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Path integral loop representation of 2+1 lattice non-Abelian gauge theories
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A gauge invariant Hamiltonian representation for(8Un terms of a spin network basis is introduced. The
vectors of the spin network basis are independent and the electric part of the Hamiltonian is diagonal in this
representation. The corresponding path integral fof2plattice gauge theory is expressed as a sum over
colored surfaces, i.e., only involving thg attached to the lattice plaquettes. These surfaces may be interpreted
as the world sheets of the spin networks in22dimensions; this can be accomplished by working in a lattice
dual to a tetrahedral lattice constructed on a face centered cubic Bravais lattice. On such a lattice, the integral
of gauge variables over boundaries or singular lines — which now always bound three colored surfaces — only
contributes when four singular lines intersect at one vertex and can be explicitly computed producing a 6-j or
Racah symbol. We performed a strong coupling expansion for the free energy. The convergence of the series
expansions is quite different from the series expansions which were performed in ordinary cubic lattices. Our
series seems to be more consistent with the expected linear behavior in the weak coupling limit. Finally, we
discuss the connection in the naive continuum limit between this action and that of the B-F topological field
theory and also with the pure gravity actid®0556-282(98)05914-1

PACS numbes): 11.15.Ha, 04.60.Nc

I. INTRODUCTION network basis may be obtained by considering linear combi-
nations of loops. While the loop basis is overcomplete and
The loop approach to Abelian quantum gauge theoriesherefore is constrained by a set of identities known as the
was introduced in the early 1980%]. Later it was general- Mandelstam identities, the vectors of spin network basis are
ized to non-Abelian Yang-Mills gauge theof2]. This independent. Furthermore the electric part of the Yang-Mills
Hamiltonian method allows one to formulate gauge theoriedHamiltonian is diagonal in spin network space.
in terms of their natural physical excitations: the loops. The A path integral formulation of S{2) gauge theories in
original aim of this general description of gauge theories waserms of the world sheets swept out by spin networks has
to avoid gauge redundancy working directly in the space obeen developed i8] and [9]. The world sheets are
the gauge invariant excitations. However, soon it was realbranched, colored surfaces. Such surfaces were introduced in
ized that the loop formalism goes far beyond a simple gaugéhe 1970410] in the context of strong coupling calculations
invariant description. The introduction by Ashtek&] of a  in Yang-Mills theory. The starting point was a character ex-
new set of variables that cast general relativity in the sam@ansion of the Wilson action. This expansion leads after in-
language as gauge theories allowed one to apply loop tecliegration on the link variables to a sum of contributions pro-
nigues as a natural nonperturbative description of Einstein’portional to the coupling constant raised to a power
theory. In particular, the loop representation appeared as th@oportional to the area of closed colored surfaces. Each col-
most appealing application of the loop techniques to thisored surface corresponds to a diagram having a certain num-
problem[4]. ber of plaquettes. In the usual hypercubic lattice formulation
Recently a Lagrangian approach in terms of loops ha§l10] the higher order terms in the expansion become ex-
been developed for the () model[5], and generalized to tremely complicated, discouraging attempts to reformulate
include matter field$6]. The resulting action is proportional gauge theories directly in terms of the colored surfaces. The
to the quadratic area of the loop world sheet. This allows fomain difficulty lies in the computation of certain group theo-
Monte Carlo simulations in a more efficient way than by retic factors for each surface. Nevertheless it is possible to
using the gauge potentials as variables. While in the Abeliameformulate gauge theories in terms of the surfaces along
case the usual Hamiltonian in the loop representation can bihese lineg8].
deduced from the loop action by means of the transfer matrix In the present paper we show that most of the complica-
analysis, the relation between the two approaches is morons of the group theoretic factors can be avoided by work-
obscure in the non-Abelian case. In fact, the type of surfaceig on a special class of noncubic lattices, namely the duals
that appear in the Lagrangian loop formulation suggest thaib tetrahedral lattices. This leads to an easy calculation of the
the pass to the Hamiltonian can be made simpler if we take action of spin network world sheets, and also simplifies the
representation different from the loop representation but onexplicit calculation of strong coupling expansions.
that shares important features like the use of gauge invariant The loop actions of the Abelian gauge theories are written
geometrical objects known as “spin network§7]. A spin  in terms of the surfaces swept by the time evolution of the

