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Multiple scattering expansion of the self-energy at finite temperature
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An often used rule that the thermal correction to the self-energy is the thermal phase-space times the forward
scattering amplitude from target particles is shown to be the leading term in an exact multiple scattering
expansion. Starting from imaginary-time finite-temperature field theory, a rigorous expansion for the retarded
self-energy is derived. The relationship to the thermodynamic potential is briefly discussed.
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[. INTRODUCTION different and modern form by many peopl6—13. The
imaginary-time method was introduced by Matsubgt4]

At a temperature much lower than the particle mass, it isind through analytic continuation can be related to the real-
physically reasonable to expect that the leading order thetime method 15]. Of course any equilibrium Green function
mal correction to the physical self-energy be given by thecan be calculated using any of the methods, given the ana-
forward scattering amplitude integrated over the thermalytic relations between them.
phase-space of the lighter particle. For instance, in the litera- There are, however, situations where one particular
ture, the thermal self-energy of a patrticle is often written asmethod is more economical. For instance, if one would like

[1-3] to study time-ordered real-time correlation functions, the
real-time method is very much the natural choice. If one
d3k would like to study a response functi¢a retarded function
ET(p):_f mn(aight) the most economical way would be to compute the
9 imaginary-time correlation function with Matsubara frequen-
X T(k+p—k+p), (1) cies and then analytically continue the result.

In this paper we are interested in the retarded correlation
whereE;ign = Vk2+ m,zitht is the energy of the lighter particle functions. We would like to use the imaginary-time method.
with massmjgn, N(Ejgn) is @ Bose or Fermi distribution However, since the imaginary time is a fictitious parameter
function, and7{k+p—k-+p) is the forward scattering am- introduced to deal with the temperature, it is not easy to gain

plitude related to the usudl by physical insight by just looking at the end result of the imagi-
nary time calculation. A way to remedy this difficulty was
Tk+p—k+ p)zsw\/g f(k,p). 2) developed by one of the present authdi§] based on earlier

works [17—19. There, a diagrammatic method to calculate

For QED, Eq(1) has been derived in Rg#] to ordera, and  the spectral density of two-point functions in a scalar theory
for QCD, Eq. (1) has been derived to study hard thermalwas presented, starting from the imaginary-time formulation
loops in Refs[5-7]. The minus sign on the right hand side of finite temperature field theory. Subsequently it was used
of Eq. (1) stems from the fact that the scattering amplitude isto calculate the leading order hydrodynamic coefficients in a
defined to be—i times anN-point correlation function scalar theory20]. In this paper the above work is extended
whereas the self-energy is defined to ibémes a 2-point to the calculation oN-point retarded functions.
correlation function. The analysis in this paper is based on the fact that apply-

A merit of this method is that one can simply take theing the analytic continuation
scattering amplitudes from experiment. In reactions involv-
ing strong couplings, this may be the only reliable way of i) KOtie 3)
calculating the thermal correction to the real part of the self-
energy[8]. As the density and temperature become higher,
Eq. (1) needs higher order corrections. In this paper, we starfo each of the independent external Matsubara frequencies
with the imaginary-time formulation of relativistic finite- produces théFourier transformedretarded correlation func-
temperature field theory and obtain an exact expression faion [13,21]. When the chemical potentials all vanish, this
the thermal self-energy. operation produces the physical retarded function. However,

There are a variety of finite-temperature field theorywith non-zero chemical potentials one must be more careful.
methods used in literature. The real-time method was first |n the imaginary-time formalism, finite density is dealt
investigated by Schwinger and Keldysh and later in a slightlywith by using an effective Hamiltonian
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wherew, is the chemical potential associated with each con- A. Euclidean correlation functions

served charg®, . Hence, the retarded function produced by It is known that performing Matsubara frequency sums in
using Eq.(3) corresponds to the retarded correlation functionan Euclidean Feynman diagram produces terms correspond-
of pr(t)=etpe 'Kt But the physical retarded function is ing to old-fashioned time-ordered perturbation theptg].

a correlation function Ot"DH(t)Eeiﬁt;‘Defiﬁt notey(t). For-  Here, therefore, we provide conventions and definitions
tunately, there is a simple relation between the two. In mos@long with a sketch of a proof, but not the details. A detailed

cases the fields of interest are charge eigenstates. Then derivation for a relativistic case can be found in R&6] and
a non-relativistic version can be found in REE7].

The standard Feynman rules use the momentum space
- A Feynman propagator. For our purposes, it is more convenient
er(t) =€ eloy(t), ®)  to use mixed propagators which are functions of time and
spatial momentum. As shown in Appendix A, the mixed
propagator for both bosons and fermions can be represented
where by

= d
o™ 2 tal © Gk~ [ G Netw) [ p} (K)0(7)

is the total chemical potential associated with the field +e%p (K)O(—1)]. ®
carrying conserved charggg. In momentum space, the two
retarded functions are related [32]
Here w=Kk°, and the spectral densities are Iabqhgdk) or
p?(w,k), as convenient. The labéldistinguishes boson or
Gfie‘({k})=G§§Y{k—u¢}>7 (7)  fermion,{B,F}. The statistical factoN,(w) is

H

Nw)=1+(—1)n/w), 9

where we used a shorthand notatidr; ,%E(ko—,u“,,k).
As is shown in Sec. Il B, this shift also has the effect of
separating the purely dynamic part of the theory and thevhere (—1)8=1 and -1)"=—1 and
purely statistical part.

This paper is organized as follows. In Sec. Il a brief deri- 1
vation is given for the diagrammatic rules to compute an ny(w)= m' (10
arbitrary retarded function. Section Il presents a derivation
of the self-energy formula using the results from Sec. Il. AsExplicit forms for the spectral densities are not of interest in
an example, the self-energy of an electron at the one-looghis section. What is important for us is that they satisfy
level is worked out in Sec. IV. Finally, we conclude in Sec.
V. Appendices A and B list some relevant facts about the pz(w,k)= —p; (—w,k) (11
finite temperature propagators used in this paper. Appendix
C deals with derivative couplings. Appendix D amplifies thedue to the periodicity or antiperiodicity &8,(7,k) in 7. A
discussion of the thermodynamic potential in Sec. Ill. few relevant facts about the spectral densities are given in
Appendices A and B.

