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Path integral loop representation of 211 lattice non-Abelian gauge theories
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A gauge invariant Hamiltonian representation for SU~2! in terms of a spin network basis is introduced. The
vectors of the spin network basis are independent and the electric part of the Hamiltonian is diagonal in this
representation. The corresponding path integral for SU~2! lattice gauge theory is expressed as a sum over
colored surfaces, i.e., only involving thej p attached to the lattice plaquettes. These surfaces may be interpreted
as the world sheets of the spin networks in 211 dimensions; this can be accomplished by working in a lattice
dual to a tetrahedral lattice constructed on a face centered cubic Bravais lattice. On such a lattice, the integral
of gauge variables over boundaries or singular lines — which now always bound three colored surfaces — only
contributes when four singular lines intersect at one vertex and can be explicitly computed producing a 6-j or
Racah symbol. We performed a strong coupling expansion for the free energy. The convergence of the series
expansions is quite different from the series expansions which were performed in ordinary cubic lattices. Our
series seems to be more consistent with the expected linear behavior in the weak coupling limit. Finally, we
discuss the connection in the naive continuum limit between this action and that of the B-F topological field
theory and also with the pure gravity action.@S0556-2821~98!05914-1#

PACS number~s!: 11.15.Ha, 04.60.Nc
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I. INTRODUCTION

The loop approach to Abelian quantum gauge theo
was introduced in the early 1980s@1#. Later it was general-
ized to non-Abelian Yang-Mills gauge theory@2#. This
Hamiltonian method allows one to formulate gauge theo
in terms of their natural physical excitations: the loops. T
original aim of this general description of gauge theories w
to avoid gauge redundancy working directly in the space
the gauge invariant excitations. However, soon it was re
ized that the loop formalism goes far beyond a simple ga
invariant description. The introduction by Ashtekar@3# of a
new set of variables that cast general relativity in the sa
language as gauge theories allowed one to apply loop t
niques as a natural nonperturbative description of Einste
theory. In particular, the loop representation appeared as
most appealing application of the loop techniques to t
problem@4#.

Recently a Lagrangian approach in terms of loops
been developed for the U~1! model @5#, and generalized to
include matter fields@6#. The resulting action is proportiona
to the quadratic area of the loop world sheet. This allows
Monte Carlo simulations in a more efficient way than
using the gauge potentials as variables. While in the Abe
case the usual Hamiltonian in the loop representation ca
deduced from the loop action by means of the transfer ma
analysis, the relation between the two approaches is m
obscure in the non-Abelian case. In fact, the type of surfa
that appear in the Lagrangian loop formulation suggest
the pass to the Hamiltonian can be made simpler if we tak
representation different from the loop representation but
that shares important features like the use of gauge inva
geometrical objects known as ‘‘spin networks’’@7#. A spin
0556-2821/98/58~4!/045007~9!/$15.00 58 0450
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network basis may be obtained by considering linear com
nations of loops. While the loop basis is overcomplete a
therefore is constrained by a set of identities known as
Mandelstam identities, the vectors of spin network basis
independent. Furthermore the electric part of the Yang-M
Hamiltonian is diagonal in spin network space.

A path integral formulation of SU~2! gauge theories in
terms of the world sheets swept out by spin networks
been developed in@8# and @9#. The world sheets are
branched, colored surfaces. Such surfaces were introduc
the 1970s@10# in the context of strong coupling calculation
in Yang-Mills theory. The starting point was a character e
pansion of the Wilson action. This expansion leads after
tegration on the link variables to a sum of contributions p
portional to the coupling constant raised to a pow
proportional to the area of closed colored surfaces. Each
ored surface corresponds to a diagram having a certain n
ber of plaquettes. In the usual hypercubic lattice formulat
@10# the higher order terms in the expansion become
tremely complicated, discouraging attempts to reformul
gauge theories directly in terms of the colored surfaces.
main difficulty lies in the computation of certain group the
retic factors for each surface. Nevertheless it is possible
reformulate gauge theories in terms of the surfaces al
these lines@8#.

In the present paper we show that most of the compli
tions of the group theoretic factors can be avoided by wo
ing on a special class of noncubic lattices, namely the du
to tetrahedral lattices. This leads to an easy calculation of
action of spin network world sheets, and also simplifies
explicit calculation of strong coupling expansions.

