PHYSICAL REVIEW D, VOLUME 58, 045009

2D gravity and the extended formalism
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The role of SL(2,R) symmetry in two-dimensional gravity is investigated in the context of the extended
Hamiltonian formalism. Using our results we clarify previous works on the suljj@0656-282(198)02216-4

PACS numbgs): 11.10.Kk, 04.50+h

. INTRODUCTION find physical solutions or to understand the roleSdf(2,R)
invariance, for instandet is important to have first a con-
The analysis of the symmetries and quantization of thesistent gauge-invariant formulation.
induced two-dimensional gravity modé2D gravity) pro- The basic ideas in the gauge-invariant analysis begin to
posed by Polyakoyl] has received the attention of several acquire shape when we manage to write the action as a local
authors[3-5]. In the original work a “residual” symmetry functional[introducing an auxiliary scalar fielgh(x)] [3]:
appeared when the model was studied in the light-cone

of techniques. An important idea arising from these works is _ . .
that to understan®L(2,R) symmetry a gauge-independent whereR is the two-dimensional scalar curvature and

i i ; a?=8k— —pB=—pn
formulation [3] arrived at the conclusion that tHeL(2,R) 127
lem was studied in the context of improper gauge transfor{gravity coupled to matt¢rand . the cosmological constant.
mations, but the results were not completely conclusive. Fi- Starting with Eq.(1) it is possible to construct the classi-
on t_he classical level only when tixé coordinate was taken canonical Hamiltonian densitid, and primary(first class
as time. constraints7® and 7%, 7#” being the momenta canocally

gauge[1], the generators satisfying é&L(2,R) algebra. In . o0 =, B 2
subsequent papers this feature was approached with a variety S= | dxV=9(—¢L¢d—aRe+a’p), @)
analysis is fundamental, trying to confirm that this invariance
is something basic in 2D gravity. The first gauge-invariant 1 2 2_k> @)
2 1
o

algebra, realized by generalized currents, made sense as a
symmetry only in the light-cone gauge. In Rpt] the prob-  k being a function of the central charge of the original model
nally, in [5], working with the canonical Hamiltonian cal Hamiltonian formulation. The diffeomorphism invariance
formalism, it was concluded the8L(2,R) symmetry arose present in this model implies well-known expressions for the

In this work we propose to clarify this problem working conjugated to the metric components, ,
with the extendedHamiltonian formalism. Adopting strictly

this technique, we show that it is possible to understand the \/—_g Jdo1

role and origin ofSL(2,R) symmetry when we impose a He=— I $at 9_11¢4’ (©)
gauge fixing. Instead, what it is usually found in the litera-

ture is thedirect injection of the gauge conditions in the 7%= ,~0, (49)
original action, an approach that makes it impossible to elu-

cidate the role of any residual symmetry. 701= ¢p,~0, (4b)

The paper is organized as follows. In Sec. Il we give a
short description and comments on the approaches found ighere ¢, and ¢, are secondaryfirst clas$ constraints, that
the literature. In Sec. Il we present the fundamental ideasollow from the time consistency of Eq#4),
behind the extended Hamiltonian formulation and how it
works with the problem of residual symmetries. Section IV 1/ 4 4
shows our results when we apply the method to the induced ¢>3=§ ¢ 2— —Z(gllwll)z— —(gumthw
gravity model. Finally, in Sec. V we present our conclusions. @ @

!

gll 2
Il. GAUGE-INVARIANT AND REDUCED PHASE-SPACE - ag—ll+ 2a¢"+a*B911|, (58
APPROACHES
This section is devoted to a brief description of Polyak- =1’ — 297 — gy, (5b)

oVv's induced gravity model and of previous works related to

SL(2,R) symmetry, distiguishing basically two approaches:and is the momentum canonically conjugated to the scalar

the gauge-invariant approach and the reduced phase-spdigld ¢(x). The set of first class constraints showed above

approach. represents, as usual, the Hamiltonian generators of diffeo-
The two-dimensional induced gravity modél has arich  morphism invariance. An important feature here is that it is

gauge structure. In order to take advantage of this fe@tare possible in this context to obtain some information about the
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residual SL(2,R). In [3], Abdalla et al. proposed the con-
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gravity model is full of drawbacks. These problems can be

struction of a generalization of the light-cone gauge currentgffectively solved if we analyze our model using the Hamil-

