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Chern-Simons number diffusion with hard thermal loops
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We construct an extension of the standard Kogut-Susskind lattice model for classical (311)-dimensional
Yang-Mills theory, in which ‘‘classical particle’’ degrees of freedom are added. We argue that this will
correctly reproduce the ‘‘hard thermal loop’’ effects of hard degrees of freedom, while giving a local imple-
mentation which is numerically tractable. We prove that the extended system is Hamiltonian and has the same
thermodynamics as dimensionally reduced hot Yang-Mills theory put on a lattice. We present a numerical
update algorithm and study the Abelian theory to verify that the classical gauge theory self-energy is correctly
modified. Then we use the extended system to study the diffusion constant for the Chern-Simons number. We
verify the Arnold-Son-Yaffe picture that the diffusion constant is inversely proportional to the hard thermal
loop strength. Our numbers correspond to a diffusion constant ofG52966aw

5T4 for mD
2 511g2T2/6.
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PACS number~s!: 11.10.Wx, 11.15.Ha, 11.15.Kc
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I. INTRODUCTION

One of the most profound and most poorly explained
servations of modern cosmology is that the universe cont
macroscopic amounts of matter, but not of antimatter. Si
baryon number is conserved in all observed terrestrial
astrophysical phenomena, the existence of such a ba
number asymmetry~baryons over antibaryons! seems pecu-
liar, particularly because it clearly violatesC andCP sym-
metry. Further, the abundance of baryons, as compared t
abundance of photons or the entropy density of the unive
is a remarkably small number, on the order of 10210, and
since the entropy of the universe has changed very l
since its very hot early epochs, this small nonzero numbe
an initial condition to the universe viewed at least back to
epoch of primordial nucleosynthesis.

Sakharov@1# made the first attempt to understand what
involved in explaining this observation. If the universe do
not begin with such an asymmetry, then baryon number m
be violated to generate it, and so mustC and CP. He also
noted thatif baryon number is not conserved, then in eq
librium it will go to zero, as a consequence ofCPT symme-
try. Hence, if the baryon asymmetry of the universe w
generated dynamically, the universe must in its early hist
have gone through some departure from thermal equilibri
in which baryon number violation was active andC andCP
violating physics was relevant, followed by a steep suppr
sion of the rate of baryon number violation before therm
equilibrium resumed~to prevent baryon number from bein
erased again!. And if baryon number was violated at a ra
faster than the Hubble expansion at any point in the u
verse’s history, then baryon number must have been ge
ated dynamically.

While it is known that grand unified theories~GUTs! ge-
nerically violate baryon number, it turns out that bary
number is violated already in the standard model, as
shown by ’t Hooft @2#. The key observation is that baryo
0556-2821/98/58~4!/045001~24!/$15.00 58 0450
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number is coupled through the axial anomaly to the Che
Simons number (NCS) of the SU~2! weak hypercharge field

dNB

dt
5NF

dNCS

dt
~NF53!, ~1!

and that theNCS change is thermally activated in the h
electroweak plasma@3–5#. This baryon number violation oc
curs at much lower temperature ranges, and hence later in
evolution of the early universe, than GUT mechanisms
could therefore erase any baryon number asymmetry ge
ated when GUT mechanisms are relevant1 and generate the
observed abundance during the electroweak phase trans
when the rate abruptly shuts off. This latter possibility h
stimulated the field of electroweak baryogenesis.

One thing we need to know to understand electrowe
baryogenesis is how quickly baryon number is violated in
standard model, above the electroweak phase transition.
violation involves nonperturbative physics, and there are
known analytic methods which are reliable above the ph
transition temperature~in contrast to the situation below i
@3,5#!. Already at the thermodynamic level the fields respo
sible for the violation of baryon number suffer from the ‘‘in
frared problem’’ of thermal field theories with light interac
ing bosons.

The ‘‘infrared problem’’ of the thermodynamics of the
mal field theories with light interacting bosons can
‘‘solved’’ by the dimensional reduction procedure@6–8#,
which reduces the problem to a three dimensional path i

1The standard model violatesB1L but not B2L. Extended
GUTs such as SO~10! can produce aB2L excess, which elec-
troweak processes will not touch. But the possibility ofB produc-
tion in the standard model certainly motivates the study of th
scenarios.
© 1998 The American Physical Society01-1
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gral which can be put on a lattice@9–11# and studied numeri-
cally @12–16#. This ‘‘dimensional reduction’’ turns out to be
identical to considering the partition function of th
(311)-dimensional, classical bosonic theory, with certa
counterterms@17#. The most hopeful approach to the stu
of infrared sensitive, dynamical properties of the plasma
that they also behave essentially classically@18#, and there is
reason to believe that they do@15,19#.

There is a problem with the classical approximation to
dynamics, however. The ultraviolet modes (p;pT) cer-
tainly do not behave as classical fields, and they interact w
the infrared modes~which we will assume do behave esse
tially classically!. The classical approximation will serv
only if the interaction between soft and hard modes is so
how unimportant to the evolution of the soft modes. It
known that, at weak coupling, the hard modes only influe
the thermodynamics of the soft modes by shifting the Hig
mass and the Debye screening mass for theA0 field.2 How-
ever, the unequal time generalization of Debye screening
hard thermal loops, constitute very nontrivial physics, ph
ics which the lattice implementation of the classical theo
gets wrong@20#, both in the size of the screening effec
~which depend inversely on the lattice spacing! and in the
functional details.

Does this problem matter to the rate at which bary
number is violated? In particular, since there is a fluctuat
dissipation relation which relates the rate at which a bar
number excess is dissipated in the plasma to the rate ofNCS

diffusion per unit volume@21#, we might ask whether the
hard thermal loops matter to theNCS diffusion constant. The
numerical lattice results of Ambjo”rn and Krasnitz implied
that there is a well-defined small lattice spacing limit to t
classical, lattice diffusion constant@17#, but the definition of
lattice NCS used there gives bizarre results in the brok
phase@22# due to serious lattice artifacts@15#. Theoretical
arguments suggest that hard thermal loops should slow d
the evolution of infrared magnetic fields, for the same rea
that infrared magnetic fields in an Abelian plasma beco
pinned by the conductivity of the plasma@23,24#; hence one
should expect that theNCS diffusion constant vanishes lin
early with lattice spacing in classical simulations. Recen
numerical techniques based on a topological definition
NCS @25# and a ‘‘cooled field’’ definition which removes th
worst problems of the old definition@26# have indicated a
lattice spacing dependence in the diffusion constant, tho
it does not appear to be as large as expected. Henc
present the situation seems confused, and it certainly se
necessary to find a way to include more faithfully the effe
of hard thermal loops in the study ofNCS diffusion, and in
other studies of infrared bosonic field evolution, such as
study of the phase transition dynamics@15# and the genera
tion of quark gluon plasma in heavy ion collisions@27–29#.

2There are also perturbatively computable corrections to the c
plings of the theory, which amount to a specification of the ren
malization point: see Farakoset al. @7# and Kajantieet al. @8#.
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In this paper we develop, implement, and study a propo
by two of us@30# for including the hard thermal loop effect
into classical, lattice simulations of Yang-Mills or Yang
Mills Higgs theory. The implementation produces a loc
Hamiltonian system in which added ‘‘particle’’ degrees
freedom convey the hard thermal loop effects. We explic
verify that the enlarged system conserves energy and s
plectic measure, has the same thermodynamics as the q
tum theory in the dimensional reduction approximation, a
produces the right dynamical behavior for infrared fields. W
examine in detail the retarded propagator of the Abel
theory with particles to show that they correctly produce
of the physics of hard thermal loops, including Deb
screening, plasma oscillations, and Landau damping. T
we apply the particle method to determine theNCS diffusion
constant and its dependence on the Debye mass. The re
verify the arguments of Arnold, Son, and Yaffe@23#. In par-
ticular, we verify that as the total strength of hard therm
loop effects varies by a factor of 3, with the lattice spaci
and the physical volume held constant, the diffusion cons
for NCS also varies by a factor of 3.

The outline of the paper is as follows. In Sec. II we r
view what the hard thermal loops are and how they can
understood in terms of Vlasov equations, i.e. in terms of
influence of a bath of particles on the classical infrar
modes. In Sec. III we explicitly construct a spatial lattic
continuum time system which can be viewed as anN body
simulation of the Vlasov equations. We show that this s
tem is energy conserving and Hamiltonian and argue that
small charge and large particle number, it reduces to
~lattice! Vlasov equations in the eikonal approximatio
which are known to produce the right hard thermal loops.
Sec. IV we study its thermodynamics, which is shown to
the same as dimensionally reduced Yang-Mills theory put
the lattice, at a specific Debye mass set by the number
charge of the particles. Section V develops a stable, t
symmetric update algorithm, and Sec. VI numerically stud
the retarded propagator of the Abelian theory. Section
uses the evolution algorithm, together with the topologi
definition of NCS developed in@25#, to study theNCS diffu-
sion constant and its dependence on lattice spacing an
the size of hard thermal loop effects. Section VIII conclud
There are also four technical appendixes. Appendix A a
lytically studies how the lattice nature of the electric fiel
changes the plasma frequency, in the limit of many partic
of small charge. Appendix B studies the thermodynamics
the lattice system whenmD;g2T/a. Appendix C reviews
how to probe the retarded propagator via the linear respo
to an external current. Appendix D discusses the relat
between lattice and continuum time scales.

II. HARD THERMAL LOOPS AND PARTICLES

In this section we briefly review an approach to hard th
mal loops due to Kellyet al. @31# and discuss how one ca
generate the influence of hard thermal loops by coupling
infrared fields to a heat bath of particles.

In the diagrammatic approach to field theory at high te
perature it was shown by Braaten and Pisarski@32# that a
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resummation procedure is needed in order to take into
count consistently all contributions at leading order in t
coupling constant. Such contributions are called ‘‘hard th
mal loops’’ since they arise from one-loop diagrams w
soft external legs and hard internal momenta. The hard t
mal loop resummation was shown to produce gauge inv
ant results for physical quantities such as the gluon damp
rate in a QCD plasma@33#. An effective action for the hard
thermal loops was derived by Taylor and Wong@34# by im-
posing gauge invariance on the generating functional.
other approach developed by Blaizot and Iancu@35# is based
on a truncation of the hierarchy of Schwinger-Dyson eq
tions and the generating functional was obtained throug
consistent expansion in the coupling constant.

While remarkably insightful, the approaches mention
above are quite technical, often involving lengthy calcu
tions, and they tend to hide the classical nature of hard t
mal loops. The hard thermal loops arise from loop diagra
and can be obtained from the Schwinger-Dyson equation
quantum field theory. But they are also UV finite, with loo
integrals being exponentially suppressed in the ultravio
This is because they arise entirely from thermal fluctuatio
One usually thinks of such fluctuations, at least in the ult
violet, as being well described by classical particles, wh
motivated Kelly et al. @31# to find an alternative, classica
formalism for hard thermal loops, by considering the line
response of an ensemble of thermal particles to a we
coupled, slowly varying mean field in the framework of cla
sical transport theory@36#. They start by considering par
ticles carrying non-Abelian SU(N) chargeqa, a51, . . . ,N2

21. The Wong equations@37# are used to describe th
proper time evolution of a particle with phase space coo
nates (jm,pm,qa):

m
djm

dt
5pm, ~2!

m
dpm

dt
5gqaFa

mnpn , ~3!

m
dqa

dt
52g fabcpmAm

b qc, ~4!

where g is the coupling constant andFa
mn denotes the

strength of the mean color fieldAa
m . Note that the color

charge is itself subject to dynamical evolution, a featu
which is absent in the Abelian case. Both the dynami
evolution of a particle’s spin and the spin coupling are n
glected since spin interactions are down by an order ofg in
a weak mean field describing soft excitations~k;gT, Am
&T, Fmn&gT2) @38#.

Consider the classical one particle distribution functi
f (x,p,q) evolving in time according to the Boltzmann tran
port equation

m
d f~x,p,q!

dt
50, ~5!
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where the collision integral describing hard collisions b
tween particles is neglected since soft collisions mediated
the mean field dominate. Inserting the Wong equations~2!–
~4! into Eq. ~5!, one arrives at the following:

pmF ]

]xm 2gqaFmn
a ]

]pn
2g fabcAm

b qc
]

]qaG f ~x,p,q!50.

~6!

A self-consistent set of non-Abelian Vlasov equations for
distribution function and the mean color field can be o
tained by augmenting Eq.~6! with the Yang-Mills equation

DmFmn5gE dpdqpnq f~x,p,q![ j n~x!. ~7!