The loop actions of the Abelian gauge theories are writ
in terms of the surfaces swept by the time evolution of
© 1998 The American Physical Society07-1
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loops. The explicit form of the loop actions for lattice no
Abelian gauge theories is known to be related to colo
surfaces@8,9,11#. They are related to the world sheet swe
by the evolution in time of the spin networks. However,
complete Lagrangian lattice formulation associated with
spin network representation was not available up to now

In Sec. II we discuss the spin network Hamiltonian a
proach to Yang-Mills theory. In Sec. III we study the cha
acter expansion of the Wilson action and we show why
group factors do not allow to get a closed form for the act
in terms of colored surfaces. In Sec. IV we show that th
factors may be simply computed in a tetrahedral latt
where the Wilson action and the heat kernel action tak
very simple form. In Sec. V we apply this action to perfor
a strong coupling expansion for the heat kernel version of
theory and we compute the free energy densityf and the
average plaquetteP. Finally, in Sec. VI we conclude with
some comments on further developments.

II. SPIN NETWORK REPRESENTATION

We consider the pure gauge theory with gauge groupG
semisimple and compact@G5U(1) or SU(n)]. We start
with the Hilbert spaceH5 ^ lHl whereHl5L2(G) and l
denote the links of the lattice. On every linkl we take the
‘‘position’’ basis uUl& labeled by the fundamental represe
tation matricesUlPG. A basis ofH is given by the vectors
uU&5 ^ l uUl&. Links are oriented andUl̄ 5Ul

21 .
A gauge transformation is specified by a group elem

Vs on every lattice sites. The stateuU& is transformed into
uU8& whereUl85Vs1

UlVs2

21 , s1 ands2 being the origin and

end of l . The physical states are those that are invariant
der gauge transformations and they define the physical
bert spaceHphys.

The position and momentum operatorsÛ l , Êl
a are defined

Û l uU&5Ul uU&, ~1!

eiuaÊl
a
uU&5uU8&, ~2!

whereUl85eiuaTa
Ul , Ta are generators of the group satisf

ing

Tr~TaTb!5
dab

2
, ~3!

@Ta,Tb#5 icabcTc. ~4!

The reference stateu0&5*dUuU& is gauge invariant and
permits to express any stateuc&5c(Û)u0&. To work in the
physical spaceHphys we have to find a basisuca&, that is, a
collection of appropriate gauge invariant functionsca(U).

One choice is to consider polynomials

)
l

~Ul !a1b1
•••~Ul !arbr

~Ul
21!c1d1

•••~Ul
21!csds

. ~5!
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Imposing gauge invariance leads to contraction of indi
of incoming and outcoming matrices at every site. The res
is the loop representation. That is, states

uC1 ,C2 , . . . ,CM&5W~C1!W~C2!•••W~CM !u0&, ~6!

whereCi are closed loops and

W~C!5Tr )
l PC

Ul . ~7!

These states generateHphys but they are not independen
They satisfy the so called Mandelstam constraints which
SU~2! read

W~C1!W~C2!5W~C1C2!1W~C1C̄2!, ~8!

for every two loopsC1 ,C2 with the same origin.
Instead of Eq.~5! we can consider the states given b

functions

)
l

Dalbl

~m l !~Ul !, ~9!

wherem runs over the irreducible representations ofG and
D (m) are the matrices of these representations.~Links in the
trivial representation are not mentioned explicitly.! Looking
to a vertex where enter links in them1 , . . . ,m r representa-
tions and leave links in then1 , . . . ,ns representations we
have functions

Da1b1

~m1!
~U1!•••Darbr

~mr !
~Ur !Dc1d1

~n1!
~V1!•••Dcrdr

~ns!

3~Vr !l@b1

m1
•••br

mruc1

n1
•••cs

ns#, ~10!

wherel@•••# are coefficients that ensure gauge invarian
~We sum over repeated latin indices.! If we perform a gauge
transformation with elementg at the present site we see th
l must be an invariant tensor

l@a1

m1
•••ar

mrud1

n1
•••ds

ns#5Da1b1

~m1!
~g21!•••Darbr

~mr !
~g21!

3Dc1d1

~n1!
~g!•••Dcrdr

~ns!
~g!

3l@b1

m1
•••br

mruc1

n1
•••cs

ns#. ~11!

The l tensors can be computed from the Clebsh-Gord
~CG! coefficients for the group. The condition forl being
nonzero is that the decompositions of the product of the r
resentations entering and the product of the representa
leaving have common terms. The representation defined
these states is calledspin network representation. The states
are represented graphically as oriented paths with branc
points where every single line is labeled by a representa
of the group~see Fig. 1!.

