andL(k), respectively, the
sum of the four diagrams can be written

F~k!5GB~k!C~k!GB~k!

1DB
2~k!C* ~k!DB

1~k!2DB
2~k!L~k!GB~k!

2GB~k!L~2k!DB
1~k!. ~56!

Extracting the coefficient of the pinching poles 2(k22m2

1 i e)21(k22m22 i e)21, we find

Fpinch~k!5nB~k0!NB~k0!@C~k!1C* ~k!#2nB~k0!

3@1/21nB~k0!#L~k!

2NB~k0!@1/21nB~k0!#L~2k!. ~57!

If Fpinch(k) were non-zero, a self-energy insertion wou
cause an uncontrollable divergence. Fortunately,Fpinch(k)
does vanish due to the following properties ofC(k) and
L(k) @9,11,12,20#:

FIG. 5. Cancelling propagators.

FIG. 6. Schematic depiction of the possible ways to cut a s
energy insertion diagram.
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C~k!1C* ~k!5L~k!1L~2k! ~58!

and

L~2k!5e2k0bL~k!. ~59!

The first identity~58! is the finite temperature version of th
optical theorem. The second identity can be easily obtai
by usingDB

1(k)5ek0bDB
2(k). Therefore, pinching poles do

not occur in self-energies insertions.
The absence of pinching poles has two important con

quences. First, self-energy insertions do not cause uncon
lable divergences due to the cancellation between cut
uncut self-energies. Second,the propagators connected to
self-energy do not produce thermal phase-space fact.
Without this second point it would not be possible to ident
the coefficients of the expansion in theGz factors with the
scattering amplitudes.

D. Polarization factors and the overall sign

To convert a Feynman diagram to a scattering amplitu
one needs the polarization factors for the external lines.
an external gauge boson line, a polarization vectorem(p,s)
orthogonal to the incoming momentump is needed. This is
provided by the substitution

gmn→2 (
s51,2

em~p,s!en* ~p,s! ~60!

inside a Feynman diagram; this is valid due to the Wa
identity. In the Feynman gauge, the gauge boson phase s
factor is proportional to the metricgmn which then provides
appropriateem’s.

For fermions, each incoming fermion~anti-fermion! line
requires a factor of the Dirac spinorus(p) @ v̄s(p)#, and each
outgoing fermion ~anti-fermion! line requires a factor of
ūs(p) @vs(p)#. For the external line corresponding to th
self-energy momentum, one can use the Dirac spinor iden

15
1

2mF
(

s
„us~k!ūs~k!2vs~k!v̄s~k!…, ~61!

where the spinors are normalized according to Peskin
Schroeder@24#. This yields

SF~k!51SF~k!15
1

4mF
2 (

s
$us~k!

3@ ūs~k!SF~k!us~k!#ūs~k!

1vs~k!@ v̄s~k!SF~k!vs~k!#v̄s~k!%. ~62!

The factorūs(k)SF(k)us(k)/(2mF) then has a multiple scat
tering expansion in terms of spin up-up and down-down sc
tering amplitudes involving the particles, while the fact

v̄s(k)SF(k)vs(k)/(2mF) has a multiple scattering expan
sion in terms of spin up-up and down-down scattering a
plitudes involving the anti-particles. The mixed term va

f-
3-10



e

e
n

. T
rg

se

io
nifi

e

ns
tly

ra
fe
o

ed

-
l
er-
a

ted

re,

es,
it is

the

up
e is

ion

re-
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ishes since ū(k)g0v(k)5 v̄(k)g0u(k)5ū(k)kmgmv(k)
5 v̄(k)kmgmu(k)50, and the self-energy, as well as th
spectral density, must have the structure

SF~k!5A~T,k!gmkm2B~T,k!mF1C~T,k!g0 ~63!

at finite temperature.
As an example, consider the nucleon self-energy in a th

mal pion medium. Considering only the strong interactio
we can regard both the pions and the nucleons as stable
up-up component of the lowest order nucleon self-ene
can then be expressed as

ST
11~k![

ū1~k!ST~k!u1~k!