The non-Abelian Vlasov equations~6! and ~7! are now
applied to study the soft excitations in a hot, color-neut
plasma with massless particles. In the spirit of linear
sponse theory, one expands the distribution function in po
ers ofg:

f 5 f ~0!1g f ~1!1O~g2!, ~8!

wheref (0)(p0)5CnB,F(p0) is the equilibrium distribution in
the absence of a net color field. At leading order ing, Eq.~6!
reduces to

pmF ]

]xm 2g fabcAm
b qc

]

]qaG f ~1!~x,p,q!

5pmqaFmn
a ]

]pn
f ~0!~p0!. ~9!

Similarly, there is a net induced current density in mome
tum space:

j ma~x,p!5g2E dqpmqaf ~1!~x,p,q!. ~10!

From Eqs.~9! and~10!, a constraint satisfied by the colo
current can be derived. Using the standard field theory d
nition of effective action, j m(x)52dG(A)/dAm(x), one
then arrives at a hard thermal loop effective action of
following form:

GHTL5
1

2
mD

2 F E d4xA0
a~x!A0

a~x!2E dV

~2p!4 W~A•v !G ,
~11!

where v[(1,p/p0), mD5gTA(2N1Ns12NF)/6,3 and the
integration *dV is over all directions of the unit vecto
p/p0 . The first term describes Debye screening.W(A•v) in
the second term is a functional. Its explicit form has be

3Here, Ns is the number of fundamental scalars, and as in
preceding text,NF is the number of generations, each containi
four chiral doublets; in QCD 2NF would be replaced byNF the
number of flavors, andNs would only appear in supersymmetri
extensions.
1-3
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given by Taylor and Wong@34#, also by Efraty and Nair
@39#. Note that the derivation ofGHTL stays completely
within the classical transport theory and makes no use of
quantum theory. This justifies the statement that hard ther
loop effects are classical~in the sense of the classical partic
approximation!. Also note that the form of the expressio
inside the brackets in Eq.~11! does not rely on the particle
obeying any specific statistics; they can be Fermi, Bose
even Boltzmann particles. Nor does it depend on what gr
representation they are in. These only affect how muc
species contributes to the leading coefficientmD

2 , which is
given by a sum over charged species of their individual c
tributions. The ratio of a particle species’ contribution tomD

2

and the mean density of those particles is 2g2C2(R)^E21&.
@For classical, distinguishable particles in the adjoint rep
sentation,g2C2(R) is replaced by the mean squared value
the particle chargeq in one Lie algebra direction.#

It is worth noting that the magnetic field does not play
role in producing hard thermal loops at leading order. T
can be easily seen from Eq.~9!, where only the electric field
enters the term on the right. Physically, this is because
magnetic field just rotates the momentum distribution, and
leading order that distribution is the rotationally invaria
thermal distribution. The magnetic field only influences e
isting departures from equilibrium, which is a subleadi
effect. In contrast, the electric field can polarize the plas
and generate a net current, which in turn interacts with
mean field and hence generates the desired hard the
loops. Therefore, in solving the Wong equations, one
leave out the magnetic term in the Lorentz force in Eq.~3! if
the plasma is only slightly driven out of equilibrium. How
ever, if one is interested in dynamical processes occurrin
out-of-equilibrium plasma, then the force due to the ma
netic field has to be included.

The effective action~11! is conceptually simple and for
mally appealing. It provides a concise way of summariz
hard thermal loops and allows one to better understand
influence of the hard thermal modes on the soft excitatio
Nevertheless, it does not prove a ready starting point
practical calculations. In particular, its nonlocality makes
hard to apply to study nonperturbative physics such
Chern-Simons number diffusion, where analytical metho
are rare and one has to rely on numerical simulations. H
ever, the fact that the hard thermal loop effective action~11!
can be derived from classical transport theory, i.e. the Vla
equations, implies that hard thermal loops can be gener
by solving the Vlasov equations numerically. One could
so by anN body simulation by solving the coupled system
Wong equations~2!–~4! and Yang-Mills equation~7!. This
has the advantage of being local in spacetime and allow
practical, real time study of both equilibrium and noneq
librium phenomena.

Based on these ideas, our goal will be to derive a sys
of dynamical equations which, in its low-frequency, lon
wavelength limit, reduces to the same effective field the
as the full thermal gauge theory. We have no intention
modeling the gauge theory as truly as possible in all respe
rather, we will be satisfied to reproduce its infrared behav
correctly. For example, it will be irrelevant for us wheth
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the system of classical particles carrying gauge charge h
detailed resemblance to the hard thermal modes of the ga
field, if only its back-reaction produces the nonlocal ha
thermal loop~HTL! effective action~11!. The system of clas-
sical dynamical equations to be derived in the following s
tions will have three parameters: the classical thermal len
scale (g2T)21, the gauge charge (gQ)2 of the particles, and
the particle densitŷn&. It will be sufficient for our purpose
if we tune these parameters so that they produce the co
values for the parameters in the HTL action.

III. LATTICE SYSTEM

To reproduce the hard thermal loop effects, our idea
then to numerically implement ‘‘particles’’ obeying Wong’
equations and moving in the background of classical, lat
fields. Eventually we want a discrete time update algorith
but an important step is to construct a continuous time,
tice system with the right properties. The general philosop
of adding particles with adjoint~Lie algebra! chargeq of
fixed magnitude, kinetic momentumpW , and continuous posi-
tion coordinatej satisfyingj̇ i5pi /upu, has been presented i
@30#; here we will specify the complete implementation. O
requirements for this system are the following:

There must be conservation of energy.
The evolution should preserve the phase space~symplec-

tic! measure.
The system should respect cubic,~lattice! translation,C,

P, andT symmetry.
Gauss’ law should be identically preserved.
The small lattice spacinga limit ~or smooth field, large

time limit if one thinks in lattice units! must recover the
Yang-Mills field equations supplemented with Wong’s equ
tions.

The thermodynamics of the infrared classical fields m
be given by the path integral of quantum Yang-Mills theo
in the dimensional reduction approximation~or its lattice dis-
cretization!.

Note that the first two conditions ensure that the system
Hamiltonian, and hence that the thermodynamics is well
fined. We would also like a thermalization algorithm for th
system.

We emphasize that the particles are a device to reprod
the hard thermal loops and should not be taken literally
reproducing all the behaviors of the hard modes. In particu
it is not a problem that they are distinguishable, and that th
number is conserved. We expect them to satisfy Boltzm
statistics, rather than Bose or Fermi-Dirac statistics, but
is also not important for reproducing the functional form
the hard thermal loops, as discussed in the last section
need only make sure that the number density and charg
the particles yield the desired value formD

2 . However, any
hope that the method can be enhanced to account for phy
beyond hard thermal loops is clearly remote. Hence we w
not be able to say anything about effects which are suble
ing in g.
1-4
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Let us list the degrees of freedom of the proposed sys
~see Fig. 1 for illustration!. We consider a 3-torus of spatia
extent N3 ~in lattice units, which will be used throughou
except when it is convenient to write the lattice spacing
plicitly !. ‘‘The lattice’’ will refer to the integer lattice on this
space, i.e. all points with all three coordinates an integer
link x,i will refer to the line between the lattice sitex and the
site x1 î ~henceforwardx1 i ! and on each link there will be
a parallel transporterUi(x)PSU(2) and an electric field
Ei(x)PLSU(2), the Liealgebra of SU~2!. For each index
valueaP$1,...,Np% there is a particle with coordinateja de-
fined on the torus, momentumpaPR3, and chargeqa

PLSU(2) satisfyingqa
25Q2. By definition Ei(x) will be

the left acting covariant time derivative ofUi(x), D0Ui(x)
5Ei

a(x) i taUi(x), and the momentumpa will tell the direc-

tion the particle moves in,j̇a,i5pa,i /upua ~note thej i are
defined modN!. It remains to define update rules forE, p,
andq.

First, what is the meaning ofq? It should be a charge
which the classical fieldsU,E ‘‘see,’’ but such a charge
should reside at a lattice point. We takeqa to ‘‘live’’ at the
lattice point xi closest toja , i.e. uxi2ja,i u<0.5. It will
gauge transform as an adjoint object at that site, and
charge observed by the classical fields will be

r~x!5(
a

qa3H 1 j at x,

0 j not at x
. ~12!

This is the quantity which enters Gauss’ law:

FIG. 1. An illustration of the degrees of freedom of the pr
posed system. Lattice sites are large dots, and the solid lines jo
them are links. Classical fields take values at sites~Higgs fields! or
on links ~connectionsU and electric fieldsE!. Particles~the small
dots! take on real valued coordinates and momenta~illustrated with
arrows!. A particle’s charge affects the classical fields as if it r
sided at the nearest lattice site. The dotted lines~really planes, ex-
tending out of the page! are barriers between the region nearest o
site and that nearest another, that is, faces of the dual lattice. W
a particle crosses a barrier, the charge is parallel transported t
new box, theE field on the link orthogonal to the barrier receives
kick, and the particle momentum orthogonal to the barrier
changed to conserve energy.
04500
m
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e

r~x!5(
i

Ei~x!2Ui
†~x2 i !Ei~x2 i !Ui~x2 i ![DL•E~x!.

~13!

The currentj i
a , an adjoint vector field, should be define

on the links and is specified by the requirement that it form
conserved current:

ṙ5(
i

Ui
†~x2 i ! j i~x2 i !Ui~x2 i !2 j i~x!. ~14!

The easiest way to see how this fixes the current is to th
of the chargeqa of particle a as living at sitex until the
particle moves to be closest to another site, sayx1 i ; then
the charge must abruptly slide along the link connectingx
andx1 i , and there will be a~d function in time! current on
that link, equal toj i(x)5qad(t2tcross). If we take the group
indicies of j to live at the basepoint of the linkx, then we
should use the value ofq which departs from sitex; the
value if we takej to live at the endpoint of the linkx1 i is
the adjoint parallel transport ofj with group indices at the
basepoint, and hence the chargeq of the particle when it
arrives at sitex1 i must be the parallel transport of the valu
at x:

q~at x1 i !5Ui
†~x!q~at x!Ui~x!. ~15!

If the particle is moving the other direction, fromx1 i to x,
the sign of the current is reversed, but Eq.~15! still holds.
This gives the update rule forq and is the same as wa
proposed in@30#.

In what follows we will call such events ‘‘boundar
crossings’’ because they correspond to a particle crossing
boundary which demarks the volume closest to one lat
site. The boundary is a face of the dual lattice, dual to
link in which the current flows.

We expect that the electric field update rule should be

dEi~x!

dt
52

]HKS

]Ui~x!
2 j i~x!, ~16!

HKS[(
x,i

Ei
2~x!

2
1(

h
S 12

1

2
TrUhD ,

~17!

whereHKS is the Kogut-Susskind Hamiltonian@40# which is
standard in the real time field literature@41#, and where
]/]Ui(x) means change with respect to left acting deriv
tives of Ui(x). The appearance ofj here is the ‘‘meaning’’
of j and just means thatEi(x) changes abruptly by2qa
when particlea moves from nearest sitex to nearest sitex
1 i , and byqa if it goes the other way.

Now let us check whether this definition ofĖ will pre-
serve Gauss’ law, that is, whether
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FIG. 2. Boundary crossing, before and after. Before, the flux ofE fields ~displayed as arrows! out of the lefthand box must equalq, and
the flux from the right hand box must equal 0. After the crossing, the right hand box has fluxq and the left hand box has zero. This deman
a change of theE field connecting them, but no instantaneous change to theE fields which leave these two boxes, since that would cha
the flux going into other boxes.
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ṙ~x!5(
i

Ėi~x!2Ui
†~x2 i !Ėi~x2 i !Ui~x2 i !. ~18!

~The contribution from the time derivative ofU cancels here
because it is generated by, and hence commutes with,E, and
cancels betweenU andU†.!

First, we know that

(
i

]HKS

]Ui~x!
2Ui

†~x2 i !
]HKS

]Ui~x2 i !
Ui~x2 i !50, ~19!

which is why Gauss’ law is preserved for the classical latt
system without particles. And the contribution ofj to Ė can-
celsṙ in Eq. ~18! precisely becauser and j form a conserved
current. So Gauss’ law is indeed conserved. Alternately,
abrupt change tor(x) and r(x1 i ) when a particle passe
from being closest tox to being closest tox1 i stipulates the
change toEi(x) so that Gauss’ law will still hold at both
sites.

Physically, what this update ofE means is that when a
particle leaves one box, the charge within that box abrup
drops, and the flux of theE field out of the box must abruptly
drop too. Meanwhile, the neighboring box, which receiv
the particle, must have the flux of theE field out of it
abruptly rise. The way to do this is to abruptly change theE
field going from the first box to the second, by an amou
equal to minus the charge: see Fig. 2. We could also do i
changing theE fields along the other links leading out o
these boxes, but this would spoil Gauss’ law at the site
the other ends of those links and is therefore forbidd
Those links will change, in time, via the Hamiltonian evol
tion of the classical Yang-Mills system.