Suppose now that the group is Abelian@G5U(1)#. Then
the irreducible representations are one-dimensional and h
the formD (n)(U)5Un for nPZ. So the Eq.~9! states coin-
7-2
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PATH INTEGRAL LOOP REPRESENTATION OF 211 . . . PHYSICAL REVIEW D58 045007
cide with the polynomial states~5! and the loop representa
tion and the spin network representation are the same.

For non-AbelianG the two representations are differen
It is clear that a site cannot have only one link entering
only one link leaving. The simplest case is one link enter
and another link leaving. Both must be in the same repres
tation and the invariant tensor is

l@a
mud

m#5dad . ~12!

The effect of this tensor is to multiply the matrices th
enter and leave so single lines in the spin network are lab
by a single representation. The case of two links enterin
site is forbidden in general but in the case of SU~2! there are
invariant tensors likeeab ~antisymmetric ande1251). The
effect of these tensors is to reverse one of the lines conv
ing on the site. This is due to the fact that for SU~2! every
representation is equivalent to its conjugate.

When three lines meet in a site the condition for the
istence of nonzero invariant tensors is that the product of
entering representations contains the trivial representatio
that case the invariant tensor is given by the CG coefficie

Dab
~m!~g!Dcd

~n!~g!5(
r

C~ma,ncurd!Dde
~r!~g!C~reumb,nd!,

~13!

which are taken real

C~ma,nburc!5C~rcuma,nb!. ~14!

As we consider only simply reducible groups no oth
independent invariant tensor exists. Then the state co
sponding to a trivalent vertex is well encoded in the draw
of the spin network. This is not in general the case for s
where four or more lines meet. The dimension of the sp
of invariant tensors is the number of times that the produc
the entering representations contains the trivial represe
tion. Besides the spin network it must be provided inform
tion about which tensors we select on the vertices. This
generation is not fundamental since these vertices can
thought of as the limiting case when the line connecting t
trivalent vertices gets zero length.~See Fig. 2.!

A spin network is denotedN5P1P2•••PM wherePi are
the single lines.m i is the representation carried by linePi .
The spin network statesuN& are independent and orthono
mal. A proof using an inner product structure on the st
space is given in@7#. Loop states can be expanded in sp

FIG. 1. An example of spin network.
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network terms in a unique way so the Mandelstam c
straints disappear when we pass to the spin network re
sentation.

The Hamiltonian operator is

H5
g2

2 (
l

Êl
22

1

2g2(p
„W~p!1W~ p̄!…, ~15!

whereg is the coupling constant,l and p are the links and
plaquettes of the lattice respectively, andÊl

25Êl
aÊl

a and
W(p) is given by Eq.~7!. The fundamental commutatio
relations are (Ta

(m) are the generators of them irrep!

@Êl
a ,D ~m!~Û l8!#52Ta

~m!D ~m!~Û l !d l l 81D ~m!~Û l8!Ta
~m!d l̄ l 8 ,

~16!

@Êl
a ,Êl

b#5 icabcÊl
c . ~17!

We get, for the action of the electric part of the Ham
tonian,

(
l

Êl
2uN &5L~N !uN &, ~18!

L~N !5(
i

c~m i !L~Pi !, ~19!

whereL(Pi) is the number of links in the linePi andc(m) is
the quadratic Casimir number of the representation given
Ta

(m)Ta
(m)5c(m)Id. For example, for SU~2!, c( j )5 j ( j 11).

Then the spin network states, in contrast to the loop sta
are always eigenstates of the electric term.

The magnetic part produces deformations of the spin n
works both in the geometrical shape and the representat
of the lines. This is represented graphically in Fig. 3.

FIG. 2. Four valent vertex as the limiting case of two trivale
vertices.

FIG. 3. Action of the magnetic operatorW(p).
7-3
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To further clarify the relation between loop and spin network states we recall the action of the electric part
Hamiltonian over a loop state~6!

