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Chern-Simons number diffusion with hard thermal loops
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We construct an extension of the standard Kogut-Susskind lattice model for classich)-@mensional
Yang-Mills theory, in which “classical particle” degrees of freedom are added. We argue that this will
correctly reproduce the “hard thermal loop” effects of hard degrees of freedom, while giving a local imple-
mentation which is numerically tractable. We prove that the extended system is Hamiltonian and has the same
thermodynamics as dimensionally reduced hot Yang-Mills theory put on a lattice. We present a numerical
update algorithm and study the Abelian theory to verify that the classical gauge theory self-energy is correctly
modified. Then we use the extended system to study the diffusion constant for the Chern-Simons number. We
verify the Arnold-Son-Yaffe picture that the diffusion constant is inversely proportional to the hard thermal
loop strength. Our numbers correspond to a diffusion constaht=029+ 6a§’vT4 for m%: 119°T?/6.
[S0556-282(198)01814-1

PACS numbds): 11.10.Wx, 11.15.Ha, 11.15.Kc

[. INTRODUCTION number is coupled through the axial anomaly to the Chern-
Simons numberNcg of the SU2) weak hypercharge field,
One of the most profound and most poorly explained ob-
servations of modern cosmology is that the universe contains dNg dNcs
macroscopic amounts of matter, but not of antimatter. Since FTETE (Ng=3), 1
baryon number is conserved in all observed terrestrial and
astrophysical phenomena, the existence of such a baryon
number asymmetrybaryons over antibaryonseems pecu- and that theNcg change is thermally activated in the hot
liar, particularly because it clearly violat€s and CP sym-  electroweak plasmgB8—5]. This baryon number violation oc-
metry. Further, the abundance of baryons, as compared to ti§&lrs at much lower temperature ranges, and hence later in the
abundance of photons or the entropy density of the universgvolution of the early universe, than GUT mechanisms; it
is a remarkably small number, on the order of i) and  could therefore erase any baryon number asymmetry gener-
since the entropy of the universe has changed very litlé@ted when GUT mechanisms are relevaand generate the
since its very hot early epochs, this small nonzero number i9bserved abundance during the electroweak phase transition,
an initial condition to the universe viewed at least back to thevhen the rate abruptly shuts off. This latter possibility has
epoch of primordial nucleosynthesis. stimulated the field of electroweak baryogenesis.
Sakharo[1] made the first attempt to understand what is One thing we need to know to understand electroweak
involved in explaining this observation. If the universe doesbaryogenesis is how quickly baryon number is violated in the
not begin with such an asymmetry, then baryon number musitandard model, above the electroweak phase transition. The
be violated to generate it, and so m@tand CP. He also  Violation involves nonperturbative physics, and there are no
noted thatif baryon number is not conserved, then in equi-known analytic methods which are reliable above the phase
librium it will go to zero, as a Consequence(b'PT symme- transition temperaturéin contrast to the situation below it
try. Hence, if the baryon asymmetry of the universe wad3.5). Already at the thermodynamic level the fields respon-
generated dynamically, the universe must in its early historygible for the violation of baryon number suffer from the “in-
have gone through some departure from thermal equi”brium'-f,rared prOblem” of thermal field theories with ||ght interact-
in which baryon number violation was active aBandCP  ing bosons.
violating physics was relevant, followed by a steep suppres- The “infrared problem” of the thermodynamics of ther-
sion of the rate of baryon number violation before thermalmal field theories with light interacting bosons can be
equilibrium resumedto prevent baryon number from being “solved” by the dimensional reduction procedufé-8],
erased again And if baryon number was violated at a rate which reduces the problem to a three dimensional path inte-
faster than the Hubble expansion at any point in the uni-
verse’s history, then baryon number must have been gener-
ated dynamically. The standard model violateB+L but not B—L. Extended
While it is known that grand unified theorig§UTS) ge-  GUTs such as SQ@0) can produce 8—L excess, which elec-
nerically violate baryon number, it turns out that baryontroweak processes will not touch. But the possibilityBoproduc-
number is violated already in the standard model, as firstion in the standard model certainly motivates the study of these
shown by 't Hooft[2]. The key observation is that baryon scenarios.
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gral which can be put on a latti¢e—11] and studied numeri- In this paper we develop, implement, and study a proposal
cally [12—14. This “dimensional reduction” turns out to be by two of us[30] for including the hard thermal loop effects
identical to considering the partition function of the into classical, lattice simulations of Yang-Mills or Yang-
(3+1)-dimensional, classical bosonic theory, with certainMills Higgs theory. The implementation produces a local,
countertermg17]. The most hopeful approach to the study Hamiltonian system in which added “particle” degrees of

of infrared sensitive, dynamical properties of the plasma i§reedom convey the hard thermal loop effects. We explicitly
that they also behave essentially classicpl§], and there is  Verify that the enlarged system conserves energy and sym-
reason to believe that they da5,19. plectic measure, has the same thermodynamics as the quan-

There is a problem with the classical approximation to theUM theory in the dimensional reduction approximation, and
dynamics, however. The ultraviolet modep~#T) cer- produces the right dynamical behavior for infrared fields. We

tainly do not behave as classical fields, and they interact wit xamine in det_all the retarded propagator of the Abelian
the infrared modegwhich we will assume do behave essen-t eory with particles to show that they correctly produce all

tially classically. The classical approximation will serve of the physics of hard thermal loops, including Debye

. . . . screening, plasma oscillations, and Landau damping. Then
only if the interaction between soft and hard modes is Some; o apply the particle method to determine s diffusion

how unimportant to the evolution of the soft modes. It IS ;,nqtant and its dependence on the Debye mass. The results
known that, at weak coupling, the hard modes only |nﬂuencq,erify the arguments of Arnold, Son, and Yaft3]. In par-

the thermodynamics of the soft modes by sh_|ft|ng2 the Higgsjcular, we verify that as the total strength of hard thermal
mass and the Debye screening mass forAQdield.” How-  |oop effects varies by a factor of 3, with the lattice spacing

ever, the unequal time generalization of Debye screening, thgnd the physical volume held constant, the diffusion constant
hard thermal loops, constitute very nontrivial physics, physfor N also varies by a factor of 3.

ics which the lattice implementation of the classical theory The outline of the paper is as follows. In Sec. Il we re-
gets wrong[20], both in the size of the screening effects view what the hard thermal loops are and how they can be
(which depend inversely on the lattice spagimgd in the understood in terms of Vlasov equations, i.e. in terms of the
functional details. influence of a bath of particles on the classical infrared
Does this problem matter to the rate at which baryonmodes. In Sec. Il we explicitly construct a spatial lattice,
number is violated? In particular, since there is a fluctuatiorcontinuum time system which can be viewed ash\abody
dissipation relation which relates the rate at which a baryorsimulation of the Vlasov equations. We show that this sys-
number excess is dissipated in the plasma to the ralé-gf tem is energy conserving and Hamiltonian and argue that, for
diffusion per unit volume[21], we might ask whether the Small charge and large particle number, it reduces to the
hard thermal loops matter to tié. diffusion constant. The ~(Iattice) Vlasov equations in the eikonal approximation,
numerical lattice results of Ambjo and Krasnitz implied Which are known to produce the right hard thermal loops. In
that there is a well-defined small lattice spacing limit to theS€C- IV we study its thermodynamics, which is shown to be

classical, lattice diffusion constaftt7], but the definition of the same as dimensionally reduced Yang-Mills theory put on

lattice N5 used there gives bizarre results in the brokenthe lattice, at a specific Debye mass set by the number and

; : : . charge of the particles. Section V develops a stable, time
phase[22] due to serious lattice artifactd5]. Theoretical symmetric update algorithm, and Sec. VI numerically studies
arguments suggest that hard thermal loops should slow do

h luti finfrared i fields. for th e retarded propagator of the Abelian theory. Section VII
the evolution of infrared magnetic fields, for the same reasolge the evolution algorithm, together with the topological

that infrared magnetic_ ﬁelds in an Abelian plasma becom%efinition of Nes developed if25], to study theNcg diffu-
pinned by the conductivity of the plasri23,24); hence one  gjon constant and its dependence on lattice spacing and on
should expect that thdics diffusion constant vanishes lin-  the sjze of hard thermal loop effects. Section VI concludes.
early with lattice Spacing in classical simulations. Recently,‘rhere are also four technical appendixesl Appendix A ana-
numerical techniques based on a topological definition ofytically studies how the lattice nature of the electric fields
Ncs[25] and a “cooled field” definition which removes the changes the plasma frequency, in the limit of many particles
worst problems of the old definitiof26] have indicated a of small charge. Appendix B studies the thermodynamics of
lattice spacing dependence in the diffusion constant, thougthe lattice system whemp~g?T/a. Appendix C reviews

it does not appear to be as large as expected. Hence, ladbw to probe the retarded propagator via the linear response
present the situation seems confused, and it certainly seems an external current. Appendix D discusses the relation
necessary to find a way to include more faithfully the effectsbetween lattice and continuum time scales.

of hard thermal loops in the study &fg diffusion, and in

other studies of infrared bosonic field evolution, such as the

study of the phase transition dynam{d$] and the genera- Il HARD THERMAL LOOPS AND PARTICLES

tion of quark gluon plasma in heavy ion collisiofs7-29. In this section we briefly review an approach to hard ther-
mal loops due to Kellyet al. [31] and discuss how one can
generate the influence of hard thermal loops by coupling the
2There are also perturbatively computable corrections to the counfrared fields to a heat bath of particles.
plings of the theory, which amount to a specification of the renor- In the diagrammatic approach to field theory at high tem-
malization point: see Farakes al.[7] and Kajantieet al.[8]. perature it was shown by Braaten and Pisaf8] that a
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resummation procedure is needed in order to take into acwhere the collision integral describing hard collisions be-

count consistently all contributions at leading order in thetween particles is neglected since soft collisions mediated by

coupling constant. Such contributions are called “hard therthe mean field dominate. Inserting the Wong equati@s

mal loops” since they arise from one-loop diagrams with (4) into Eq. (5), one arrives at the following:

soft external legs and hard internal momenta. The hard ther- 5 5 5

mal loop resummation was shown to produce gauge invari- o ara % bc _

ant results for physical quantities such as the gluon damping p* IXH 9aF Ly ap, 9fancA,d aq? fop,q)=0.

rate in a QCD plasmf33]. An effective action for the hard (6)

thermal loops was derived by Taylor and Wdi3gt by im- ) ) )

posing gauge invariance on the generating functional. An-A_ se_lf-cqnsstent_set of non-Abelian Vlasov _equatlons for the

other approach developed by Blaizot and laf@%] is based dl_str|but|on funcuoy and the ‘mean color f|¢|d can pe ob-

on a truncation of the hierarchy of Schwinger-Dyson equal@inéd by augmenting Eq6) with the Yang-Mills equation

tions and the generating functional was obtained through a

consistent expansion in the coupling constant. DMF“Vzgf dpdgpqf(x,p,q)=j"(x). (7)
While remarkably insightful, the approaches mentioned

a_\bove are quite technicgl, often invc_)lving lengthy calcula-  The non-Abelian Viasov equatior(§) and (7) are now

tions, and they tend to hide the classical nature of hard thelzysjied to study the soft excitations in a hot, color-neutral

mal loops. The hard thermal loops arise from loop diagram$yjasma with massless particles. In the spirit of linear re-

and can be obtained from the Schwinger-Dyson equations Qf,onse theory, one expands the distribution function in pow-
quantum field theory. But they are also UV finite, with loop 4. ofg:

integrals being exponentially suppressed in the ultraviolet.
This is because they arise entirely from thermal fluctuations. f=f0+gfY+0(g?), (8)
One usually thinks of such fluctuations, at least in the ultra-

violet, as being well described by classical particles, whictwheref(©®)(pg)=Cng (po) is the equilibrium distribution in
motivated Kellyet al. [31] to find an alternative, classical the absence of a net color field. At leading ordegjrEq. (6)
formalism for hard thermal loops, by considering the linearreduces to
response of an ensemble of thermal particles to a weakly

coupled, slowly varying mean field in the framework of clas- pr i—gf bcAch i fO(x,p,q)

sical transport theory36]. They start by considering par- axH avewt 992 T

ticles carrying non-Abelian SUW) chargeg? a=1,... N?