We should mention that in the Abelian theory, one c
construct more elaborate Gauss’ law preserving ways
changeE, which boil down to moving some of the charg
along indirect paths betweenx andx1 i . But these are actu
ally not allowed in the non-Abelian theory, because t
charge transforms nontrivially. To satisfy Gauss’ law, t
particle chargeq must also be updated by splitting it up an
parallel transporting it along those indirect paths, but wh
they are added together in the final box, they will not
‘‘point in the same Lie algebra direction,’’ and so the ma
nitude of the sum will have changed. Similar problems ar
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if one tries to define the charge of a particle as being spr
over nearby points, rather than residing entirely at the nea
point. Deriving a local, Gauss’ law preserving,C, P, andT
symmetric alternative to our update proposal is highly no
trivial in the non-Abelian context.

Before going further we should make a comment ab
the normalization of fields which we have adopted. SinceU
is a parallel transporter, it has been most convenient to
the normalization of electric fields in which the Hamiltonia
contains a 1/g23E2: that is, our electric field isga2Econt/2.
The 1/g2 in front of the Hamiltonian will be absorbed int
the temperature,bL54/(g2aT), which is customary in the
3D lattice literature@17#. Also the particle chargeQ2 will
convert into the ‘‘usual’’ continuum charge asQ25g4q2/4.
It will be convenient to make the particle momentum app
in the Hamiltonian asbLH5bL(HKS1(aupua), so that it
can be directly compared with electric field energies. It
then related to physical units byplatt5pcont3g2a/4. Though
these normalizations seem strange, they scale out all dim
sionful quantities and make the numerical theory have
least awkward inter-relations.

It remains to define the update ofp. This will be almost
uniquely specified by the requirement that the system
Hamiltonian. Naively one would expect the influence of t
electric field onp to be

ṗi5qaEi
a , ~20!

with Ei chosen to beE on the nearesti type link, but this is
wrong, as the system energy then has a time derivative
piqEi /upu, which cannot be removed by a correspondi
change inE because that would spoil Gauss’ law. The e
ergy conserving update

dpi

dt
5qaEi

a2pi

pjq
aEj

a

p2 ~21!

does not preserve the phase space measure and is also
lowed; in fact, except at the instant when a particle crosse
boundary, measure and energy conservation restrict the
lowed changes top to a rotation about some adjoint charge
vectorB, which must be odd underC, P, andT:
1-6
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ṗi5 f ~p2!e i jkpjBk
aqa. ~22!

So a rotation about the magnetic field is allowed, but
required, to preserve energy and the phase space meas

However, when a particle crosses the face of the d
lattice separating two pointsx andx1 i and induces a curren
j i(x), it changes the energy in the electric fieldEi(x) by

D~energy!5D~E2/2!

52Ei
a~x,tcross20!qa1q2/2

52Ei
a~x,tcross10!qa2q2/2, ~23!

and p must be changed to balance this energy. If onlypi
changes, frompi , init to pi ,fin , then energy conservation is

Api ,fin
2 1p'

2 1D~E2/2!5Api , init
2 1p'

2 , ~24!

which is solved by

pi ,fin5sgn~pi , init!A@ upu init2D~E2/2!#22p'
2 ~25!

if both upu init2D(E2/2)>0 and the argument of the squa
root is >0; otherwise there is no solution, as the crossing
energetically forbidden. If the crossing is energetically fo
bidden, we should setpi ,fin52pi , init , and no crossing oc
curs, no current is generated, and the particle turns. Ot
wise, pi ,fin is taken from Eq.~25! above, the current flows
and the particle crosses the boundary. The case where
crossing is fromx1 i to x follows from this case and parity
symmetry.

This proposed update forp conserves energy. What abo
the symplectic measure? The measure is clearly preserv
all times that no particle crosses a boundary, since the e
lution of E,U is Hamiltonian,j̇a depends onpa but notja ,
andq and p do not change~except for allowed rotations o
p!. When a particle reflects, the changepi→2pi also pre-
serves the measure. The only nontrivial case is when a
ticle crosses a boundary. The rotation ofqa preserves the
measure on LSU~2! and the changeE→E2q preserves the
measure forE since the change is independent ofE, which is
defined on a vector space. We need only check if the par
phase space measureP idpidj i is preserved, that is, whethe
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DetF ]pi ,fin /]pj , init ]pi ,fin /]j j , init

]j i ,fin /]pj , init ]j i ,fin /]j j , initG ~26!

equals 1. Since the change we are discussing is insta
neous, ]j i ,fin /]pj , init50 and the determinant reduces
blocks,

DetF ]pi ,fin /]pj , init ]pi ,fin /]j j , init

]j i ,fin /]pj , init ]j i ,fin /]j j , initG
5DetF ]j i ,fin

]j j , init
GDetF ]pi ,fin

]pj , init
G , ~27!

and we need to show that these determinants are invers
Without loss of generality we consider the case in wh

p1 changes, withp1.0. We handle the dependence ofjW fin on
jW init first. Changingj2,init just shifts the place on the wa
where the particle crosses, butpW is the same at all times; s
only j2,fin is changed, by the same amount as the ini
change. The same holds forj3 . However, changingj1,init by
dj1 changes the arrival time at the wall by2dj1 /v1,init . The
particle propagates atvW fin rather thanvW init for dj1 /v1,init
longer than without the change, leading to a change in
final positions equal to (vW fin2vW init)dj1 /v1,init , plus the
change ofdj1 in j1,fin. Hence,

DetF ]j i ,fin

]j j , init
G5DetF v1,fin/v1,init 0 0

~v2,fin2v2,init!/v1,init 1 0

~v3,fin2v3,init!/v1,init 0 1G5
v1,fin

v1,init
.

~28!

Now for the dependence ofpW fin on pW init . Since p2,init
5p2,fin and similarly for p3 , only the change in the fina
value ofp1,fin need be computed. Taking the appropriate d
rivatives of Eq.~25! gives
DetF ]pi ,fin

]pj , init
G5Det3

p1,init

p1,fin
S upu init2D~E2/2!

upu init
D 2

D~E2/2!p2

p1,finupu init
2

D~E2/2!p3

p1,finupu init

0 1 0

0 0 1 4 5
p1,init

p1,fin
S upu init2D~E2/2!

upu init
D . ~29!
1-7
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Now observe thatupu init2D(E2/2)5upufin and thatp1 /upu
5v1 ; so the two determinants are inverses and the mea
is indeed conserved. The cases wherep2 or p3 change, or
where the particle moves in the opposite direction, follo
from cubic and parity symmetry.

If we had allowed p in the orthogonal directions to
change, it generically would not preserve the measure,
so the choice of update is almost unique.4

The first four conditions for a valid update rule ha
specified the update uniquely except for the freedom to p
form rotations of the form shown in Eq.~22!. It would seem
natural to define the magnetic fieldBi

a at a point in terms of
the 3 nearest plaquettes5 and to rotate the momenta accordin
to

ṗi5e i jk

pj

upu
Bk

aqa. ~30!

As we discussed, the magnetic term in Wong’s equati
plays no role in reproducing the right hard thermal loops
a plasma close to equilibrium. Thus we are free to omit t
rotation when dealing with quasi-equilibrium processes.

Next let us verify that the continuum limit of our upda
rules give Wong’s equations. This is known for the classi
field equations without particles evolving under the Kog
Susskind Hamiltonian; so we need only check the terms
volving particles. The update of the particle charge is exp
itly the adjoint parallel transport along its trajectory, as
should be. The current in thei direction from a particle oc-
curs in jolts of magnitudeq and frequency 1/v i ; so the time
averaged current isqv i as it should be. The impulse on
moving particle is of magnitudeDpi5pi ,fin2pi , init ; expand-
ing Eqs. ~23! and ~25! to leading order inq gives Dpi
5q•Ei /v i , and such impulses also occur with frequen
1/v i , and so the time averaged force on the particle
q•Ei , also as it should be. We will explore the corrections
the plasma frequency, due to the discrete nature of the
rent and the ‘‘kicks,’’ in Appendix A. Wong’s equations ar
recovered for the motion of a particle through slowly varyi
fields, if q is sufficiently small.

We still must check whether the thermodynamics of t
system is correct; we will do this in the next section. B
first, let us review and summarize the update rule. The fie
evolve under the Kogut-Susskind Hamiltonian and the p
ticles move freely, except at such exact instants when a
ticle crosses a boundary~a face of the dual lattice!, i.e. when
it goes from being nearest one point to nearest another.
charge is then parallel transported by the link operator d
to the face, and the electric field on that link is abrup
changed by2q ~or 1q if the motion is in the2 direction!.
The particle momentum parallel to the link is changed
cancel the energy change of the electric field. If that is en

4A rotation of p' violates parity unless its magnitude depends
B or some otherP odd field, and an energy conserving change
the magnitudes ofp1 andp' will have a nonunity Jacobian.

5One should be careful here to make the choice of plaquettes
way which is preserved under parity and the cubic point group
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getically impossible, the particle momentum parallel to t
link is flipped and no crossing, or change toq, E, occurs.
This update is Hamiltonian with total energy

energy5(
x,i

Ei
2~x!

2
1(

h
S 12

1

2
TrUhD1(

a
upua ,

~31!

and preserves Gauss’ law identically. It is also manifes
gauge,C, P, T, and cubic invariant.

IV. THERMODYNAMICS OF THE LATTICE SYSTEM

In the last section we have proposed a continuum ti
system and its update rule and have shown that it is Ha
tonian, i.e. that the update rule preserves energy and
phase space measure. It therefore has well-defined the
dynamics, which we now explore. The canonical partiti
function is

Z5E )
a

d3jad3padqa)
i ,x

dEi~x!dUi~x!

3)
x

d„2r~x!1DL•E~x!…e2bLH, ~32!

H5(
x,i

Ei
2~x!

2
1(

h
S 12

1

2
TrUhD1(

a
upua . ~33!

The appropriate measures, i.e. the Haar measure forU and
the Lebesgue measure on LSU~2! restricted toq25Q2 for q,
are implied. Thed function enforces Gauss’ law at eac
point and the meanings ofr and DL•E are as previously
defined. The quantitybL here combines all the dimensionfu
parameters of the lattice system,bL54/g2aT; when it is
large we are on a fine lattice, or at weak coupling, which
equivalent in the classical theory.

Note first that the kinetic momenta will obey a Boltzman
distribution and are independent of all other degrees of fr
dom; the partition function factorizes, and if we are inte
ested in the thermodynamics of the IR classical gauge fie
then we may integrate outp. Note also thatj andq do not
appear in the Hamiltonian; their only influence is in dete
mining r appearing in Gauss’ law.

It is most convenient to enforce Gauss’ law with an a
joint valued Lagrange multiplierA0 @17#,

)
x

@DL•E~x!2r~x!#5E )
x

dA0~x!

3expF ibL(
x

A0
a~x!@DL•Ea~x!2ra~x!#G ,

~34!
a

1-8
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which makes the electric fields quadratic; theE integral may
now be performed, generating a kinetic term forA0 . The
partition function reduces to

Z5)
i ,x

dUi~x!dA0~x!e2bLHUAI ~A0!, ~35!

HUA5(
h

S 12
1

2
TrUhD1

1

2 (
x

~DLA0!2~x!,

~36!
,

a
x

e

i-

a
n

04500
I ~A0!5E )
a

d3jadqaexpS 2 ibL(
x

A0~x!r~x! D ,

~37!

where the meaning of (DLA0)2 should be clear. The particle
enter in the last term, which only depends onA0 .

Now let us computeI (A0). Sincer is the sum ofra from
each particle, exp(2ibLA0r) is the product overa of
exp(2ibLA0ra) ; the integral factorizes into an integral ove
each particle:
I ~A0!5)
a

F E dqaE d3jaexpS 2 ibL(
x

A0
a~x!qa

a3H 1 j at x

0 j not at xD G . ~38!
ns

ar-
The integral overj, normalized so*dj51, gives a sum over
sites of a term where the particle is at that site:

I ~A0!5)
a

F 1

N3 (
x
E dqaexp@2 ibLA0

a~x!qa
a #G . ~39!

Now using

E dqexp@2 ibLA0
a~x!qa#5

sin@bLQAA0
2~x!#

bLQAA0
2~x!

~40!

~normalizing so that*dq51! and performing the product
we arrive at

I ~A0!5F 1

N3 (
x

sin@bLQAA0
2~x!#

bLQAA0
2~x!

GNp

. ~41!

The above expression is exact but not very insightful
written. It is best to take a thermodynamic limit and to e
pand the expression in the sum. Denote by^ARG& the mean
value of the argument of the sum in Eq.~41!. RescaleI (A0)
by ^ARG&2Np, which just changes the normalization of th
partition function, and write it as

I ~A0!5F11S 211
1

N3^ARG& (
x

sin@bLQAA0
2~x!#

bLQAA0
2~x!