0556-2821/98/5@1)/0450079)/$15.00 58 045007-1 © 1998 The American Physical Society



J. M. AROCA, HUGO FORT, AND RODOLFO GAMBINI PHYSICAL REVIEW [»8 045007

loops. The explicit form of the loop actions for lattice non-  Imposing gauge invariance leads to contraction of indices
Abelian gauge theories is known to be related to coloredf incoming and outcoming matrices at every site. The result
surfaced8,9,11]. They are related to the world sheet sweptis the loop representation. That is, states
by the evolution in time of the spin networks. However, a
complete Lagrangian lattice formulation associated with the ~ |C1,C5, ... ,Cy)=W(C)W(Cy)---W(Cy)|0), (6)
spin network representation was not available up to now.

In Sec. Il we discuss the spin network Hamiltonian ap-whereC; are closed loops and
proach to Yang-Mills theory. In Sec. Ill we study the char-
acter expansion of the Wilson action and we show why .the W(C)=Tr H u,. @
group factors do not allow to get a closed form for the action rec
in terms of colored surfaces. In Sec. IV we show that these
factors may be simply computed in a tetrahedral lattice These states generatg,y,, s but they are not independent.
where the Wilson action and the heat kernel action take dhey satisfy the so called Mandelstam constraints which for
very simple form. In Sec. V we apply this action to perform SU(2) read
a strong coupling expansion for the heat kernel version of the

theory and we compute the free energy densitsgnd the W(C1)W(C,)=W(C;C,)+W(C,C,), (8)
average plaquett®. Finally, in Sec. VI we conclude with
some comments on further developments. for every two loopsC,,C, with the same origin.
Instead of Eq.(5) we can consider the states given by
functions
Il. SPIN NETWORK REPRESENTATION
We consider the pure gauge theory with gauge gréup l-ll D;ﬁ;l)(ul)’ 9

semisimple and compadgtG=U(1) or SUn)]. We start
with the Hilbert spaceH=® 'H, where H,=L,(G) and|
denote the links of the lattice. On every limkwe take the whereu runs over the irreducible representations®fand
“position” basis |U,) labeled by the fundamental represen- D(*) are the matrices of these representatighiks in the
tation matricedJ, e G. A basis ofH is given by the vectors trivial representation are not mentioned explicitlizooking
|U)=®|U,). Links are oriented antd;=U, *. to a vertex where enter links in the,, ... ,u, representa-
A gauge transformation is specified by a group elementions and leave links in the, ... ,vs representations we
Vs on every lattice sites. The statdU) is transformed into have functions
[U") whereu.’=vslu,v;21, s, ands, being the origin and
end ofl. The physical states are those that are invariant un-
der gauge transformations and they define the physical Hil- pr mgv v
bert spacéppys. X(VOMG - 'br'|cl‘ el (10
The position and momentum operatls, E]”‘ are defined

DY (Uy)- - DY (U)DE (Vy)-- - DY)

where)[ - - -] are coefficients that ensure gauge invariance.

0 IUY=U,|U) (1) (We sum over repeated latin indiceH.we perform a gauge
! =7 transformation with elemeng at the present site we see that
aea N\ must be an invariant tensor
¢ "Eu)=|u), 2

v v, ) (N~ -
- N R IR KR
whereU; =¢e'?T"U,, T? are generators of the group satisfy- (v1) (vo)
ing XD, (8) D5 (9)

b K1, BrV1, Vs
The A tensors can be computed from the Clebsh-Gordan
[Ta TP]=icabeTe, (4)  (CG) coefficients for the group. The condition far being
nonzero is that the decompositions of the product of the rep-
resentations entering and the product of the representations
leaving have common terms. The representation defined by
these states is callegpin network representatioMhe states
are represented graphically as oriented paths with branching
points where every single line is labeled by a representation
of the group(see Fig. 1
Suppose now that the group is Abelig@=U(1)]. Then
o -1 -t the irreducible representations are one-dimensional and have
1_|[ (Uagp, = (Uao (Ui Dega, (Ui e, O the formD(M(U)=U" for ne Z. So the Eq/(9) states coin-

The reference stat®)=[dU|U) is gauge invariant and
permits to express any state¢)=(U)|0). To work in the
physical spacé{,,,swe have to find a basis/,), that is, a
collection of appropriate gauge invariant functiong(U).