—1. The Wong equation$37] are used to describe the — DgeF2 if(0> 9
. ; . ) . pPTaTF ., (Po)- 9)

proper time evolution of a particle with phase space coordi- p,

nates €*,p*,q%): - . . -
¢.p%a7) Similarly, there is a net induced current density in momen-

dgn tum space:
m F= p*, 2
j“a(x,p)=ng dap“g*f(x,p,q). (10
y73
m di:gang”pv, (3) From Eqs.(9) and(10), a constraint satisfied by the color
.

current can be derived. Using the standard field theory defi-
nition of effective action,j*(x)=—6I'(A)/6A,(X), one

qa_ abcp A e then arrives at a hard thermal loop effective action of the
m g7 = ~9FPrAL @ following form:
. . 1 dQ
where g is the coupling constant an&%” denotes the FHTLZEmZD fd“xAg(x)AS(x)—f (2—)4W(A-v) ,
v

strength of the mean color fields. Note that the color (11)
charge is itself subject to dynamical evolution, a feature

which is absent in the Abelian case. Both the dynamicalyhere v =(1,p/p,), mp=gTV(2N+Ng+2Np)/6,° and the
evolution of a particle’s spin and the spin coupling are ne4ntegration fd() is over all directions of the unit vector
glected since spin interactions are down by an ordeg of  p/p, . The first term describes Debye screenigA-v) in
a weak mean field describing soft excitatiofls~gT, A,  the second term is a functional. Its explicit form has been
<T, F,,=gT? [38].

Consider the classical one particle distribution function
f(x,p,q) evolving in time according to the Boltzmann trans-
port equation

®Here, N, is the number of fundamental scalars, and as in the
preceding textNg is the number of generations, each containing
four chiral doublets; in QCD R would be replaced byNg the
m df(x,p,q) =0, (5) numbe.r of flavors, andNg would only appear in supersymmetric
dr extensions.
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given by Taylor and Wong34], also by Efraty and Nair the system of classical particles carrying gauge charge has a
[39]. Note that the derivation ol stays completely detailed resemblance to the hard thermal modes of the gauge
within the classical transport theory and makes no use of théield, if only its back-reaction produces the nonlocal hard
quantum theory. This justifies the statement that hard thermahermal loop(HTL) effective action11). The system of clas-
loop effects are classicéih the sense of the classical particle sical dynamical equations to be derived in the following sec-
approximation. Also note that the form of the expression tions will have three parameters: the classical thermal length
inside the brackets in E¢11) does not rely on the particles scale 6°T) %, the gauge chargeyQ)? of the particles, and
obeying any specific statistics; they can be Fermi, Bose, othe particle densityn). It will be sufficient for our purpose
even Boltzmann particles. Nor does it depend on what grouff we tune these parameters so that they produce the correct
representation they are in. These only affect how much &alues for the parameters in the HTL action.
species contributes to the leading coefficienﬁ, which is
given by a sum over charged species of their individual con-
tributions. The ratio of a particle species’ contributiormé
and the mean density of those particles @@,(R)(E™1). To reproduce the hard thermal loop effects, our idea is
[For classical, distinguishable particles in the adjoint reprethen to numerically implement “particles” obeying Wong's
sentationg®C,(R) is replaced by the mean squared value ofequations and moving in the background of classical, lattice
the particle chargeg in one Lie algebra directioh. fields. Eventually we want a discrete time update algorithm,
It is worth noting that the magnetic field does not play abut an important step is to construct a continuous time, lat-
role in producing hard thermal loops at leading order. Thistice system with the right properties. The general philosophy
can be easily seen from E), where only the electric field of adding particles with adjointLie algebra chargeq of
enters the term on the right. Physically, this is because thfixed magnitude, kinetic momentup) and continuous posi-

magnetic field just rotates the momentum distribution, and af;,, coordinatet satisfying&, = p; /p|, has been presented in

leading order that distribution is the rotationally invariant [30]; here we will specify the complete implementation. Our
thermal distribution. The magnetic field only influences ex'reqdirements for this system are the following: '

isting departures from equilibrium, which is a subleading
effect. In contrast, the electric field can polarize the plasma .
and generate a net current, which in turn interacts with the There mus.t be conservation of energy.

mean field and hence generates the desired hard thermal The evolution should preserve the phase syagmplec-

loops. Therefore, in solving the Wong equations, one ca IC) measure. . .
leave out the magnetic term in the Lorentz force in &).if P Th((aj_ls_ystem should respect cubitattice) translation,C,
the plasma is only slightly driven out of equilibrium. How- *é‘n ’slymmehtry.ld be identicall d

ever, if one is interested in dynamical processes occurring in auss’ law should be identically preserved.

out-of-equilibrium plasma, then the force due to the mag-. Th? S.m.a" Iattice. spac;ing Ii_mit (Or. smooth field, large
netic field has to be included. time limit if one thinks in lattice units must recover the

The effective actior(11) is conceptually simple and for- Yang-MiIIs field equations supplemented with Wong’s equa-

mally appealing. It provides a concise way of summarizingt'ons'

hard thermal loops and allows one to better understand the The thermodynami.cs of the infrared classical f_ields must
influence of the hard thermal modes on the soft excitationst.)e given by the path mtegral of quantum Y‘?‘”g"\"."'s theory
Nevertheless, it does not prove a ready starting point foln the dimensional reduction approximati@r its lattice dis-

practical calculations. In particular, its nonlocality makes it cretization.
hard to apply to study nonperturbative physics such as
Chern-Simons number diffusion, where analytical methodgNote that the first two conditions ensure that the system is
are rare and one has to rely on numerical simulations. HowHamiltonian, and hence that the thermodynamics is well de-
ever, the fact that the hard thermal loop effective actithh ~ fined. We would also like a thermalization algorithm for the
can be derived from classical transport theory, i.e. the Vlasogystem.
equations, implies that hard thermal loops can be generated We emphasize that the particles are a device to reproduce
by solving the Vlasov equations numerically. One could dothe hard thermal loops and should not be taken literally as
so by anN body simulation by solving the coupled system of reproducing all the behaviors of the hard modes. In particular
Wong equationg2)—(4) and Yang-Mills equatior(7). This  itis nota problem that they are distinguishable, and that their
has the advantage of being local in spacetime and allows AUmMber is conserved. We expect them to satisfy Boltzmann
practical, real time study of both equilibrium and nonequi-statistics, rather than Bose or Fermi-Dirac statistics, but this
librium phenomena. is also not important for reproducing the functional form of
Based on these ideas, our goal will be to derive a systerthe hard thermal loops, as discussed in the last section; we
of dynamical equations which, in its low-frequency, long- heed only make sure that the number density and charge of
wavelength limit, reduces to the same effective field theonythe particles yield the desired value fiory. However, any
as the full thermal gauge theory. We have no intention ofhope that the method can be enhanced to account for physics
modeling the gauge theory as truly as possible in all respectiieyond hard thermal loops is clearly remote. Hence we will
rather, we will be satisfied to reproduce its infrared behaviomot be able to say anything about effects which are sublead-
correctly. For example, it will be irrelevant for us whether ing in g.

Ill. LATTICE SYSTEM
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Lo N . . .

LN e | p()=2 Ei(x)—U{(x=DE(x—1)Uj(x—1)=Dy-E(x).

D @0 !

N ] e ] s 13

i i N - l The current, an adjoint vector field, should be defined

. —@ @ ' on the links and is specified by the requirement that it form a
I N ! conserved current;

i AP RS G

O e e p=3 Lo DI DU —ji(x). (14

FIG. 1. An |||ustrat|0n of the degrees of freedom Of the pro_ The eaSIeSt Way to see hOW th'S fIXES the current |S to th|nk
posed system. Lattice sites are large dots, and the solid lines joiningf the chargeq,, of particle a as living at sitex until the
them are links. Classical fields take values at sitéiggs fields or ~ particle moves to be closest to another site, sayi; then
on links (connectiondU and electric fieldsE). Particles(the small ~ the charge must abruptly slide along the link connecting
dots take on real valued coordinates and momdiliiastrated with  andx-+i, and there will be 46 function in time current on
arrows. A particle’s charge affects the classical fields as if it re- that link, equal tg;(X) =q,0(t —t..sd. If we take the group
sided at the nearest lattice site. The dotted lifreally planes, ex- indicies ofj to live at the basepoint of the link, then we
tending out of the pageare barriers between the region nearest oneshould use the value af which departs from sitex; the
site and that nearest another, that is, faces of the dual lattice. Whepy|ye if we takej to live at the endpoint of the link+i is
a particle crosses a barrier, the charge is parallel transported to thge adjoint parallel transport gf with group indices at the
new box, theE field on the link orthogonal to the barrier receives a basepoint, and hence the chameof the particle when it

kick, and the particle momentum orthogonal to the barier isy e at sitex+i must be the parallel transport of the value
changed to conserve energy. atx:

Let us list the degrees of freedom of the proposed system
(see Fig. 1 for illustration We consider a 3-torus of spatial g(at x+i)=UiT(x)q(at X)U;(x). (15
extentN® (in lattice units, which will be used throughout
except when it is convenient to write the lattice spacing exdf the particle is moving the other direction, frori-i to x,
plicitly). “The lattice” will refer to the integer lattice on this the sign of the current is reversed, but Ef5) still holds.
space, i.e. all points with all three coordinates an integer. AThis gives the update rule faq and is the same as was
link x,i will refer to the line between the lattice siteand the  proposed i 30].

sitex+i (henceforward+i) and on each link there will be ~ In what follows we will call such events “boundary

a parallel transportet);(x) e SU(2) and an electric field crossings” because they correspond to a particle crossing the
E;(x) e LSU(2), the Liealgebra of S). For each index b_oundary which der_narks the volume closes_,t to one lattice
valuea € {1,...N} there is a particle with coordinatg, de- site. The boundary is a face of the dual lattice, dual to the

fined on the torus, momentump,eR3, and chargeq, link in which the current flows.
e LSU(2) satisfyingg?=Q?2. By definition E;(x) will be We expect that the electric field update rule should be
the left acting covariant time derivative &f;(x), DgU;(x)
=E3(x)i7U;(x), and the momentur, will tell the direc- dE (x) Mes
tion the particle moves iné,i=p,./|pl, (note the¢; are at - 20,0 —Ji(%), (16)
defined modN). It remains to define update rules fr p, !
andqg.

First, what is the meaning af? It should be a charge E2(x) 1
which the classical field$J,E “see,” but such a charge HKSEZ ! +2 (1——TruD ,
should reside at a lattice point. We taffg to “live” at the X, 2 u 2
lattice pointx; closest t0&,, i.e. |xj—&,;<0.5. It will (17)
gauge transform as an adjoint object at that site, and the , , o L
charge observed by the classical fields will be whereHgs is the Kogut-Susskind Hamiltonigd0] which is

standard in the real time field literatufdl], and where
dldU,(x) means change with respect to left acting deriva-
tives of U;(x). The appearance gfhere is the “meaning”
1 ¢ atx, of j and just means thaE;(x) changes abruptly by-q,
P(X)zg 4| ¢ not at x’ (12 when particlea moves from nearest site to nearest sitex
+i, and byq, if it goes the other way.

Now let us check whether this definition & will pre-
This is the quantity which enters Gauss’ law: serve Gauss’ law, that is, whether
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Just before crossing Just after crossing

------ Rt REEEEE e R

outgoing flux — +q outgoing flux =0 outgoing tlux — 0 outgoing Mux = +q

FIG. 2. Boundary crossing, before and after. Before, the fluk &ields (displayed as arrowut of the lefthand box must equg) and
the flux from the right hand box must equal 0. After the crossing, the right hand box hapdhok the left hand box has zero. This demands
a change of th& field connecting them, but no instantaneous change t&tfields which leave these two boxes, since that would change
the flux going into other boxes.

