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2D gravity and the extended formalism

Fernando P. Devecchi
Depto. de Fı´sica, Universidade Federal do Parana´, cx. postal 19091, cep 81531.990, Curitiba-PR, Brazil

~Received 10 February 1998; published 10 July 1998!

The role ofSL(2,R) symmetry in two-dimensional gravity is investigated in the context of the extended
Hamiltonian formalism. Using our results we clarify previous works on the subject.@S0556-2821~98!02216-4#

PACS number~s!: 11.10.Kk, 04.50.1h
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I. INTRODUCTION

The analysis of the symmetries and quantization of
induced two-dimensional gravity model~2D gravity! pro-
posed by Polyakov@1# has received the attention of sever
authors@3–5#. In the original work a ‘‘residual’’ symmetry
appeared when the model was studied in the light-c
gauge@1#, the generators satisfying anSL(2,R) algebra. In
subsequent papers this feature was approached with a va
of techniques. An important idea arising from these works
that to understandSL(2,R) symmetry a gauge-independe
analysis is fundamental, trying to confirm that this invarian
is something basic in 2D gravity. The first gauge-invaria
formulation @3# arrived at the conclusion that theSL(2,R)
algebra, realized by generalized currents, made sense
symmetry only in the light-cone gauge. In Ref.@4# the prob-
lem was studied in the context of improper gauge trans
mations, but the results were not completely conclusive.
nally, in @5#, working with the canonical Hamiltonian
formalism, it was concluded thatSL(2,R) symmetry arose
on the classical level only when thex1 coordinate was taken
as time.

In this work we propose to clarify this problem workin
with the extendedHamiltonian formalism. Adopting strictly
this technique, we show that it is possible to understand
role and origin ofSL(2,R) symmetry when we impose
gauge fixing. Instead, what it is usually found in the liter
ture is thedirect injection of the gauge conditions in th
original action, an approach that makes it impossible to e
cidate the role of any residual symmetry.

The paper is organized as follows. In Sec. II we give
short description and comments on the approaches foun
the literature. In Sec. III we present the fundamental id
behind the extended Hamiltonian formulation and how
works with the problem of residual symmetries. Section
shows our results when we apply the method to the indu
gravity model. Finally, in Sec. V we present our conclusio

II. GAUGE-INVARIANT AND REDUCED PHASE-SPACE
APPROACHES

This section is devoted to a brief description of Polya
ov’s induced gravity model and of previous works related
SL(2,R) symmetry, distiguishing basically two approache
the gauge-invariant approach and the reduced phase-s
approach.

The two-dimensional induced gravity model@1# has a rich
gauge structure. In order to take advantage of this feature@to
0556-2821/98/58~4!/045009~4!/$15.00 58 0450
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find physical solutions or to understand the role ofSL(2,R)
invariance, for instance# it is important to have first a con
sistent gauge-invariant formulation.

The basic ideas in the gauge-invariant analysis begin
acquire shape when we manage to write the action as a l
functional @introducing an auxiliary scalar fieldf(x)# @3#:

S5E d2xA2g~2fhf2aRf1a2b!, ~1!

whereR is the two-dimensional scalar curvature and

a258k2
1

12p
b52m2S 2k

a2D , ~2!

k being a function of the central charge of the original mod
~gravity coupled to matter! andm the cosmological constant

Starting with Eq.~1! it is possible to construct the class
cal Hamiltonian formulation. The diffeomorphism invarianc
present in this model implies well-known expressions for
canonical Hamiltonian densityHc and primary~first class!
constraintsp00 and p01, pmn being the momenta canocall
conjugated to the metric componentsgmn ,

Hc52
A2g

g11
f31

g01

g11
f4 , ~3!

p005f1'0, ~4a!

p015f2'0, ~4b!

wheref3 andf4 are secondary~first class! constraints, that
follow from the time consistency of Eqs.~4!,

f35
1

2S f82 2
4

a2
~g11p

11!22
4

a
~g11p

11!p

2a
g118

g11
12af91a2bg11D , ~5a!

f45pf822g11p
1182p11g118 , ~5b!

andp is the momentum canonically conjugated to the sca
field f(x). The set of first class constraints showed abo
represents, as usual, the Hamiltonian generators of dif
morphism invariance. An important feature here is that it
possible in this context to obtain some information about
© 1998 The American Physical Society09-1
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residualSL(2,R). In @3#, Abdalla et al. proposed the con
struction of a generalization of the light-cone gauge curre
@J(x)#,

J15
1

g11
~f22f1!1

1

2
a2b, ~6a!