The Feynman rules in this mixed space of imaginary-time
and momentum are almost identical to the standard momen-

In this section, as a prelude to the self-energy calculationtum space Feynman rules. The differences are: An
diagrammatic rules to calculate an arbitréypoint retarded  imaginary-timer; labels each vertex including the external
function are derived starting from imaginary-time finite tem- ones. Each line connecting two vertices labeled by the times
perature field theory. The derivation here closely follows7, andr, represents a propagaté(,— 7,,|k|) if the mo-
Ref. [16]. Details omitted for the sake of brevity and read- mentum flows fromr, to 7,. If the momentum flows from
ability can be found in that reference and references thereirr, to 7,, the line represent§ (7, — 7,,|k|). The direction
The rules derived here coincide with the rules obtained byf the momentum should follow the direction of charge flow.
Evans[13] who used the real-time method and the analyticlnstead of the sum over all loop frequencies, there are inte-
relations betweerN-point functions. For simplicity, only grations over allr;’s from O to 8. At each vertex where an
theories involving no derivative couplings are considerecexternal field operator extracts external frequengyan ad-
here. However, the argument given here can be straightfoditional factor of expi;7) is present. Hence, the contribu-
wardly generalized to theories with derivative couplings,tion of a connected Feynman diagrdmwith a total of V
such as chiral perturbation theory, as indicated in Appendix+1 vertices and\+1 external operator insertions has the
C. following schematic form:

II. N-POINT RETARDED CORRELATION FUNCTIONS

045013-2



MULTIPLE SCATTERING EXPANSION OF THE SELF. .. PHYSICAL REVIEW D 58 045013

a3k,

cl).({q iu})=fﬁﬁ dr, exr{i% w) H ANTL
N+1 [ELRd| 0iZ0 i = 17 (2 )3 V+1

<11

ael

Jwo)[e” T p s (Ky) O(7a— 1) + €% (Ky) O(7p— 7). (12

Here the independent spatial loop momenta are denoted by Comparing Eq(14) and Eq.(12) one sees that one should
k., and the quantit)A\'ﬁ} includes all the factors from in- keep all factors oN,(w,) since
teraction vertices such as coupling constagtatrices, and

symmetry factors. We suppress Lorentz indices, if there are lim Nfw,)=60(w,). 17
any, since they are not relevant for the moment. A given line B—ee

in the Feynman diagram running between vertices acting at

times 7, and ,, is denoted bya. Then for Eq.(14) to be true, there cannot be any additional

We know that as the temperature goes to zero the result dfctors of exj+ BZw;} in the finite temperature result since
the time integrations must be that of old-fashioned time-they will make the result diverge due to the fact that frequen-
ordered perturbation theory. That is, cies can be both positive and negative. The structure of the

integrand in Eq.(12) also dictates that vanishing contribu-
. r . tions such as eXp-B|=iwi|} or 1/8" cannot occur. Then the
lianmCNll({q "V'}):FUEU BI'LTL Cuadaning), only feasible non-zero temperature result is Ety) with
(13) 0(w,) replaced by\lga(wa). That is,

where o represents a given permutation of the vertices and ) .
I', represents a time-ordered diagram for that permutation Chli(faivh)= Ec:r Cya{anin), (18)
whose value is given by

: here
lim Cy.2({ariv}) "
B— (T

Cyr(danin)
d°k,
k
|_1;[r 27T)3H(f w)pg( )) f dk" deaN So(k
Lell (277)3 O(EF ﬁ {a(wa)pé’a( a)
xavis 1T (A7=iv)™. (14

| Vi . —

Winelde) xAyiiimfr[vals(A;’—w;’) L (19)
Here we omit the overall frequency-conserving Kronecker- v=i=t

The signs,={+,—} depends on both the time orderingd
the direction of the charge flow. If the charge flows in the
same direction as the time -& sign is assigned, otherwise
s,= —. If there are no conserved charges the distinction is

without significance. The prefactdty ] is the same as be- B. Retarded correlation functions

fore. The time ordering also determlnes the frequency de- The (N+ 1)-point retarded function is defined 93]
nominator A\ —iv{). Given a time ordering,, A is given

by the sum of frequencies of all lines crossing jlie inter-  R(X;{x;})

|0'

val i

again  omitting the overall frequency-conserving
Kroneckers.

N—-1

=3 o ay  —2 et et )

a
aelj

X([- - [0, 00, (Xe )] @) (X )], - - 0 (X VD)

Similarly, v{ is the net external frequency flowing out of the 20

diagram above the intervaf

wheret=x? is the fixed largest timd, runs from 1 toN, and

VFT:V2|2] vy (160 = _ indicates the sum over all possible permutation of
{t;,t,,....tn}. The operatorp can be any field in the theory.
In this limit the external frequencies are continuous. When two fermionic quantities are involved, the commutator
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becomes an anti-commutator. The angular bracket represerttme orderings are summed, this expression just reproduces
the thermal average. From here on, we always denote by the Feynman diagram expression. Hence when all the small
the vertex at fixed timé. imaginary parts are-ie, all we need to do to sum the time-

Several author$13,21] have shown that the following ordered terms is to change the zero temperature propagator
analytic continuation of the N+ 1)-point imaginary-time

correlation function leads to the retarded function: 0 do pi(w,|k))  p;(w,]k])
0= | 2 OO G0 —ie T orko—ie) @
in—q’+ie for l#v

ivv—>q8+iNe, 1) to the finite temperature one
where at vertices other than the fixed time vertethe fre- (k)sf do ( (PZ(w, k[) N PZ(w,|k|))
guencies arénjected and atv the frequency igxtractedso ¢ 2 ¢ w—k° w+kl—ie)’
that the frequency is conserved, including the small imagi- (26)
nary part:

see Appendix B. Then
O+iNe=>, (q'+ie). (22)

d k
= oltan= 2, [ 11 oo

The contribution of a Feynman diagrafhto the retarded

Lel

functionR{ +l({q|}~) (subscripty signifies thaw is the fixed ( s N+1
X “N i k A
Verte)@ is then J;[F ga(wa)pga(wall a|) V+1
Rys(aih= 2 ) G dakL x II (Af—af—ie)™?
n+ 10 ey infervals )
V=j=1
4
X k,)|ANTL i+l dke i
11 ( (ke | AV == 1 Za AL 6 (k).
x I (A7—qi+ie™? @7
intervals L. i i i
V=jzu+1 The factor—i(i)V*! comes from havingv integrals with
—ie. The phasé""* can be absorbed intal) ! by adding
x 1 (A]f’,—qu’,—ie)‘l. (23)  a factor ofi to the coupling constant at each vertex as in the

intervals usual diagram rules, e.g., see Peskin and Schrogigr

vt whose conventions we follow.
The A{" were defined in Eq(15) and the quantities|;” refer We would like to apply this argument to each of thee
to the net external frequency flowing out of the diagramparts of the product iﬁagj)l({qﬁ). In order to do so, the two
above the given interval parts must be separated from each other so that the lines
common to both parts can be regarded as external ones. This
quvgzj qI0_ (24) is achieved by using the identity
\% \%
Here we chronologically label the vertices B, - ,ty} o= Il w—-ie *- Il (uj+ie?
and the interval betweet andt;_, is thejth interval. Also, j=v+1 j=v+l
a product without a factor is defined to be 1. Note the change
in the sign of thee term when crossing theth interval. The —i > 2xsu) [I (U+ie) ™t
sign depends on whether the interval is above or below the So+1 k=141
vertex v which extractsiNe. Intervals where no external -1
frequencies flow in or out have rie to start with, but it is > H (Uj—ie)” 1 28)
not hard to make the internal frequencies slightly off the real j=v+1
axis to make a consistent assignment of the imaginary parts
[16]. Here allU;’s are real, a sum without a summand is 0 and a

We would like to express Eq23) in terms of uncut and  product without a factor is 1. This identity follows directly
cut propagators in analogous fashion to the Cutkosky apfrom 2#is(x)=(x—ie) 1= (x+ie)"l. We refer to the
proach at zero temperature. To that end, notice that if all th@nes corresponding to the interval #U,) as the cut lines.
+ie's in the frequency denominators werei e and all the Using the above identity and performing the relevant re-
N (0,) were6(w,), then the expression would be exactly summation of time ordered terms on both sides of the cut, we
that of old-fashioned real-time perturbation theory. When theobtain
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N (k%= )= 6(K®) + (— 1)¢ sgrk)n,(|K°=ul), (32)
Ry(ah=D:(ah+ 2 Ryn(ab), (29 ‘ ‘
r,cr whenk®=+E,. Consequently, the chemical potential only
appears in the statistical factors. In this way we achieve the

where separation of the statistical part and the purely dynamic part
T d*k, of the particle propagation(For a slightly different ap-
Rufydah)=—i(=i)V+(@i)¥- LHF 2" AVi proach, se¢25].)