. . . if one tries to define the charge of a particle as being spread
p(x)=2 Ei(x)—U(x=D)Ei(x=1)Ui(x—=i). (18)  over nearby points, rather than residing entirely at the nearest
' point. Deriving a local, Gauss’ law preserving, P, andT
(The contribution from the time derivative &f cancels here SYmmetric alternative to our update proposal is highly non-

because it is generated by, and hence commutes Bjtand ~ trivial in the non-Abelian context.
cancels betweeb andU™)) Before going further we should make a comment about

First, we know that _the normalization of fieldg which we have adopted_. Sibice
is a parallel transporter, it has been most convenient to use
the normalization of electric fields in which the Hamiltonian
Hys ¢ .. dHgs _ contains a g>x E2: that is, our electric field iga’E .on/2.
Z U, (x) —-U; (X_')mui(x_')zo’ (19 The 142 in front of the Hamiltonian will be absorbed into
the temperatureB, =4/(g?aT), which is customary in the
which is why Gauss’ law is preserved for the classical lattice3D lattice literature[17]. Also the particle charg®? will

. H “ ” H _ ~NAN2
system without particles. And the contributionjoffo E can- convert into the_ usual™ continuum c_harge &'=g'q’/4,
- . . It will be convenient to make the particle momentum appear
celsp in Eq. (18) precisely becauseandj form a conserved

: Yy L in the Hamiltonian as8 H= 8, (Hks+=,/p|.), SO that it
current. So Gauss'’ law is indeed conserved. Alternately, theg pe girectly compared with electric field energies. It is
abrupt change t@(x) and p(x+i) when a particle passes yhan, related to physical units . = peorX 92a/4. Though
from being closest ta to being c’:losest ta+i stipulates the  yhage normalizations seem strange, they scale out all dimen-
change toE;(x) so that Gauss’ law will still hold at both  gjonqy| quantities and make the numerical theory have the

sites. ) ) least awkward inter-relations.
Physically, what this update & means is that when @ |t remains to define the update pf This will be almost

particle leaves one box, the charge within that box abr“pt%niquely specified by the requirement that the system be
drops, and the flux of the field out of the box must abruptly  (yamiltonian. Naively one would expect the influence of the
drop too. Meanwhile, the neighboring box, which receivedg|actric field onp to be

the particle, must have the flux of theé field out of it
abruptly rise. The way to do this is to abruptly change Ehe
field going from the first box to the second, by an amount
equal to minus the charge: see Fig. 2. We could also do it by

changing theE fields along the other links leading out of av[vith E, chosen to b& on the nearesit type link, but this is

these boxes, but this would spoil Gauss’ law at the sites th : then h i derivati f
the other ends of those links and is therefore forbidden!V'ON9, as the System energy theén has a ime derivative o

Those links will change, in time, via the Hamiltonian evolu- pini/|p.|, which cannot be removed by a 'correspondmg
tion of the classical Yang-Mills system. change inE because that would spoil Gauss’ law. The en-

We should mention that in the Abelian theory, one can®'9y consening update
construct more elaborate Gauss’ law preserving ways to
changeE, which boil down to moving some of the charge
along indirect paths betweenandx+i. But these are actu- RELICE
ally not allowed in the non-Abelian theory, because the dt P op
charge transforms nontrivially. To satisfy Gauss’ law, the
particle chargey must also be updated by splitting it up and does not preserve the phase space measure and is also disal-
parallel transporting it along those indirect paths, but wherlowed; in fact, except at the instant when a particle crosses a
they are added together in the final box, they will not allboundary, measure and energy conservation restrict the al-
“point in the same Lie algebra direction,” and so the mag-lowed changes tp to a rotation about some adjoint charged
nitude of the sum will have changed. Similar problems arisevectorB, which must be odd unde2, P, andT:

bi =q°Ef, (20)

dpi _ apa _p;qu? 21
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pi=f(p?)€ijcp;BRG™. (22 IPi fin! Py init P fin! IEj init

Detl ge . Jop: - O& « [OE: (26)

So a rotation about the magnetic field is allowed, but not iinl Py it 01, n 08 i

required, to preserve energy and the phase space measure.
However, when a particle crosses the face of the dual _ _ o

lattice separating two pointsandx+i and induces a current €duals 1. Since the change we are discussing is instanta-

ji(x), it changes the energy in the electric fi&{x) by BleoukS’ & fin! IPjint=0 and the determinant reduces to
ocks,

A(energy=A(E?/2)

= —E}(X,teross— 0)97+q%/2 IPi in! P init P fin! IEj init
= —E&(X,terosst 0)97—q%/2, (23) DeY 3¢ in/ Py inie 9 sinl &} init
and p must be changed to balance this energy. If oply A&, fin P fin
changes, fronp; i, to p; sn, then energy conservation is =De ag_’_ " D ap»’- | (27)
J,ini j,ini

VP int T+ A(E?2)= VD] it PE, (24)

which is solved by

and we need to show that these determinants are inverses.
Without loss of generality we consider the case in which

p; changes, withp;>0. We handle the dependencefqp‘, on
Emit first. Changingé, iy just shifts the place on the wall

Pi,in=591P; i) VL [Plint— A(E?2)]°~p? (25  where the particle crosses, huitis the same at all times: so
only &, is changed, by the same amount as the initial
if both |plii—A(E%2)=0 and the argument of the square change. The same holds fé5. However, changing j;; by
root is =0; otherwise there is no solution, as the crossing igdé; changes the arrival time at the wall byd&; /v jni. The
energetically forbidden. If the crossing is energetically for-particle propagates afﬁn rather thanJimt for dé; /vy it

bidden, we should sep; fi,=—p;,int, @and no crossing oc- longer than without the change, leading to a change in the
curs, no cgrrent is generated, and the particle turns. Othefy, positions equal to lZfin_l;init)dgllvlinita plus the
wise, p; fin is taken from Eq(25) above, the current flows, change ofdé¢, in &, q,. Hence, ’

and the particle crosses the boundary. The case where the ‘
crossing is fromx+i to x follows from this case and parity
symmetry.

This proposed update f@r conserves energy. What about
the symplectic measure? The measure is clearly preserved at A in
all times that no particle crosses a boundary, since the evo—DE{ 35_’_n_t

j,ini

lution of E,U is Hamiltonian,£, depends omp,, but noté,,,
andq andp do not changdexcept for allowed rotations of
p). When a particle reflects, the change— —p; also pre- (28
serves the measure. The only nontrivial case is when a par-

ticle crosses a boundary. The rotation ayf preserves the . .

measure on LS(2) and the chang&—E—q preserves the Now for the dependence abg, on Pini. Since pa it
measure foE since the change is independen&gfwhichis  =p, s, and similarly for ps, only the change in the final
defined on a vector space. We need only check if the particlgalue ofp, 5, need be computed. Taking the appropriate de-
phase space measuided p;d¢; is preserved, that is, whether rivatives of Eq.(25) gives

Ul,fin/U 1,init 0 0

}_ (Vagin— V2Vt 1 O]  Vifin
=De =

(Us,fin_vs,init)/vl,init 01

U1,init

'pl,mn(lplm—A<E2/2>> _A(E2)p,  A(E*2)ps]

P1 fin [Plinit pl,fin|p|init B p1,fin|p|init
o - - 2
De\{ &pl,fln} _ Det 0 1 0 _ pl,lnlt( |p||n|t A(E /2)> . (29)
IP;,init P1 fin IPlinit
0 0 1
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Now observe thalp|i,i— A(E%/2)=|pls, and thatp,/|p|  getically impossible, the particle momentum parallel to the
=v,; so the two determinants are inverses and the measutiak is flipped and no crossing, or changedp E, occurs.
is indeed conserved. The cases whpseor p; change, or This update is Hamiltonian with total energy
where the particle moves in the opposite direction, follow
from cubic and parity symmetry. EZ(x) 1
If we had allowedp in the orthogonal directions to energy:; > +> (1—§TFUD

+2 [pla,
[} a

change, it generically would not preserve the measure, and 31)
so the choice of update is almost unidue.

The first four conditions for a valid update rule have 5y preserves Gauss' law identically. It is also manifestly
specified the update uniquely except for the freedom to per; C ;

. . gauge,C, P, T, and cubic invariant.

form rotations of the form shown in Eq22). It would seem
natural to define the magnetic fieRf at a point in terms of
the 3 nearest plaquetfeand to rotate the momenta according

IV. THERMODYNAMICS OF THE LATTICE SYSTEM

to In the last section we have proposed a continuum time
_ system and its update rule and have shown that it is Hamil-
bizeijk&BEqa- (30  tonian, i.e. that the update rule preserves energy and the
Ip| phase space measure. It therefore has well-defined thermo-

dynamics, which we now explore. The canonical partition

As we discussed, the magnetic term in Wong'’s equation§unction is
plays no role in reproducing the right hard thermal loops for
a plasma close to equilibrium. Thus we are free to omit this
rotation when dealing with quasi-equilibrium processes.
Next let us verify that the continuum limit of our update Z=f IT d®¢.d%p.da,]] dE(x)dU;(x)

rules give Wong's equations. This is known for the classical “« X
field equations without particles evolving under the Kogut-
Susskind Hamiltonian; so we need only check the terms in- XTI 8(=p(x)+DL-E(x))e A, (32
volving particles. The update of the particle charge is explic- X
itly the adjoint parallel transport along its trajectory, as it
should be. The current in thedirection from a particle oc- 2
curs in jolts of magnitude] and frequency 1/ ; so the time _ Ef(x) _ E

, ; _ H=> +> | 1-5 Trug
averaged current igv; as it should be. The impulse on a X1 2 2
moving particle is of magnitudA p;= p; fin— P init; €XpPand-
ing Egs. (23) and (25 to leading order inq gives Ap; . .
—q-E /v;, and such impulses also occur with frequencyThe appropriate measures, i.e. the.Haar mzeasuEEJ fand
1/v;, and so the time averaged force on the particle isthe Lebesgue measure on L&restricted tog”=Q” for g,

g-E;, also as it should be. We will explore the corrections to2® implied. Thed function enforces Gauss’ law at each

the plasma frequency, due to the discrete nature of the cyP°int @nd the meanings of and D, -E are as previously

rent and the “kicks,” in Appendix A. Wong's equations are defined. The quantity, here combines all the dimensionful

. _ 2 . . -
recovered for the motion of a particle through slowly varying Parameters of the lattice systerf,=4/g°aT; when it is
fields, if q is sufficiently small. large we are on a fine lattice, or at weak coupling, which is

We still must check whether the thermodynamics of thisequaler_lt in the clas_5|ca_l theory. .
system is correct: we will do this in the next section. But Note first that the kinetic momenta will obey a Boltzmann

first, let us review and summarize the update rule. The fielggistribution and are independent of all other degrees of free-

evolve under the Kogut-Susskind Hamiltonian and the par_dom; the partition function factorizes, and if we are inter-

ticles move freely, except at such exact instants when a pafa-Sted in the th_ermodynamics of the IR classical gauge fields,
ticle crosses a boundatg face of the dual lattidei.e. when €N we may integrate oyt. Note also thag andq do not

it goes from being nearest one point to nearest another. THEPPEAr in the H_am|!ton|an; thelr only influence is in deter-

charge is then parallel transported by the link operator dudniNing p appearing in Gauss’ law. , .

to the face, and the electric field on that link is abruptly _It Is most convenient to_er_1f0rce Gauss' law with an ad-

changed by-q (or +q if the motion is in the— directiony. 10t valued Lagrange multiplieAo [17],

The particle momentum parallel to the link is changed to
cancel the energy change of the electric field. If that is ener-

+2 |pla. (33

IXI [D-E(X)—p(x)]= f 1:[ dAg(x)

“A rotation ofp, violates parity unless its magnitude depends on
B or some othelP odd field, and an energy conserving change in Xexl{iﬂLz AZ(X)[D - E3(X) — p¥(X)]
the magnitudes op,; andp, will have a nonunity Jacobian. X

One should be careful here to make the choice of plaquettes in a
way which is preserved under parity and the cubic point group. (34
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which makes the electric fields quadratic; théntegral may 5 )
now be performed, generating a kinetic term f&5. The |(Ao):j IT d*¢.da,ex _lﬁLg Ao(X)p(X) |,
partition function reduces to “ (37

Z= H dU;(x)dAg(x)e ALHual (Ay), (35  where the meaning of; Ay)2 should be clear. The particles
hX enter in the last term, which only depends Ag.
Now let us computé(A,). Sincep is the sum ofp,, from
1 each particle, exp{iB Aqgp) is the product overa of
+ = 2 ; LAoP p
2 (DLA*(X), exp(—iB Agp,) ; the integral factorizes into an integral over
(36)  each particle:

1
Hua= >, (1—§TrUD
[m]

1 ¢ atx
|(A0):1;[ quaf d3§anD(_i,3L§ AS(X)QiX[O £ not at x) . (39)

The integral oveg, normalized sg'dé=1, gives a sum over from the mean value 04\(2, at pairs of points, trying to force
sites of a term where the particle is at that site: the global average A3 towards its equilibrium value. It is
probably safe to ignore this term, and higher corrections

1(Ag) = H _g 2 f da.exd —iBLASX)G2]]. (39) strictly vanish in the largéN limit. Neglecting the nonlocal
“ term, we get

Now using ; 2
(A —ox p( (M SAQVAIO)

sin BLQVAS(X)] (ARG) 5T BLQVAZ(X)
| daext-ipago0an- o @ LV
PLRVAGX) Since we are typically interested in a system wharé

(normalizing so thatfdg=1) and performing the product, ~10" andN,> 1(_)5, the thermodynamic limit is justified.
we arrive at Now, expanding the term in the sum,

sinf BLQVAZ(0)1]"
CBQVAZX)

The above expression is exact but not very insightful as

written. It is best lto tgke a thermodynamic limit and to ex-we see that(A,) contains a Debye screening term and quar-
pand the expression in the sum. Denoteg(BRG) the mean  tic and higher self-interaction terms fé; 1(Ao) becomes

value of the argument of the sum in Eg1). Rescald (Ag)  exf— BLV(A2)], where the potentiaV is
by (ARG) Ne, which just changes the normalization of the

partition function, and write it as

SIAQVAN)] _  AIQ*AIX) | BIQYAD*(X)
BLQVAZ(X) 6 120 '

(45)

1(Ag)= 41

1
w2

<A0>— - 2 A0+ T2 (A (49

A~ 1+( s sin BL.QVAS(X)]

o) = _
NYARG) ' BLQVAG(X) AQ?

As N3—c andN,—c with N,/N3=(n) fixed, the term in

parentheses vanlshes s 37, and we may use the approxi- (nygiQ*

mation AA:—W,... . (48)

N
1+ =expx)exp —x22N)[1+O(x3/N?)]. (43)  Finally,
The expEx%2N) term in the identity means that there is a (ARG)=1— BLQZ(AZHO(,B Q4A4) (49)
= ¢ ]

very weak nonlocal interaction term between fluctuations
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<AS> is UV dominated and well approximated by its pertur- ably most readers can sa}fely skip this section; nothing in it i;
bative value. At lowest order(A2)=33/47p,, with  €ssential for understanding the rest of the paper, although it
¥=3.1759 [10]. In practice it is necessary to mak® certainly is important that a stable and well-behaved algo-
ng[1 (see below, in which case, fo, ~ 10, (ARG) typi- rithm exists for implementing the system described in the
cally differs from 1 by ~1%. As we mentioned in last two sections. . . . .

Sect. Il the ratio m2/<n> should equal <2q2)(E’1) The numerical algorithm we will construct is essentially a
Z(Q.2/3)'(2:8L 12) for clgssical particles in the clontinuum. leapfrog, with modifications to meet the needs of the specific

: A . : 02 ! problgm undgr investigation. In particular.we make sure th.e
Discretization has shifted this by a sml(Q ) correction. algorithm is time centered, and the particle update part is
In a group other than S@), the calculation begins to go

. . A exactly energy conserving. The step size errors in the algo-
d|ﬁerently at E_q.(40), and the final Debyg mass 1S dlffergnt. rithm should beD((At)?) whereAt is the time step in lattice
For instance, in () gauge theory, the integral there gives

. units.
cosB . QAy), and m% and A, are 3 and 5 times larger, re- The variables to be updated aret,(p,.q,) and
spectively. atPa la

We have now shown that the thermodynamics is the sam Ex,i:Us,i)- If the connectiond) were fixed and the particles

latii lated Y Mills th i the di ional id not rotate due to magnetic fields, then we could perform
33 ? Ice regulate i ang-t s e_(f)_ry ml N flrrlsenbsmna the updatgof E, p, g, & exactly, as follows. Starting with
uction approximation, at a specific value of Debye massg. b, £ q at timet, we project wheret will be at timet

except for the added higher order interaction terms fothe

field. A minimal requirement for the thermodynamics to be At

all right is that theA, field be not strongly coupledy,<1.

The latticex , corresponds to the physicah4/g?; so this Pai

requirement is that the coupling of ti#g sector be weaker Eproja i (THAD =&, j(D) +AL ol (52

than the coupling of the gauge sector, which should be suf-

ficient since thé\ field is quite massive. This requirement is ) o
roughly For all « where the projected location is in the same box

(dual lattice cell as the initial location—i.e. no boundary is

30 crossed—the§(t + At) equals the projection, and we update
Q4<n><’§§- (500 & For other points, we draw a straight line path betwsg
L and &, and find the first boundary it crosse$.can be

In fact it will turn out that dynamic considerations require UPdated to this pointpoung, Which it reaches at timéyoung

thatQ be on the order of or smaller th@ *, in which case, =t | pouna— £(1)[. At this point we must be c_areful, be-
unless(n) is very large\ 5 will be very small, as it should cause more than one particle may interact with the same
be in the dimensionally reduced Hamiltonian. electric field, and the updates will depend on the order of

We should also require that the Debye screening mashteraction. So we order all particles which cross a boundary

from particles be larger than that from hard lattice mo@es a_c_cordi_ng o crossing tim_e;_then we solve the_ crossing_con-
P d itions in that order, modifyinde, q, andp as discussed in

otherwise the hard thermal loops are dominated by the wron@ . E h icle. after th iabl dated
lattice mode contributions, rather than the right particle con- ec. lll. For each particle, after these variables are updated,

the particle’s position at time+ At is again projected, start-
ing at &poung @nd using the newp. If it crosses another
125, boundary before tima+At, we again update it to the
—<(n)Q%. (51)  boundary, compute the time of arrival, and insert it at the
TPL place appropriate for the new crossing time in the collection
. . of particles to be updated; otherwise we update it to its pro-
HOWEVE;“ It is pot necessary on thegmodynamlc groqnds t?ected position at timg+ At. When the last crossing has
makemp sn21all |r12Iqtt|ce units. Whem is large in physical  })oon dealt with, then al, p, g, andé have been updated to
units, i.e.mz> B “ in lattice units, then the influence of the {met+ At. This algorithm is exact except for roundoff er-
A, field on the vector fields is perturbative. Makimg§ on s,

the order of the lattice spacing complicates the problem of One comment is in order about this update. Ordering the
integrating out th@o field to find its influence on the infra- partic|es by time of Crossing tak@(Np In Np) Steps; so the
red physics, but the one loop integration can still be peraigorithm does not quite scale linearly with volume. In prac-
formed; we treat this problem in Appendix B. However, it tice, though, the ordering takéBAtN, In N, computations
will turn out on dynamical grounds that one should not makeyjith C a fairly small number, and this part of the algorithm
the Debye mass too large, as the plasma frequency then takgkes less time than formall@(N,) or O(N3) parts.

tributions, in which case

on lattice artifact corrections, discussed in Appendix A. Now we must incorporate the above idea into the leapfrog
update of theE, U fields. The leapfrog in the absence of
V. DISCRETE TIME UPDATE ALGORITHM particles is

In this section we give a detailed description of a stable
and accurate discrete time update algorithm to solve the  U;(x,t+At/2)=exdiAtr*ER(x,t)]Ui(x,t—At/2),
equations of motion for the particles and lattice fields. Prob- (53
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where the meaning ofHys/dU is defined between Egs.

IHU(t+At/2)]

a _ra _
Ef(x,t+At)=Ej(x,t) — At U (X,t+At/2)

(59

(16) and (18). If one needed to definE®(x,t+ At/2), one
could do so by applying only half of the update, E54).

We combine this leapfrog and the update {oétc. dis-

cussed above, as follows.

1)
@)
()

(4)

Start withE(t), p(t), q(t), &(t), andU(t—At/2).
DetermineU(t+ At/2) according to Eq(53).
Apply half theE, U leapfrog update oE; namely, set

At He[U(t+At/2)]

Ef(xt+0)=E(x0— U (x,t+At/2)

(59

Also updatep(t) to p(t+0) by rotating abouB for time
At/2; first set

pa,j

At
Prempa,i= Pa,i T ?fijkmBE(f)qa- (56)

[HereB,(&) means the,j plaquette which is closest to
the point£ and with indicies living at the point where the

indicies ofq reside] Then rescalg to its original mag-
nitude:

|pla(t)
pa,i(t+o):ptempa,i |p|t .
empa

(57)
UpdateE, q, & andp from time t+0 to timet+ At
—0 using the “fixed connection, nB field” algorithm
presented above, andl=U (t+ At/2).

PHYSICAL REVIEW D 58 045001

Gauss constraints. As iM2] this is done by choosing
without regard to the constraints and then orthogonally pro-
jecting to the constraint surface, which correctly thermalizes
the transverse components Bfand correctly enforces the
constraints on the longitudinal components. The algorithm is
identical to that in[42] except that the particle contribution
to Gauss’ law must be added. This choope€ with ther-
mal weight from the fixedJ, & q subspace of phase space.
Then we evolve the system under the Hamiltonian evolution,
using the algorithm presented above, for some length of
time, at the end of which we again drd&vandp from the
thermal ensemble; we repeat until t@hermal original in-
formation in theU, ¢, andq has been destroyed and mea-
surables attain values which do not change in the mean under
Hamiltonian evolution or further thermalization. The spirit of
this algorithm is that of a molecular dynamics Monte Carlo
simulation. Note that it is important to choo&eand p at
some time betweemn+0 andt+At—0 and not att or t
+ At because the half update fram 0 tot change< from
being Gaussian and uncorrelated withlys/dU to being
correlated withdHs/dU. (Similarly in [42] it was neces-
sary to choos& defined at the same time &k and to per-
form a half update before beginning the leapfjog.

We should also note that there is no obstacle to applying
a Langevin type thermalization algorithm based on the one
developed irf43], and in particular that it is trivial to couple
Langevin noise to the particle momenta. This might be im-
portant if one wanted to simulate thermalization of these
modes through interactions with some other degrees of free-
dom, for instance strong scattering of fermions in the elec-

(5) Apply the other half of theE, U leapfrog, troweak model.
) . At HeJ U(t+A1/2)] VI. SOME RESULTS FOR THE ABELIAN THEORY
E(xt+Ay=F (x,t+At—0)—? AU, (x,t+At/2) Before diving into the study oN¢g diffusion we should
(58) check that the particle method is producing the right physics

and rotate the momenta as in st@p Now, return to(1),
but with the value ot incremented byt.

of HTL’s. In this section we will first discuss how smal?
must be for the system to give good behavior, and then we
will study the Abelian theory at suitably small? to see if

Applying these in order is one leapfrog update. Note thathe hard contributions to the retarded self-energy are correct.

the update is time symmetric and exactly Gauss constraint We saw in Sec. IV that a necessary condition for the
preserving at each step, and that stépexactly conserves theory to have a weakly coupletl, sector is
energy. The overall conservation of energy is exactly as

good as in the Kogut-Susskind leapfrog algorithm; that is,

energy fluctuates by a smab((At)2N®?) amount(which

for a 2G° grid at At=0.05 and 30 particles per site is less
than 1 part in 19 of the total energyand the central value of

the energy is absolutely stable.