J05 j 02x2J1, ~6b!

j 05A2Fg11S p111
a

2

f8

g11
D1

a

2S p2
a

2

g118

g11
2f8D G ,

~6c!

J25 j 222x2J02~x2!2J1, ~6d!

j 25a2~g1111!, ~6e!

which satisfy, as their light-cone partners, the well-kno
SL(2,R) algebra

$Ja~x!,Jb~y!%522A2eabchcdJ
d~x!d~x2y!. ~7!

The crucial point here is that these generalized curre
represent symmetry generatorsonly in the light-cone gauge
the verySL(2,R) symmetry, playing no role in other gauge
and therefore losing their gauge-independent nature.

A different approach to this problem was tried in@4# ~a
reduced phase-space formulation!. The basic idea was tha
SL(2,R) symmetry can be interpreted as an inproper ga
transformation of the action~1!. An improper gauge trans
formation@6# appears when the generators of the local sy
metries (G) need extra terms (F) in order to define unam
biguously the field’s variations under the action ofḠ,

Ḡ~e!5G~e!1F~e!, ~8!

wheree are the parameters of the gauge transformation
the case of Polyakov’s induced gravity theG’s are simply
linear combinations of the first class constraints~4! and ~5!.
On the other hand,F is given by

F5a1l 11a2l 21a3l 3 , ~9!

where

e~x2 ,x1!5a1~x1!1x2a2~x1!1~x2!2a3~x1! ~10!

and

l 15]2 , l 25x2]221, l 35~x2!2]222x2. ~11!

The problem is that although thel i ’s obey anSL(2,R) alge-
bra, it was not clear why these quantities had to be associ
with the generators of the residualSL(2,R) symmetry~as the
authors recognize@4#!.

III. RESIDUAL SYMMETRIES AND THE EXTENDED
FORMALISM

In the previous section we have seen that the interpr
tion for the presence ofSL(2,R) symmetry in the induced
04500
ts
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gravity model is full of drawbacks. These problems can
effectively solved if we analyze our model using the Ham
tonian extended formalism@2#. This formulation works with
Dirac’s idea that the maximum of information about symm
tries in a gauge theory can be obtained if we consider a
basic ingredient the so-called extended action

Se5E ~pnq̇n2H2lafa2laxa!dt, ~12!

the f being the first class constraints andx are the second
class ones~thela represent their respective Lagrange mu
pliers!.

The formalism gives the following expressions for th
canonical gauge structure:

$fa ,fb%5Cab
c fc1Tab

abxaxb , ~13a!

$fa ,xa%5Caa
b fb1Caa

b xb , ~13b!

$H,fa%5Va
bfb1Va

abxaxb , ~13c!

$H,xa%5Va
bfb1Va

bxb , ~13d!

the structure functionsC, T, and V being fundamental for
our purposes. The gauge transfomations are given by

deF5ea$F,fa%. ~14!

In order for the extended action to be invariant under E
~14! the Lagrange multipliers should transform as

dla5 ėa1lcebCbc
a 2eaVb , ~15a!

dla5lcebTbc
abxb2ebVb

abxb1lbebCbb
a . ~15b!

The important point here is that we can obtain a compl
set of symmetries of the original action~total action! by sim-
ply imposing the gauge fixings in the Lagrange multipliers
the secondary constraints (lc) and we can insert them bac
into the extended action and get the total action. More
portant are the consequences that this gauge fixing has o
symmetries. Imposing these conditions on Eqs.~15! as

lc50, dlc50, ~16!

we obtain the symmetries of the total action,

dF~x!5$F~x!,G%, G5mafa , ~17!

where thema must preserve the gauge conditions~16!.
A very instructive example of this method is the fre

Maxwell theory. The extended action reads

Se5E d4~p i Ȧi1p0Ȧ02H2l1f12l2f2!, ~18!

where f15p050 is the primary constraint andf25] ip
1

50 is the secondary~Gauss law!; both are first class.
The generator of the extended action invariances is
9-2
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G5E d3x~e1f11e2f2!, ~19!

with independent gauge parameterse. The commutation re-
lations between the first class quantities are trivial in t
case. The variations of Lagrange multipliers are@2#

dl15 ė1, dl25 ė22e1. ~20!

The usual U~1! invariance of electromagnetism is reco
ered when we use the conditions~16!:

dl250⇒ ė25e1. ~21!