(
l

Êl
2uC1 ,C2 , . . . ,CM&5S nL~C1 ,C2 , . . . ,CM !2

1

n
L~C1 ,C2 , . . . ,CM ! D uC1 ,C2 , . . . ,CM&

1(
i

(
l ,l 8

d̄ l ,l 8uC1 , . . . ,Cixy ,Ciyx , . . . ,CM&

12(
i , j

(
l PCi

(
l 8PCj

d̄ l ,l 8uC1 , . . . ,~CixxCjyy!, . . . ,CM&, ~20!
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whereL(C1 ,C2 , . . . ,CM) is the number of links in the se
of loops taking account of the multiplicity~single length!,
and L(C1 ,C2 , . . . ,CM) is the sum of the squares of the
multiplicities ~quadratic length!. d̄ l ,l 8 is 1 if l 5 l 8 and21 if
l̄ 5 l 8 andx,y are the edges ofl .

In Eq. ~20! we see that in general the loop states are
eigenstates of the electric operator. The last two sums
geometric interaction terms: fusions where a loop splits i
two components and fissions where two loops join in a co
mon link.

Hamiltonian strong coupling expansions on a cubic latt
for SU~2! and SU~3! are given in@12#.

III. THE WILSON ACTION IN A CUBIC LATTICE

The path integral for the Wilson action for a general no
Abelian compact gauge group G is given by

ZW5E @dUl #expFb(
p

Re~Tr Up!G , ~21!

where theUlPG andUp5) l PpUl .
The analog of the Fourier expansion for the non-Abel

case is thecharacterexpansion. The charactersx r(U) of the
irreducible ~unitary! representationr of dimensiondr , de-
fined as the traces of these representations, are an orth
mal basis for theclassfunctions of the group: i.e.@10#,

E dUx r~U !xs* ~U !5d rs , ~22!

(
r

drx r~UV21!5d~U,V!. ~23!

In particular, as a useful consequence we have

drE dUxs~U !x r~UV21!5d rsx r~V!. ~24!

By means of the character expansion we can express

expH b(
p

Re@Tr Up#J 5)
p

(
r

crx r~Up!, ~25!

with
04500
t
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cr5E dUx r* ~U !exp~b Tr U !. ~26!

In the case ofG5SU(2) a direct application of Eq.~26!
yields the cj in terms of modified Bessel functions, an
therefore we can express Eq.~21! as

ZW5E @dUl #)
p

F(
j p

2~2 j p11!
I 2 j p11~b!

b
x j p

~Up!G
5(

$ j p%
)

p
F2~2 j p11!

I 2 j p11~b!

b
G E @dUl #)

p
x j p

~Up!.

~27!

It will be convenient to introduce the following quantitie
in order to rewrite the path integralZW :

c05
2I 1~b!

b
, ~28!

c0b j5
2I 2 j 11~b!

b
. ~29!

The path integral takes the form

ZW5c0
NE )

p
F11 (

j pÞ0
~2 j p11!b j p

x j p
~Up!G)

l
dUl ,

~30!

whereN is the number of plaquettes.
Let us now show how the sum over colored surfaces a

in ZW . A given subset of plaquettes carryingj pÞ0 is ho-
meomorphic to a simple surface if any link bounds at m
two plaquettes of this subset. The links bounding exactly o
plaquette make up the free boundary of this surface. A
configuration can be decomposed as a set of maximal sim
surfaces by cutting it along the links bounding more than t
plaquettes. In principle, there are two possibilities for t
boundary curves: either a free boundary, bounding only
simple surface or a singular branch line along which m
than two simple surfaces meet. In fact, relation~22! forbids
the existence of free boundaries for nontrivial configuratio
contributing to the path integral.
7-4
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The integration over the internal links of the simple su
faces is performed using Eq.~24!. Note that the plaquettes o
a simple surface component should carry the same gr
representation. After integrating over all the inner links
the simple components one gets@13# an expression involving
only the links of the boundaries:

ZW5c0
N (

surfaces
E S )

l P]A
dUl D

3)
i

b j i

Ai~2 j i11!e i )
boundaries

x j i
@]Ai #, ~31!

wheree i is Euler’s topological invariant of the surfacei with
areaAi . Euler’s characteristic is explicitly given by

e5n22n11n05222g2b, ~32!

wheren2 is the number of plaquettes,n1 the number of dis-
tinct links bordering these plaquettes andn0 the number of
end points of these links, andg is the genus of the surfac
andb the number of boundaries.

An important property of the character expansion~27!,
relevant for strong coupling expansions, is that only a fin
number of terms in Eq.~25! contribute to a given order inb.
In fact,

cr5O@b r
n#, ~33!

wheren r is the smallest integer such thatxn(U)has a non-
vanishing component alongx r(U). In the SU~2! casen j
52 j .