4 30
Q (n)<—§. (59

In fact, dynamical considerations demand ti@# be still
smaller. To get the right hard thermal loop effects in the

As we have discussed, the effect of magnetic fields orflynamics, we need a particle to travel a distance longer than

particles does not contribute to the hard thermal loops for #he magnetic length scalegfT (or B, in lattice unit3 be-
plasma close to equilibrium, so that part of stépsand(5)
can be left out when studying quasi-equilibrium processesplasma. Normally we would expect the dominant randomiz-
which in practice saves at least 1/3 of the update time.

fore its momentum is randomized by interactions with the

ing process to be Coulomb scattering from other particles as

Finally we present a canonical ensemble thermalizatiordepicted on the left-hand side of Fig. 3, but in fact the domi-
algorithm for this system. It is a straightforward generaliza-nant processes are absorption or emission of hard classical
tion of the “constrained molecular dynamics™ algorithm of field excitations. These processes are not kinematically for-
[42]. Beginning from an arbitrary choice &f (At/2), &0), bidden because the lattice dispersion relations “turn over” at
andq(0), wechoosep(0+0) from the Boltzmann distribu- high momentum; so hard excitations move slower than the
tion at some inverse temperatygée andE(0+0) from the  speed of light, allowing particles to Cherenkov radiate or
Gaussian distribution at the same temperature, modulo thabsorb. From the point of view of the lattice modes, this is
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1 T T T T

w(m/a)

FIG. 3. Diagram which naively dominates particle scattering,
left, and Cherenkov diagrams which are really dominant, right.

saying that the ultraviolet lattice modes are Landau damped
due to the particles, which is possible because their disper-
sion relation hass/k<<1.

A “worst case” estimate is that the typical electric field

which a particle interacts with is uncorrelated with the o
chargeq of the particle; so the momentum falls by g2/2 0 0.2 0.4 0.6 0.8 1
=Q?/2 in addition to receiving a kick uncorrelated with its k (n/a)

initial value. The average particlaveraging over directions FIG. 4. Dispersion relation: free field in the continugdashed
of motion) crosses walls with frequency 3/2 in lattice units; ;. w=k); free field on the lattice [dotted curve, wa
so the decorrelation rate fgr under the above approxima- =2 sinkal2)]; plasma modes, transvergteory, the upper solid

tion is curve; data, solid rectanglesnd longitudinal(theory, the lower
) ) solid curve; data, open rectangles
3Q° QB
= (60)

4(p) 4’ electric field in the same Fourier mode at regular time inter-
vals. Then we Fourier transform this time series and pick out
which must be<ﬁ[1; SO Q2<4/,BE. In practice the above the frequency with the most power; this is the plasma fre-
estimate for randomization is close to the real behavior; foquency. We have used this procedure to measure the disper-
BL=10 andQ=0.08, the decoherence time is about 80 insion for both transverse and longitudinal plasma modes. The
lattice units. In our work we typically deman@?<p, 2, results are summarized in Fig. 4, where we compare them to
which forces the number of particles to be quite largethe lattice, free field dispersion relation and the continuum
(n)~30, in order to satisfy Eq51). This makes the update dispersion relations, with and without hard thermal loops.
of particles the dominant numerical cost, but it pushes udhese data are f@@=0.0159,3 = 18.86, andn)=50, cor-
closer to the Vlasov equation limit. responding to a plasma frequencyaf=0.282.[Recall that
Note also that the processes mentioned above make thie the Abelian theorynzD and wg are 3 times larger in terms
evolution of the UV classical lattice modes damped andof Q%(n) than in SU2).] The numerical results agree with
noisy, with a damping strength proportional @(n). The  theory remarkably well in the infrared. Asgets bigger, the
consequences for the infrared magnetic sector deserve invedata points deviate from the continuum theory curve and
tigation. bend down to match the lattice dispersion relation. This is
The above behavior is disturbing enough to encourage usxpected because hard plasma modes are much less influ-
to check that the behavior of the infrared degrees of freedomanced by hard thermal loops and behave like free lattice
is correct. This is most easily done for the Abelian theory,modes.
because there the electric field and the current are gauge We have also computed the plasma frequenck=ad
invariant and one can easily probe the system with externanalytically, in Appendix A. There we conclude that the cor-
currents and study the response. It would also be possible tection due to lattice artifacts should be negligible fof
do this in the non-Abelian theory in a specific gauge, but<1 in lattice units. This is supported by our numerical re-
complications from pure classical gauge theory interactiongy|ts.
complicate interpreting results; the Abelian theory provides a To probe the retardettransversgphoton propagator, we
nice, clean environment to study the dynamics of the particl@lrive the system with an external current of the following
technique. form:
We will perform two numerical tests on the Abelian
theory. First, we verify that the lattice field has the correct -

rate~

dispersion in the infrared. Second, we probe the retarded Ji=lilo sin(wt)sin(kx), (62)
propagator by studying the linear response of the Abelian
plasma to an external current. where the amplitudg, is small so that linear response theory

To measure the plasma dispersion relation, we pick initiabpplies. We study response of the plasma and measure the
conditions so théspatia) Fourier mode of wave vectérhas  space-time average §fE, which, according to Appendix C,
a large electric field. This sets up a plasma oscillation withcan be written in terms of the transverse photon polarization
this wave number. We evolve the fields and measure thé&nction:
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FIG. 5. Retarded propagator—actuallyDR. Above left, the out of phasgondissipativipart of the transverse propagator; lower left,
the in phasddissipative part of the transverse propagator. The right figures are the same for the longitudinal propagator. In each case, the
solid lines are theory, the squares are kle(3,0,0)X /16 data, and the triangles are tke (2,1,1)X #/16 data. In the transverse theory
figures, the curves with smaller, solid data points are rescalings of the data and theory, so that the resonance will fit in the plot; the rescalings
are by 8 and 120 for the out of phase and in phase responses respectively. All numbers are in lattice units.
_ is ollj(w,k) tice, with B =20, Q?=0.0005, and(n)=60 (so w,
(I-B)y=7 (02— K= TL(w KN P (0K (62)  =0.447). We excite the plasma at each wave vector and
e Y numerous frequencies in turn and integrate the resulting re-
wherell (w,k) andII;(w,k) are the real and imaginary parts sponse for long enough to get reasonably clean results.
of the transverse polarization function, respectively. We also We present the results, plotted against the theory, in Fig.
measure the out of phase responseEofind the case of 5. A few comments are in order. In the strict hard thermal
longitudinal excitation; the specific expressions are in Ap-loop approximation there would be no imaginary part to the
pendix C. self-energy above the light cone, but the appearance of a
We want both to compare to theory and to test the rotasmall imaginary part, which will arise ®(Q*B2(n)) since
tional invariance of the particle induced hard thermal loopswe are in the Abelian theory, qualitatively changes the re-
To do so, we choose twk vectors which are of the same sponse near the resonance by giving the resonance some
length but are inequivalent under the cubic point group, andvidth. For the transverse data, we have added a small phe-
we study the complex propagator for each, at frequenciesomenological imaginary part to the self-energy chosen to
above and below the plasma resonance. We choose the vanake the theory give a resonance of about the same sharp-
tors k=(3,0,0)x /16 andk=(2,2,1)x /16 on a 32 lat-  ness as the data. The match between data and theory is very
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good except that the location of the resonance is shifted anergy solutions of the Dirac operator up to positive energy
little towards lowerw in the data. This is expected; the par- and pushes right handed solutions from positive to nega-
ticle response weakens with frequency because the particléise energy, if the fermion couples to the gauge fields in the
cannot respond to a field faster than they encounter it, whicfundamental representation. In a chiral theory, like théZ3U

is how often they cross a boundary, as we examine quantsector of the standard model, no right handed particles
tatively in Appendix A. Also note that the data fd¢  couple, and there will be net particle creatimacall that in a
«(2,2,1) (triangleg have their resonance very slightly after vacuum, negative energy solutions are occupied and positive
the data forke(3,0,0), which is expected from th@(k*) energy solutions are notSumming over théNc=3 genera-
lattice corrections to the dispersion relations. However, betions one finds that baryon number and lepton number cur-
sides this, they are indistinguishable, which is a good checkents both have nonzero divergences,

that the particle contribution to the self-energy is rotationally

invariant. 9 =0"3,8=Npd*K,,, (65)

We have not added a small imaginary part to the self-
energy above the light cone in the theory lines in the pIotsarr:d so the number of baryonbls, and of leptonsN,,
for the longitudinal propagator, but the data clearly show thafNanges as
one is present. The agreement between data and theory iy, (t)—Ng(0)=N, (t)— N, (0) =N Neg(t) — Neg(0)].
generally good for both longitudinal and transverse propaga- 66)
tors, and the data for the two valuesloflisagree by about
the same amount as the jitter in the data caused by statisticAt high temperatures the efficiency with whidfg is vio-
error. The comparison to the theory without hard thermalated is related to the diffusion constant fégs,
loops is stark; for instance, the in phase response would then

2
be zero in all cases, and the out of phase, longitudinal re- = lim lim ([Ncg(t) =Ncg(0)1%) 67)
sponse would have no resonance but would behave simply as Vo o Vit
lw.

We conclude that the particles add hard thermal loopgwhere(:--) refers to the thermal ensembley a fluctuation-
which, fork< s in lattice units, are rotationally invariant and dissipation relatiori21,44] and standard thermodynamic ar-
very close to the correct “hard thermal loops,” except for gumentg5]. In the minimal standard mod&lone finds
corrections which ar®(w»?) andO(Q*B%(n)) (both in lat-

tice unit9. This is totally unlike the hard thermal loops in- 1 dNgtN) 39

=—=I. 68
duced by hard lattice modes in the non-Abelian theory or the Ng+N_ dt 4T3 (69
Abelian Higgs model, which are rotationally non-invariant ) ) )
[20]. It would be phenomenologically interesting to kndwat

high temperatures, which presumably existed in the early
universe before the electroweak @UXU(1) symmetry was
spontaneously broken.

An outstanding question which the method developed There has been a great deal of work to date on determin-
here can answer is, what is the diffusion constant for Cherning I' [17,15,22,41,4P, but recently there have been two im-
Simons numbeN¢g in the symmetric electroweak phage  portant developments.

VIl. DIFFUSION OF CHERN-SIMONS NUMBER

in pure Yang-Mills theory? In the continuum, Chern- The first is an analytic argument due to Arnold, Son, and
Simons number is defined as Yaffe (ASY) [23]. They point out that a change Mg in-
volves the evolution of very infrared magnetic fields. The
g> erveB a ca hard thermal loops cause these fields to evolve in an over-
IKu=352 5 FulFap (63 damped manner. This is familiar from the study of Abelian

(electromagneticplasmas; magnetic fields of wavelength
>1lw, get “frozen” by the conductivity of the plasma and
NCSEJ d3xK, evolve on the time scale~)\()\wp)2, assuming\ is much
shorter than the diffusion length of the charge carriers. ASY
g° 5 ara O Anbac argue that the same physics should apply in the non-Abelian
3272 f d XEijk( FiiAc— 3 fanATAJAc |, (B4 plasma, at least fox less than or on the order ofgéT; sol’
should be parametrically of order

where Latin indicesifk) imply sums over the three space 3 2

. : . o . . . 1 ®
directions with positive metric. In a vacuumg is an inte- r—lw)\37~(_2_) — (69)
ger, equal to the winding number of the gauge transforma- g°T) (9°T)

tion which carries the gauge fields into the trivial fields

=0. This can be nonzero for groups with a nontrivial third

homotopy group. Chern-Simons number is of interest physi- ¢y extensions with light baryon number or lepton number carry-
cally because of how it is related to the behavior of fermionsing particles, 39/4 will be replaced by something smaller; in the
coupled to the gauge fields; a vacuum to vacuum processupersymmetric theory, if all the squarks and sleptons were light,
which changesN¢g by n pulls n left handed negative 39/4 would become 39/12.
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If this argument is correct, thefi depends strongly on the are those on length scales of ordeg®W [23]: so the relevant
physics of hard thermal loops, which we must get right tocontribution from UV classical lattice modes may have an
find the correct”. Classical lattice theory by itselfvithout ~ m3 dependent suppression. We do not know a good way to
classical particlgsdoes not. The damping coefficient de- estimate the importance of this suppression, and so we will
scribing the overdamped evolution of infrared magnetictreat it as a source of systematic error.

fields on long time scales grows linearly withaland is not We want to know the result of a triple limit. The inner-
rotationally invarian{45]. most limit is the limit of Q>—~0 and({n)—o with Q*(n)

The second development is that better definition®g§  fixed; in this limit the particles generate only hard thermal
on the lattice have been develod@$,26,44. Previous defi- loop effects. The next limit is the limit as
nitions in terms of local operators contained lattice spacingn2 pamdegm% UV lattice PECOMES large; in this limit the hard
dependent systematic errors. Moore and TU@ proposed  thermal loops are of the correct functional form, plus a cor-
a definition which is topological and hence avoids such errection which is small relative to the total strength. At fixed
rors. Their results verify thal’ depends strongly on lattice |attice spacing, this limit means makimgd large; so we can
spacing, in a manner which appears consistent with the AS¥y |earn about the parametrically leading behavior in the
scaling law, thc_)ugh only if _there arezsubstantlal correctiongmit of large m3. Finally, we should take a small lattice
to that law at higher order ingfT)% w; . spacing limit.