D GNp

.

~42!

As N3→` andNp→` with Np /N3[^n& fixed, the term in
parentheses vanishes asN23/2, and we may use the approx
mation

S 11
x

ND N

5exp~x!exp~2x2/2N!@11O~x3/N2!#. ~43!

The exp(2x2/2N) term in the identity means that there is
very weak nonlocal interaction term between fluctuatio
s
-

s

from the mean value ofA0
2 at pairs of points, trying to force

the global average ofA0
2 towards its equilibrium value. It is

probably safe to ignore this term, and higher correctio
strictly vanish in the largeN limit. Neglecting the nonlocal
term, we get

I ~A0!.expS ^n&

^ARG& (
x

sin@bLQAA0
2~x!#

bLQAA0
2~x!

D . ~44!

Since we are typically interested in a system whereN3

;104 andNp.105, the thermodynamic limit is justified.
Now, expanding the term in the sum,

sin@bLQAA0
2~x!#

bLQAA0
2~x!

512
bL

2Q2A0
2~x!

6
1

bL
4Q4~A0

2!2~x!

120
2¯ ,

~45!

we see thatI (A0) contains a Debye screening term and qu
tic and higher self-interaction terms forA0 ; I (A0) becomes
exp@2bLV(A0

2)#, where the potentialV is

V~A0
2!5

mD
2

2 (
x

A0
21

lA

4 (
x

~A0
2!21¯ , ~46!

mD
2 5

^n&bLQ2

3^ARG&
, ~47!

lA52
^n&bL

3Q4

30̂ ARG&
,... . ~48!

Finally,

^ARG&512
bL

2Q2

6
^A0

2&1O~bL
4Q4A0

4!. ~49!
1-9
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^A0
2& is UV dominated and well approximated by its pertu

bative value. At lowest order,̂ A0
2&53S/4pbL , with

S.3.1759 @10#. In practice it is necessary to makeQ
;bL

21 ~see below!, in which case, forbL;10, ^ARG& typi-
cally differs from 1 by ;1%. As we mentioned in
Sect. II, the ratio mD

2 /^n& should equal ^2q1
2&^E21&

5(Q2/3)(2bL /2) for classical particles in the continuum
Discretization has shifted this by a smallO(Q2) correction.

In a group other than SU~2!, the calculation begins to go
differently at Eq.~40!, and the final Debye mass is differen
For instance, in U~1! gauge theory, the integral there give
cos(bLQA0), and mD

2 and lA are 3 and 5 times larger, re
spectively.

We have now shown that the thermodynamics is the sa
as lattice regulated Yang-Mills theory in the dimensional
duction approximation, at a specific value of Debye ma
except for the added higher order interaction terms for theA0
field. A minimal requirement for the thermodynamics to
all right is that theA0 field be not strongly coupled,lA<1.
The latticelA corresponds to the physical 4lA /g2; so this
requirement is that the coupling of theA0 sector be weake
than the coupling of the gauge sector, which should be
ficient since theA0 field is quite massive. This requirement
roughly

Q4^n&,
30

bL
3 . ~50!

In fact it will turn out that dynamic considerations requi
thatQ be on the order of or smaller thanbL

21 , in which case,
unless^n& is very large,lA will be very small, as it should
be in the dimensionally reduced Hamiltonian.

We should also require that the Debye screening m
from particles be larger than that from hard lattice modes~as
otherwise the hard thermal loops are dominated by the wr
lattice mode contributions, rather than the right particle c
tributions!, in which case

12S

pbL
2,^n&Q2. ~51!

However, it is not necessary on thermodynamic ground
makemD

2 small in lattice units. WhenmD
2 is large in physical

units, i.e.mD
2 @bL

22 in lattice units, then the influence of th
A0 field on the vector fields is perturbative. MakingmD

2 on
the order of the lattice spacing complicates the problem
integrating out theA0 field to find its influence on the infra
red physics, but the one loop integration can still be p
formed; we treat this problem in Appendix B. However,
will turn out on dynamical grounds that one should not ma
the Debye mass too large, as the plasma frequency then
on lattice artifact corrections, discussed in Appendix A.

V. DISCRETE TIME UPDATE ALGORITHM

In this section we give a detailed description of a sta
and accurate discrete time update algorithm to solve
equations of motion for the particles and lattice fields. Pr
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ably most readers can safely skip this section; nothing in
essential for understanding the rest of the paper, althoug
certainly is important that a stable and well-behaved al
rithm exists for implementing the system described in
last two sections.

The numerical algorithm we will construct is essentially
leapfrog, with modifications to meet the needs of the spec
problem under investigation. In particular we make sure
algorithm is time centered, and the particle update par
exactly energy conserving. The step size errors in the a
rithm should beO„(Dt)2

… whereDt is the time step in lattice
units.

The variables to be updated are (ja ,pa ,qa) and
(Ex,i ,Ux,i). If the connectionsU were fixed and the particle
did not rotate due to magnetic fields, then we could perfo
the update~of E, p, q, j! exactly, as follows. Starting with
E, p, j, q at time t, we project wherej will be at time t
1Dt:

jproj,a,i~ t1Dt !5ja,i~ t !1Dt
pa,i

upua
. ~52!

For all a where the projected location is in the same b
~dual lattice cell! as the initial location—i.e. no boundary i
crossed—thenj(t1Dt) equals the projection, and we upda
j. For other points, we draw a straight line path betweenj(t)
and jproj and find the first boundary it crosses.j can be
updated to this point,jbound, which it reaches at timetbound
5t1ujbound2j(t)u. At this point we must be careful, be
cause more than one particle may interact with the sa
electric field, and the updates will depend on the order
interaction. So we order all particles which cross a bound
according to crossing time; then we solve the crossing c
ditions in that order, modifyingE, q, andp as discussed in
Sec. III. For each particle, after these variables are upda
the particle’s position at timet1Dt is again projected, start
ing at jbound and using the newp. If it crosses another
boundary before timet1Dt, we again update it to the
boundary, compute the time of arrival, and insert it at t
place appropriate for the new crossing time in the collect
of particles to be updated; otherwise we update it to its p
jected position at timet1Dt. When the last crossing ha
been dealt with, then allE, p, q, andj have been updated t
time t1Dt. This algorithm is exact except for roundoff e
rors.

One comment is in order about this update. Ordering
particles by time of crossing takesO(Np ln Np) steps; so the
algorithm does not quite scale linearly with volume. In pra
tice, though, the ordering takesCDtNp ln Np computations
with C a fairly small number, and this part of the algorith
takes less time than formallyO(Np) or O(N3) parts.

Now we must incorporate the above idea into the leapf
update of theE, U fields. The leapfrog in the absence
particles is

Ui~x,t1Dt/2!5exp@ iDttaEi
a~x,t !#Ui~x,t2Dt/2!,

~53!
1-10



.

o
e

ha
ai

a
is

ss
f

o
r

e

tio
a
f

t

ro-
es

is
n

e.
on,

of

a-
nder
of
rlo

ing
ne

m-
se
ree-
ec-

ics

we

ect.
he

he
han

he
iz-
as
i-

sical
for-
’ at
the
or
is

CHERN-SIMONS NUMBER DIFFUSION WITH HARD . . . PHYSICAL REVIEW D 58 045001
Ei
a~x,t1Dt !5Ei

a~x,t !2Dt
]HKS@U~ t1Dt/2!#

]Ui~x,t1Dt/2!
, ~54!

where the meaning of]HKS/]U is defined between Eqs
~16! and ~18!. If one needed to defineEi

a(x,t1Dt/2), one
could do so by applying only half of the update, Eq.~54!.

We combine this leapfrog and the update ofj etc. dis-
cussed above, as follows.

~1! Start withE(t), p(t), q(t), j(t), andU(t2Dt/2).
~2! DetermineU(t1Dt/2) according to Eq.~53!.
~3! Apply half theE, U leapfrog update ofE; namely, set

Ei
a~x,t10!5Ei

a~x,t!2
Dt

2

]HKS@U~ t1Dt/2!#

]Ui~x,t1Dt/2!
, ~55!

Also updatep(t) to p(t10) by rotating aboutB for time
Dt/2; first set

ptemp,a,i5pa,i1
Dt

2
e i jk

pa, j

upua
Bk

a~j!qa. ~56!

@HereBk(j) means thei , j plaquette which is closest t
the pointj and with indicies living at the point where th
indicies ofq reside.# Then rescalep to its original mag-
nitude:

pa,i~t10!5ptemp,a,i

upua~ t !

upu temp,a
. ~57!

~4! UpdateE, q, j, and p from time t10 to time t1Dt
20 using the ‘‘fixed connection, noB field’’ algorithm
presented above, andU5U(t1Dt/2).

~5! Apply the other half of theE, U leapfrog,

Ei
a~x,t1Dt!5Ei

a~x,t1Dt20!2
Dt

2

]HKS@U~ t1Dt/2!#

]Ui~x,t1Dt/2!
,

~58!

and rotate the momenta as in step~3!. Now, return to~1!,
but with the value oft incremented byDt.

Applying these in order is one leapfrog update. Note t
the update is time symmetric and exactly Gauss constr
preserving at each step, and that step~4! exactly conserves
energy. The overall conservation of energy is exactly
good as in the Kogut-Susskind leapfrog algorithm; that
energy fluctuates by a smallO„(Dt)2N3/2

… amount ~which
for a 203 grid at Dt50.05 and 30 particles per site is le
than 1 part in 105 of the total energy! and the central value o
the energy is absolutely stable.

As we have discussed, the effect of magnetic fields
particles does not contribute to the hard thermal loops fo
plasma close to equilibrium, so that part of steps~3! and~5!
can be left out when studying quasi-equilibrium process
which in practice saves at least 1/3 of the update time.

Finally we present a canonical ensemble thermaliza
algorithm for this system. It is a straightforward generaliz
tion of the ‘‘constrained molecular dynamics’’ algorithm o
@42#. Beginning from an arbitrary choice ofU(Dt/2), j~0!,
andq(0), wechoosep(010) from the Boltzmann distribu-
tion at some inverse temperaturebL andE(010) from the
Gaussian distribution at the same temperature, modulo
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Gauss constraints. As in@42# this is done by choosingE
without regard to the constraints and then orthogonally p
jecting to the constraint surface, which correctly thermaliz
the transverse components ofE and correctly enforces the
constraints on the longitudinal components. The algorithm
identical to that in@42# except that the particle contributio
to Gauss’ law must be added. This choosesp, E with ther-
mal weight from the fixedU, j, q subspace of phase spac
Then we evolve the system under the Hamiltonian evoluti
using the algorithm presented above, for some length
time, at the end of which we again drawE and p from the
thermal ensemble; we repeat until the~athermal! original in-
formation in theU, j, andq has been destroyed and me
surables attain values which do not change in the mean u
Hamiltonian evolution or further thermalization. The spirit
this algorithm is that of a molecular dynamics Monte Ca
simulation. Note that it is important to chooseE and p at
some time betweent10 and t1Dt20 and not att or t
1Dt because the half update fromt20 to t changesE from
being Gaussian and uncorrelated with]HKS/]U to being
correlated with]HKS/]U. ~Similarly in @42# it was neces-
sary to chooseE defined at the same time asU and to per-
form a half update before beginning the leapfrog.!

We should also note that there is no obstacle to apply
a Langevin type thermalization algorithm based on the o
developed in@43#, and in particular that it is trivial to couple
Langevin noise to the particle momenta. This might be i
portant if one wanted to simulate thermalization of the
modes through interactions with some other degrees of f
dom, for instance strong scattering of fermions in the el
troweak model.

VI. SOME RESULTS FOR THE ABELIAN THEORY

Before diving into the study ofNCS diffusion we should
check that the particle method is producing the right phys
of HTL’s. In this section we will first discuss how smallQ2

must be for the system to give good behavior, and then
will study the Abelian theory at suitably smallQ2 to see if
the hard contributions to the retarded self-energy are corr

We saw in Sec. IV that a necessary condition for t
theory to have a weakly coupledA0 sector is

Q4^n&,
30

bL
3 . ~59!

In fact, dynamical considerations demand thatQ2 be still
smaller. To get the right hard thermal loop effects in t
dynamics, we need a particle to travel a distance longer t
the magnetic length scale 1/g2T ~or bL in lattice units! be-
fore its momentum is randomized by interactions with t
plasma. Normally we would expect the dominant random
ing process to be Coulomb scattering from other particles
depicted on the left-hand side of Fig. 3, but in fact the dom
nant processes are absorption or emission of hard clas
field excitations. These processes are not kinematically
bidden because the lattice dispersion relations ‘‘turn over’
high momentum; so hard excitations move slower than
speed of light, allowing particles to Cherenkov radiate
absorb. From the point of view of the lattice modes, this
1-11
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saying that the ultraviolet lattice modes are Landau dam
due to the particles, which is possible because their dis
sion relation hasv/k,1.