2mN

52
1

2mN
(

a
E d3l p

~2p!32Ep
nB~Ep!

3TNpa→Npa

11 ~k1 l p→k1 l p!

522p(
a
E d3l p

~2p!3Ep
nB~Ep!

3
As

mN
f Npa

11 ~k,l p!, ~64!

whereTNpa→Npa

11 (k1 l p→k1 l p) is the sum of all scattering

amplitudes including the cross terms. In the last line we u
T58pAs f. This expression differs by a factor ofAs/mN
from that given by Eletskii and Ioffe@30#. At low tempera-
ture (T!mN) and in the nucleon rest frame, their express
may be justified because the pion thermal energy is insig
cant compared to the nucleon rest mass.

For internal fermion lines which are opened up and giv
thermal weightings we use the relation

~kmgm1mF!2pd~k0
22Ek

2!

5~k1
m gm1mF!

2p

2Ek
d~k02Ek!

2~k2
m gm2mF!

2p

2Ek
d~k01Ek!

5(
s

us~k1!ūs~k1!
2p

2Ek
d~k02Ek!

2(
s

vs~k2!v̄s~k2!
2p

2Ek
d~k01Ek!, ~65!

wherek65(Ek ,6k). Hence for both spin-1 gauge boso
and spin-12 fermions the polarization factors are all correc
accounted for.

When fermions are involved, our expansion must gene
the correct overall sign of a diagram. The presence of a
mion loop in a diagram carries an additional overall factor
(21). When the fermion loop is broken this sign is carri
04501
r-
,
he
y

d

n
-

n

te
r-
f

by the thermal phase space factor,GF rather than the scatter
ing amplitude. Thevv̄ part of Eq.~65! carries an additiona
(21) due to the exchange of the fermion legs. When a f
mion line which is not a part of a fermion loop carries
thermal phase space factor, theuū term corresponds to a
crossed diagram and the required factor of (21) is provided
by GF . Hence, the overall signs are also correctly accoun
for in our expansion.

IV. ELECTRON SELF-ENERGY

As an example of applying the method developed he
consider the electron self-energy at temperaturesT!me ob-
tained from the diagram of Fig. 7. At these low temperatur
we can neglect the electron thermal correction because
suppressed by a factor ofe2bme. The self-energy written
down for the nucleon~64! is valid for the electron if the pion
is changed to a photon with the summation referring to
photon polarization:

ST
11~p!52

1

2me
(

s51,2
E d3k

~2p!32uku
nB~ uku!

3 T eg→eg
11 ~p1k→p1k!. ~66!

After the photon polarization summation, the spin up-
component of the tree-level Compton scattering amplitud
given by ~e.g., Ref.@24#!

T eg→eg
11 ~p1k→p1k!5e2ū1~p!Fgmk/gm12p”

2p•k1 i e

1
2gmk/gm12p”

22p•k1 i e
Gu1~p!.

~67!

In the electron rest frame, this reduces to

T eg→eg
11 ~p1k→p1k!524e2F11

2me
2e i

4me
2uku21e2G .

~68!

The real part in the rest frame is then

Re ST
11~me!5

2e2

me
E d3k

~2p!32uku
nB~ uku!

5
e2T2

12me
5

paT2

3me
. ~69!

The result, of course, coincides with a previous calculat
by Barton@4# who derived Eq.~66! for electrons to ordera.
It also agrees with a previous calculation in Ref.@31#.

FIG. 7. The one-loop electron self-energy. The curly line rep
sents the photon.
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The imaginary part is

Im ST
11~me!5 lim

e→0
4e2meeE d3k

~2p!32uku

3
nB~ uku!

~4me
2uku21e2!

5
e2T

4p
5aT. ~70!

This agrees with the leading term given by Henninget al.
@32#.

V. CONCLUSION

In this paper, the multiple scattering expansion of t
thermal correction to the retarded self-energy is presen
starting from the imaginary-time formalism. The leading o
der term of this expansion corresponds to the often used
that the thermal correction to the self-energy is the ther
phase-space times the scattering amplitude. Although
formal expansion can be always made, we have argued
the expansion is useful only if the minimum ofuma6mau is
large compared to the temperature. We have also dem
strated the connection between the self-energy and the
mal part of the grand potential.