We can now state diagrammatic rules for calculating an
arbitrary N-point retarded function with small chemical po-

x 1 [Ngc(kg)PZ(kc)] tentials (u,/<m,), see Appendix B for further details. For
cut fines convenience, we denote the thermal phase space factor for
scalar bosons by
*
R A Fa(k) =ng(K0— u)2msk—m?) (33

. L = and for spins fermions
and the sum is over the cut diagraiis. The uncut propa-

gatorG, corresponds to the lines in the sifle which con- Le(k)= —ne([K°— u|) (K#y, +m) 27 8(k2—m?). (34)
tainsv, and G’g corresponds to the lines in the other side _
T, . For the cut lines the direction of time flow fom ' Define the cut propagators for scalar particles

toI', . HereV. denotes number of vertices In. . Again,
the factors €i)V+(i)V- can be absorbed int&) {1 by in-
cluding a factor of in the contribution of each vertex in_ and for fermions,

and a factor of-i in the contribution of each vertex if, .

So far, nothing has been dependent on the presence of Af (k)= (k% 2m(k*y,+m)s(k?—m?) +Tg(K).
chemical potentials. When chemical potentials are present, (36)
Eg. (29) corresponds to the retarded function of fields
ox(t)=eKloe Kt with K=A—3,1,0,. As explained in
Sec. |, there is a simple relation between and ¢y,
er(t)=€e'*elp,(t). Hence, to convert a retarded function of Ce(k) = (e 3ie T1e(k) and
the ;\DK to the corresponding retarded function of ﬁaﬁ, all _
one has to do is to shift each external frequency frpro i -1
q-— u, if it corresponds to the particle of the species and to Gg(k)= kZ—m?—ie +Tg(k) (37
q+ u,, if it corresponds to the anti-particle. These shifts have
important simplifying consequences. Due to charge conserand for sping fermions, they are given by
vation, not only energy-momentum, but also chemical poten- _
tial has to be conserved at each vertex. Hence, shifting the G(k) = (K", +m) +T (k)

Ag(K)= 0(=k%)2m8(k>—m?)+Tg(k), (35)

For scalar particles, the uncut propagators are given by

external frequency®—q°— ., is equivalent to shiftingall K>—m’+ie and
internal frequenciet®—1°— u, according to the species
The significance of these internal frequency shifts is that . —i(k*y,+m)
they remove the chemical potential dependence from the GF(k):mJFFF(k)' (38)

spectral densities. For instance, when the chemical potential
is non-zero, the spectral density of the bosonic propagatdfor gauge bosons, set=0 in each of the scalar particle

appearing in Eq(23) is (see Appendix A propagator, and multiply byg,,) (Feynman gaugeNote
0 o 0 5 2 thatall of the cut and uncut propagators can be written as a
pe (K7)=sgn(k™+ )27 5((K"+ pu)*— Ej), 3D zero-temperature, zero-density part plus a common thermal

N ) _ 0 10 +/L0 phase space factor. Not surprisingly, the zero temperature
where B, = vk®+m®. By shifting k"—k"—u, pg(K"—=u)  parts of the propagators all coincide with the zero-

becomes independent af while the salme change will make temperature Cutkosky rule propagatpes].
the statistical factor beconmes(w— u). We call the region where the fixed vertexsits the un-
For small chemical potentials such th$_|2v>|,ug|: €Ven  gshaded region and the other half the shaded region. The rules
more simplification is possible because in that ca#d to calculate the retarded functions &)p are:
+u)=6(E) and9(—E=u)=6(—E). Then '
(1) Draw all topologically distinct cut diagrams including
totally uncut ones, keeping the largest time always on

These internal shifts also have a simplifying effect on derivative ~ the unshaded side. Disconnected pieces produced by the

couplings. The derivativg; present at an interaction vertex yields CUtti.ng are allowed. _ '
19+ 4 which becomes simpljf after the shift of internal frequen- (2) Assign momenta to the lines according to the flow of the
cies. conserved charges, if there are any.
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_——— I+p

l+p—qg—k

FIG. 1. A typical finite temperature cut diagram in a scajar =~
theory. Each cut line contributes; or Ag according to its orien-
tation. In the unshadetshadedl region, an uncut propagator con- k
tributesGg(Gg), and an interaction vertex contributes a factor of * T~k

—ig(ig). (@ (®) (c)

|

(3) Use the usual Feynman rules for the unshaded side as- FIG. 2. Diagrams that contribute to the self-energy. The upper
signingGg(k) to the uncut lines. row is illustrated in more detail in the lower row.

(4) Use the complex conjugate Feynman rules for the
shaded side assignir@’{‘(k) to the uncut lines. They ~ wherel' (k) is the thermal phase space factor common to all

matrices are not to be complex conjugated. four cut and uncut propagators, aDc@(k) is the zero tem-
(5) If the momentumk of a cut line crosses from the un- perature, zero density propagator. .
shaded region to the shaded region, asﬂigmk). Using Eq. (40 we can now expand the expr(_as_smﬂg)_
(6) If the momenturrk of a cut line crosses from the shaded for the self-energy in the number bf's. The coefficients in
region to the unshaded region, assigp(k). this expansion involvenly the zero temperature propaga-
(7) Divide by the symmetry factor if applicable. There is an tors. Hence, the coefficient function is either a zero-
overall factor of—i. temperature Feynman diagram or a zero-temperature Cutko-

sky diagram. External momenta for this coefficient function
fre provided by the self-energy momentum,and the ther-
emal particle momenta from thE,’s.

We would like to relate the coefficients of the expansion
fo the physical zero-temperature scattering amplitudes. In or-
der to do so, we need to ensure that in the expansion we
consider:

Equation(29) and the above diagrammatic rules are the mai
results of this section. As shown in Appendix C, this sam
set of rules also apply when there are derivative couplings.

As an example of applying the rules, consider a scala
theory with a—g¢? interaction in the Lagrangian. The dia-
gram shown in Fig. 1 yields the expression

(1) Symmetry factors are all correctly accounted for.

Flol s (v 4 d4  d%p dq (2) Disconnected parts cancel.
C k) =(=(=ig)(ig) f (2m® (2m)? (27)° (3) Self-energy insertions do not cause divergences.
(4) Additional polarization factors needed for the external
XAg(NAg(P)Ag()Ag(I1+p—0q) thermal particles are all correctly provided.

(5) When fermions are involved, the overall sign for an in-

_ _ _ _ *
X Gyl +p=a=k)Gp(l ~K)Ca(p~a)Ga (I +p). dividual Feynman diagram is correctly produced.