A ‘‘worst case’’ estimate is that the typical electric fie
which a particle interacts with is uncorrelated with t
chargeq of the particle; so the momentump falls by q2/2
5Q2/2 in addition to receiving a kick uncorrelated with i
initial value. The average particle~averaging over directions
of motion! crosses walls with frequency 3/2 in lattice unit
so the decorrelation rate forp under the above approxima
tion is

rate;
3Q2

4^p&
5

Q2bL

4
, ~60!

which must be!bL
21 ; so Q2!4/bL

2 . In practice the above
estimate for randomization is close to the real behavior;
bL510 andQ50.08, the decoherence time is about 80
lattice units. In our work we typically demandQ2<bL

22 ,
which forces the number of particles to be quite larg
^n&;30, in order to satisfy Eq.~51!. This makes the updat
of particles the dominant numerical cost, but it pushes
closer to the Vlasov equation limit.

Note also that the processes mentioned above make
evolution of the UV classical lattice modes damped a
noisy, with a damping strength proportional toQ2^n&. The
consequences for the infrared magnetic sector deserve in
tigation.

The above behavior is disturbing enough to encourage
to check that the behavior of the infrared degrees of freed
is correct. This is most easily done for the Abelian theo
because there the electric field and the current are ga
invariant and one can easily probe the system with exte
currents and study the response. It would also be possib
do this in the non-Abelian theory in a specific gauge, b
complications from pure classical gauge theory interacti
complicate interpreting results; the Abelian theory provide
nice, clean environment to study the dynamics of the part
technique.

We will perform two numerical tests on the Abelia
theory. First, we verify that the lattice field has the corre
dispersion in the infrared. Second, we probe the retar
propagator by studying the linear response of the Abe
plasma to an external current.

To measure the plasma dispersion relation, we pick ini
conditions so the~spatial! Fourier mode of wave vectork has
a large electric field. This sets up a plasma oscillation w
this wave number. We evolve the fields and measure

FIG. 3. Diagram which naively dominates particle scatterin
left, and Cherenkov diagrams which are really dominant, right.
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electric field in the same Fourier mode at regular time int
vals. Then we Fourier transform this time series and pick
the frequency with the most power; this is the plasma f
quency. We have used this procedure to measure the dis
sion for both transverse and longitudinal plasma modes.
results are summarized in Fig. 4, where we compare them
the lattice, free field dispersion relation and the continu
dispersion relations, with and without hard thermal loo
These data are forQ50.0159,bL518.86, and̂ n&550, cor-
responding to a plasma frequency ofvp50.282.@Recall that
in the Abelian theorymD

2 andvp
2 are 3 times larger in terms

of Q2^n& than in SU~2!.# The numerical results agree wit
theory remarkably well in the infrared. Ask gets bigger, the
data points deviate from the continuum theory curve a
bend down to match the lattice dispersion relation. This
expected because hard plasma modes are much less
enced by hard thermal loops and behave like free lat
modes.

We have also computed the plasma frequency atk50
analytically, in Appendix A. There we conclude that the co
rection due to lattice artifacts should be negligible forvp

2

!1 in lattice units. This is supported by our numerical r
sults.

To probe the retarded~transverse! photon propagator, we
drive the system with an external current of the followin
form:

j i5 ĵ i j 0 sin~vt !sin~kx!, ~61!

where the amplitudej 0 is small so that linear response theo
applies. We study response of the plasma and measure
space-time average ofj •E, which, according to Appendix C
can be written in terms of the transverse photon polariza
function:

,

FIG. 4. Dispersion relation: free field in the continuum~dashed
line, v5k!; free field on the lattice @dotted curve, va
52 sin(ka/2)#; plasma modes, transverse~theory, the upper solid
curve; data, solid rectangles! and longitudinal~theory, the lower
solid curve; data, open rectangles!.
1-12
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FIG. 5. Retarded propagator—actuallyivDR. Above left, the out of phase~nondissipative! part of the transverse propagator; lower le
the in phase~dissipative! part of the transverse propagator. The right figures are the same for the longitudinal propagator. In each c
solid lines are theory, the squares are thek5(3,0,0)3p/16 data, and the triangles are thek5(2,1,1)3p/16 data. In the transverse theor
figures, the curves with smaller, solid data points are rescalings of the data and theory, so that the resonance will fit in the plot; the
are by 8 and 120 for the out of phase and in phase responses respectively. All numbers are in lattice units.
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j 0
2

4

vP i~v,k!

@v22k22P r~v,k!#21P i
2~v,k!

, ~62!

whereP r(v,k) andP i(v,k) are the real and imaginary par
of the transverse polarization function, respectively. We a
measure the out of phase response ofE and the case o
longitudinal excitation; the specific expressions are in A
pendix C.

We want both to compare to theory and to test the ro
tional invariance of the particle induced hard thermal loo
To do so, we choose twok vectors which are of the sam
length but are inequivalent under the cubic point group, a
we study the complex propagator for each, at frequen
above and below the plasma resonance. We choose the
tors k5(3,0,0)3p/16 andk5(2,2,1)3p/16 on a 323 lat-
04500
o
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-
.

d
s

ec-

tice, with bL520, Q250.0005, and ^n&560 ~so vp

50.447). We excite the plasma at each wave vector
numerous frequencies in turn and integrate the resulting
sponse for long enough to get reasonably clean results.

We present the results, plotted against the theory, in F
5. A few comments are in order. In the strict hard therm
loop approximation there would be no imaginary part to t
self-energy above the light cone, but the appearance
small imaginary part, which will arise atO(Q4bL

2^n&) since
we are in the Abelian theory, qualitatively changes the
sponse near the resonance by giving the resonance s
width. For the transverse data, we have added a small
nomenological imaginary part to the self-energy chosen
make the theory give a resonance of about the same sh
ness as the data. The match between data and theory is
1-13
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good except that the location of the resonance is shifte
little towards lowerv in the data. This is expected; the pa
ticle response weakens with frequency because the part
cannot respond to a field faster than they encounter it, wh
is how often they cross a boundary, as we examine qua
tatively in Appendix A. Also note that the data fork
}(2,2,1) ~triangles! have their resonance very slightly aft
the data fork}(3,0,0), which is expected from theO(k4)
lattice corrections to the dispersion relations. However,
sides this, they are indistinguishable, which is a good ch
that the particle contribution to the self-energy is rotationa
invariant.

We have not added a small imaginary part to the s
energy above the light cone in the theory lines in the pl
for the longitudinal propagator, but the data clearly show t
one is present. The agreement between data and theo
generally good for both longitudinal and transverse propa
tors, and the data for the two values ofk disagree by abou
the same amount as the jitter in the data caused by statis
error. The comparison to the theory without hard therm
loops is stark; for instance, the in phase response would
be zero in all cases, and the out of phase, longitudinal
sponse would have no resonance but would behave simp
1/v.

We conclude that the particles add hard thermal lo
which, fork!p in lattice units, are rotationally invariant an
very close to the correct ‘‘hard thermal loops,’’ except f
corrections which areO(v2) andO(Q4bL

2^n&) ~both in lat-
tice units!. This is totally unlike the hard thermal loops in
duced by hard lattice modes in the non-Abelian theory or
Abelian Higgs model, which are rotationally non-invaria
@20#.

VII. DIFFUSION OF CHERN-SIMONS NUMBER

An outstanding question which the method develop
here can answer is, what is the diffusion constant for Che
Simons numberNCS in the symmetric electroweak phase~or
in pure Yang-Mills theory!? In the continuum, Chern
Simons number is defined as

]mKm[
g2

32p2

emnab

2
Fmn

a Fab
a , ~63!

NCS[E d3xK0

5
g2

32p2 E d3xe i jk S Fi j
a Ak

a2
g

3
f abcAi

aAj
bAk

cD , ~64!

where Latin indices (i jk ) imply sums over the three spac
directions with positive metric. In a vacuum,NCS is an inte-
ger, equal to the winding number of the gauge transform
tion which carries the gauge fields into the trivial fieldsA
50. This can be nonzero for groups with a nontrivial thi
homotopy group. Chern-Simons number is of interest ph
cally because of how it is related to the behavior of fermio
coupled to the gauge fields; a vacuum to vacuum proc
which changesNCS by n pulls n left handed negative
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energy solutions of the Dirac operator up to positive ene
and pushesn right handed solutions from positive to neg
tive energy, if the fermion couples to the gauge fields in
fundamental representation. In a chiral theory, like the SU~2!
sector of the standard model, no right handed partic
couple, and there will be net particle creation~recall that in a
vacuum, negative energy solutions are occupied and pos
energy solutions are not!. Summing over theNF53 genera-
tions one finds that baryon number and lepton number c
rents both have nonzero divergences,

]mJmL5]mJmB5NF]
mKm , ~65!

and so the number of baryons,NB , and of leptons,NL ,
changes as

NB~ t !2NB~0!5NL~ t !2NL~0!5NF@NCS~ t !2NCS~0!#.

~66!

At high temperatures the efficiency with whichNB is vio-
lated is related to the diffusion constant forNCS,

G[ lim
V→`

lim
t→`

^@NCS~ t !2NCS~0!#2&
Vt

~67!

~where^¯& refers to the thermal ensemble! by a fluctuation-
dissipation relation@21,44# and standard thermodynamic a
guments@5#. In the minimal standard model,6 one finds

1

NB1NL

d~NB1NL!

dt
5

39

4T3 G. ~68!

It would be phenomenologically interesting to knowG at
high temperatures, which presumably existed in the ea
universe before the electroweak SU~2!3U~1! symmetry was
spontaneously broken.

There has been a great deal of work to date on determ
ing G @17,15,22,41,42#, but recently there have been two im
portant developments.

The first is an analytic argument due to Arnold, Son, a
Yaffe ~ASY! @23#. They point out that a change inNCS in-
volves the evolution of very infrared magnetic fields. T
hard thermal loops cause these fields to evolve in an o
damped manner. This is familiar from the study of Abeli
~electromagnetic! plasmas; magnetic fields of wavelengthl
@1/vp get ‘‘frozen’’ by the conductivity of the plasma an
evolve on the time scalet;l(lvp)

2, assumingl is much
shorter than the diffusion length of the charge carriers. A
argue that the same physics should apply in the non-Abe
plasma, at least forl less than or on the order of 1/g2T; soG
should be parametrically of order

G21;l3t;S 1

g2TD 3 vp
2

~g2T!3 . ~69!

6In extensions with light baryon number or lepton number car
ing particles, 39/4 will be replaced by something smaller; in t
supersymmetric theory, if all the squarks and sleptons were li
39/4 would become 39/12.
1-14
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If this argument is correct, thenG depends strongly on th
physics of hard thermal loops, which we must get right
find the correctG. Classical lattice theory by itself~without
classical particles! does not. The damping coefficient d
scribing the overdamped evolution of infrared magne
fields on long time scales grows linearly with 1/a and is not
rotationally invariant@45#.

The second development is that better definitions ofNCS
on the lattice have been developed@25,26,46#. Previous defi-
nitions in terms of local operators contained lattice spac
dependent systematic errors. Moore and Turok@25# proposed
a definition which is topological and hence avoids such
rors. Their results verify thatG depends strongly on lattic
spacing, in a manner which appears consistent with the A
scaling law, though only if there are substantial correctio
to that law at higher order in (g2T)2/vp

2 .
By using the topological method of Moore and Turok

track the evolution ofNCS, and by using the classical fiel
theory with particles added to correctly reproduce the h
thermal loops, we can now get a determination of the dif
sion constant forNCS which accounts correctly both for to
pology and for hard thermal loops. We can also ensure
the thermodynamics of the system under study is correc
using theO(a) improved matching developed in@11# and
extended to arbitrary Debye mass in Appendix B.

We will do so in pure Yang-Mills theory, which shoul
correspond to the very high temperature limit of the stand
model because the thermal Higgs boson mass becomes
enough at high temperature that the Higgs field can be i
grated out~though its contribution to the hard thermal loo
should of course be included!. The sphaleron rate in the sym
metric phase at the equilibrium point of the phase transit
will differ somewhat from the Yang-Mills theory value, in
way which depends on the~unknown! couplings of the Higgs
sector. It is straightforward to add the Higgs field to t
theory we have developed—in particular the influence
hard modes on the Higgs field can be completely accoun
for by the choice of Higgs mass@47#—so there is no obstacl
to extending what we do here to that case.