In @8# and @9# a path integral over colored surfaces
obtained along the lines described here. However, on a c
lattice the group factors of the surfaces are difficult to co
pute because with up to four surfaces meeting at sing
lines, and up to six singular lines meeting at points, the
tegral in Eq.~27! can be very complicated, involving recou
pling coefficients of up to 12j ’s. That is why these group
factors have been only perturbatively computed for the d
grams that appear in the strong coupling expansion.

Working with a cubic lattice is equivalent to working wit
spin networks involving four valent vertices in the Ham
tonian approach discussed in Sec. II. In this case, it is w
known that only three valent vertices have an unambigu
correspondence with the information encoded in the draw
of the spin network. Higher order vertices require additio
information about the invariant tensor used to couple
irreducible representations. At the action level this me
that additional group factors associated with different wa
of coupling the colored surfaces at singular lines appear
@8# this problem is dealt with by assigning colors to the s
gular lines which are summed over in the path integral. Ho
ever, this complication may be avoided by using a spe
class of lattices. In the dual to a tetrahedral lattice only th
plaquettes meet at each link, so singular lines involve at m
three colored surfaces.
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IV. LOOP ACTIONS IN TETRAHEDRAL LATTICES

In order to introduce the tetrahedral lattice above m
tioned, some concepts of solid state physics are very us
@14#. TheBravais lattice is one of such concepts; it specifi
the periodic array in which the repeated units of a crystal
arranged. That is, the Bravais lattice summarizes the ge
etry of the underlying periodic structure, regardless of w
the actual units are~single atoms, molecules, groups of a
oms, etc.!. A ~three-dimensional! Bravais lattice is specified
by three vectorsa1, a2, anda3 calledprimitive vectors. The
primitive vectors generate all the translations such that
lattice appearsexactlythe same. The primitive unit cell gen
erated by the primitive vectors often does not have the
symmetry of the Bravais lattice. However, one can alwa
consider a nonprimitive unit cell, known as aconventional
unit cell, which is generally chosen to be bigger than t
primitive cell and such that to have the full symmetry of the
Bravais lattice.

Let us consider a face centered cubic Bravais lattice
i.e., the lattice obtained when one adds to the simple cu
lattice an additional point in the center of each square face
with primitive vectors a15a( i1 j ), a25a( j1k),
a35a(k1 i). The conventional unit cell of this lattice is
cube of side 2a with a four point basis located a
(0,0,0),(a,0,0),(0,a,0)(0,0,a). Translations along the primi
tive vectors generate 27 points associated with 8 cube
side a in the conventional cell. The Bravais convention
unit cell with the four basis points and the eight cubes
depicted in Fig. 4.

Each cube of sidea may be decomposed in the five te
rahedraABDE, CBDG, EBGE, HDGE, and EBGD as
shown in Fig. 5. The links of the lattice are the edges of th
tetrahedra. The first four tetrahedra have volumea3/6 while
the last one has volume 2a3/6. If the vertexA of the cube
depicted in Fig. 5 has coordinates~0,2a,0! the other cubes
are obtained by symmetrizing with respect to the planesExy,
Eyz, Ezx and translating along the primitive vectors. Co
ored surfaces will be associated to the plaquettes of the
lattice. The vertices of this lattice are the centers of the
rahedra:

XA~e!5
a

4
~e1,3e2 ,e3!, ~34!

FIG. 4. Bravais unit cell.
7-5
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XC~e!5
a

4
~3e1,3e2,3e3!, ~35!

XF~e!5
a

4
~3e1 ,e2 ,e3!, ~36!

XH~e!5
a

4
~e1 ,e2,3e3!, ~37!

XO~e!5
a

2
~e1 ,e2 ,e3!, ~38!

~39!

wheree561.
Each cell contains one polyhedron with 12 hexago

faces and six squared faces. In Fig. 6 we show the points
links of one polyhedron and one cube. Translations along
primitive vectors fill all the lattice. Each of the squares is
face of one cube of sidea/2. We shall attach a SU~2! group
elementUl in the fundamental representation to each link
this lattice.

Now let us consider the Wilson action defined in terms
the plaquettes of this lattice.

S5bF(
ps

Re~Tr Ups
!1(

ph

Re~Tr Uph
!G , ~40!

FIG. 5. Decomposition of the cube of sidea in tetrahedra.