The result presented here may be used in two ways.
is to use existing calculations of scattering amplitudes
calculate the self-energy. In this way, the considerable ef
usually needed to evaluate thermal correlation functions
be much reduced. The other way is simply to use experim
tal scattering amplitudes to calculate the self-energy. For
teractions involving large coupling constants, this may be
only reliable way to calculate the thermal correction to t
self-energy.

The reliable calculation of medium effects is important
analyzing data from heavy-ion collision experiments. For
stance, how ther-meson behaves in-medium can greatly
fluence the dilepton spectrum in heavy ion collisions@1,33#.
The in-medium effect becomes even more important in
ture BNL RHIC ~Relativistic Heavy Ion Collider! experi-
ments. The main goal of RHIC is to find the quark-glu
plasma. Hence, it is crucial to understand the hadronic
of the in-medium finite-temperature effect so as to sepa
this signal from that of the long-sought quark-gluon plasm
Even though a full theory of hadron scattering is lackin
there is a considerable amount of data on scattering cr
sections accumulated in the past decades. Utilizing th
data we may at least phenomenologically separate a t
hadronic effect from the effect of a new state of matter.
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APPENDIX A: EUCLIDEAN PROPAGATORS

1. Bosonic propagator with chemical potential

When the chemical potential is non-zero, we must at le
deal with a complex field. The effective Hamiltonian is

K̂[Ĥ2(
a

maQ̂a . ~A1!

For notational convenience we suppress spatial indice
this section.

The spectral density for the propagator is defined to
@15#

rB~v!5E dt eivt^@f~ t !,f†#&

5(
m,n

E dteivt~e2bKmeit ~Km2Kn!fmnfnm
†

2e2bKnfnm
† eit ~Km2Kn!fmn!

5(
m,n

2pd~v1Km2Kn!~e2bKm2e2bKn!fmnfnm
†

5~12e2bv!(
m,n

2pd~v1Km2Kn!fmnfnm
† e2bKm.

~A2!

The Euclidean propagator is given by

GB~t!5^Tf~t!f†~0!&

5u~t!Tr~e2bK̂etK̂fe2tK̂f†!

1u~2t!Tr~e2bK̂f†etK̂fe2tK̂!

5E dv

2p
„e2vt@11nB~v!#rB~v!u~t!

1e2vtnB~v!rB~v!u~2t!…

5E dv

2p
@11nB~v!#„e2vtrB

1~v!u~t!

1evtrB
2~v!u~2t!…, ~A3!

where we used

nB~2v!52@11nB~v!#, ~A4!

and defined

rB
1~v![rB~v!; rB

2~v![2rB~2v!. ~A5!

To find rB
1(v), use@15#
3-12
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GB~ inB ,k!5
1

Ek
22~ inB1m!25E dv

2p

rB
1~v,k!

v2 inB
,

~A6!

with Ek5Ak21m2, and take the discontinuity across the re
axis to get

rB
1~v,k!5sgn~v1m!2pd@~v1m!22Ek

2# ~A7!

and

rB
2~v,k!52rB

1~2v,k!5sgn~v2m!2pd@~v2m!22Ek
2#.

~A8!

2. Fermionic propagators with chemical potential

The spectral density for the fermion propagator is defin
to be

rF~v!5E dteivt^$c~ t !,c̄%&

5(
m,n

2pd~v1Km2Kn!

3~e2bKm1e2bKn!cmnc̄nm

5~11e2bv!(
m,n

2pd~v1Km

2Kn!cmnc̄nme2bKm, ~A9!

where the brace denotes an anticommutator and we use
fact that matrix elements such ascmn are c-numbers.

The Euclidean propagator is given by

GF~t!5^Tc~t!c̄~0!&

5u~t!Tr~e2bK̂etK̂ce2tK̂c̄ !

2u~2t!Tr~e2bK̂c̄etK̂ce2tK̂!