There is an important complication to our plan; in a no
Abelian theory, the UV classical field modes will also ge
erate hard thermal loops, and as Bo¨deker et al. @20# have
shown, the functional form of the hard thermal loops th
provide is not the same as Eq.~11!. Hence, the actual har
thermal loop contribution to the lattice system with partic
will be of the form

mD,particles
2 Gparticles@A#1mD,UV lattice

2 GUV lattice@A#,
~70!

whereGparticles@A# has the correct andGUV lattice@A# has the
wrong functional form. This is further complicated becau
of the interactions between the particles and the UV lat
modes. The UV lattice modes are Landau damped, and a
increasemD

2 from particles, that damping becomes strong
If this damping is strong enough, then UV classical mod
have short propagation distances, and they will not propa
interactions over large spatiotemporal separations. The
thermal loop effects most important to theNCS diffusion rate
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are those on length scales of order 1/g2T @23#: so the relevant
contribution from UV classical lattice modes may have
mD

2 dependent suppression. We do not know a good wa
estimate the importance of this suppression, and so we
treat it as a source of systematic error.

We want to know the result of a triple limit. The inne
most limit is the limit of Q2→0 and ^n&→` with Q2^n&
fixed; in this limit the particles generate only hard therm
loop effects. The next limit is the limit as
mD,particles

2 /mD,UV lattice
2 becomes large; in this limit the har

thermal loops are of the correct functional form, plus a c
rection which is small relative to the total strength. At fixe
lattice spacing, this limit means makingmD

2 large; so we can
only learn about the parametrically leading behavior in
limit of large mD

2 . Finally, we should take a small lattic
spacing limit.

Limited numerical resources make it impossible to rea
achieve this triple limit. We will choose a value forQ2 small
enough that we can expect to be in the relevant limit the
and we will also assume thatbL;10 puts us far enough in
the smalla limit, if O(a) thermodynamic corrections ar
used.7 We will check both of these limits by varyingQ2 and
holding Q2^n& fixed and by varyinga, to verify that the
dependence is weak, but we make no serious attempt to
trapolate to these limits. We concentrate on what we c
sider the most phenomenologically interesting limit, as
what happens as we makemD

2 large. In particular we want to
know whether theGd scales according to the ASY predic
tion, Gd}mD

22 .
We will then try to check three things:

~1! G, in physical units, should depend weakly on the latt
spacing, provided that the physical value of the plas
frequency is held fixed.

~2! G should depend onQ2 and ^n& only through the com-
binationQ2^n&, when we have chosenQ2 small enough
that the particle trajectories are ballistic on the nonp
turbative scale (g2T)21.

~3! G should depend inversely on hard thermal loop streng
up to corrections due to the UV classical lattice mo
contributions.

To test ~1!, we measureG at three lattice spacings, bu
with the same value ofQ2 and^n& in physical units. To test
~2!, we double the value of̂n& and halve the value ofQ2

relative to the runs used in~1!, and to test~3! we double and
quadruplê n& relative to the runs used to study~1!, but keep
the same value ofQ2. If the ASY scaling law is right, then
up to corrections due to HTL’s from UV classical lattic
modes, all these runs should give the same value forG, ex-

7We verify in Appendix A that the frequency corrections to th
particle hard thermal loops areO(v2a2), and we believe the sam
should be true of the finitek corrections. This leaves nonrenorma
izable operators, alsoO(k2a2), thermodynamic errors beyon
O(a), and anO(a) rescaling of the time scale, which we estima
in Appendix D but have not computed.
1-15
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cept for the last, whereG should be about half and then
quarter as large. IfG does not depend on hard thermal loop
then all the results should be the same, and should be
same as the result without any particles added.

Our results are presented in Table I. Each data poin
extracted from several Hamiltonian evolutions from indep
dent thermal initial conditions. We present a sample ofNCS
during such a Hamiltonian trajectory in Fig. 6. The analy
techniques used to extractG are the same as in@25#. For each
choice of parameters the sum of lengths of evolutions
about 90 000 lattice units of time. The value of^n& for the
bL58,10,12 data keeps the physical particle density, wh
is proportional tobL

3^n&, fixed, and as we have discusse
Q2 does not scale with lattice spacing. Hence these th

TABLE I. NCS diffusion constant in physical units,G
5ka4T4, varying lattice spacing, particle charge, and particle nu
ber. The inverse lattice spacingbL54/g2aT used here is the one
including the perturbative corrections found in@11# and Appendix
B. The last column is the coefficient of the ASY scaling law: see
text.

bL,imp

~improved!
Lattice

size ^n& Q2 k k8

8 203 58.6 .0064 .846.08 496567
10 243 30.0 .0064 .926.07 5664610
12 303 17.4 .0064 .726.07 4665610
10 243 60.0 .0032 .726.06 446468
10 243 60.0 .0064 .4756.041 536565
10 243 120.0 .0064 .2496.025 536562

FIG. 6. NCS during a Hamiltonian evolution, tracked by th
slave field method~which returns the integer value ofNCS for the
nearest vacuum!. This is part of the data for row 5 of Table I. Th
back and forth stuttering accompanying many winding num
changes is an expected feature if the ASY picture is right@23#.
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results test~1!. Row 4 has the same value ofQ2^n& as row 2:
so comparing them tests~2!. Finally, comparing rows 2, 5
and 6 tests~3!.

The results are expressed through the dimensionless q
tity k, which in the continuum is defined through

G5ka4T4, ~71!

or on the lattice,

G5k~bL,impp!24 ~72!

times a correction, discussed in Appendix D, to account
the correct matching of the time scales.

We also present the results in terms of the coefficient
the ASY scaling law, which we write as

G5k8S g2T2

mD
2 Da5T4. ~73!

We usemD
2 here because it most conveniently characteri

the size of hard thermal loop effects. For the particle degr
of freedom, the Debye mass in physical units is

mD
2 5

Q2^n&~ lattice units!bL
3g4T2

48
, ~74!

which for the first 4 columns equals 4g4T2, a little less than
the physical value, which is 11g2T2/6, g2.0.4 @8#.

Really the ASY scaling law says the results should d
pend not on the Debye mass but on a damping coeffic
proportional to the transverse self-energy atv!k;g2T.
This is simply related tomD

2 in the case that the hard particle
have a rotationally invariant spectrum and move at the sp
of light. The particle degrees of freedom satisfy this requi
ment, but the hard classical lattice modes do not: so we h
accounted for their contribution using the techniques of A
nold @45#. His result is that the ratio of damping coefficie
to Debye mass squared is roughly (0.6860.2) times smaller
for hard classical lattice modes than for ultrarelativistic p
ticles. However, Landau damping of the UV classical latt
modes, mentioned earlier, may suppress their contributio
the transverse self-energy atk;g2T; since we do not know
how to compute the extent of this suppression, there i
systematic error. The upper limit of the systematic error
we present is if they contribute fully, in which case we a
0.68 times the Debye mass squared from classical lat
modes to that from particles when convertingk to k8. @In
physical units the Debye mass squared from classical la
modes ismD

2(latt)5(SbL /4p)g4T2.# The lower limit is if
their contribution is fully frustrated by Landau damping o
of hard particles, in which case we just usemD

2 from particles
to convert fromk to k8. The largerQ2^n&, the stronger the
Landau damping; so the systematic is not common to
runs.

Our results are roughly consistent with lattice spacing
dependence and with a dependence onQ2 and ^n& only
through the combinationQ2^n&. There does seem to be
weak systematic trend in lattice spacing, which could
partly fromO(a2) effects we have not attempted to compu
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r
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For instance, besides theO(a) corrections to the thermody
namics computed in@11# and Appendix B, there are two
O(a2) corrections: a renormalization of the coupling and
nonrenormalizable (DiFi j )

2 term, which appears in the
Hamiltonian with a negative sign. Both would raise the ra
on coarser lattices. There are alsoO(a2) corrections to the
Wong’s equation limit of the interactions between partic
and long wavelength modes. There also may be a weak t
in Q2 whenQ2^n& is held constant, because we are not s
ficiently close to the smallQ2 and largê n& limit. Not being
in this limit means that the eikonal approximation used
turn the particles into hard thermal loop effects is not qu
true. Scattering of the particles will tend to reduce their
fectiveness. Hence one might expect a weak system
where k rises with Q2 at Q2^n& fixed. Row 4 in Table I
suggests this but the effect is not very statistically significa
Systematic errors have not been eliminated but they
small.

Our results rule out the ‘‘old picture’’ thatG should de-
pend ona4T4 by demonstrating the importance of hard the
mal loop effects. If thea4T4 law were correct, all the value
for k would agree, and would agree with the value in Yan
Mills theory without particles, which isk51.5360.10 at
bL510 @25#. The three results, rows 2, 5, and 6 of Table
differ only in the number of particles used, not in the latti
spacing, the particle charge, or the manner in which finitebL
lattice spacing systematics were taken care of. They
grossly in conflict ifk is independent ofmD

2 , but they agree
very nicely with the ASY scaling law. We illustrate this i
Fig. 7. Combining them, we get an estimate fork8 of k8
55363stat65syst. We should also fold in the systematic e

FIG. 7. Results fork at three values of the particle number b
a common value of the lattice spacing, plotted againstg4T2/mD

2 .
The error bars inmD

2 reflect uncertainty in the damping from har
classical lattice modes. The ‘‘old picture’’ predicts a flat line, wh
the ASY picture predicts a straight line through the origin, like t
illustrated fit.
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rors from finite lattice spacing and finiteQ2, which we
would estimate based on the other runs to be in the 2
range. These then dominate our uncertainties, and our
answer isk8553611. For comparison, we can take the r
sults for pure Yang-Mills theory without particles from@25#
and extrapolate them to zero lattice spacing assuming
the ASY scaling applies. The extrapolation isk523.6/bL :
see Fig. 7 of@25#. We can convert this into a value fork8 by
using the discussion after Eq.~74!, that is, using Arnold’s
calculation of the relation between damping from hard cl
sical lattice modes and from correct hard thermal loops@45#.
We getk8551615.8 The error here is almost all systemati
arising from the rotational noninvariance of the spectrum
lattice modes.

It is encouraging that these results agree within~admit-
tedly substantial and mainly systematic! errors. It appears
that a consistent picture for theNCS diffusion constant has
emerged.

VIII. CONCLUSIONS

We have developed a procedure for generating nonlo
‘‘hard thermal loop’’ effects in classical field simulations o
Yang-Mills theory, by introducing particle degrees of fre
dom which generate these effects but can be treated
reasonable numerical effort. The new system is Hamilton
and has the same thermodynamics as thermal Yang-M
theory in the dimensional reduction approximation. We ha
also tested that the self-energy corrections due to the
ticles in the Abelian theory are correct, and we have anal
cally computed the plasma frequency at leading order an
is also correct.

Further, we have applied the technique to the calculat
of the diffusion constant of Chern-Simons number in pu
Yang-Mills theory. Our results vindicate the proposed sc
ing law of Arnold, Son, and Yaffe, that the diffusion consta
G should scale inversely with the square of the Debye ma
This statement is not sensitive to the quality of the therm
dynamic corrections we have applied, because we have
with different numbers of particles which show starkly d
ferent diffusion rates, but the lattice spacing and hence
thermodynamic corrections we have applied are the sa
Our results@in Yang-Mills theory, which will be valid in
Yang-Mills Higgs theory only for thermal Higgs mas
mH

2 (T)@g4T2# convert to G52966a5T4 at mD
2

511g2T2/6.
There are no obstacles to extending our techniques

Yang-Mills Higgs theory or groups larger than SU~2!, which
would allow us to determine the screening dependence
number of other dynamical properties of interest for bary
genesis, such as the IR bosonic contribution to the bub
wall friction and the strong sphaleron rate. The techniq
may also have applications for relativistic heavy ion co
sions.

8We thank Peter Arnold and Jan Smit for discussions on
point.
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APPENDIX A: PLASMA FREQUENCY
IN THE ABELIAN THEORY

We have shown that the thermodynamic modificatio
due to particles are very close to those expected, and we
argued that the role of the particles in generating hard th
mal loops should be the same as in the continuum theory
suitably infrared and slowly varying gauge fields. Here
will check this, and test its limits, by explicitly calculatin
the plasma frequency, the oscillation frequency of a spati
homogeneous electric field, in the Abelian theory. The c
culation should apply approximately to the non-Abeli
theory, in the regime wherevp@g2T, since in this case the
theory looks approximately Abelian on the relevant leng
scales. Away from this limit, the plasma frequency of t
non-Abelian theory is not well defined, since the elect
fields only oscillate coherently on a time scale of ord
1/g2T. We will calculate in the formal smallQ, large ^n&,
but finite Q2^n& limit, but we will deal explicitly with the
discrete nature of the lattice electric fields and their inter
tions with particles.