IV. EXTENDED FORMULATION FOR 2D GRAVITY
AND THE SL„2,R… SYMMETRY

In this section we apply the method described above
the induced gravity model. The first step is to construct
extended action. We already know, from previous sectio
the expressions for the canonical Hamiltonian and the c
straint structure. So we obtain straightforwardly,

Se5E d2x~p00ġ0022p01ġ012p11ġ112Hc2l if i !.

~22!

Following Eqs.~13! we see that each of the first cla
constraints,f i , i 51, . . . ,4, will generate an independen
local gauge transformation

G5E dx~e if
i !, ~23!

which leaves the extended action~18! invariant, given the
correct transformations for the Lagrange multipliers. To o
tain these transformations we must use first Eqs.~13! to find
the structure functionsCab

c and Va
b ~the others being zero

because in this case we have just first class constraints!. Af-
ter some manipulations we find, explicitly,

$f3~x!,f4~y!%5E dzC34
3 ~x,y,z!f~z!, ~24!

where

C34
3 ~x,y,z!5d~z2y!d8~z2y!1d~z2y!d8~x2z!,

~25!

the other nonzeroC’s being C33
4 (x,y,z)5C44

4 (x,y,z) with
expressions identical to Eq.~25!.

We also have for theV’s the following expressions:

$H,f3~x!%5E dzdyV3
3~x,y,z!f3~z!

1E dzdyV3
4~x,y,z!f4~z!, ~26a!
04500
s
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$H,f4~x!%5E dzdyV4
3~x,y,z!f3~z!

1E dzdyV4
4~x,y,z!f4~z!, ~26b!

where

V3
3~x,y,z!52HA2g

g11
~y!,f3~x!J d~x2z!

1C43
3 ~x,y,z!

g01

g11
~y!, ~27a!

V3
4~x,y,z!5H g01

g11
~y!,f3~x!J d~x2z!1C33

4 ~x,y,z!
A2g

g11
~y!,

~27b!

V4
3~x,y,z!52HA2g

g11
~y!,f4~x!J d~x2z!

1C34
3 ~x,y,z!

A2g

g11
~y!, ~27c!

V4
4~x,y,z!5H g01

g11
~y!,f4~x!J d~x2z!1C44

4 ~x,y,z!
g01

g11
~y!.

~27d!

The final step is our most important result. We can obt
the light-cone formulation going to the total action formul
tion imposing the conditions~16!, which read, in our model,

l3505l4, dl3505dl4, ~28!

into the secondary constraint’s Lagrangian multipliers var
tions

dl3~x!5 ė3~x!1E dy$@l3~x!e4~x!1l4~x!e3~x!#

1@l3~y!e4~y!1l4~y!e3~y!#%d8~x2y!

1E dzdy@V3
3~x,y,z!e3~y!1V4

3~x,y,z!e4~y!#,

~29!

dl4~x!5 ė4~x!1E dy$@l3~x!e4~x!1l4~x!e3~x!#

1@l3~y!e4~y!1l4~y!e3~y!#%d8~x2y!

1E dzdy@V3
4~x,y,z!e3~y!1V4

4~x,y,z!e4~y!#.

~30!

These relationships define restrictions on the gauge
rameterse(x) and the basic fields. Using these expression
the original gauge transformations~diffeomophism invari-
9-3
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ance! for the basic fieldsgmn(x) and f(x) @3# we obtain,
after a tedious calculation@g115 1

2 (g0012g011g11), e6

51/A2(e36e4)],

df5e2]2f2ae2, ~31a!

dg115e2]2g112g11]2e22]1e2, ~31b!

which are exactly the transformations generated by the
calledSL(2,R) currents~7! in the light-cone gauge.

We also verify that when we substitute these conditio
on the extended action we obtain, following the metho
prescription, the light-cone gauge action

S5E dx~pfḟ1pgġ112Llc!, ~32!

whereLlc is the light-cone gauge Lagrangian:

Llc5]1f]2f1g11~]2f!22a]2g11]2f. ~33!

As we see the expressions~31! are obtained as a by
product of the extended formulation, making clear the role
s

ys

04500
o-

s
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theSL(2,R) symmetry in the induced gravity model and th
relation with the light-cone formulation as a whole.

V. CONCLUSIONS

In this work we have clarified the role of classic
SL(2,R) symmetry using the extended Hamiltonian forma
ism. This formulation leaves intact the separation betwe
physical and spurius degrees of freedom, making the pro
of gauge fixing in induced gravity unambigous. In the ea
works mentioned, instead, the light-cone gauge condit
were injected directly on the original action, making obscu
the origin and role of theSL(2,R) symmetry as a residua
symmetry. On the other hand, the gauge-independent for
lations also mentioned here were inconclusive about this
sue.
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