FIG. 6. Cubic and tetrahedral cells of the lattice.
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whereUps
and Uph

respectively are the holonomies for th
squared and hexagonal plaquettes.

One can show that this action has the correct continu
limit when the spacinga goes to zero, leading to the classic
Yang-Mills action. This is due to the fact that the squa
faces as well as the hexagonal ones have equal projec
over the coordinate planes. Comparing the naive continu
limit of this action with the Wilson action on a cubic lattic
of side a with coupling bc we get the following relation
between the couplings:b5 64

13 bc .
One can repeat the same steps leading to Eq.~31!, but

now the singular lines always bound three colored surfac
In this case the integral along the boundaries in Eq.~31! only
contributes when four singular lines intersect at one po
and may be explicitly computed. Let us callSk the intersect-
ing point andg1 , . . .g4 the singular lines intersecting atSk .
Then we have six colored surfaces with colo
j 12, j 13, j 14, j 23, j 24 and j 34 bounded by these lines. Tha
means that in the original tetrahedral lattice we shall hav
tetrahedron with one of the values ofj on each edge. The
exact path integral may now be written in terms of a su
over colored surfaces:

ZW5c0
N (

surfaces
)

i
b j i

Ai~2 j i11!e i

3)
Sk

~21!(
i

j i i 11
k H j 12

k , j 13
k , j 14

k

j 34
k , j 24

k , j 23
k J , ~41!

where the sixj symbols are the Racah coefficients and t
exponent of21 denotes the cyclic sumj 121 j 231 j 341 j 41.

In the weak coupling limit the coefficients behave as

b j'expH 2
j ~ j 11!

2b J , ~42!

which are the coefficients of the heat kernel path integral
what follows we will use for simplicity the heat kernel form
of the partition function.

V. STRONG COUPLING EXPANSIONS

Our aim in this section is to show that the introduction
the previous Bravais lattice not only allows to perform c
culations but also simplify them. Therefore, we will sho
here how to perform a strong coupling expansion. In orde
do so we will use, just for simplicity, the expression for th
path integral in terms of colored surfaces which correspo
to the heat kernel action:

Z5 (
surfaces

)
i

expH 2
j i~ j i11!

2b
Ai J ~2 j i11!e i

3)
Sk

~21!(
i

j i i 11
k H j 12

k , j 13
k , j 14

k

j 34
k , j 24

k , j 23
k J . ~43!

We will follow an analogous treatment to that of Drouffe an
Zuber @13#. We will expand in powers of thet parameter
given by t[e21/4b.
7-6
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Free energy densityf

The free energy densityf 5F/N, whereF5 logZ is the
free energy andN the number of plaquettes, is obtained
summing the terms linear in N in the expansion of the p
integral~43! in powers oft. The power oft of each diagram
is equal to

(
r

2 j r~ j r11!3nr ,

where j r denotes the representations of the group SU~2! or
‘‘colors’’ and nr denotes the number of plaquettes~square
plaquettes1 hexagonal plaquettes! of the diagram. For in-
stance, the first power of the expansion corresponds to
smallest volume, i.e. the cube, with all their plaquettes w
j 5 1

2 and it gives a power of 23 3
4 3659; the next power is

produced by two disconnected cubes~recall that in our lattice
cubes make contact only with polyhedra! with j 5 1

2 which
gives a power of 18 and so forth. The contribution of ea
diagram tof can be written as the product of two numbe
the reduced configuration number~r.c.n.! times a group the-
oretical factor@13#. To compute the r.c.n. one has to cou
the number of inequivalent positions of a given diagram
the lattice — itsconfiguration number— and then to extrac
the term linear inN which is the r.c.n. The group theoretic
factors stem from the integrations over the link variablesUl
and their general form is

(
rÞ0

dr
n22n11n0 )

boundaries
x r~Uboundary!,

wheredr is the dimension of the representationr , n2 is the
number of plaquettes withj 5 j r , n1 the number of distinct
links bordering these plaquettes andn0 the number of end-
points of these links. For example, diagrams with the top
ogy of a sphere give contributions( rÞ0dr

2 . The main advan-
tage of the introduced lattice is that the group theoret
factors for more complicated diagrams can always be exp
itly expressed in terms of thedr and 6-j Racah symbols. The
Racah symbols arise each time four singular lines mee
one vertex and they appear in the diagrams by pairs. The
of this pairs come out in the diagram of two polyhedra sh
ing a hexagonal face and a cube sharing two of its cont
ous faces, one with each polyhedron~Fig. 7!.