(39

o o ) We present the result of the expansion first and deal with the
Note that atT=0, the contribution of this diagram is zero ahove points later in Secs. Ill A=l C.

because the cut part then represents a process where fouryye emphasize that the formal expansion in the number of

physical particles annihilate each other into the vacuum. Al“g’s can be always made. To be useful, however, the series
non-zero temperature, this diagram gives a non-zero contrinyst be truncated. When the temperature and the density are
bution because it can also represent scattering betweggy so thatT<|m,= u,| for all particle species, one may

physical particles in the thermal medium. order the expansion with respect to the relative strengths of
e~ (Ma~#a/T gnde™(Mat#a)/T The first few terms of such a
[ll. MULTIPLE SCATTERING EXPANSION virial expansion will be a good approximation as long as the
OF THE SELF-ENERGY densities and the temperature stay low. As the densities and

) ) ) ) the temperature grow so that the minimun|of, = | is no
_In this section, we present the multiple scattering expantonger small compared to the temperature, we lose control of
sion for the therma_l contribution to the self-energy. The 'e+the approximation because, potentially, an infinite number of
tarded self-energy is, of course, a retarded 2-point functiongrms in the expansion become important.

From the previous sectiofsee also Appendix Bwe know The diagrams that provide the thermal contributions to the

that as long asn,>|u,/, all propagators satisfy retarded self-energys=®, can be separated into three

0 groups, as depicted in Fig. 2. Grogp) contains no cut,
D (k) =D (k) +T';(k) (400 group(b) contains cuts that do not separate the two external
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vertices, and groufc) contains cuts that do separate the two

external vertices. sOk)=i >, S f H dre
Consider first the diagrams depicted in Figa)2 The dia- n=20 {7}
grams in this group are solely made of the uncut propagator
G,(1)=GY1)+T (1), whereGY(l) is the zero temperature x{Z} ATHT R kAR HTIKAIT ) conn
Pj

Feynman propagator anid,(l) is the thermal phase space
factor. When the expansion in the numbedgfis made, the
coefficients are obviously the zero temperature Feynman dia-
grams whose external momenta are supplied by the self-

+ (disconnected diagrams

energ),/ momentum and th'e'thermal particle momenFa from =i Fo‘<k {1e }|AT7T<||( 17D comn
theI'/'s. That is, the coefficients correspond to matrix ele- n>20 S{|

ments of the scattering operat®y with the S-matrix given _ .

by S=1+i7. Hence, the expansion of the first group of the + (disconnected diagrams (45

diagrams can be written as ) ) )
The third group of diagrams contain a cut that separates

the external vertices as shown in FigcR Noting that the
3P k)=~ S - f H ary external frequenck flows out of the unshaded region and
”>2" U7 the cut-line frequencies flow into the shaded region, we can
(o8 ag t
XK AT HT KA} conn write
+(di ted di 41 1
(disconnected diagrams (42 E<T°)(k)=i H are
n=20 Syoy J i=i
where i
3
oo d < 2 {ITHT Ik bk AP THIT D)
dI’; =mngi(Ei_0’Mi), (42 o J J 1 J/lconn

with E;= I+ m? ando= +1 for a particle and-1 for an *(disconnected diagrams

antiparticle. In Eq.(41) the symmetry factor is denoted by

S{,icr}; this will be discussed in the following subsection. =i dF0'<k {|0}|ATA 1K, {171 conn
Next consider the diagrams of Fig(t2 shown schemati- n>2” S{l

cally in the upper row and in more detail in the lower row.

To express these diagrams in terms of the scattering operator, + (disconnected diagrams (46)

we define an operatdf, such that
Ignoring the disconnected diagrams which will later be

(KAITHZdpi}) shown to cancel, the three contributions yield
=k AT TP SR =Sk + 30+ 5P (K)
—[disconnected parts involving(k—p;)] .
and T Spey J =1
PRI X (k{17 T=TALDIKA oo
={pi} 71k AT
—[disconnected parts involving(k—p;)]. (43 = n>2{r S{I" IH dry
We also define <RATHTISKA Do (47)
A=T-T. (44)

using (K {17 HZ[k {171 coni= (KA HZTK AT F conne - EQ.
The coefficients originating from expanding a cut diagram in(44) and the identity7=7"S=7"(1+i7).

this second group must also contain a cut with the same We can now show that E@l) is the lowest order approxi-
restriction that the two external vertices should always be irmation of the eXpanSI0m7) Without self-energy insertions,
the unshaded region. Hence, the coefficient functions are tHée matrix elemengk, IIAlek ) conn Vanishesprovidedthat
zero temperature Cutkosky diagrams with the same restridhe momentum represents a stable particle which cannot
tion. We know that the zero temperature Cutkosky diagramslecay atT=0. The lightest particle in a theory is certainly
represent matrix element &f'7. Hence, the expansion of stable. Hence, Eq1) holds at the lowest order in the density
this group of diagrams must be expansion.
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To check the consistency of E@L7), consider the imagi-

nary part, /\

1
m3fi=-5 3 o

N| -

n—-1
FIG. 3. A 2-loop diagram in scalax¢* theory.
% [ T drpinlriz-alay P dag " theory
gators so that diagrams with a single thermal weighting are
XK H conn- (48) superfluous. Equatiofb0) agrees with Norton’s versigr27]
of the expression originally given by Dashen, Ma, and Bern-
Here we used the unitarity condition I#= 1777 to get Eq.  stein[25].
(48) from the second line of Eq@47). The cut diagrams
leading to expressio@8) must contain cuts that separate the A. Symmetry factors
two external vertices. Also the diagrams corresponding to i i i
TI?L must have the external momentlkrentering the un- There are two issues involving the symmetry facﬁyiq},
shaded region, while those correspondingfa , must have ~ arising in the equations above. One involves the symmetry
the external momenturk exiting the unshaded region. In factor due to the self-interaction. For instance, the two-loop
Ref.[16] it is shown that these cut diagrams are exactly thediagram in ax ¢ theory shown in Fig. 3 has the symmetry
diagrams that gives the spectral density of the 2-point correfactor of S, 50,=3! since the three internal lines are equiva-
lation function. The retarded self-energy is the negative of dent to each other. Our density expansion inevitably reduces

2-point retarded correlation function with a real spectral denthe symmetry of this diagram. One needs to show that the
sity (see Appendix A This implies that expansion in the number df, automatically generates the

symmetry factor associated with the reduced symmetry in
Re such cases. The second issue involves identical particles.
Im %7€(k) = — 2 xs(K), (49 When there aren identical particles in the final state, the
m-body phase-space includes a factor ahl/ Our expan-
whereys () is the spectral density for the self-energy. Thission must also automatically account for this factor.
is consistent with Eq(48). To see that the symmetry factors are correctly generated,
Equation(47) can quickly be used to make contact with we label each line in a diagram Iby and each vertex by,
the thermal T>0) part of the thermodynamic grand poten- and regard them as distinguishable. The symmetry g@up
tial; for a more rigorous discussion see Appendix D. Weof a given Feynman diagram then represents the permuta-
need to close off the diagrams of Fig. 2 by including a propations of the internal lines and the vertices that does not
gator for the external link. The zero temperature part will change the shape of the diagré®8]. The orderqg of this
give a contribution that can be included in the scatteringgroup is the symmetry factor for the diagram. For example,
matrices, while the finite temperature part gives an additionathe symmetry group of the two-loop diagram in Fig. 3 is the
dI’ integration and the symmetry factor must be approprifull permutation group of the three identical lines. Hence,
ately adjusted. We note that in Eq(47) TS  Ssiop=Uc=3!.
ZTIE;:O(iT’r)m_ When the propagator fdk is included, Consider a cut diagram for the self-energy. The density
T 1'is no longer distinguished fro, but we must include €xpansion essentially amounts to the sum of all possible

a factor of (n+1)~L in the sum in order to avoid multiple Ways of mixing the zero-temperature propagators and the
counting. Thus we have iS*_,(i7")™ ¥(m+1)=i In(1 thermal phase space factors without totally disconnecting the
m=0 diagram. In such “divided diagrams” the lines and the ver-