[J(X)],

+ _ 1 1 2

J —g—n(¢2—¢1)+§a B, (69)

J0=j0—x"J%, (6b)

. ’ 9

ot g o)+ 5 - 5 2|
(60

J =) —2x"3%—(x")A", (6d)

i =a%(g11t 1), (60

which satisfy, as their light-cone partners, the well-known

SL(2,R) algebra

{33(x),3°(y)} = — 21/2€22°.0%(x) (x—y).  (7)

The crucial point here is that these generalized currents

represent symmetry generatansly in the light-cone gauge,

the verySL(2,R) symmetry, playing no role in other gauges

and therefore losing their gauge-independent nature.
A different approach to this problem was tried [ (a

reduced phase-space formulajioifthe basic idea was that

tonian extended formalisf®]. This formulation works with
Dirac’s idea that the maximum of information about symme-
tries in a gauge theory can be obtained if we consider as a
basic ingredient the so-called extended action

Se:J (Pna"—H—=\%p,— N, )dt, (12
the ¢ being the first class constraints agdare the second
class onegthe \? represent their respective Lagrange multi-
pliers).

The formalism gives the following expressions for the
canonical gauge structure:

{¢a: 0} =Clpdbet TabXaXs, (139
{#aXal=Cludbot Chaxs, (13b
{H, ¢} =Vadu+VaPxaxs, (139
{H.Xa}=VadotVixs, (130

the structure function€, T, andV being fundamental for
our purposes. The gauge transfomations are given by

8.F=€*F,p,}. (14)

SL(2,R) symmetry can be interpreted as an inproper gauge

transformation of the actiofil). An improper gauge trans-

In order for the extended action to be invariant under Eq.

formation[6] appears when the generators of the local sym{14) the Lagrange multipliers should transform as

metries G) need extra termsK) in order to define unam-

biguously the field’s variations under the action®f

G(e)=G(e)+F(e), (8)

ON3= €+ \CePCR.— €V,

(153

5)\“=)\CengfXB— ebvgﬁ)(ﬁ-i— )\BengB. (15b

where € are the parameters of the gauge transformation. In  The important point here is that we can obtain a complete

the case of Polyakov’'s induced gravity tkiés are simply
linear combinations of the first class constrai@sand (5).
On the other hand; is given by
F=a1|1+a2|2+a3|3, (9)

where

e(x_ X )=ag(X;) +X_ax(x;)+(x_)%ag(x;) (10
and
l3=(x")%9_—2x". (11

|1:(9_, |2:X7(9__1,

The problem is that although thgs obey anSL(2,R) alge-

set of symmetries of the original actidtotal actior) by sim-

ply imposing the gauge fixings in the Lagrange multipliers of
the secondary constraintaq) and we can insert them back
into the extended action and get the total action. More im-
portant are the consequences that this gauge fixing has on the
symmetries. Imposing these conditions on Ed$) as

A¢=0, O6N°=0, (16)
we obtain the symmetries of the total action,
8D(X)={D(x),G}, G=pu¢,, 17

where theu? must preserve the gauge conditidis$).

bra, it was not clear why these quantities had to be associated A Very instructive example of this method is the free

with the generators of the residugal(2,R) symmetry(as the
authors recognizf4]).

Ill. RESIDUAL SYMMETRIES AND THE EXTENDED
FORMALISM

Maxwell theory. The extended action reads
Se= f d(m A+ mPA—H— N1 —N\%¢,),  (18)

where ¢;=7°=0 is the primary constraint ang,= g, 7*

In the previous section we have seen that the interpreta= 0 is the secondaryGauss law;, both are first class.

tion for the presence o8L(2,R) symmetry in the induced

The generator of the extended action invariances is
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G=j d*x(e'p1+ €2 ,), (19 {H,¢4(X)}=J dzdy\i(x,y,2) $3(2)
with independent gauge parametersThe commutation re- +f dzdyVE(x,y,2) da(2) (26b)
lations between the first class quantities are trivial in this am ’
case. The variations of Lagrange multipliers f2¢
where
O\1=¢€l, ON\%2=€2—€l (20)
3 V=0
o o V3(x,y,2)= = ——(¥),¢3(X) | 8(X—2)
The usual W1) invariance of electromagnetism is recov- Ju
ered when we use the conditio(i5): g
_ +Cix.y,2) = (Y), (273
MN2=0=€e2= €l (21 J11
IV. EXTENDED FORMULATION FOR 2D GRAVITY vg(x,y,z):[g—‘”(y),%(x)] 8(x—2z)+ Cai(X,y,2) 9 (y),
AND THE SL(2,R) SYMMETRY u 11(27b)