5E dv

2p
„e2vt@12nF~v!#rF

1~v!u~t!

2e2vtnF~v!rF
1~v!u~2t!…

5E dv

2p
@12nF~v!#@e2vtrF

1~v!u~t!

1evtrF
2~v!u~2t!#, ~A10!

where the change of variablev→2v was made for the
second term and we used

nF~2v!5
1

e2vb11
512nF~v!. ~A11!

Also, we defined
04501
l

d

the

rF
1~v![rF~v!; rF

2~v![2rF~2v!. ~A12!

Hence, for both bosons and fermions we have

Gz~t!5E dv

2p
Nz~v!@e2vtrz

1~v!u~t!

1evtrz
2~v!u~2t!#, ~A13!

with

rz
1~v!52rz

2~2v!, ~A14!

and

Nz~v!511~21!znz~v!5u~v!1~21!zsgn~v!nz~ uvu!,
~A15!

where

~21!B[1 and ~21!F[21. ~A16!

To find rF
1(v), start from the Euclidean propagator

GF~nF ,p!5
i ~nF2 im!g02p•g1m

~nF2 im!21Ep
2 5E dv

2p

rF
1~v,k!

v2 inF
,

~A17!

with Ep5Ap21m2, and take the discontinuity across th
real axis to get

rF
1~v,p!5@~v1m!g02p•g1m#

3sgn~v1m!2pd@~v1m!22Ep
2#. ~A18!

APPENDIX B: REAL TIME PROPAGATORS

For both bosons and fermions the real time version of
~A13! is

Gz~ t !5E dv

2p
Nz~v!@e2 ivtrz

1~v!u~ t !

1eivtrz
2~v!u~2t !#. ~B1!

The Fourier transform yields the momentum space propa
tor

Gz~k!5E dv

2p
Nz~v!S E

0

`

dteik0t2ete2 ivtrz
1~v!

1E
2`

0

dteik0t1eteivtrz
2~v! D

5E dv

2p
@u~v!1~21!zsgn~v!nz~ uvu!#

3S rz
1~v!

e1 i ~v2k0!
1

rz
2~v!

e1 i ~v1k0!
D , ~B2!

using Eq.~A15!. The propagator has two terms. The fir
corresponds to the zero temperature case
3-13
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Gz
0~k!5E dv

2p
u~v!S rz

1~v!

e1 i ~v2k0!
1

rz
2~v!

e1 i ~v1k0!
D ,

~B3!

which yields the standard Minkowski propagators given
the text. The second term corresponds to the finite temp
ture phase space factor

Gz~k!5~21!zE dv

2p
sgn~v!nz~ uvu!

3S rz
1~v!

e1 i ~v2k0!
1

rz
2~v!

e1 i ~v1k0!
D

5~21!zsgn~k0!nz~ uk0u!rz
1~k!, ~B4!

where we usedrz
2(v)52rz

1(2v).
Cut propagators can also be decomposed into zero

non-zero temperature parts. The cut propagator for a par
is

Dz
1~k![Nz~k0!rz

1~k!5u~k0!rz
1~k!1~21!z

3sgn~k0!nz~ uk0u!rz
1~k!. ~B5!

Letting the momentum and frequency follow the charge,
get the cut propagator for an anti-particleNz(k

0)rz
2(k)

→Nz(2k0)rz
2(2k) which is

Dz
2~k![Nz~2k0!rz

2~2k!

5~21!znz~k0!rz
1~k!

52u~2k0!rz
1~k!1~21!z

3sgn~k0!nz~ uk0u!rz
1~k!, ~B6!

using
04501
a-

nd
le

e

nz~k0!52~21!zu~2k0!1sgn~k0!nz~ uk0u!. ~B7!

We also note thatDz
1(k)5(21)zebk0Dz

2(k).

APPENDIX C: DERIVATIVE COUPLINGS

For the time derivative of the propagator in Eq.~A13! we
have

]

]t
Gz~t,k!5E dv

2p
Nz~v!@2vrz

1~v,k!e2vtu~t!

1vrz
2~v,k!evtu~2t!#1E dv

2p
Nz~v!