—iTT"). Thus the thermal part of the grand potential can be” ; o . . :
tices in the original diagram are apportioned into the thermal

ritten
w part(which solely consists df ,'s) and the zero-temperature
Qr 1 n part.
Vv = > S f I dry In general this partitioning will reduce the symmetry
n=20 S0y J i=1 group of the original grouis to a subgrougs. The reduced
- r - symmetry groufs is then a product group consisting of the
X ({17 Hin(1 'Tr)Hli }conn symmetry groupsS, and S; of the two parts. Here the sub-
n script “z” represents the zero-temperature part, and the sub-
= 2 1 f 1—[ dre script “t” represents the thermal part. In other words the
s S{'i"} i1 symmetry group is now
X{PHIN+IDHITH conns (50) S=595 (51)

whereV denotes the volume of the system and in the lasiThe order of this product group is of coursg=q,xq;,
step we have used the reality 8f We have also assumed whereq, andq; are the order of the subgroufss and S,
that the physical mass of the particles is used in the propaespectively. We must show that the density expansion auto-
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If two lines from the diagram in Fig. 3 are opened out and
><>< > < carry thermal weightings, we produce the second diagram in
Fig. 4. The symmetry group of the reduced diagram is the

FIG. 4. Density expansion of the 2-loop diagram in Fig. 3. Thetrjvial identity. Hence, the symmetry factor associated with
dot gtthe end of a line denotes that the line corresponds to a thermgha reduced diagram is 1. However, since there are only
particle. 3C,=3 choices of picking a pair of lines, the overall factor

for the second diagram in Fig. 4 is only 3/31L/2!. This is
matically generates the symmetry factpy=q,Xd; associ- as it should be because the thermal lines have a reflection
ated with the reduced diagram. symmetry.

It is well known in group theory thahe order of a sub- To make the connection between opened-up self-energy
group is a factor of the order of the full groU9]. Thatis,  diagrams, such as those in Fig. 4, and famatrices label
de/gs=r is an integer. We would like to show that there arethe latter with 2k’s, m initial momentap; andm final mo-
exactlyr different partitions of the original lines and vertices mentaq; . Eventually, we identifyp,=q; and integrate over
that result in the same divided diagram. Then we show thaﬂhe thermal phase_space of plrs to make the contribution
the correct symmetry factor is produced for each individuakg the self-energy. Suppose that pjlandg; belong to the

diagram in our expansion. same species. Then the matrix elements
To see how it works out, suppose the symmetry gr@up
of the original diagram is of ordeyg , and when divided into T(K,p1s--.Pm: KA1y Om)

zero-temperature and thermal parts, the symmetry group re-
duces to a subgroup of orderqgg. Consider the right coset, and

G/S={Sq.Sg., " ,Sgy} (52 T(K,Pgyr--Po, i Koy o, )

where eachg;e G is a permutation acting on the internal where o is one of them! permutation of{1,...,m}, corre-
vertices and the lines that do not change the shape of thepond to the same self-energy diagram when gfis are
original diagram. Since the identity must be an elemerof integrated over the thermal phase space.
and theSg’s are either identical or disjoint, we can rewrite  Even though there am@! such permutations, the number
of distinct 7(k,{p}; k,{q}) need not equah!. For some per-
G/S={S$;,S;.+ .S}, (53)  mutations, the above two expressions may not only give the
same contribution to the self-energy, but actually be the
whereS;=S, the §'s are all disjoint, eacts; hasqgs ele-  same even before the integration. If we reconneciptheer-
ments, and =qg/qs [29]. tices with theq; vertices, the resulting diagram is a self-
Operating withs; € S, on the diagram does not change the energy diagram. Hence the number of permutations giving
partition of the lines and vertices SihS@Z Sis the symme- rise to the sam& must be equa| to the Ordql{ of the sym-
try group of the divided diagram. However, the ott&is  metry group S, of the reconnected part of the diagram.
must contain at least one element that corresponds to a difjence, the coefficient of this reconnected diagram is given

ferent partition. Then there exib’;’s such thalhi e G and by ml/(th qz) Whereqz is the symmetry factor associated
with the 7.
Si=Sh={hi,shi,sh;, -, shi}- (54) Comparing this with 14§;Xq,) which we had for the

opened-up self-energy diagram, we see that a diagram gen-
Here,si e S, s;=1, andh;=1. SinceS and§; are disjoint  erated from the self-energy is smaller by a factondfthan
fori#j, we haveh;#h;. The number oh;’s is then equal an actual scattering amplitude diagram. The generalization to
tor=qg/qs. Also each element d§ is related toh; by an  the many species case is immediate. Thus if each particle
element ofS. This implies that all elements i& correspond specied hasm; external thermally-weighted lines, the over-
to the same partition of the lines and vertices. Hence the totalll factor for the opened-up self-energy diagram iS;%{
number of inequivalent partitions of the internal lines and:l/l'[imi!. '
vertices is exactly the same as the numbehdd. Conse-
guently, when our density expansion is made, the coefficient
of a divided diagram is/qg=1/(q,Xq;). Thus the symme-
try factor associated with the symmetry of the divided dia- Suppose that, when the internal lines are opened out and
gram is always correctly produced by the density expansiorgiven thermal weightings’,, we get a disconnected piece

As a simple example, consider the 2-loop diagram showrtontaining at least one internal vertex. As long as this dis-

in Fig. 3. If one of the lines is opened out so that it carries aconnected piece does not contain the largest time vertex, all
thermal phase space factor as shown in the first of Fig. 4, theuts for this diagram, including the case with no cuts at all,
symmetry group is reduced to the permutation of the twaoare possible with the rest of the original diagram being kept
remaining lines so that the overall factor becomes 1/2!.common. For the isolated subdiagram, this situation corre-
Originally, gs=3!, and nowgs=2!. The ratiogs/qs=3 of  sponds to having all the frequency denominators in (26)
course corresponds to the three choices we can make whand summing over all time orderings. Consequently, the net
selecting a line to open out. contribution of such a disconnected part vanishes. In the

B. Disconnected parts
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77777

0= + +
7T 77T

C(K)+C*(K)=L(K)+L(—k) (58)

-k =
NN

and

FIG. 5. Cancelling propagators. o
L(—k)=e X PL(k). (59

real-time method this cancellation is referred to as the van- . . . - .
ishing of the sum of all circling§9]. The first identity(58) is the finite temperature version of the

For an elementary example, consider the sum of all Cupptical theorem. The second identity can be easily obtained

and uncut propagators depicted in Fig. 5. The sum is by usingA (k) =e’#A; (k). Therefore, pinching poles do
not occur in self-energies insertions.
(—i)ng(k)Jr(i)ZG’g(k)+(—i)(i)Ag(k) The absence of pinching poles has two important conse-
, - guences. First, self-energy insertions do not cause uncontrol-
+({H(=DA; (k=0 (59 lable divergences due to the cancellation between cut and

uncut self-energies. Secortie propagators connected to a
where all the propagators are zero-temperature ones. Froggif-energy do not produce thermal phase-space factors
the structure of the propagatd@5)—(38), it is clear that the  without this second point it would not be possible to identify
sum is always zero. the coefficients of the expansion in tlig factors with the

scattering amplitudes.