By using the topological method of Moore and Turok to | jmijted numerical resources make it impossible to really
track the evolution oNcs, and by using the classical field achijeve this triple limit. We will choose a value fQ@? small
theory with particles added to correctly reproduce the hargnoygh that we can expect to be in the relevant limit there,
thermal loops, we can now get a determination of the diffu-3nq we will also assume th# ~ 10 puts us far enough in
sion constant foNcs which accounts correctly both for to- the smalla limit, if O(a) thermodynamic corrections are
pology and for hard thermal loops. We can also ensure thgiseq? We will check both of these limits by varying@? and
the thermodynamics of the system under study is correct bMoIding Q2n) fixed and by varyinga, to verify that the
using theO(a) improved matching developed {11] and  gependence is weak, but we make no serious attempt to ex-
extended to arbitrary Debye mass in Appendix B. trapolate to these limits. We concentrate on what we con-

We will do so in pure Yang-Mills theory, which should sjger the most phenomenologically interesting limit, as to
correspond to the very high temperature limit of the standargf, -+ happens as we make large. In particular we want to

model because the thermal Higgs boson mass becomes IarQﬁow whether thd", scales according to the ASY predic-
enough at high temperature that the Higgs field can be imeﬂon T yorms2
1 D -

grated out(though its contribution to the hard thermal loops . S
should of course be includigdrhe sphaleron rate in the sym- We will then try to check three things:
metric phase at the equilibrium point of the phase transition1) I, in physical units, should depend weakly on the lattice
will differ somewhat from the Yang-Mills theory value, in a spacing, provided that the physical value of the plasma
way which depends on tHenknowrn) couplings of the Higgs frequency is held fixed.

sector. It is straightforward to add the Higgs field to the(2) T should depend o@? and(n) only through the com-
theory we have developed—in particular the influence of binationQ2<n), when we have chose@? small enough
hard modes on the Higgs field can be completely accounted  that the particle trajectories are ballistic on the nonper-
for by the choice of Higgs mag47]—so there is no obstacle turbative scale ¢2T) .

to extending what we do here to that case. (3) T should depend inversely on hard thermal loop strength,

There is an important complication to our plan; inanon- -~ ,, 5 corrections due to the UV classical lattice mode
Abelian theory, the UV classical field modes will also gen- contributions

erate hard thermal loops, and asdeker et al. [20] have

shown, the functional form of the hard thermal loops they

provide is not the same as E@.1). Hence, the actual hard To test(1), we measurd” at three lattice spacings, but
thermal loop contribution to the lattice system with particleswith the same value a®? and(n) in physical units. To test

will be of the form (2), we double the value ofn) and halve the value of?
relative to the runs used if1), and to test3) we double and
m%,particle;‘particleiA]"_ m%,UV IatticeFUV Iattice[A]r quadruple(n) reIativze to the runs useq to stu(@, pUt keep
(70 the same value oR“. If the ASY scaling law is right, then

up to corrections due to HTL’s from UV classical lattice
wherel ,aiced Al has the correct anllyy iicd A] has the  modes, all these runs should give the same valud fax-
wrong functional form. This is further complicated because
of the interactions between the particles and the UV lattice
mOdes' Thze uv IattIC(_-Z‘ modes are Lar!dau damped, and as Weyye verify in Appendix A that the frequency corrections to the
increasemp, from particles, that damping becomes stronger particle hard thermal loops af@(w?a?), and we believe the same
If this damping is strong enough, then UV classical modesshould be true of the finitk corrections. This leaves nonrenormal-
have short propagation distances, and they will not propagatgable operators, als®(k?a?), thermodynamic errors beyond
interactions over large spatiotemporal separations. The hard(a), and anO(a) rescaling of the time scale, which we estimate
thermal loop effects most important to the.s diffusion rate  in Appendix D but have not computed.
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TABLE 1. Ngg diffusion constant in physical units]’ results test1). Row 4 has the same value @f(n) as row 2:
= xa"T*, varying lattice spacing, particle charge, and particle num-so comparing them testg). Finally, comparing rows 2, 5,
ber. The inverse lattice spacing =4/g?aT used here is the one and 6 testg3).
including the perturbative corrections found[ihl] and Appendix The results are expressed through the dimensionless quan-
B. The last column is the coefficient of the ASY scaling law: see thetity «, which in the continuum is defined through
text.

I'=ka*T, (71)
BLimp Lattice
(improved  size  (n) Q2 K K’ or on the lattice,
8 200  58.6 .0064 .84+.08  49r5+7 I'=k(BLimpm) (72)
10 24 30.0 .0064 .92+.07 56:4=10
12 3¢ 17.4 .0064 .72+.07 46-5+10 times a correction, discussed in Appendix D, to account for
10 24 60.0 .0032 .72+.06 44+ 4+8 the correct matching of the time scales.
10 24 60.0 0064 A7% 041 53r5+5 We also present the results in terms of the coefficient of
10 28 1200 0064 248025 53-5+2 the ASY scaling law, which we write as
2712
F=K'(g Z )aST“. (73
cept for the last, wher&' should be about half and then a Mp

quarter as large. [F does not depend on hard thermal loops, 2 . . .
then all the results should be the same. and should be thy€ Usemp here because it most conveniently characterizes
same as the result without any particles :'added. the size of hard thermal loop effects. For the particle degrees

Our results are presented in Table |I. Each data point iQf freedom, the Debye mass in physical units is

extracted from several Hamiltonian evolutions from indepen- 2 ; o p3AT2

o o n)(lattice unit T
dent thermal initial conditions. We present a sampléNg§ m%:Q () 9619 , (74)
during such a Hamiltonian trajectory in Fig. 6. The analysis 48

technlques used to extraktare the same as [5]. For eqch . which for the first 4 columns equalgyaT?, a little less than
choice of parameters the sum of lengths of evolutions i$he physical value, which is B#T26, g?~0.4 [8]

about 90 000 lattice units of time. The value (@f) for the Really the ASY scaling law says the results should de-

_ﬁL=8,1O,_12 data k3eeps t_he physical particle den_sity, WhiC}bend not on the Debye mass but on a damping coefficient
is proportional toB;(n), fixed, and as we have dlscussed,proportional to the transverse self-energy atek~g2T.

Q” does not scale with lattice spacing. Hence these thre?his is simply related tthD in the case that the hard patrticles

have a rotationally invariant spectrum and move at the speed
I | of light. The particle degrees of freedom satisfy this require-
ok 4 ment, but the hard classical lattice modes do not: so we have
accounted for their contribution using the techniques of Ar-
nold [45]. His result is that the ratio of damping coefficient
to Debye mass squared is roughly (0882) times smaller
for hard classical lattice modes than for ultrarelativistic par-
ticles. However, Landau damping of the UV classical lattice
modes, mentioned earlier, may suppress their contribution to
the transverse self-energy lat-g°T; since we do not know
I | how to compute the extent of this suppression, there is a
10 F - systematic error. The upper limit of the systematic error bar

- we present is if they contribute fully, in which case we add
0.68 times the Debye mass squared from classical lattice
modes to that from particles when convertirgo «'. [In
physical units the Debye mass squared from classical lattice
modes ism3(latt)= (3 B, /4m)g*T?.] The lower limit is if
their contribution is fully frustrated by Landau damping off
| of hard particles, in which case we just uaé from particles
P e to convert fromx to «'. The largerQ*(n), the stronger the
0 10 2x10 . . .

Landau damping; so the systematic is not common to all

runs.

FIG. 6. Ncs during a Hamiltonian evolution, tracked by the ~ Our results are roughly consistent with lattice spacing in-
slave field methodwhich returns the integer value dfcs for the ~ dependence and with a dependence @h and (n) only
nearest vacuumThis is part of the data for row 5 of Table I. The through the combinatior@z(n). There does seem to be a
back and forth stuttering accompanying many winding numbetwveak systematic trend in lattice spacing, which could be
changes is an expected feature if the ASY picture is rigBt. partly fromO(a?) effects we have not attempted to compute.

Chern—Simons number

Time (lattice units)
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I rors from finite lattice spacing and finit®?, which we
would estimate based on the other runs to be in the 20%
range. These then dominate our uncertainties, and our final
answer isk’ =53+ 11. For comparison, we can take the re-
sults for pure Yang-Mills theory without particles frof5]

and extrapolate them to zero lattice spacing assuming that
the ASY scaling applies. The extrapolationxs-23.6/8, :

' see Fig. 7 of 25]. We can convert this into a value faf by
06 I~ 7 using the discussion after E¢74), that is, using Arnold’s
I | calculation of the relation between damping from hard clas-
I | sical lattice modes and from correct hard thermal loe}is.

04 - We getk’ =51+ 152 The error here is almost all systematic,

I ] arising from the rotational noninvariance of the spectrum of
lattice modes.

It is encouraging that these results agree wit@dmit-
tedly substantial and mainly systematierrors. It appears
that a consistent picture for thé.g diffusion constant has
emerged.

08 |~ T

Diffusion constant

L S TS T T T T S SO S
0 0.05 0.1 0.15 0.2 0.25

(g*T*/m3g)

FIG. 7. Results for at three values of the particle number but

a common value of the lattice spacing, plotted aga@fdt?/m3 . We have developed a procedure for generating nonlocal
The error bars irm? reflect uncertainty in the damping from hard “hard thermal loop” effects in classical field simulations of
classical lattice modes. The “old picture” predicts a flat line, while Yang-Mills theory, by introducing particle degrees of free-
the ASY picture predicts a straight line through the origin, like thedom which generate these effects but can be treated with
illustrated fit. reasonable numerical effort. The new system is Hamiltonian
and has the same thermodynamics as thermal Yang-Mills

For instance, besides ti@(a) corrections to the thermody- theory in the dimensional reduction approximation. We have
namics computed if11] and Appendix B, there are two @also tested that the self-energy corrections due to the par-
O(a?) corrections: a renormalization of the coupling and aticles in the Abelian theory are correct, and we have analyti-
nonrenormalizable QiFij)z term, which appears in the _cally computed the plasma frequency at leading order and it
Hamiltonian with a negative sign. Both would raise the rateis also correct.
on coarser lattices. There are al®¢a?) corrections to the Further, we have applied the technique to the calculation
Wong's equation limit of the interactions between particlesOf the diffusion constant of Chern-Simons number in pure
and long wavelength modes. There also may be a weak trené@ng-Mills theory. Our results vindicate the proposed scal-
in Q2 whenQ?(n) is held constant, because we are not suf-ing law of Arnold, Son, and Yaffe, that the diffusion constant
ficiently close to the smalD? and large(n) limit. Not being I should scale inversely with the square of the Debye mass.
in this limit means that the eikonal approximation used toThis statement is not sensitive to the quality of the thermo-
turn the particles into hard thermal loop effects is not quitedynamic corrections we have applied, because we have data
true. Scattering of the particles will tend to reduce their ef-With different numbers of particles which show starkly dif-
fectiveness. Hence one might expect a weak systematf€rent diffusion rates, but the lattice spacing and hence the
where « rises with Q2 at Q%(n) fixed. Row 4 in Table | thermodynar_mc corrections we have.appllgd are the same.
suggests this but the effect is not very statistically significantQur results[in Yang-Mills theory, which will be valid in
Systematic errors have not been eliminated but they ar§ang-Mills Higgs theory only for thermal Higgs mass
small. ma(T)>g*T?] convert to I'=29+6a°T* at mj

Our results rule out the “old picture” thaf should de- =11g°T?/6.
pend ona*T* by demonstrating the importance of hard ther-  There are no obstacles to extending our techniques to
mal loop effects. If thex*T* law were correct, all the values Yang-Mills Higgs theory or groups larger than &)} which
for x would agree, and would agree with the value in Yang-would allow us to determine the screening dependence of a
Mills theory without particles, which isc=1.53+0.10 at number of other dynamical properties of interest for baryo-
BL=10[25]. The three results, rows 2, 5, and 6 of Table |, genesis, such as the IR bosonic contribution to the bubble
differ only in the number of particles used, not in the latticewall friction and the strong sphaleron rate. The technique
spacing, the particle charge, or the manner in which figjte may also have applications for relativistic heavy ion colli-
lattice spacing systematics were taken care of. They arglons.
grossly in conflict if« is independent ofm3, but they agree
very nicely with the ASY scaling law. We illustrate this in
Fig. 7. Combining them, we get an estimate for of «' 8We thank Peter Arnold and Jan Smit for discussions on this
=53* 3gtart Ssyst- We should also fold in the systematic er- point.