One choice is to consider polynomials
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FIG. 2. Four valent vertex as the limiting case of two trivalent

FIG. 1. An example of spin network. vertices.

cide with the polynomial state) and the loop representa- petwork terms in a unique way so the Mandelstam con-

tion and the spin network representation are the same.  gyraints disappear when we pass to the spin network repre-
For non-AbelianG the two representations are different. gantation.

It is clear that a site cannot have only one link entering or  The Hamiltonian operator is
only one link leaving. The simplest case is one link entering

and another link leaving. Both must be in the same represen- P . 1 .
tation and the invariant tensor is H= ?EI: E2— 2—922;, (W(p)+W(p)), (15)
N4[§]= Saa- (12

whereg is the coupling constant, and p are the links and

The effect of this tensor is to multiply the matrices that plaquettes of the lattice respectively, aﬁtﬁ=l§f‘l§,a and
enter and leave so single lines in the spin network are labeled/(p) is given by Eq.(7). The fundamental commutation
by a single representation. The case of two links entering #elations are T*) are the generators of the irrep)
site is forbidden in general but in the case of(3)there are
invariant tensors likes,, (antisymmetric ande;,=1). The [EF,D(M)(UI’)]: _Tng(m(Ql)g”,JrD(u)(glf)-r;méTI ,

effect of these tensors is to reverse one of the lines converg- (16)
ing on the site. This is due to the fact that for @Uevery
representation is equivalent to its conjugate. [E2 Elb]:icabcélt:_ (17)

When three lines meet in a site the condition for the ex-
istence of nonzero invariant tensors is that the product of the g get, for the action of the electric part of the Hamil-
entering representations contains the trivial representation. 'fbnian,
that case the invariant tensor is given by the CG coefficients

> EfM) =LA, (18
D(g)DL(g)= >, C(ua,vc|pd)D)(9)C(pe|ub,vd), ~ E
p
(13
LN)=2, c™L(P)), 19
which are taken real (V) Z (Pi) (19
C(ua,vb|pc)=C(pc|ua,vb). (14 whereL(P;) is the number of links in the lin®; andc® is

the quadratic Casimir number of the representation given by
As we consider only simply reducible groups no otherT{" T =¢(#)|d. For example, for SI2), cV=j(j+1).
independent invariant tensor exists. Then the state corre- Then the spin network states, in contrast to the loop states,
sponding to a trivalent vertex is well encoded in the drawindare always eigenstates of the electric term.
of the spin network. This is not in general the case for sites The magnetic part produces deformations of the spin net-
where four or more lines meet. The dimension of the spaceyorks both in the geometrical shape and the representations
of invariant tensors is the number of times that the product obf the lines. This is represented graphically in Fig. 3.
the entering representations contains the trivial representa-
tion. Besides the spin network it must be provided informa-
tion about which tensors we select on the vertices. This de-
generation is not fundamental since these vertices can be
thought of as the limiting case when the line connecting two
trivalent vertices gets zero lengttSee Fig. 2. u =Yy Hy
A spin network is denoted/=P,P,- - - P\, whereP; are By
the single linesu; is the representation carried by lifkg.
The spin network statglsV) are independent and orthonor- H
mal. A proof using an inner product structure on the state
space is given if7]. Loop states can be expanded in spin FIG. 3. Action of the magnetic operat@v(p).
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To further clarify the relation between loop and spin network states we recall the action of the electric part of the
Hamiltonian over a loop stat)

R 1
Z EFIC1.Co, ... Cu)=|NL(C1,Cs, ... Cu) = ZA(C1,Co, - Cu)|[C1,Co, - Cu)

+Z > 6.//C1, .. Cixy Ciyxs - - - Cw1)
1,17

+22 2 2 8.//C1, ... (CiuCiyy)s - - - Cu)s (20)

(SI0EC e

whereL(C,,C,, ... ,Cy) is the number of links in the set .