C. Self-energy insertions

For simplicity we only consider scalar particles without a D. Polarization factors and the overall sign

chemical potential. The argument presented here can be gen- To convert a Feynman diagram to a scattering amplitude,
eralized immediately to other cases. Self-energy insertionsne needs the polarization factors for the external lines. For
are potentially hazardous when the propagators have poles @ external gauge boson line, a polarization veeldp,s)
all four k°=+E,*ie. This is the case for us due to the orthogonal to the incoming momentumis needed. This is
addition of the thermal phase space factor to the usual zergrovided by the substitution
temperature propagatdrs.f. Eqs.(35)—(38)]. The product of
any two propagators with the same argument then contains
inching polos. J 9= 2 P9 (DS) (60)
To show that in fact the pinching pole contributions all
cancel, consider the diagrams shown in Fig. 6. They diffeiinside a Feynman diagram; this is valid due to the Ward
only in the manner of cutting. Representing the blobs in thdédentity. In the Feynman gauge, the gauge boson phase space
first and third diagrams b (k) andL(k), respectively, the factor is proportional to the metrig,, which then provides
sum of the four diagrams can be written appropriatee,,’s.
For fermions, each incoming fermig@anti-fermion line
Fk)=Gg(k) C(k)Ge(k) requires a factor of the Dirac spinag(p) [v<(p)], and each

+A5(K)C*(K)AS (k) —Ag (K)L(k)Gg(k) gutgoing fermion (anti-fermion line requires a factor of
N us(p) [vs(p)]. For the external line corresponding to the
—Gg(kL(=k)Ag (k). (56) self-energy momentum, one can use the Dirac spinor identity
Extracting the coefficient of the pinching polesk2¢ m? 1 — —
+ie) L(k2—m2—ie)~?, we find 1= 5 2 Uous)—vg(kjug(k), (6D
Foinetl K) = ng(k°)Ng(K®)[C (k) + C* (k)] — ng(ko) where the spinors are normalized according to Peskin and
X[ 1/2+ ng (ko)L (K) Schroedef24]. This yields
_ _ 1
N (ko)[1/2+ ng(ko) IL(—K). (57) Sel=1001= 5 3 (us(k
F
If Foincr(K) were non-zero, a self-energy insertion would _ _
cause an uncontrollable divergence. Fortunatéfly,q(k) X [us(k)Ze(k)us(k) Jus(k)
does vanish due to the following properties ©tk) and — —
L0 o141 12.20 9 properties 01 Fo S Kos(K Josk)}). (62

- - --> The factom_s(k)EF(k)us(k)/(ZmF) then has a multiple scat-
‘ ": | ‘ ! tering expansion in terms of spin up-up and down-down scat-
— ! | ” I tering amplitudes involving the particles, while the factor
v 7 OGO v(K) S (K vs(k)/(2mg) has a multiple scattering expan-

FIG. 6. Schematic depiction of the possible ways to cut a selfsion in terms of spin up-up and down-down scattering am-
energy insertion diagram. plitudes involving the anti-particles. The mixed term van-
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ishes  since u(k)¥°v(K)=v(k)y°u(k) =u(k)k*y,v (k) m
=v(k)k*y,u(k)=0, and the self-energy, as well as the
spectral density, must have the structure

FIG. 7. The one-loop electron self-energy. The curly line repre-
Se(K)=A(T,K) Kk, ~B(TOme+C(T,k)»° (63 NS ne photon.

at finite temperature. by the thermal phasg space factog, rather than the scatter-
As an example, consider the nucleon self-energy in a thefing amplitude. Therv part of Eq.(65) carries an additional
mal pion medium. Considering only the strong interaction,(—1) due to the exchange of the fermion legs. When a fer-
we can regard both the pions and the nucleons as stable. TR&on line which is not a part of a fermion loop carries a
up-up component of the lowest order nucleon self-energyhermal phase space factor, the term corresponds to a

can then be expressed as crossed diagram and the required factor ofl() is provided

_ by I'r . Hence, the overall signs are also correctly accounted
it uy (K)2r(ku (k) for in our expansion.
31 (k=
2my
IV. ELECTRON SELF-ENERGY
1 ddl .

=—— 2 f —3” ng(E,) As an example of applying the method developed here,

2my 3 (2m)°2E, consider the electron self-energy at temperatiresn, ob-
Xﬁ;a_»Nﬂa(k+|w—>k+ 1) tained from the diagram of Fig. 7. At these low temperatures,

we can neglect the electron thermal correction because it is
suppressed by a factor @& #M. The self-energy written
down for the nucleori64) is valid for the electron if the pion

is changed to a photon with the summation referring to the
photon polarization:

a3l
=-2m2, J (2mE, "s(Er)

Vs
X (ol (64) iy L a3k )
T (p)__z_rneS:l,Z f (27T)§2|k| nB(| |)

whereTy; . (k+1,—k+1,) is the sum of all scattering .
amplitudes including the cross terms. In the last line we used X Tgy—>ev(p+ k—=p+k). (66)
T=8mys f. This expression differs by a factor afs/my  agter the photon polarization summation, the spin up-up

from that given by Eletskii and Ioffg30]. At low tempera-  component of the tree-level Compton scattering amplitude is
ture (T<m,) and in the nucleon rest frame, their expressiongiven by (e.g., Ref[24])
may be justified because the pion thermal energy is insignifi- ’

cant compared to the nucleon rest mass.

. A . . _ YKy, +2p
For internal fermion lines which are opened up and given T, o (ptk—p+k)=€’u,(p)

thermal weightings we use the relation ey 2p-k+ie
(ky,+mg)2m8(k3—ER) —y*ky,+2p o)
“2p-ktie |UH P
2
= (ki y,+mg) 2E, o(ko—Ey) (67)

In the electron rest frame, this reduces to

2
— (K& y,—mg) 26, o(Ko+Ey) 2mZei

. a7 &
=2 us(k)us(ks) 5 8lko—EW) (68)
The real part in the rest frame is then

TEr o (p+k—p+k)=—4€?

ey—ey 1 +

— 2
=2 ook Jusko) 5 SlkotED, (69 .. 2¢? d3k
ReET (me)_ Me f (277)32|k| nB(|k|)
wherek. =(E,,*k). Hence for both spin-1 gauge bosons
and spins fermions the polarization factors are all correctly B e?1? B maT?
accounted for. 12m,  3m, (69)
When fermions are involved, our expansion must generate
the correct overall sign of a diagram. The presence of a ferfhe result, of course, coincides with a previous calculation
mion loop in a diagram carries an additional overall factor ofby Barton[4] who derived Eq(66) for electrons to ordet.
(—1). When the fermion loop is broken this sign is carriedlt also agrees with a previous calculation in Ref1].