VIIl. CONCLUSIONS
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Now E,=ReiwEg“". TheEy's cancel on the two sides, and

we get an expression fas?. A nice way of thinking of this
is that what we want to know is Re{E/E)=w; we just plug

the determined value df into this expression to find.

We have shown that the thermodynamic modifications Now we evaluate the expression. The average over angles
due to particles are very close to those expected, and we haeg p? is 2p?/3, and the average over particles of 1$ 1/2T.
argued that the role of the particles in generating hard ther-
mal loops should be the same as in the continuum theory, for
suitably infrared and slowly varying gauge fields. Here we
will check this, and test its limits, by explicitly calculating
the plasma frequency, the oscillation frequency of a spatially

homogeneous electric field, in the Abelian theory. The caly |attice units. 1T becomesg, . In the non-Abelian case

APPENDIX A: PLASMA FREQUENCY
IN THE ABELIAN THEORY

(n){a?)
3T

(Ad)

w?=

culation should apply approximately to the non-Abelian
theory, in the regime wherep>ng, since in this case the

theory looks approximately Abelian on the relevant IengthWe therefore findw2
scales. Away from this limit, the plasma frequency of the
non-Abelian theory is not well defined, since the electric
fields only oscillate coherently on a time scale of order

1/g*T. We will calculate in the formal smal, large(n),
but finite Q%(n) limit, but we will deal explicitly with the

discrete nature of the lattice electric fields and their interac-

tions with particles.

First we will consider the case of a continuous electric

field. It is sufficient to consider an electric field pointing
along a lattice direction, since we will work to linear order in

the field strength: so general fields can be studied as a lineaf

combination. We take the field to W& (t) =6, ReEe,
with Ey a constant giving the strength of the electric field,
and we will solve self-consistently fas. Consider a particle
of chargeq<1 propagating in the background of this field,
with a mean momentum in the direction of p, and a mo-
mentum orthogonal to the direction ofp, . Thex momen-
tum will have a time dependent disturbance &p,(t)
xqEy, due to the electric field, which satisfies

—iqEg

(be: qEX: Re quei‘”t—> 5pX: ReTeiwt. (Al)

The electric field responds to a current in thdirection due
to this particle, of magnitudgv, . Expanding indp,<<1, this
is

Px+ 5Py Pe  OPy P
U= T =_*+ 1--
VpZ+pi+2pdp, PP p
Py Opyp?
_ P, , A2
o 03 (A2)

(g%)=Q?3, because that is the average of the square of the
projection of a particle charge into one Abelian subgroup.
=m3/3, as we should.

Now let us include the discrete nature of the electric fields
and their interactions with the particles. Again we take the
electric field to be spatially uniform with the same value, and
we will solve self-consistently for the plasma frequency.

Again, what we want to know is Re(E/E), or its time
average. We consider the influence of one patrticle: then we
will average over all particles. Again the particle has a mean
momentum in thex direction ofp, and a perpendicular mo-
mentum ofp, . We will often write = to mean sgr,) and

- to mean—sgn@,).

The impulse on the electric field on some link, due to a
particle crossing the dual lattice face the link penetrates, is of
fixed modulus+ q. Past interactions witk change the cur-
rent the particle induces only by changing the time at which
the impulse is felf. Let the particle passage time, at zero
order inq, bet,ys This crossing time will receive a cor-
rection due to past interactions of the particle with the elec-
tric field, which we denotest(t.s9. The particle’s contri-

bution to Refdt(—iE/E) is

Eo Ref dt(—iE/E)=Rd:(iiq)e_iw(tcross+&(tcros§)]

=Re(*ig)e ' toros]
+RE £ qwdt(teosd€ ! ‘”tcross]_
(A5)

%There will also be a small number of particles which would have
induced a current on this link, but instead induce a current on its
neighbor. But there are an equal number which induce a current on
this link rather than its neighbor, and this cancels out.
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The leading term ig odd, and cancels between particles of
opposite charge. Buit(t..s9 Will be g odd at leading order, w=
and this term will contribute ab(qg?).

Let us computest(t) to leading order irg. It is related to (A9)
the difference in the particle’s position from tle=0 case, Now writing x=p,/|p|, and performing the integral over

8x(t), by ot(t) = — ox(t)|p|/p. This in turn is given by an  n24p and over the azimuthal angle, this reduces to
integral over the particle’s past history of the difference in its

1 mao? (‘)pi -
— Re - *
\Y particles m=1 px|p|

iw+e) m\p|/pX

velocity from the average value: (n)(a*)BL _ 3w?
w?’=—"—7"Re lim—
2 3 e—0 2
f dt’ sv(t’ )—f dt’ sp(t’ )i (AB)
J dx > md-ie-amx  (A10)
Now 8p,(t’) is a sum over past crossings of the kick to the 0 =1

particle at that crossing. The particle has undergone an infi-

. . h mmation ovem may now rformed:
nite number of past crossings, one for each plane parallel t e summation ovem may now be performed

the plane of the dual lattice face it is currently crossing. The % 1 etio
time since it crossed the plane a distaRem away in thex Z meie—emx__ sinh‘2< (A11)
direction is+m|p|/py, and the phase of the electric field at m=1 4 2X

that time was expw(t.oss- M|p|/p,) ], and the impulse it

received was, at leading order i = qE|p|/p,. Hence, Making the substitutiory=1/x, the integral becomes

x (NYa?)BL _  3w?
i m[p| qEolp| PL w?’=—"—7""Re lim—
Sx(t =Rd el ®tcross +|mm|p|/p 3 2
( cross) e( El + Py +px p e—0
A7 »  1-y? etio
_ . (A7) xf dy )2/ sinh™? yletio) . (A12
This sum is not absolutely convergent. So to make sense 1 4y 2

of the calculation, we must regulate it. We do this by assum-
ing that, as well as fluctuating with the plasma frequency, thdor >0 the integral is exponentially convergent, and we
correlator ofE at two times has a slow exponential envelope:can rotate the contour to run in the negative imaginary direc-
SOE, in the past is not RE,€“! but ReE,el“* 9", Of course,  tion:
we will take thee— 0 limit at the end. NGy 302

Thus, after regulating the sum, the kick from this particle wZ:TL Re lim —

crossing this boundary is 0 2
i o = (y+i)?+1 Y+ (w—ie)
dt_: z mq wpl 7(|w+em‘p|/px Xf y 4(y+|)2 Sln 2 .
m= Px
(A8) (A13)
The frequency with which a particle of this momentum en-The integral is well behaved and we are free to takedhe
counters a boundary in thedirection is*=p,/p: sow is —0 limit. Taking the real part, after some algebra we obtain
n 2
w?= MFWZ), (A14)
E )= 3w? (= 2y[cosHwy)cod w)— 1]+ (y*+3y?)sini(wy)sin(w)
(0=~ — 2(1+y?)? coshwy) — cog w)]?
w2 w4 w6
=l-—t =t st (A15)

4 240 30240

|
Here, of coursew is the plasma frequency in lattice units, correction is already quite small. There will also be
i.e. aw in physical units. We see that it receives a correctionO({n)Q#*) corrections, probably including damping, but we
when w~1/a, but that for w?a®~1/2 in lattice units, the have not been able to calculate these analytically.
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APPENDIX B: INTEGRATING OUT THE A, FIELD
AT ARBITRARY mp >®< QV W@N
(@) () © @

We would like to understand the relation between the
thermodynamics of infrared magnetic fields in our lattice
system and the thermodynamics of infrared magnetic fields FIG. 8. Diagrams needed in the integration over Agefield in
in the full quantum theory, say in the dimensional reductionyang-Mills Higgs theory. The double solid line is tig field, the
approximation. As we have seen, our system has thermodingle solid line is the Higgs field, and the wavy line is the gauge
namics described by a lattice gauge theory withAgrfield,  field.
which has a Debye ma:m%L which depends o, and on . _ .
(n)Q?%, whereas the dimensional reduction approximation Two diagrams are relevant, Fig. 8 diagrafas and (b).
gives the continuum limit of this lattice theory, with some There are also high dimension operators induced by dia-
particular renormalizean? determined by the particle con- 9rams with mores lines, but the influence of these terms is
tent of the full quantum field theory. There are two compli- Small for largemp and we can drop them, just as in the
cations here, the difference in behavior between lattice angontinuum cas¢8]. Diagram &a) gives a momentum inde-
continuum systems and the difference in Debye mass. Theendent self-energy correction, i.e., a mass squared correc-
first has been dealt with ifiL1], for the system without the tion. Denote the coupling between thAg field and the Higgs
A, field and for the system with thd, field but in the field ask,; at lowest ordem 5 =2. Here and in what fol-
approximation tham?, is small in lattice units. In the theory 10Ws anL subscript means the value in lattice units, with the
with only classical lattice modes this approximation is para_normgllgatlons used ifi11]. The shift in the lattice Higgs
metrically justified, but with the inclusion of particles this is Mass is
not necessarily the case. 3

To deal with finitem%, one first notes thamy is large 22 m f dk 1 (B4)
enough to make thé,, field heavy, and since the theory is 28, Ji-=m3 (2m)° K2+ mZDL'
super-renormalizable, one can integrate over such heavy
field.s at one loop and capture their.dc_)minant_ coqtributions t%hereTqEZ sink /2) and
the infrared. We should perform this integration in each sys-
tem, leaving us to compare pure Yang-Mills theory in 3D, on

the lattice and in the continuum. The matching between these ko= E. k= Z (2—2 cosk;). (B5)
has been studied {i1] up to corrections of ordes, %, and
so here we only discuss the integration over Aqefield. Henceforth the range of integration and ék/(2)° will

Integrating over thé\, field in the continuum theory was pe understood.

studied in[8,9]. There is only one correction, a self-energy  The integral in Eq(B4) must be determined numerically,
correction to the gauge fields which shifts the gauge couplingind we define it as

93=0°T to
o f 1L _3mo) I mo fmp Mg
2 3 T N ’
93:95( 1- 247TmD>' (B1) kk2+ m%L 47 47  Arw 47 327

(B6)

In the theory with a Higgs field there is also a shift to the

scalar self-coupling, where %, =3%,(0)=3.175911536 and:=0.152859325. We

display the smallmp, expansion, but at generahy_the

. 3g? integral should be done numerically.
Ag=N\3— . (B2) At zero external momentum diagram{b8 corrects the
128mmp scalar self-coupling by
and to the Higgs mass squared parameter, 32 1
3gZm A=A 4/;“ fk . (B7)
M3 =mj— —1& = +0(gy/16m7). (83) Lk mp)

We define

The scalar wave function is not corrected.

In the lattice theory the integrals are trickier because the 1 E(mp) 1 &  3mp.
A, field has lattice dispersion relations and the gaAge- = T
vertices have nontrivial momentum dependence. So to warm
up we will start with the corrections to the Higgs parameters. (B8)
Our unit conventions will be the same as[itl]: i.e., the
lattice scalar self-coupling will bk, =4\/g?, and the lattice
spacing will appear in the dimensionless quantiy 1ONote that there are several typos in the Appendix Gidfl in
=4/(g?aT). which factors of2/4x or &/4+ are left out.