of loops taking account of the multiplicitysingle length, CFJ dUx; (U)exp(BTrU). (26)
andA(C.,C,, ... ,Cy) is the sum of the squares of these

multiplicities (quadratic length 6, ;. is 1 if I=1" and—1 if In the case of=SU(2) a direct application of Eq26)
T=1" andx,y are the edges df yields thec; in terms of modified Bessel functions, and

In Eq. (20) we see that in general the loop states are notherefore we can express EQ1) as
eigenstates of the electric operator. The last two sums are

L . . . o i +1(B)
geometric interaction terms: fusions where a loop splits into _J' . 2jptl .
two components and fissions where two loops join in a com- Zw= [du']l_p[ ,Ep 2(2jp+1) B XJp(UP)
mon link.
Hamiltonian strong coupling expansions on a cubic lattice . 12 +1(B)
for SU(2) and SU3) are given in[12]. :{,E} l_p[ 2(2jp+ 1)pT f [dul]].;[ Xj,(Up)-
p
lIl. THE WILSON ACTION IN A CUBIC LATTICE (27)
The path integral for the Wilson action for a general non- It will be convenient to introduce the following quantities
Abelian compact gauge group G is given by in order to rewrite the path integrd,y,:
21
ZW=J [duu]exr{ﬁE Re(TrUp)}, (21 Co= t;ﬁ), (29
P
where theU, e G andU =11, U, . 2l,i,1(B)
The analog of the Fourier expansion for the non-Abelian CO,BJ:'T. (29

case is theharacterexpansion. The characteys(U) of the
irreducible (unitary) representatiom of dimensiond,, de- The path integral takes the form
fined as the traces of these representations, are an orthonor-
mal basis for theclassfunctions of the group: i.€.10],

Zw= CoNf l_p[

1+ 3 (21p+1>/sjpxjp(up>}1|1 duy,

ip?
f dUx (U)xE (U) =65, (22 ' (30
whereN is the number of plaguettes.
> dex(UV H=68U,V). (23 Let us now show how the sum over colored surfaces arise
r

in Zy. A given subset of plaguettes carrying#0 is ho-
meomorphic to a simple surface if any link bounds at most
two plaquettes of this subset. The links bounding exactly one
plaguette make up the free boundary of this surface. Any
drf dUxs(U)x;(UV™H = 8sxr (V). (24 configuration can be decomposed as a set of maximal simple
surfaces by cutting it along the links bounding more than two
By means of the character expansion we can express plaguettes. In principle, there are two possibilities for the
boundary curves: either a free boundary, bounding only one
simple surface or a singular branch line along which more
exp[ BEp: Re[Tr UP]J =1_p[ Z Crxr(Up), (25) than two simple surfaces meet. In fact, relati@?) forbids
the existence of free boundaries for nontrivial configurations
with contributing to the path integral.

In particular, as a useful consequence we have
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The integration over the internal links of the simple sur- *) /y,
faces is performed using E(4). Note that the plaquettes of >
a simple surface component should carry the same group ~ / UL’-/ _______

representation. After integrating over all the inner links of K ;
the simple components one gé€tS] an expression involving d -
only the links of the boundaries:

Zy=cy >, f(H dU|> ---------

surfaces ledA

s P

<II g A@i+ne 11 xloal, (3D
: boundaries FIG. 4. Bravais unit cell.

whereg; is Euler’s topological invariant of the surfacevith IV. LOOP ACTIONS IN TETRAHEDRAL LATTICES
areaA; . Euler's characteristic is explicitly given by
In order to introduce the tetrahedral lattice above men-
€=Ny—N,+Ny=2—2g—b, (32)  tioned, some concepts of solid state physics are very useful
[14]. The Bravaislattice is one of such concepts; it specifies
the periodic array in which the repeated units of a crystal are
arranged. That is, the Bravais lattice summarizes the geom-
etry of the underlying periodic structure, regardless of what
the actual units arésingle atoms, molecules, groups of at-
oms, eto. A (three-dimensionalBravais lattice is specified
.. by three vectorsy, a,, andas called primitive vectors The
€orimitive vectors generate all the translations such that the
lattice appeargxactlythe same. The primitive unit cell gen-
erated by the primitive vectors often does not have the full
symmetry of the Bravais lattice. However, one can always
c,=0[B/], (33 consider a nonprimitive unit cell, known ascanventional
unit cell, which is generally chosen to be bigger than the

where v, is the smallest integer such that(U)has a non- primitive cell and such that to have the full symmetry of their

vanishing component along,(U). In the SU2) case; Bravais lattice. _ _ _
=2j. Let us consider a face centered cubic Bravais lattice —