045013-11



SANGYONG JEON AND PAUL J. ELLIS PHYSICAL REVIEW b8 045013
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grant DE-FG02-87ER40328.
++ ; 2 dk
Im 217 (me)=lim 4e°mee 3 APPENDIX A: EUCLIDEAN PROPAGATORS
0 (2)32|K|
(KI) 1. Bosonic propagator with chemical potential
n
W When the chemical potential is non-zero, we must at least
(4mg|k|*+ &%) deal with a complex field. The effective Hamiltonian is
2
_&T T 70) S A
R ( R=A-3 1aQa. (A1)
a
This agrees with the leading term given by Hennitgal.  For notational convenience we suppress spatial indices in
[32]. this section.
The spectral density for the propagator is defined to be

V. CONCLUSION [15]

In this paper, the multiple scattering expansion of the _f i ot +
thermal correction to the retarded self-energy is presente@B(w)_ dt eX[¢(1).4'])
starting from the imaginary-time formalism. The leading or-
der term of this expansion corresponds to the often used rule

- - _ j ot a—BKmait(Kn—Kp) t
that the thermal correction to the self-energy is the thermal % dte (e "me™ m B b
phase-space times the scattering amplitude. Although the ’ .
formal expansion can be always made, we have argued that —e Pragy! eltKm=Kn) gy )

the expansion is useful only if the minimum h,= u,| is
large compared to the temperature. We have also demon- _E _BK —BK +
strated the connection between the self-energy and the ther- =< 278(w+Kn—Kpy) (e "im—e ") dnndnm
mal part of the grand potential. ’

The result presented here may be used in two ways. One

is to use existing calculations of scattering amplitudes to =(1-e7 %) 278w+ Kn—Kp) dmndh e Pm.
calculate the self-energy. In this way, the considerable effort m.n
usually needed to evaluate thermal correlation functions can (A2)

be much reduced. The other way is simply to use experimen]—_he Euclidean oropagator is given b

tal scattering amplitudes to calculate the self-energy. For in- propag 9 y

teractions involving large coupling constants, this may be theG (T 0

only reliable way to calculate the thermal correction to the o(7)=(T¢(7)$(0))

self-energ_y. _ _ o _ = o T)Tr(e*[’kefkcﬁe’ qu;r)
The reliable calculation of medium effects is important in

analyzing data from heavy-ion collision experiments. For in- B CBR gt otk g K

stance, how th@e-meson behaves in-medium can greatly in- (=7 Tr(e" "¢ ede ™)

fluence the dilepton spectrum in heavy ion collisi¢hs33]. q

The in-medium effect becomes even more important in fu- :f hutad (e 1+ ng(w)]pg(®)6(7)

ture BNL RHIC (Relativistic Heavy lon Collider experi- 2m

ments. The main goal of RHIC is to find the quark-gluon

plasma. Hence, it is crucial to understand the hadronic part

of the in-medium finite-temperature effect so as to separate d

this signal from that of the long-sought quark-gluon plasma. :f - [1+ng(w)](e”“ pg (@) 6(7)

Even though a full theory of hadron scattering is lacking, 2m

there is a considerable amount of data on scattering cross- + e (@) 8(— 1)) (A3)

sections accumulated in the past decades. Utilizing those P '

data we may at least phenomenologically separate a trul

hadronic effect from the effect of a new state of matter. Wihere we used

+e “ng(w)pg(w)O(— 1))

Ne(—w)=—[1+ng(w)], (A4)
ACKNOWLEDGMENTS .
and defined
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. do pg(w.k) pr(0)=pHw); pp(w)=-p—w). (A12)
GB(I 143 ,k) T 2 =i y
(' B (ivgtw)? ) 27 woivg (A6) Hence, for both bosons and fermions we have
with E,= Vk?+mZ, and take the discontinuity across the real Gy7)= f do N (w)[e " +(w)0(7_)
axis to get
pi(0,K)=sgrw+w)2mdl(w+m)?—E2] (A7) pe (@) 0=, (AL3)
and with
pi(@)=—p7(~w), (A14)

pg(@.K)=—pg(—o,k)=sgno—w) 27 (0—un)’~Eg].
(A8)  and

= —1)¢ = —1)¢
2. Fermionic propagators with chemical potential N(w)=1+(=1)nw)=6(w)+(-1) ng(w)ng(|zl;|\:)[,5)

The spectral density for the fermion propagator is defined
to be where

_ _ (—-1)B=1 and(—-1)F=-1. (A16)
pele)= [ dte(1u(0.71)

To find pg (w), start from the Euclidean propagator

_ +
= 278w+ Kn—K,) Gl p)_l(VF i) Y°—p-ytm _ d_wpp(a_),k)
mn ' (ve—ip)?+ E2 27 w—ivg'’
X(eiﬁKm—'—eiﬁKn) 'r//mnEnm (A17)
with E,=\p?+m?, and take the discontinuity across the

=(1+e 53 278(w+K,, real axis to get
m,n
pt(0.p)=[(w+u)y’—p y+m]

— " —BKm
Kn) Ymntbnme ’ (A9) ngr(w+u)2775[(w+,u,)2—E§]. (A18)

where the brace denotes an anticommutator and we used the

fact that matrix elements such dg,, are c-numbers. APPENDIX B: REAL TIME PROPAGATORS
The Euclidean propagator is given by . . .
For both bosons and fermions the real time version of Eq.

Gr(1)=(Ti( 1) (0)) (AL9)1S
K K K~ dw i t +
= 9(r)Tr(e PRe™®ye Ky) G )= f 77 Ne(w)[ep (@) 0(t)
—0(— D Tr(e PRye e %) +e'“p () o(—1)]. (B1)
=J g_: (& “T1=ne(w)]pf () 6(7) ;I;)k;e Fourier transform yields the momentum space propaga-

—e “ne(w)pg (@) 0(— 1)) Gg(k):f g_w Ng(w)( jowdteikot—ete—lwt +(w)

| 2 (1= ne(w)]le bt ()07
= —[1-ngw)][e” " w)O(T 0 ) )
2 F +J7 dte'ko”fte""tpg(w))
+epe (w)6(—1)], (A10) 4

w
where the change of variable— —w was made for the :J ﬁ[‘9(“’)+(_1)g59r(“’)n§(|“’|)]
second term and we used

+ -
P (w) P (o)
Tk T eri(wrk) (B2
NH(-0)= =g =1"New).  (AlD eti(w eti(e
using Eqg.(A15). The propagator has two terms. The first

Also, we defined corresponds to the zero temperature case
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dw

: . K0) = — (= 1)40(— k) +sgrkOn ([K%]).  (B7
Go= [ 52 bu| oy ) (K0 == (= 1)0(~ k%) +sgrtkO)ng k). (B7)

eti(w—k% e+i(w+k?)’
(B3 we also note that [ (k)= (—1)%ef*A (k).
which yields the standard Minkowski propagators given in

the text. The second term corresponds to the finite tempera- APPENDIX C: DERIVATIVE COUPLINGS
ture phase space factor

For the time derivative of the propagator in E§13) we

have
Ty(K)=(—1 ff do
AK)=(=-1) ﬁsgr(w)ng(|w|)
+ - d dw
p; (@) p; (@) —G (Tk)=f — Ny(o)[ —wp] (0,k)e"*70(7)
A7 ¢ pe (o, T
T i(0—K) | eri(0+K0) o7 2m ‘
Z 0 o+ _ or do
=(—=1)tsgnk)n |k’ p; (k), (B4) topg (0,K)e0(—7)]+ | 5—Nw)
X[pf(0,K)—p; (w,k)]5
where we useg, (0)=—p; (— o). [pg (0.k)=p (@ K)]8(7)