3@rz
1~v,k!2rz

2~v,k!#d~t!

5E dv

2p
Nz~v!@2vrz

1~v,k!e2vtu~t!

1vrz
2~v,k!evtu~2t!#

1E dv

2p
rz

1~v,k!d~t!. ~C1!

Thus the spectral density for the time derivative of the pro
gator is2vrz

1(v,k) and there is also ad~t! term. The latter
vanishes for bosons since*dvrB

1(v,k)50. In general, we
can say

]t
r Gz~t,k!5G̃j~t,k!1(

l 50

r 21

d~ l !~t !Fl~k!, ~C2!

where the labelj includes bothz and the number of deriva
tives r so thatG̃j has the spectral density (2v) rrz

1 . In the
second term of~C2! d ( l )(t)5]t

l d(t) and the sum does no
contribute for r 50. Then, after all thed-functions in Eq.
~C2! are integrated over, we have
CN11
~G! ~$ql ,in l%!5E

0

b

)
i 50

V

dt i expS i(
l 50

N

n lt l D E )
LPG

d3kL

~2p!3 A0~$ka%! )
aPG

G̃ja
~ta

a2tb
a!

1(
r
E

0

b

)
iÞr

V

dt i expS i(
lÞr

N

n̄ lt l D E )
LPG

d3kL

~2p!3 A1~$ka ,in r%! )
aPG8

G̃ja
~ta

a2tb
a!

1(
q,r

E
0

b

)
iÞr ,q

V

dt i expS i (
lÞr ,q

N

n% lt l D E )
LPG

d3kL

~2p!3 A2~$ka ,in r ,inq%! )
aPG9

G̃ja
~ta

a2tb
a!1¯ ,

~C3!
3-14
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where inG8 a pair of vertices refer to the same time, inG9
two pairs of vertices refer to the same times, and so on.
bars over then l indicates that some of them are now com
nations of the originaln l ’s.

If a total of n derivatives is contained in the expressi
for the diagramG, then performing the time integrals w
have

CN11
~G! ~$ql ,in l%!5(

r 50

n

(
Gs

r
,Gr

C
N11
~Gs

r
!
~$ql ,in l%!, ~C4!

where

C
N11
~Gs

r
!
~$ql ,in l%!

5E )
LPG

d3kL

~2p!3 )
aPGr

S E dva

2p
Nza

~va!rja

ss~ka! D
3Ar~$ka%,$ in l%! )

intervals
V2r> j >1

~L j
s2 in j

s!21. ~C5!

We know that in theb→` limit, the frequency denomina
tors we get from Eq.~C5! must add up to make the Wic
rotated] t

rGz(t). That is, the coefficientsAr must be such
that if we changeN→u, in l→ql

0, and add2 i e to L j
s in Eq.

~C5!, we get the zero temperatureN11-point function:

CN11
~G! ~$ql ,in l%!→DN11

~G! ~$ql%!5 i VE )
LPG

d4kL

~2p!4

3A~$kL%! )
aPG

Gza
~ka!, ~C6!

as in Eq.~27!. Arguments similar to those in Sec. II B can b
applied to cut diagrams so that summing the time-orde
diagrams on the unshaded side leads to the usual Feyn
rules, while for the shaded side complex conjugate Feynm
rules apply. Thus the multiple scattering expansion of
self-energy in Sec. III is also applicable when derivative co
plings are present.

APPENDIX D: THE THERMODYNAMIC POTENTIAL

Here we consider the multiple scattering expansion of
thermodynamic grand potential defined by

V

V
[2

1

bV
ln Z, ~D1!
04501
e

d
an
n

e
-

e

whereZ is the partition function andV is the volume. In the
imaginary-time formalism, the thermodynamic potential
the sum of all connected ‘‘vacuum’’ graphs. Analytic co
tinuation of such a result may at first appear to be a poo
defined concept since there are no external frequencie
start with. Nevertheless, it is possible to consider the vacu
graphs as the zero frequency limit of theN-point functions
@34# and, further, it is sufficient to considerretardedcorre-
lation functions due to the reality of the thermodynamic p
tential.