In [8] and [9] a path integral over colored surfaces is i.e., the lattice obtained when one adds to the simple cubic

obtained along the lines described here. However, on a cubf@ttice an additional pointin the center of each square face —
lattice the group factors of the surfaces are difficult to comWith primitive  vectors — a,=a(i+j), a=a(j+k),

pute because with up to four surfaces meeting at singulais=2a(k+i). The conventional unit cell of this lattice is a
lines, and up to six singular lines meeting at points, the incuPe of side 2 with a four point basis located at
tegral in Eq.(27) can be very complicated, involving recou- (0.00).(a,0,0),(02,0)(0,0a). Translations along the primi-
pling coefficients of up to 13’s. That is why these group tive vectors generate 27 points associated with 8 cubes of
factors have been only perturbatively computed for the diaSide a in the conventional cell. The Bravais conventional

wheren, is the number of plaquettes; the number of dis-
tinct links bordering these plaquettes amglthe number of
end points of these links, arglis the genus of the surface
andb the number of boundaries.

number of terms in Eq25) contribute to a given order iB.
In fact,

grams that appear in the strong coupling expansion. unit cell with the four basis points and the eight cubes is
Working with a cubic lattice is equivalent to working with depicted in Fig. 4. _ _
spin networks involving four valent vertices in the Hamil-  Each cube of sida may be decomposed in the five tet-

tonian approach discussed in Sec. II. In this case, it is welfahedraABDE, CBDG, EBGE HDGE, and EBGD as

known that only three valent vertices have an unambiguoughown in Fig. 5. The links of the lattice are the edges of these

correspondence with the information encoded in the drawingétrahedra. The first four tetrahedra have voluarit while

of the spin network. Higher order vertices require additionafhe last one has volumea2/6. If the vertexA of the cube

information about the invariant tensor used to couple thélepicted in Fig. 5 has coordinaté3,—a,0 the other cubes

irreducible representations. At the action level this meandre obtained by symmetrizing with respect to the pletfies,

that additional group factors associated with different waysEyZ Ezx and translating along the primitive vectors. Col-

of coupling the colored surfaces at singular lines appear. 19red surfaces will be associated to the plaquettes of the dual

[8] this problem is dealt with by assigning colors to the sin-lattice. The vertices of this lattice are the centers of the tet-

gular lines which are summed over in the path integral. HowJahedra:

ever, this complication may be avoided by using a special

class of lattices. In the dual to a tetrahedral lattice only three a
laquettes meet at each link, so singular lines involve at most _

Fhrge colored surfaces. ’ Xa(e)= 7 (€1,3¢2,€5), (34
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H a whereUps and Up, respectively are the holonomies for the

squared and hexagonal plaquettes.
One can show that this action has the correct continuum
Xn 6 limit when the spacing goes to zero, leading to the classical
Yang-Mills action. This is due to the fact that the square
s faces as well as the hexagonal ones have equal projections
SN Yo 1% over the coordinate planes. Comparing the naive continuum
,E>"- ------ --F limit of this action with the Wilson action on a cubic lattice
REAIRN of side a with coupling 8. we get the following relation
S between the couplingsd= %3 3..

h One can repeat the same steps leading to(Bf), but
now the singular lines always bound three colored surfaces.
FIG. 5. Decomposition of the cube of siddn tetrahedra. In this case the integral along the boundaries in(Bd) only

contributes when four singular lines intersect at one point
a and may be explicitly computed. Let us c§l| the intersect-
Xc(e)= 2(361,362,363), (35 ing point andy, . . . y4 the singular lines intersecting 8.
Then we have six colored surfaces with colors
j12:113:114,1 23,124 @nd j34 bounded by these lines. That
(36) means that in the original tetrahedral lattice we shall have a
tetrahedron with one of the values pfon each edge. The
exact path integral may now be written in terms of a sum

a
XF(G):Z(3€1-52-€3),

a over colored surfaces:
XH(E): 1(611621363)1 (37)
Zw=cy >[I B M(2ji+1)

a surfaces i
XO(E):§(51152163)1 (38) jk jk jk
-k 12» 13> 14

x[1 (—1)21n+1[. . . ] (41)