Cut propagators can also be decomposed into zero and ) N Con

non-zero temperature parts. The cut propagator for a particle = f > N(w)[—wp (w.k)e 70(7)

is
+owp; (0,k)e”70(— )]

A7 (K=NK%p; (K)=0(k%)p; (K)+(—1)

do
+f Epg(w,k)é(r). (Cy
X sgr(k®)n,(|k%)p; (k). (BS)

Thus the spectral density for the time derivative of the propa-
Letting the momentum and frequency follow the charge, wegator is— wp; 7(w,k) and there is also &7) term. The latter
get the cut propagator for an anti-partich; (k% p; (k)  vanishes for bosons sing@wpg (w,k)=0. In general, we
—N(— K° )p; (—Kk) which is can say

r—1

Ag(k)ENg(_ko)pZ(_k) rGg(T!k):ég(le)—’_IZO 5(|)(T)F|(k), (CZ)

=(=1)%n(Kp; (K)

=—0(—k%p/ (k) +(—-1)¢ where the labek includes both/ and the number of deriva-
tivesr so thatGg has the spectral density-(w)"p; . In the
% sgr(k®)n, (k%) p; (K), B6)  second term ofC2) 8)(7)=4,5(7) and the sum does not
contribute forr=0. Then, after all thes-functions in Eq.
using (C2) are integrated over, we have

B v N d3k|_ 5
Cf\,rﬁl({q -iVI}):JO i_Ho dr; exl{ilgo VITI) J’ Ll;[F WAO({ka})aE[F Gga(Tg_Tg)

S [ anexd i3 5m | [ 1T 5% Il
+ dr ex 12 7 fLeF WAl({kailvr}) Gf Ta~ Th)

r 0 i#r acl’

8 \%
+> | II drex ;q Vl“)f H —gAz({ka"Vr"Vq} VT B¢ (rg=mp)+-,

qr JOi#r,q aecl”

(C3
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where inI'’ a pair of vertices refer to the same time,Iiff
two pairs of vertices refer to the same times, and so on. The
bars over they, indicates that some of them are now combi-
nations of the originab,’s

If a total of n derivatives is contained in the expression
for the diagramlI’, then performing the time integrals we
have

FIG. 8. Diagrams for the thermodynamic potential. The dashed
line indicates a cut.

e ({arinh) = E 23 T Gaind), (€A

whereZ is the partition function an¥ is the volume. In the

imaginary-time formalism, the thermodynamic potential is
where the sum of all connected “vacuum™ graphs. Analytic con-
tinuation of such a result may at first appear to be a poorly
defined concept since there are no external frequencies to
start with. Nevertheless, it is possible to consider the vacuum
graphs as the zero frequency limit of thiepoint functions
[34] and, further, it is sufficient to consideetardedcorre-

Cﬂf)l({q Jdny)

H d*k, H (I UN, (0,)pS(K,) lation functions due to the reality of the thermodynamic po-
Cer (27T)3 acrl, la P§ tential.
To calculateQ), we regard thep in Eq. (20) as “external”
Ak 3 {iv)) 11 (A7=iv])~ 1 (C5  interaction vertices which will contain several fields. The
intervals retarded functions then consist entirely of all possible inter-

V—-r=j=1 . . .
) action vertices and there are zero external frequencies and

momenta entering or leaving the diagram. Equat®) can
We know that in the8—c limit, the frequency denomina- then be written
tors we get from Eq(C5) must add up to make the Wick
rotated d;G,(t). That is, the coeff|C|ent$\ must be such

3
that if we changeN— 6, i »,—q?, and add—i e to Aj in Eq. Fv)(O)— E f 11 d kL3
(C5), we get the zero temperatuke+ 1-point function: R <r J cer (2m)
d4kL 11 do, So(k N+1
N+1({QIa|V|})_>DN+1({qI})_| f H (2m)? XQEF = Nga(wa)Pga( o) |AVIT
X Af+ie)t
<Ak b Il 6 (k) (CH) Al (Ao
V=j=v+1
as in Eq.(27). Arguments similar to those in Sec. Il B can be o o1
applied to cut diagrams so that summing the time-ordered X im];l/als (Aj—ie) " (D2)
diagrams on the unshaded side leads to the usual Feynman v=j'=1

rules, while for the shaded side complex conjugate Feynman
rules apply. Thus the multiple scattering expansion of the

self-energy in Sec. Il is also applicable when derivative cou- . . L :
plings are present. Here the fixed vertex is arbitrarily chosen for each dia-

gram. Instead of the identit{28), we use

APPENDIX D: THE THERMODYNAMIC POTENTIAL

Here we consider the multiple scattering expansion of the 1
thermodynamic grand potential defined by =% —2mi 5(A]), (D3)
AJ +le A] —le
Q 1 |
vV~ BV nz, BD get
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d3k,

’7T

N“(O 2 JLEF

f do,
ael 2w

PHYSICAL REVIEW [b8 045013

N, (02)p (k) [AVEL

x| Il (Afi—ie)” 1+(—|) Z 2m3(AY) H (AJ—ie)~?
intervals V=k=1
v=j'=1 k#]
\%
+(—)2 X 2m8(A))2mS(AY ) H (Af—ie)t
j,k=v
. i |:#J k
+oA =DV I 2msA) TT (Ag-ie7?. (D4)
intervals v=k=1
V=j=v+1
|
In this way the denominators contain onlyi e and conse- Q<Tm)
quently, after summing over all time orderings the result v S f H ary
can be expressed entirely in terms@f(k) andA; (k), i.e., ”>2" 7
the complex conjugate propagat@’g(k) does not occur. X T (=i D™ I (D6)
I v | conn-

The price paid is the appearance of multiple cuts since each

of the &functions in Eq.(D4) represents a cut. So the result Here 7, contains the arbitrarily-chosen fixed vertex, If,

of the time ordering summation will yield uncut diagrams however, we remove this restriction and allovio lie in any

plus those with a sequence of cuts illustrated in Fig. 8. Thef the 7 matrices, while compensating for the multiple count-

blobs in these diagrams involve the propagat@gk), ing, we obtain

while the cut lines requira{i according to the direction of Qm

the momentum, as before. T o__
Following the same procedure as before, we can now ex- \%

pand the diagrams in the number of thermal phase space

fﬂ dF"—

n>2 N S{I"'}

factorsI';. The contribution of the first term in EGDA4) to XTH=TD™ {17 conn: (D7)
the thermal part of) is Summing over the number of cuts, we then have
Qo & o
Q 1 _T: 2 T — J’ H ng
T: _n>20' S{I‘T} j H dra<{lg}|7|{|o}>connv Vomm1 V n=20 S{VT}
(D5) X{ITHINL+IDHITY conn- (D8)

This is the expression given in EGO) and, as we remarked,
where we have excluded diagrams with a single thermait agrees with the result Nortdr27] obtained using a differ-
weighting since we assume that the physical masses of thent approach. This in turn is equivalent to the expression
particles are used in the propagators. The contribution ofbtained long ago by Dashen, Ma, and Bernsf2hj from a

diagrams with (n—1) cuts is

non-relativistic analysis.
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