To calculateV, we regard theŵ in Eq. ~20! as ‘‘external’’
interaction vertices which will contain several fields. Th
retarded functions then consist entirely of all possible int
action vertices and there are zero external frequencies
momenta entering or leaving the diagram. Equation~23! can
then be written

RN11
~Gv!

~0!5 (
Gs,G

E )
LPG

d3kL

~2p!3

3 )
aPG

S E dva

2p
Nza

~va!rza

ss~ka! DAV11
N11

3 )
intervals

V> j >v11

~L j
s1 i e!21

3 )
intervals
v> j 8>1

~L j 8
s

2 i e!21. ~D2!

Here the fixed vertexv is arbitrarily chosen for each dia
gram. Instead of the identity~28!, we use

1

L j
s1 i e

5
1

L j
s2 i e

22p id~L j
s!, ~D3!

to get

FIG. 8. Diagrams for the thermodynamic potential. The dash
line indicates a cut.
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RN11
~Gv!

~0!5 (
Gs,G

E )
LPG

d3kL

~2p!3 )
aPG

S E dva

2p
Nza

~va!rza

ss~ka! DAV11
N11

3F )
intervals

V> j 8>1

~L j 8
s

2 i e!211~2 i ! (
j 5v11

V

2pd~L j
s! )

V>k>1
kÞ j

~Lk
s2 i e!21

1~2 i !2 (
j ,k5v11

V

2pd~L j
s!2pd~Lk

s! )
V> l>1
lÞ j ,k

~Lk
s2 i e!21

1...1~2 i !V2v )
intervals

V> j >v11

2pd~L j
s! )

v>k>1
~Lk

s2 i e!21G . ~D4!
a
lt
s
h

f

e
a

m
f t

t-

,

ion
In this way the denominators contain only2 i e and conse-
quently, after summing over all time orderingss, the result
can be expressed entirely in terms ofGz(k) andDz

6(k), i.e.,
the complex conjugate propagatorGz* (k) does not occur.
The price paid is the appearance of multiple cuts since e
of the d-functions in Eq.~D4! represents a cut. So the resu
of the time ordering summation will yield uncut diagram
plus those with a sequence of cuts illustrated in Fig. 8. T
blobs in these diagrams involve the propagatorsGz(k),
while the cut lines requireDz

6 according to the direction o
the momentum, as before.

Following the same procedure as before, we can now
pand the diagrams in the number of thermal phase sp
factorsGz . The contribution of the first term in Eq.~D4! to
the thermal part ofV is

VT
~1!

V
52 (

n>2,s

1

S$ l i
s%
E )

i 51

n

dG i
s^$ l i

s%uT u$ l i
s%&conn,

~D5!

where we have excluded diagrams with a single ther
weighting since we assume that the physical masses o
particles are used in the propagators. The contribution
diagrams with (m21) cuts is
n.

04501
ch

e

x-
ce

al
he
of

VT
~m!

V
52 (

n>2,s

1

S$ l i
s%
E )

i 51

n

dG i
s

3^$ l i
s%uTv~2 iT!m21u$ l i

s%&conn. ~D6!

Here Tv contains the arbitrarily-chosen fixed vertex,v. If,
however, we remove this restriction and allowv to lie in any
of theT matrices, while compensating for the multiple coun
ing, we obtain

VT
~m!

V
52 i (

n>2,s

1

S$ l i
s%
E )

i 51

n

dG i
s

1

m

3^$ l i
s%u~2 iT!mu$ l i

s%&conn. ~D7!

Summing over the number of cuts, we then have

VT

V
5 (

m51

`
VT

~m!

V
5 i (

n>2,s

1

S$ l i
s%
E )

i 51

n21

dG i
s

3^$ l i
s%u ln~11 iT!u$ l i

s%&conn. ~D8!

This is the expression given in Eq.~50! and, as we remarked
it agrees with the result Norton@27# obtained using a differ-
ent approach. This in turn is equivalent to the express
obtained long ago by Dashen, Ma, and Bernstein@25# from a
non-relativistic analysis.
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