First we will consider the case of a continuous elect
field. It is sufficient to consider an electric field pointin
along a lattice direction, since we will work to linear order
the field strength: so general fields can be studied as a li
combination. We take the field to beEi(t)5d ix ReE0e

ivt,
with E0 a constant giving the strength of the electric fie
and we will solve self-consistently forv. Consider a particle
of chargeq!1 propagating in the background of this fiel
with a mean momentum in thex direction of px and a mo-
mentum orthogonal to thex direction ofp' . Thex momen-
tum will have a time dependent disturbance ofdpx(t)
}qE0 , due to the electric field, which satisfies

d ṗx5qEx5Re qE0eivt→dpx5Re
2 iqE0

v
eivt. ~A1!

The electric field responds to a current in thex direction due
to this particle, of magnitudeqvx . Expanding indpx!1, this
is

vx5
px1dpx

Ap'
2 1px

212pxdpx

.
px

p
1

dpx

p S 12
px

2

p2D
5

px

p
1

dpxp'
2

p3 . ~A2!
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Now averaging over particles, the leading term will canc
between particles of opposite sign forq, and the time deriva-
tive of the electric field will be

2Ėx5
1

V (
particles

qdpxp'
2

p3 5Re
2 iq2E0

v
eivt (

particles

p'
2

p3 .

~A3!

Now Ėx5Re ivE0e
ivt. TheE0’s cancel on the two sides, an

we get an expression forv2. A nice way of thinking of this
is that what we want to know is Re(2iĖ/E)5v; we just plug
the determined value ofĖ into this expression to findv.

Now we evaluate the expression. The average over an
of p'

2 is 2p2/3, and the average over particles of 1/p is 1/2T.

v25
^n&^q2&

3T
. ~A4!

In lattice units, 1/T becomesbL . In the non-Abelian case
^q2&5Q2/3, because that is the average of the square of
projection of a particle charge into one Abelian subgrou
We therefore findvp

25mD
2 /3, as we should.

Now let us include the discrete nature of the electric fie
and their interactions with the particles. Again we take t
electric field to be spatially uniform with the same value, a
we will solve self-consistently for the plasma frequency.

Again, what we want to know is Re(2iĖ/E), or its time
average. We consider the influence of one particle: then
will average over all particles. Again the particle has a me
momentum in thex direction ofpx and a perpendicular mo
mentum ofp' . We will often write 6 to mean sgn(px) and
7 to mean2sgn(px).

The impulse on the electric field on some link, due to
particle crossing the dual lattice face the link penetrates, i
fixed modulus7q. Past interactions withE change the cur-
rent the particle induces only by changing the time at wh
the impulse is felt.9 Let the particle passage time, at ze
order in q, be tcross. This crossing time will receive a cor
rection due to past interactions of the particle with the el
tric field, which we denotedt(tcross). The particle’s contri-
bution to Re*dt(2iĖ/E) is

E0 Re E dt~2 iĖ/E!5Re@~6 iq !e2 iv~ tcross1dt~ tcross!!#

5Re@~6 iq !e2 ivtcross#

1Re@6qvdt~ tcross!e
2 ivtcross#.

~A5!

9There will also be a small number of particles which would ha
induced a current on this link, but instead induce a current on
neighbor. But there are an equal number which induce a curren
this link rather than its neighbor, and this cancels out.
1-18
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The leading term isq odd, and cancels between particles
opposite charge. Butdt(tcross) will be q odd at leading order
and this term will contribute atO(q2).

Let us computedt(t) to leading order inq. It is related to
the difference in the particle’s position from theE50 case,
dx(t), by dt(t)52dx(t)upu/px . This in turn is given by an
integral over the particle’s past history of the difference in
velocity from the average value:

dx~ t !5E
2`

t

dt8dvx~ t8!5E
2`

t

dt8dpx~ t8!
p'

2

p3 . ~A6!

Now dpx(t8) is a sum over past crossings of the kick to t
particle at that crossing. The particle has undergone an
nite number of past crossings, one for each plane paralle
the plane of the dual lattice face it is currently crossing. T
time since it crossed the plane a distance7m away in thex
direction is6mupu/px , and the phase of the electric field
that time was exp@iv(tcross7mupu/px)#, and the impulse it
received was, at leading order inq, 6qEupu/px . Hence,

dx~ tcross!5ReS eivtcross(
m51

`
mupu
6px

qE0upu
6px

p'
2

p3 e7 ivmupu/pxD .

~A7!

This sum is not absolutely convergent. So to make se
of the calculation, we must regulate it. We do this by assu
ing that, as well as fluctuating with the plasma frequency,
correlator ofE at two times has a slow exponential envelop
soEx in the past is not ReE0e

ivt but ReE0e
(iv1e)t. Of course,

we will take thee→0 limit at the end.
Thus, after regulating the sum, the kick from this partic

crossing this boundary is

Re E dt
2 iĖ

E
5Re (

m51

`

7
mq2vp'

2

px
3 e7~ iv1e!mupu/px.

~A8!

The frequency with which a particle of this momentum e
counters a boundary in thex direction is6px /p: so v is
s,
io

04500
f

fi-
to
e

se
-
e
:

-

v5
1

V (
particles

Re (
m51

`

2
mq2vp'

2

px
2upu

e7~ iv1e!mupu/px.

~A9!

Now writing x5px /upu, and performing the integral ove
p2dp and over the azimuthal angle, this reduces to

v25
^n&^q2&bL

3
Re lim

e→0

3v2

2

3E
0

1

dx
x221

x2 (
m51

`

me~2 iv2e!m/x. ~A10!

The summation overm may now be performed:

(
m51

`

me~ iv2e!m/x5
1

4
sinh22S e1 iv

2x D . ~A11!

Making the substitutiony51/x, the integral becomes

v25
^n&^q2&bL

3
Re lim

e→0

3v2

2

3E
1

`

dy
12y2

4y2 sinh22S y~e1 iv!

2 D . ~A12!

For e.0 the integral is exponentially convergent, and w
can rotate the contour to run in the negative imaginary dir
tion:

v25
^n&^q2&bL

3
Re lim

e→0

3v2

2

3E
0

`

idy
~y1 i !211

4~y1 i !2 sinh22S ~y1 i !~v2 i e!

2 D .

~A13!

The integral is well behaved and we are free to take the
→0 limit. Taking the real part, after some algebra we obt
v25
^n&^q2&bL

3
F~v2!, ~A14!

F~v2!5
3v2

2 E
0

`

dy
2y@cosh~vy!cos~v!21#1~y413y2!sinh~vy!sin~v!

2~11y2!2@cosh~vy!2cos~v!#2

.12
v2

4
1

v4

240
1

v6

30240
1¯ . ~A15!
e
e

Here, of course,v is the plasma frequency in lattice unit
i.e. av in physical units. We see that it receives a correct
when v;1/a, but that for v2a2;1/2 in lattice units, the
n
correction is already quite small. There will also b
O(^n&Q4) corrections, probably including damping, but w
have not been able to calculate these analytically.
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APPENDIX B: INTEGRATING OUT THE A0 FIELD
AT ARBITRARY mD

We would like to understand the relation between
thermodynamics of infrared magnetic fields in our latti
system and the thermodynamics of infrared magnetic fie
in the full quantum theory, say in the dimensional reduct
approximation. As we have seen, our system has therm
namics described by a lattice gauge theory with anA0 field,
which has a Debye massmDL

2 which depends onbL and on
^n&Q2, whereas the dimensional reduction approximat
gives the continuum limit of this lattice theory, with som
particular renormalizedmD

2 determined by the particle con
tent of the full quantum field theory. There are two comp
cations here, the difference in behavior between lattice
continuum systems and the difference in Debye mass.
first has been dealt with in@11#, for the system without the
A0 field and for the system with theA0 field but in the
approximation thatmDL

2 is small in lattice units. In the theory
with only classical lattice modes this approximation is pa
metrically justified, but with the inclusion of particles this
not necessarily the case.

To deal with finitemD
2 , one first notes thatmD is large

enough to make theA0 field heavy, and since the theory
super-renormalizable, one can integrate over such he
fields at one loop and capture their dominant contribution
the infrared. We should perform this integration in each s
tem, leaving us to compare pure Yang-Mills theory in 3D,
the lattice and in the continuum. The matching between th
has been studied in@11# up to corrections of orderbL

22 , and
so here we only discuss the integration over theA0 field.

Integrating over theA0 field in the continuum theory wa
studied in@8,9#. There is only one correction, a self-ener
correction to the gauge fields which shifts the gauge coup
g3

2[g2T to

ḡ3
25g3

2S 12
g3

2

24pmD
D . ~B1!

In the theory with a Higgs field there is also a shift to t
scalar self-coupling,

l̄35l32
3g3

4

128pmD
, ~B2!

and to the Higgs mass squared parameter,

m̄3
25m3

22
3g3

2mD

16p
1O~g3

4/16p2!. ~B3!

The scalar wave function is not corrected.
In the lattice theory the integrals are trickier because

A0 field has lattice dispersion relations and the gaugeA0
vertices have nontrivial momentum dependence. So to w
up we will start with the corrections to the Higgs paramete
Our unit conventions will be the same as in@11#: i.e., the
lattice scalar self-coupling will belL54l/g2, and the lattice
spacing will appear in the dimensionless quantitybL
54/(g2aT).
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Two diagrams are relevant, Fig. 8 diagrams~a! and ~b!.
There are also high dimension operators induced by
grams with moref lines, but the influence of these terms
small for largemD

2 and we can drop them, just as in th
continuum case@8#. Diagram 8~a! gives a momentum inde
pendent self-energy correction, i.e., a mass squared co
tion. Denote the coupling between theA0 field and the Higgs
field aslA ; at lowest orderlAL52. Here and in what fol-
lows anL subscript means the value in lattice units, with t
normalizations used in@11#. The shift in the lattice Higgs
mass is10

m̄HL
2 5mHL

2 1
3hAL

2bL
E

[ 2p,p] 3

d3k

~2p!3

1

k̃21mDL
2

, ~B4!

wherek̃i[2 sin(ki /2) and

k̃25(
i

k̃i
25(

i
~222 coski !. ~B5!

Henceforth the range of integration and thed3k/(2p)3 will
be understood.

The integral in Eq.~B4! must be determined numerically
and we define it as

E
k

1

k̃21mDL
2

[
S~mDL!

4p
→

S

4p
2

mDL

4p
2

jmDL
2

4p
1

mDL
3

32p
1¯ ,

~B6!

where S5S(0)53.175911536 andj50.152859325. We
display the smallmDL expansion, but at generalmDL the
integral should be done numerically.

At zero external momentum diagram 8~b! corrects the
scalar self-coupling by

l̄L5lL2
3hAL

2

4bL
E

k

1

~ k̃21mDL
2 !2

. ~B7!

We define

E
k

1

~ k̃21mDL
2 !2

[
j~mDL!

4p
→

1

8pmDL

1
j

4p
2

3mDL

64p
1¯ .

~B8!

10Note that there are several typos in the Appendix C of@11# in
which factors ofS/4p or j/4p are left out.

FIG. 8. Diagrams needed in the integration over theA0 field in
Yang-Mills Higgs theory. The double solid line is theA0 field, the
single solid line is the Higgs field, and the wavy line is the gau
field.
1-20
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Again, we have displayed the leading terms at smallmDL ,
but at generalmDL the integral should be treated numerical
This definition ofj(mDL) does not havej(m→0)→j; in-
steadj(m) has a pole atm50, andj is the constant par
after the pole. The residue of the pole reproduces the c
tinuum expression~B2!, and the presence of the pole is b
cause we are computing the full effect of theA0 field on the
lattice, not the difference between lattice and continu
theories.

Now we treat gauge field self-energy corrections. Sin
there are noA0 field corrections to the three point gaug
scalar vertex or to the Higgs wave function at one loop, t
is the only further correction we need. Consider the two d
grams~c! and ~d! of Fig. 8. Denoting the polarization an
spin indices asi , j anda,b, at general external momentump,
diagram 8~c! gives

2
8dabd i j

bL
E coski

k̃21mDL
2

, ~B9!

and diagram 8~d! gives

dab

bL
E 16 sinki sin kj

@~k2̃p/2!21mDL
2 #@~k1̃p/2!21mDL

2 #
. ~B10!

The sum of the contributions atp50 is

2
dab

bL
E S 8d i j coski

k̃21mDL
2

2
16 sinki sin kj

~ k̃21mDL
2 !2 D

524
dab

bL
E ]2

]ki]kj

ln~ k̃21mDL
2 !50. ~B11!