= —
k(k+md)2  4m 8mmp, 47 64w
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Again, we have displayed the leading terms at smg] , where we have already used E11), to simplify the final
but at generainp, the integral should be treated numerically. expression, and the identity
This definition of ¢(mp,) does not haveg(m—0)—¢; in-

steadé(m) has a pole am=0, and¢ is the constant part B a* ey
after the pole. The residue of the pole reproduces the con- ~— P In(k®+mp, )
: : . ki ak; ok, K,
tinuum expressioriB2), and the presence of the pole is be-
cause we are computing the full effect of thg field on the 96 sink; sink; sin k; sinkp,
lattice, not the difference between lattice and continuum f
theories. (K*+m3)*
Now we treat gauge field self-energy corrections. Since
there are noA, field corrections to the three point gauge- +f 16 j cosk; sink; sinky+5 permutations
scalar vertex or to the Higgs wave function at one loop, this K2+ m2, )3
is the only further correction we need. Consider the two dia- bL
gram_s(q) and_(d_) of Fig. 8. Denoting the polarization and 65”“ cosk;
spin indices as,j anda,b, at general external momentym +f
diagram &c) gives K2+ m3,
85ab5ij cos ki .
- f = , (B9) cosk; cosk; 8 6m+2 permutations
L - f 4 Tormi ) . (B14)
MpL
and diagram &l) gives . .
Further, we use the relationship
f 16 sink; sin k; (810 5
— = = . m 1.
L) [(K=pr2)2+m3 1[(kT p/2)2+md ] Z coski=| 3+ %) —5®+md),  (B19)
The sum of the contributions g@t=0 is
from which it follows that
Oap 84;; cosk; 16 sink; sink; 2\ s
- = - cosk; 1 m mp,)
Bt | Kermd,  (R2+md))? f — =——+(1+— (Mou)  (g1g)
k2+m3, 6 6 ™
Sab 92 ~ . .
—_ 42 In(k3+m3, )=0. (B11)  and, with a little more work, that
BL

o ) ] o cosk; cosk;

The last equality is because the integrand is a total derivative J 5

without singularities and the domain of integration is com- (K2 +mpp)?

pact without boundary. Hence ti#, field does not induce a

mass for the gauge field, as ensured by gauge invariance. _ 1 =, Mo mDL 2(mpy)
Next, we find theO(p?) term in the self-energy, which is 4 24 4o

responsible for renormalizing the coupling. Only diagram

8(d) depends om, and expanding E¢B10) to second order

(1+ m%L m_LL}JL) &(mpyL)

2 24] 4n

(m_%L+m_‘éL) £(mpy)

gives +8] —
2 24 4
45AB E f 2sink; sink; cosk; &, ™
PIPm (k2+m32))3 - 1+m_2m S(mo) 1)
4 24 41 12
4 sink; sink; sink; sin kp,
+f = . (B12) (B17)
(K2+mg)*

Using these, after considerable algebra we find that the

To evaluate this, we need the identity O(p?) contribution to the self-energy is
f %  cosk ) .
=\ o=, 3 d. 4 2m Mp, | &(mMpL)
. . 2 b DL DL DL
j 8 sink; sink; cosk; 24;; cosk; cosk 1o s )
- T2. 2 3 2.2 2 DL MpL
(k*+mg,) (k+mg,) (3 + 18 ) el (B19§)
Ccos ki 5ij| - . . .
= (B13)  While intermediate expressions have been rotationally non-
k+mpL invariant, the result is rotationally invariant and transverse.
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This completes the integration over thg field at one

lations in this paper. Everything is in lattice units. In Sec. VIl we |oop, at generam%,_.

truncateg, jmp to the nearest integer when we write it.

BL,naive Q2<n> sz 2 (mD) f( mD) IBL,imp
8.7 .375 1.59 1.901 .3487 8.073
10.7 .189 1.09 2.101 .4556 10.078
12.7 111 0.74 2.280 .5821 12.085
10.7 .378 1.77 1.840 3214 10.072
10.7 .756 3.14 1.498 1979 10.069

This happens because the only gauge invariant dimension

operator which is cubic invariant & . At O(p*) there will

be rotationally non-invariant contributions, although they
will be cubic invariant. We are not concerned with these here

because we are not trying to compute induced nonrenormaoing to Fourier space and suppressing the Lorentz indices,

APPENDIX C: PROBING THE RETARDED
PROPAGATOR BY LINEAR RESPONSE

In this appendix we show how to probe the retarded pho-
ton propagator by studying the linear response of the Abelian

plasma to an external current.

First we consider the response to transverse perturbations.
In the framework of linear response theory, the response

A(X) is related to the external curreptx) through the re-
tarded propagatdd R(x,x’):

A= [ DX i), (C)

izable operators, only corrections to terms already in theve have
Hamiltonian. But the nonrenormalizable terms could be

computed by a straightforward but extremely tedious exten-

sion of what we have done here.

The mp, =0 limit of Eq. (B18) agrees with the result in
[11], and the coefficient of the pole aip =0 reproduces
Eqg. (B1). In the opposite limit of very largenp, one can
(Taylor) expandS, and ¢ in mp?:

3 (m
:W—) —m~2-6m~*+42m 5-324m 8+ 261am~ -

(B19)
&(m)

ypm —m 4-12m~%+126m 8- 1296n~1°

+13050m ¥2—--- (B20)
The expansion converges for>12=sup{k?). While the¢
and3, contributions in Eq(B18) separately givé®(m°) con-
tributions, these cancel, as do the first several powens?pf
and the correction is c8ab(p25ij —pipj)/(,BLmSDL) at leading
order in m,gf. So theA, field rapidly becomes irrelevant at
large Debye mass, as it should.

Combining the result from integrating out thg, field

E(w,k)=iwDR(w,k)](w,k), (C2)

where
BR(w k)= -1 c3
((1), )_w2_k2_1—[(w’k)' ( )

Taking j;(x,t)=]ij,e '“ote’* *g(t) as the driving current,
we find

jow(2m)*5*(k—1)
w—wotie)w’—kK—TI(wk)]’

Ei(w,)=] (CH

Fourier transformindE(w,k) back to space-time gives

dw we 't

27 (0—woti€)[w?—k2—TI(w,k)]’
(CH
The retarded propagatdR(w,k) is analytic in the upper
half complexw plane due to causality, and only has poles in
the lower half plane. Writing Il(w,k)=11(w,k)
+ill;(w,k) and noting thatll,(— w,k)=1II,(w,k) and II;

E(i,t)zjoeikon

with the thermodynamic corrections from transverse gaugé¢— w,k)=—II;(w,k), the two poles are located aty (ko)
boson loops found if11], we get a relation between the =wy(ko)—iyy(ko) and —wy(Ko), where wy(ko) is the

“naive” tree level 8| nave and the improved value:

1 375)
_+_

BL,naive: ﬁL,imp+ 3" 6m

( 4 2mp ia) £(mpy)
3 A7

(B21)

Here the constargi=0.152859325 is the limit of(m) asm
goes to zero, after the pole has been removed.
For completeness, we also list the values@fi,, and

BL naive fOr the simulations presented in Sec. VII, in Table I1.

plasma frequency for the modg and y,(ko) is the associ-
ated on-shell damping rate.
Completing the contour integral in the lower halfplane,

we find

j owoe—iwoteikox

E(x,t)=—i w5—ki—TI(wg,kg)

o(t)

j Oe_ yp(ko)teikox

j= -
wpi(Ko) + w;|(ko)
wp( ko) '@ptko)t B w,ptl(ko)ei“’p(ko)t o0
wpl( kO)_ wo w;|(k0)+ wq :
(Co)
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The first term represents the asymptotic response, while th®ne obtains

second term is the plasma oscillatiorkatky, which is only
transient due to damping at a rate gf(ko). At larget [t

>, (ko) 1, after the transients have died out, one sees only

the asymptotic behavior

jowoeflwotelkox

O T i T (wo ko)

(C7)

A current of the formj(i,t)zjo sin(wgt)sin(kex) A(t) will
generate the followindt field at larget:

E(X,t)=]owop COwot+ a)sin(kgx)- 6(t),  (C8)
where
p={[wi—ki—TT(wo,ko) 12+ T (wg,ko)} ™ Y2 (C9)

—Ii(wg,ko)
w%—kg—ﬂr(woyko) '

1

a=tan (C10

The real and imaginary parts d(w,k) can therefore be
determined from the space-time averages

—

:_c2> oni(wo,ko)
4 [w5—k5—TI(wg,ko) 12+ T2 (g, ko)

(C11)

and

(J(D-E(X,t=1))
j_ wo[wé—kS—Hr(wo,ko)]
[w§— ko= T1(w0,ko) 1+ 1T (w, ko)’
(C12

2
0
4

wherer=7/(2wp), and the averages are taken after the de
cay of the transients.

The numerically determined values for the transverse sel
energiedI; andIl, can then be compared to their perturba-
tive values[48]:

i k32w211k wlw-l-k
lok=z0nz| 131 57w/ o=k| ]
(C13
37 0wk o
) —_ 2" | ___ 2_ 2
IT,(w,k) 7 “pY (w k)ﬂ(k w?)
(C14

is

2K
(0D E(x)= 7= (0"~ kI,

(02— K2 =TI )2+ 11,
(C16)
i5 (02—K2)(w?—K2-T1.))
4o (02—K—TI)2+10F;
(C17)

The real and imaginary parts of the longitudinal self-energy

<J (X!t) : E(X!t_ T)> =

are
1 )= 302 _w2 1_w| w+Kk
L@ k) =305l 1752 [ 1= 5 I o=k )
(C18
37 ,w w?
HL,i(w,k)=7w§F(l—F)a(kz—wz).
(C19

APPENDIX D: RELATING TIME SCALES WHEN
THERE ARE PARTICLES

It has been showfil1], as discussed in Appendix B, that
the difference in screening from UV modes between lattice
gauge theory and continuum gauge theory can be understood
at leading order ira (or in B[l) as a rescaling of the differ-
ential operatoD; : so what at the tree level looks liKR2A
in fact behaves Iiké;lDzA, withZ,=1+0(a). TheO(a)
term has been computed jal] and extended to arbitrary
Debye mass in Appendix B. Hence, in the case with no par-
ticles, the equations of motion féy; in temporal gauge look
like

JE, 1
IA;
—¢ = ZeEi, (D2)

and(E?)= B} The usual rulA=E is rescaled byZg,
which has not been computed, but which lacks the large

f‘_‘tadpole” contributions which characteriz€,. To get a

completeO(a) correction of the dynamics it would be nec-
essary to comput&g, but it has been advocated[i5] that
the absence of “tadpole” contributions means tigi—1
can be neglected comparedZ@— 1. In this case, a simple
rescaling of timeZ3/%d/dt=d/dt’, and of the electric field,
Z}\/ZE=E’, eliminatesZ, , and replace®| naive With B imp
ZZXlBL,nawe- So the time scale used, is related to the
more appropriate time scal¢;, by t"=tyB jmp/BL naive
When one compute§’ one should divide(N2g) by Vt’

rather thanVt, and the corrected rate i$8 nave/ BLimp
times larger.

The response to longitudinal perturbations is easiest to However, we are now interested in the case where there

treat in the Coulomb gauge, where oy is nonzero ande
is determined fromy;Ay. The retarded propagator is

_ (wZ_ k2)
K[ w?—k>—TII (k,w)]"

D&y w,k)= (C15

are enough particles to put the evolution in the overdamped
regime. Huet and Sdr24] and Sor{49] have recently shown
what new term this adds to E¢D1). A thermal distribution
of particles would not contribute, since particles of opposite
charge would cancel, but the particle distribution at any point
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is skewed because of past, remote electric fields, and comesponse to past electric fields, and fluctuations in the par-

tains fluctuations. The new evolution equation looks like
JEZ(X,1)
at

2 n naive
_ Q¥ >3ﬂL fdy

1
+Z;1( D25ij - E(DiDj+ DiDi) A?(X’t)

NEP(x, Y, D EP(Y t—[x—y])

+ (noise tern. (D3)

ticle population. The form of the nonlocal kernglis given

in [24,49. They point out that the overdamped limit corre-
sponds to the larg®?(n) limit, in which case the’sE/dt
term and the time dependencetobn the right hand side can
be neglected. Again approximating that=E and rescaling
time to eliminateZ,, and to replace all appearances3f,aive
with B imp NOW requirest’ =Z,§2t. Hence one should com-
pute everything usingg, i, and the lattice spacetime vol-

Here the right hand side represents the departure of the pafMe used, but then correct the rate by a factor of

ticle population from rotational invariance, due to its linear

(ﬂL,naive/BL,imp)z-
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