(39 S ' P iS5 05

wheree=*+1. . o
Each cell contains one polyhedron with 12 hexagonal"’here the sixj symbols are the Racah cogfﬁmgnts.and the
faces and six squared faces. In Fig. 6 we show the points arfgkPonent of—1 denotes the cyclic sumy+ o3t jast|a-
links of one polyhedron and one cube. Translations along the N the weak coupling limit the coefficients behave as
primitive vectors fill all the lattice. Each of the squares is a i(G+1)
IBJ mexp‘ —

face of one cube of sida/2. We shall attach a S@) group 25

elementU, in the fundamental representation to each link of
which are the coefficients of the heat kernel path integral. In

this lattice.
Now let us consider the Wilson action defined in terms OfWhat follows we will use for simplicity the heat kernel form
of the partition function.

; (42)

the plaquettes of this lattice.

S=p| 2 ReTrU, )+ ReTrU, )|, (40) V. STRONG COUPLING EXPANSIONS
Ps s Ph

Our aim in this section is to show that the introduction of
Z, the previous Bravais lattice not only allows to perform cal-
é v/ culations but also simplify them. Therefore, we will show
A ; here how to perform a strong coupling expansion. In order to
- : : do so we will use, just for simplicity, the expression for the
Sy path integral in terms of colored surfaces which corresponds

|

|

/ to the heat kernel action:

I i(ji+1
Al z= S I ex —MAi
surfaces i 2:8

o [ ite 0%
Xl;[k (—]_)2i jii+l[.k i e ] (43

1341 154: J23

(2ji+ 1)

| We will follow an analogous treatment to that of Drouffe and
Zuber [13]. We will expand in powers of thé parameter
FIG. 6. Cubic and tetrahedral cells of the lattice. given byt=e 14,
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FIG. 7. First diagram involving 6-j symbols. e
12

Free energy densityf

The free energy densitf=F/N, whereF=logZ is the [@j """ g z [J;E QD -

free energy andN the number of plaguettes, is obtained by % : "
summing the terms linear in N in the expansion of the path O Y "

integral (43) in powers oft. The power oft of each diagram . m - =

is equal to o e @ 7 C/:\)

2 2j,(j,+1)Xxn,,

wherej, denotes the representations of the grougZdr
“colors” and n, denotes the number of plaquettesjuare [] EC:jD
plaquettes+ hexagonal plaquettg®f the diagram. For in- R !
stance, the first power of the expansion corresponds to thi
smallest volume, i.e. the cube, with all their plaquettes with
j=% and it gives a power of 2 2 X 6=9; the next power is FIG. 8. Diagrams contributing to each powertofVe represent
produced by two disconnected culiescall that in our lattice  cubic cells as squares and polyhedral cells as circles. Numbers bel-
cubes make contact only with polyheginaith j=3 which low each cell denote the representation and repeated components of
gives a power of 18 and so forth. The contribution of each® configuration are indicated by the multiplicity.

diagram tof can be written as the product of two numbers: ) )

the reduced configuration numbér.c.n) times a group the- have computed the strong coupling expansionf afip to
oretical factor[13]. To compute the r.c.n. one has to countPower 53 int which involves 34 diagrams grouped in 18
the number of inequivalent positions of a given diagram ordifferent powers ot:

the lattice — itsconfiguration number— and then to extract 9 18 me24 27 33 36 37

the term linear irN which is the r.c.n. The group theoretical f=4t"— 817+ 9t™+ 76/37 — 12—~ 160>+ 72
factors Stem from the integrations over the link VariabJES +6a39_ 43242_;’_ 36(143"1' 8224/345"1' 61246— 172&47
and their general form is

t 52 153

—2961/2%8+ 720t**+ 505251 8640152+ 266453, (44)