The last equality is because the integrand is a total deriva
without singularities and the domain of integration is co
pact without boundary. Hence theA0 field does not induce a
mass for the gauge field, as ensured by gauge invarianc

Next, we find theO(p2) term in the self-energy, which is
responsible for renormalizing the coupling. Only diagra
8~d! depends onp, and expanding Eq.~B10! to second order
gives

4dAB

bL
(
lm

plpmS 2E 2 sin ki sin kj coskld lm

~ k̃21mDL
2 !3

1E 4 sin ki sin kj sin kl sin km

~ k̃21mDL
2 !4 D . ~B12!

To evaluate this, we need the identity

05E ]2

]ki]kj

coskl

k̃21mDL
2

5E 8 sin ki sin kj coskl

~ k̃21mDL
2 !3

2
2d i j coski coskl

~ k̃21mDL
2 !2

1
coskid i j l

k̃21mDL
2

, ~B13!
04500
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where we have already used Eq.~B11!, to simplify the final
expression, and the identity

05E ]4

]ki]kj]kl]km

ln~ k̃21mDL
2 !

52E 96 sinki sin kj sin kl sinkm

~ k̃21mDL
2 !4

1E 16
d i j coski sin kl sin km15 permutations

~ k̃21mDL
2 !3

1E 6d i jkl coski

k̃21mDL
2

2E 4
coski coskld i j d lm12 permutations

~ k̃21mDL
2 !2

. ~B14!

Further, we use the relationship

(
i

coski5S 31
mDL

2

2 D 2
1

2
~ k̃21mDL

2 !, ~B15!

from which it follows that

E coski

k̃21mDL
2

52
1

6
1S 11

m2

6
D S~mDL!

4p
, ~B16!

and, with a little more work, that

E coski coskj

~ k̃21mDL
2 !2

5F S 11
mDL

2

2
1

mDL
4

24
D j~mDL!

4p

2S 1

4
1

mDL
2

24
D S~mDL!

4p
G

1d i j F2S mDL
2

2
1

mDL
4

24
D j~mDL!

4p

2S 1

4
1

mDL
2

24
D S~mDL!

4p
1

1

12
G .

~B17!

Using these, after considerable algebra we find that
O(p2) contribution to the self-energy is

dab

bL
~d i j p

22pipj !F S 2
4

3
2

2mDL
2

3
2

mDL
4

18 D j~mDL!

4p

1S 1

3
1

mDL
2

18 D S~mDL!

4p G . ~B18!

While intermediate expressions have been rotationally n
invariant, the result is rotationally invariant and transver
1-21
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This happens because the only gauge invariant dimensi
operator which is cubic invariant isFi j

2 . At O(p4) there will
be rotationally non-invariant contributions, although th
will be cubic invariant. We are not concerned with these h
because we are not trying to compute induced nonrenorm
izable operators, only corrections to terms already in
Hamiltonian. But the nonrenormalizable terms could
computed by a straightforward but extremely tedious ext
sion of what we have done here.

The mDL50 limit of Eq. ~B18! agrees with the result in
@11#, and the coefficient of the pole atmDL50 reproduces
Eq. ~B1!. In the opposite limit of very largemDL one can
~Taylor! expandS andj in mDL

22 :

S~m!

4p
→m2226m24142m262324m2812610m2102¯ ,

~B19!

j~m!

4p
→m24212m261126m2821296m210

113050m2122¯ . ~B20!

The expansion converges form2.125sup(k̃2). While thej
andS contributions in Eq.~B18! separately giveO(m0) con-
tributions, these cancel, as do the first several powers ofm2,
and the correction is 8dab(p2d i j 2pipj )/(bLmDL

8 ) at leading
order inmDL

22 . So theA0 field rapidly becomes irrelevant a
large Debye mass, as it should.

Combining the result from integrating out theA0 field
with the thermodynamic corrections from transverse ga
boson loops found in@11#, we get a relation between th
‘‘naive’’ tree level bL,naive and the improved value:

bL,naive5bL,imp1S 1

3
1

37j

6p D
1F S 2

4

3
2

2mDL
2

3
2

mDL
4

18 D j~mDL!

4p

1S 1

3
1

mDL
2

18 D S~mDL!

4p G . ~B21!

Here the constantj50.152859325 is the limit ofj(m) asm
goes to zero, after the pole has been removed.

For completeness, we also list the values ofbL,imp and
bL,naive for the simulations presented in Sec. VII, in Table

TABLE II. Conversion betweenbL,naive andbL,imp for the simu-
lations in this paper. Everything is in lattice units. In Sec. VII w
truncatebL,imp to the nearest integer when we write it.

bL,naive Q2^n& mD
2 S(mD) j(mD) bL,imp

8.7 .375 1.59 1.901 .3487 8.073
10.7 .189 1.09 2.101 .4556 10.078
12.7 .111 0.74 2.280 .5821 12.085
10.7 .378 1.77 1.840 .3214 10.072
10.7 .756 3.14 1.498 .1979 10.069
04500
4

e
l-

e
e
-

e

This completes the integration over theA0 field at one
loop, at generalmDL

2 .

APPENDIX C: PROBING THE RETARDED
PROPAGATOR BY LINEAR RESPONSE

In this appendix we show how to probe the retarded p
ton propagator by studying the linear response of the Abe
plasma to an external current.

First we consider the response to transverse perturbati
In the framework of linear response theory, the respo
A(x) is related to the external currentj (x) through the re-
tarded propagatorDR(x,x8):

Ai~x!5E d4x8Dik
R ~x,x8! j k~x8!. ~C1!

Going to Fourier space and suppressing the Lorentz indi
we have

Ẽ~v,k!5 ivD̃R~v,k! j̃ ~v,k!, ~C2!

where

D̃R~v,k!5
21

v22k22P~v,k!
. ~C3!

Taking j i(xW ,t)5 ĵ i j 0e2 iv0teik•xu(t) as the driving current,
we find

Ẽi~v,l !5 ĵ i

j 0v~2p!3d3~kW2 lW !

~v2v01 i e!@v22k22P~v,k!#
. ~C4!

Fourier transformingẼ(v,k) back to space-time gives

E~xW ,t !5 j 0eik0xE dv

2p

ve2 ivt

~v2v01 i e!@v22k22P~v,k!#
.

~C5!

The retarded propagatorDR(v,k) is analytic in the upper
half complexv plane due to causality, and only has poles
the lower half plane. Writing P(v,k)5P r(v,k)
1 iP i(v,k) and noting thatP r(2v,k)5P r(v,k) and P i
(2v,k)52P i(v,k), the two poles are located atvpl(k0)
5vp(k0)2 igp(k0) and 2vpl* (k0), where vp(k0) is the
plasma frequency for the modek0 andgp(k0) is the associ-
ated on-shell damping rate.

Completing the contour integral in the lower halfv plane,
we find

E~xW ,t !52 i
j 0v0e2 iv0teik0x

v0
22k0

22P~v0 ,k0!
u~ t !

2 i
j 0e2gp~k0!teik0x

vpl~k0!1vpl* ~k0!

3Fvpl~k0!e2 ivp~k0!t

vpl~k0!2v0
2

vpl* ~k0!eivp~k0!t

vpl* ~k0!1v0
Gu~ t !.

~C6!
1-22
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The first term represents the asymptotic response, while
second term is the plasma oscillation atk5k0 , which is only
transient due to damping at a rate ofgp(k0). At large t @ t
@gp

21(k0)#, after the transients have died out, one sees o
the asymptotic behavior

E~xW ,t !→2 i
j 0v0e2 iv0teik0x

v0
22k0

22P~v0 ,k0!
. ~C7!

A current of the formj (xW ,t)5 j 0 sin(v0t)sin(k0x)u(t) will
generate the followingE field at larget:

E~xW ,t !5 j 0v0r cos~v0t1a!sin~k0x!•u~ t !, ~C8!

where

r5$@v0
22k0

22P r~v0 ,k0!#21P i
2~v0 ,k0!%2 1/2, ~C9!

a5tan21F 2P i~v0 ,k0!

v0
22k0

22P r~v0 ,k0!G . ~C10!

The real and imaginary parts ofP(v,k) can therefore be
determined from the space-time averages

^ j ~xW ,t !•E~xW ,t !&

5
j 0
2

4

v0P i~v0 ,k0!

@v0
22k0

22P r~v0 ,k0!#21P i
2~v0 ,k0!

~C11!

and

^ j ~xW ,t !•E~xW ,t2t!&

5
j 0
2

4

v0@v0
22k0

22P r~v0 ,k0!#

@v0
22k0

22P r~v0 ,k0!#21P i
2~v0 ,k0!

,

~C12!

wheret5p/(2v0), and the averages are taken after the
cay of the transients.

The numerically determined values for the transverse s
energiesP i andP r can then be compared to their perturb
tive values@48#:

P r~v,k!5
3

2
vp

2 v2

k2 F11
1

2 S k

v
2

v

k D lnU v1k

v2k UG ,
~C13!

P i~v,k!52
3p

4
vp

2 v2

k2 S k

v
2

v

k D u~k22v2!.

~C14!

The response to longitudinal perturbations is easies
treat in the Coulomb gauge, where onlyA0 is nonzero andE
is determined from] iA0 . The retarded propagator is

D00
R ~v,k!5

2~v22k2!

k2@v22k22PL~k,v!#
. ~C15!
04500
he

ly

-

lf-
-

to

One obtains

^ j ~x,t !•E~x,t !&5
j 0
2

4v

~v22k2!PL,i

~v22k22PL,r!
21PL,i

2 ,

~C16!

^ j ~x,t !•E~x,t2t!&5
j 0
2

4v

~v22k2!~v22k22PL,r!

~v22k22PL,r!
21PL,i

2 .

~C17!

The real and imaginary parts of the longitudinal self-ene
are

PL,r~v,k!53vp
2S 12

v2

k2 D S 12
v

2k
lnU v1k

v2k U D ,

~C18!

PL,i~v,k!5
3p

2
vp

2 v

k S 12
v2

k2 D u~k22v2!.

~C19!

APPENDIX D: RELATING TIME SCALES WHEN
THERE ARE PARTICLES

It has been shown@11#, as discussed in Appendix B, tha
the difference in screening from UV modes between latt
gauge theory and continuum gauge theory can be unders
at leading order ina ~or in bL

21! as a rescaling of the differ
ential operatorDi : so what at the tree level looks likeD2A
in fact behaves likeZA

21D2A, with ZA511O(a). TheO(a)
term has been computed in@11# and extended to arbitrary
Debye mass in Appendix B. Hence, in the case with no p
ticles, the equations of motion forAi in temporal gauge look
like

]Ei

]t
52ZA

21S D2d i j 2
1

2
~DiD j1D jDi ! DAj , ~D1!

]Ai

]t
5ZEEi , ~D2!

and ^E2&}bL,naive
21 . The usual ruleȦ5E is rescaled byZE ,

which has not been computed, but which lacks the la
‘‘tadpole’’ contributions which characterizeZA . To get a
completeO(a) correction of the dynamics it would be nec
essary to computeZE , but it has been advocated in@25# that
the absence of ‘‘tadpole’’ contributions means thatZE21
can be neglected compared toZA21. In this case, a simple
rescaling of time,ZA

1/2d/dt5d/dt8, and of the electric field,
ZA

1/2E5E8, eliminatesZA , and replacesbL,naive with bL,imp

5ZA
21bL,naive. So the time scale used,t, is related to the

more appropriate time scale,t8, by t85tAbL,imp /bL,naive.
When one computesG one should dividê NCS

2 & by Vt8
rather thanVt, and the corrected rate isAbL,naive/bL,imp
times larger.

However, we are now interested in the case where th
are enough particles to put the evolution in the overdam
regime. Huet and Son@24# and Son@49# have recently shown
what new term this adds to Eq.~D1!. A thermal distribution
of particles would not contribute, since particles of oppos
charge would cancel, but the particle distribution at any po
1-23
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is skewed because of past, remote electric fields, and
tains fluctuations. The new evolution equation looks like

]Ei
a~x,t !

]t
1ZA

21S D2d i j 2
1

2
~DiD j1D jDi ! DAj

a~x,t !

5
Q2^n&bL,naive

3 E dyNi j
ab~x,y,t !Ej

b~y,t2ux2yu!

1~noise term!. ~D3!

Here the right hand side represents the departure of the
ticle population from rotational invariance, due to its line
tt.

sh

ni-

sh

ni-

tt

s

ni-

04500
n-

ar-
r

response to past electric fields, and fluctuations in the p
ticle population. The form of the nonlocal kernelN is given
in @24,49#. They point out that the overdamped limit corr
sponds to the largeQ2^n& limit, in which case the]E/]t
term and the time dependence ofE on the right hand side can

be neglected. Again approximating thatȦ5E and rescaling
time to eliminateZA and to replace all appearances ofbL,naive

with bL,imp now requirest85ZA
22t. Hence one should com

pute everything usingbL,imp and the lattice spacetime vo
ume used, but then correct the rate by a factor
(bL,naive/bL,imp)
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