In this section we apply the method described above for
the induced gravity model. The first step is to construct the 3 \/—_g
extended action. We already know, from previous sections, Va(x,y,2)=— E(y),m(x) 8(x—2)
the expressions for the canonical Hamiltonian and the con-

straint structure. So we obtain straightforwardly, L Cxy.2) v—g W) (270
34\ M Y ’
d11

Su= [ (%0 2701 01— He N ).
4 _ ] 901 4 Y01
(22 V4(X1y12)—[g—ll(Y)-¢4(X)] 5(X_Z)+C44(X’y'z)g_11(y)'

Following Egs.(13) we see that each of the first class (279
constraints,¢;, i=1,...,4, will generate an independent

. The final step is our most important result. We can obtain
local gauge transformation

the light-cone formulation going to the total action formula-
tion imposing the condition&l6), which read, in our model,

G:f dx(eid). @3 A3=0=\% AS\3=0=6\%, (29

which leaves the extended acti¢hd) invariant, given the into the secondary constraint's Lagrangian multipliers varia-
correct transformations for the Lagrange multipliers. To ob-jgns

tain these transformations we must use first Ef8) to find
the structure function€¢, and V2 (the others being zero )
because in this case we have just first class constyaikits 5K3(X)=63(X)+f dy{[A3(x) €*(x) + N *(x) €3(X) ]
ter some manipulations we find, explicitly,
+IN(Y) ey A Y) €)1 (x—y)

{¢3(X)1¢4(y)}:f dZC§34(X,yaZ)¢(Z), (24) +J’ dZd}[Vg(X,y,Z)Es(y)+V3(X,y,z)f4(y)],

where (29

3 _ _ ’ _ _ ! _
Cadxy2)=o(z=y) o (z=y)+ 6(z=y) 5'(x Z)’(25) 5)\4(X)=é4(x)+Jdy{[)\3(x)e4(x)+)\4(x)e3(x)]

the other nonzerc’s being Cis(x,y,2)=Ci,(X,y,z) with +A3(y) e (y) N (y) ¥(y) 116" (x—y)
expressions identical to E¢R5).
We also have for th&'’s the following expressions: +f dzdy[vg(x,y,z)ss(y)+Vj(x,y,z)e4(y)].

(30)
(H.0300) = | dzayVixy.2 6502
These relationships define restrictions on the gauge pa-
rameterse(x) and the basic fields. Using these expressions in
+j dzdy\i(x,y,2) ¢a(2), (269 the original gauge transformatior{gdiffeomophism invari-
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ance for the basic fieldsy,,(x) and ¢(x) [3] we obtain,  the SL(2,R) symmetry in the induced gravity model and the
after a tedious calculatiofg,  =3(goo+ 2901+ 911, € relation with the light-cone formulation as a whole.

=112(3+ €9)],
Sp=€ d_Pp—ae, (31a V. CONCLUSIONS

I - - In this work we have clarified the role of classical
09s+=€ 0-QremQrido€ e, (310 SL(2,R) symmetry using the extended Hamiltonian formal-
which are exactly the transformations generated by the sdsm. This formulation leaves intact the separation between
called SL(2,R) currents(7) in the light-cone gauge. physical and spurius degrees of freedom, making the process
We also verify that when we substitute these condition®f gauge fixing in induced gravity unambigous. In the early
on the extended action we obtain, following the method’sworks mentioned, instead, the light-cone gauge conditons
prescription, the light-cone gauge action were injected directly on the original action, making obscure
the origin and role of thesL(2,R) symmetry as a residual

s=[ bt mie Lo, @ et here were (ncanlusive about e -
wherel . is the light-cone gauge Lagrangian: ste:
Lic=0+¢d_¢p+0,4(_¢)*—ad_g,.d_¢. (33 ACKNOWLEDGMENTS
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