> d2" T % (Uboundan) In Fig. 8 we list schematically the diagrams contributing
r+0 boundaries to each power of.
We plot in Fig. 9 thef vs B for different powers of
whered;, is the dimension of the representationn, is the  truncation of the expansion and the series expansion for a
number of plaquettes with=j,, n, the number of distinct cubic lattice of Ref.[13]. We observe the coincidence of
links bordering these plaquettes anglthe number of end- both expansions up t8=0.5.
points of these links. For example, diagrams with the topol- As long as we enter in the weak coupling regimg (
ogy of a sphere give contributio .od?. The main advan- >1), one can appreciate a clear difference with the series
tage of the introduced lattice is that the group theoreticabxpansions of Ref13] which were performed in an ordinary
factors for more complicated diagrams can always be expliceubic lattice and with a different truncation criterighey
itly expressed in terms of the and 6§ Racah symbols. The consider diagrams up to 16 plaquettes which corresponds to
Racah symbols arise each time four singular lines meet af%. Our series seems to be more consistent with the ex-
one vertex and they appear in the diagrams by pairs. The firgected linear behavior in the weak coupling limit. The expla-
of this pairs come out in the diagram of two polyhedra sharnation of this difference relies on the fact that in the strong
ing a hexagonal face and a cube sharing two of its contigueoupling expansion in a cubic lattice up to 16 plaquettes all
ous faces, one with each polyhedrgtg. 7). the terms except two are positive while in our case we have
All the external 36 plaquettes of this diagram are labeledalmost equal number of contributions with both signs.

with j =2 while the 3 internalshared plaquettes are labeled Thus, one can observe that the introduction of the dual of
with j=1; then it gives a power of32%36t4x3=t66 \We  the tetrahedral lattice, besides simplifying the strong cou-
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Free energy density.

beta

FIG. 9. Free energy vs B for several truncation orders. From
above:t?’, t39, %6 52 andt?®,

pling computations provides a straightforward procedure t
obtain the desired terms of the series expansion. This turns

be an advantage in order to reach the weak coupling regim

VI. CONCLUSIONS

We have introduced a Hamiltonian spin network repre-

sentation for a S(2) lattice gauge theory. This gauge invari-

PHYSICAL REVIEW [»8 045007

This formulation takes a purely geometrical form in terms of
sums over colored surfaces and allows to combine the pow-
erful Lagrangian technigues with the redundancy free de-
scription typical of the loop representation. This action may
be written on a tetrahedral lattice explicitly in terms of the
Racah coefficients. The computation of the group theoretical
factors of the strong coupling expansion becomes straightfor-
ward, only involving these Racah coefficients. Also, we have
a compact expression for the colored surfaces action which
allows to perform numerical computations.

In the naive weak coupling limit, the area dependent fac-
tors become equal to 1 and the action is purely topological.
One can immediately check that this limit corresponds to the
Ouguri[15] form of the B-F topological field theory, which
in three dimensions is knowri6] to coincide with the pure
gravity action. This rather unexpected result may be under-
stood if one recalls that the action of the Yang-Mills theory
in three dimensions may be written in terms of a one-f&m
and the field strengtlF as follows: S= [B/\F —g?B/\*B
and therefore fog going to O it reduces to the three dimen-
sional B-F theory. This provides an explicit proof of the
relation between the B-F theory and the Ouguri-Turaev-Viro
sum over colored surfacg47]. In this case the use of the
Biedenharn and Elliot identity18] allows us to show that
the action is invariant under the renormalization group. Thus,
in the different context of QCD, this suggests that the Yang-
Mills action in terms of colored surfaces may be particularly
well suited for the study of the effective theories.

Even though the method developed here was fof25
2+1 dimensions, the extension to other groups, in particular
to SU3), is straightforward. The corresponding spin net-
works would simply carry the quantum numbers required to
characterize the irreducible representations of the Lie group
under study[19]. It is also possible to extend this formula-
tion to the four dimensional case, by making use of the

%igher order Racah-Wigngrcoefficients. An important sim-
@ification of the path integral43) with the same weak cou-

pling regime could be obtained by making use of the Pon-
zano and Regge asymptotic form of the Racah-Wigner
j-symbols. We hope to present elsewhere a more detailed
analysis of these developments.
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