All the external 36 plaquettes of this diagram are labe
with j 5 1

2 while the 3 internal~shared! plaquettes are labele
with j 51; then it gives a power oft3/233614335t66. We

FIG. 7. First diagram involving 6-j symbols.
04500
h

he
h

h
:

t
n

l-

l
c-

at
rst
r-
-

d

have computed the strong coupling expansion off up to
power 53 in t which involves 34 diagrams grouped in 1
different powers oft:

f 54t928t1819t24176/3t27212t332160t36172t37

160t392432t421360t4318224/5t451612t4621728t47

22961/2t481720t4915052t5128640t5212664t53. ~44!

In Fig. 8 we list schematically the diagrams contributin
to each power oft.

We plot in Fig. 9 thef vs b for different powers of
truncation of the expansion and the series expansion fo
cubic lattice of Ref.@13#. We observe the coincidence o
both expansions up tob50.5.

As long as we enter in the weak coupling regimeb
.1), one can appreciate a clear difference with the se
expansions of Ref.@13# which were performed in an ordinar
cubic lattice and with a different truncation criteria~they
consider diagrams up to 16 plaquettes which correspond
t24). Our series seems to be more consistent with the
pected linear behavior in the weak coupling limit. The exp
nation of this difference relies on the fact that in the stro
coupling expansion in a cubic lattice up to 16 plaquettes
the terms except two are positive while in our case we h
almost equal number of contributions with both signs.

Thus, one can observe that the introduction of the dua
the tetrahedral lattice, besides simplifying the strong c

FIG. 8. Diagrams contributing to each power oft. We represent
cubic cells as squares and polyhedral cells as circles. Numbers
low each cell denote the representation and repeated compone
a configuration are indicated by3 the multiplicity.
7-7
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pling computations provides a straightforward procedure
obtain the desired terms of the series expansion. This turn
be an advantage in order to reach the weak coupling reg

VI. CONCLUSIONS

We have introduced a Hamiltonian spin network rep
sentation for a SU~2! lattice gauge theory. This gauge invar
ant representation is given in terms of an independent b
that diagonalizes the electric part of the Hamiltonian. T
corresponding Lagrangian formulation is also develop

FIG. 9. Free energyf vs b for several truncation orders. From
above:t27, t39, t46, t53 and t18.
04500
o
to
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e
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This formulation takes a purely geometrical form in terms
sums over colored surfaces and allows to combine the p
erful Lagrangian techniques with the redundancy free
scription typical of the loop representation. This action m
be written on a tetrahedral lattice explicitly in terms of th
Racah coefficients. The computation of the group theoret
factors of the strong coupling expansion becomes straight
ward, only involving these Racah coefficients. Also, we ha
a compact expression for the colored surfaces action wh
allows to perform numerical computations.

In the naive weak coupling limit, the area dependent f
tors become equal to 1 and the action is purely topologi
One can immediately check that this limit corresponds to
Ouguri @15# form of the B-F topological field theory, which
in three dimensions is known@16# to coincide with the pure
gravity action. This rather unexpected result may be und
stood if one recalls that the action of the Yang-Mills theo
in three dimensions may be written in terms of a one-formB
and the field strengthF as follows: S5*B`F2g2B`* B
and therefore forg going to 0 it reduces to the three dime
sional B-F theory. This provides an explicit proof of th
relation between the B-F theory and the Ouguri-Turaev-V
sum over colored surfaces@17#. In this case the use of th
Biedenharn and Elliot identity@18# allows us to show that
the action is invariant under the renormalization group. Th
in the different context of QCD, this suggests that the Yan
Mills action in terms of colored surfaces may be particula
well suited for the study of the effective theories.

Even though the method developed here was for SU~2! in
211 dimensions, the extension to other groups, in particu
to SU~3!, is straightforward. The corresponding spin ne
works would simply carry the quantum numbers required
characterize the irreducible representations of the Lie gr
under study@19#. It is also possible to extend this formula
tion to the four dimensional case, by making use of t
higher order Racah-Wignerj -coefficients. An important sim-
plification of the path integral~43! with the same weak cou
pling regime could be obtained by making use of the P
zano and Regge asymptotic form of the Racah-Wig
j -symbols. We hope to present elsewhere a more deta
analysis of these developments.
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