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It is by now apparent that topology is too crude a tool to accurately characterize a generic traversable
wormhole. In two earlier papers we developed a complete characterization of generic but static traversable
wormholes, and in the present paper extend the discussion to arbitrary time-degdgdantical wormholes.

A local definition of a wormhole throat, free from assumptions about asymptotic flathess, symmetries, future
and past null infinities, embedding diagrams, topology, and even time dependence is developed that accurately
captures the essence of what a wormhole throat is, and where it is located. Adapting and extending a sugges-
tion due to Page, we define a wormhole throat to be a marginally anti-trapped surface, that is, a closed
two-dimensional spatial hypersurface such that one of the two future-directed null geodesic congruences
orthogonal to it is just beginning to diverge. Typically a dynamic wormhole will possegsuch throats,
corresponding to the two orthogonal null geodesic congruences, and these two throats will not ¢thinaigle

they do coalesce into a single throat in the static limihe divergence property of the null geodesics at the
marginally anti-trapped surface generalizes the “flare-out” condition for an arbitrary wormhole. We derive
theorems regarding violations of the null energy conditiNEC) at and near these throats and find that, even

for wormholes with arbitrary time dependence, the violation of the NEC is a generic property of wormhole
throats. We also discuss wormhole throats in the presence of fully antisymmetric torsion and find that the
energy condition violationgannotbe dumped into the torsion degrees of freedom. Finally by means of a
concrete example we demonstrate that even temporary suspension of energy-condition violations is incompat-
ible with the flare-out property of dynamic throaf§0556-282(98)04916-9

PACS numbegps): 04.20.Gz, 04.20.Cv, 04.40b

I. INTRODUCTION joining up two spacetimes with no asymptotically flat spatial
regions [7]. Examples of the topologically trivial wormholes
Traversable Lorentzian wormholgk—3] have often been [3] are provided by a closed Friedmann-Robertson-Walker
viewed as intrinsically topological objects, with the topologi- (FRW) spacetime joined to an ordinary Minkowski space-
cal nature of their spatial sections revealed graphically byime by a narrow neck or two closed FRW spacetimes joined
means of embedding diagrams and “shape” functions as eiby a bridge[5,6].
ther “handles” in spacetiméintra-universe wormholes join- The only difference between these two classes of worm-
ing two distant regions of the same universer as holes(i.e. bridges and handlegersustopologically trivial)
“bridges” (inter-universe wormholes linking two distinct arises at the level oflobal geometry andylobal topology.
spacetimes Both of these types of wormhole give rise to the This suggests that it is important to identify a fundamental
notion of multiply connected universes and spatio-temporalocal property that can be used to characterize what one
networks possessing a non-trivial topologl}. More often  means by a wormhole, an intrinsic property to be abstracted
than not, global geometric constraints are imposed on th&om the broad phylum of wormholes which can then be
wormhole, as well as symmetry properties. For example, thesed to unambiguously define what is meant by a wormhole.
static Morris-Thorne inter-universe wormhole is an exampleindeed, the local physics, that which is operative near the
of this more restrictive class in that it requires exact sphericafthroat” of the wormhole, is insensitive to global properties
symmetry and the existence of two asymptotically flat re-and indicates that a local definition of what is meant by a
gions in spacetimgl]. As we have previously argud8,6]  wormhole throat is called for. This definition should be
there are many other spacetime configurations and geonbased solely on local properties and be free from technical
etries that one might still quite reasonably want to classify asssumptions about asymptotic flatness, future and past null
wormholes that either do not possess any asymptotically flahfinities, global hyperbolicity, symmetries, embeddings and
regions, or have trivial topology, or exhibit both these fea-topology.
tures. An example of the former is provided by the In two previous papergs,6] we have performed such an
Hochberg-Popov-Sushkov  self-consistent  semi-classicainalysis for static traversable wormholes. In this paper, we
wormhole (which is a wormhole of the inter-universe type lift the static restriction and shall investigate the genémiat
necessarily statjctraversable wormhole. We make no as-
sumptions about symmetries, spherical or otherwise, nor do
*Email address: hochberg@laeff.esa.es we assume the existence of asymptotically flat regions. To
"Email address: visser@kiwi.wustl.edu proceed, we first have to define exactly what we mean by a
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wormhole and we find, just as in the treatment of the genericondition discovered for the Morris-Thorne wormhgle-3],

static case[5,6], that there is a natural locgleometric(not  has led numerous authors to try and find ways of evading or
topologica) characterization of the existence and location ofminimizing these violations. Most of these attempts focus on
a wormhole “throat.” This characterization is developed in altérnative gravity theories, be they Brans-Dicke, dilaton

the language of the expansion of null geodesic congruencé3§aVity' higher-derivative theories, etc. What all these exten-

propagating outward from, and orthogonal to, closed twoSions of Einstein gravity “accomplish” from a practical

) ; . ~ point of view is to provide one with additional degrees of
d|men.S|onaI. spatial rf}/persurf%c@:henqt_edz). The.congru freedom(beyond the metric which under certain circum-
ence is subject to a “flare-out” condition that suitably gen-

) . . . stances can be coerced into absorbing the energy condition
eralizes that of the Morris-Thorne analysis. But, unlike that;,ations (leaving the remaining ordinary-matter sector free

earlier definition[1,2], ours makes no reference to embed-y, gatisty the classical energy conditipnilevertheless, the
dings or shape functions. In this language, the spatial hypefyia| effective stress energy tensor will violate the null en-
surfacel in question will be a wormhole throat provided theergy condition at or near the throat, so sweeping the unavoid-
expansiond. of one of the two orthogonal null congruences aple energy condition violations into a specific sector does
vanishes on that surfac#, =0 and/or¢_=0, and if the  not make the problem go away. This important but often
rate-of-change of the expansion along saenenull direction  overlooked point has been treated in some detdi6in(We
(u.) is positive-semi-definite at the surfaad.. /du.=0. would be remiss in not warning the reader that a sizable
This latter constraint is precisely the “flare-out” condition fraction of the published papers claiming to build wormholes
generalized to an arbitrary wormhole. These two conditionsvithout violating the energy conditions suffer from severe
on the expansion define the throat to be a minimal hypersuitechnical problems, and are often internally inconsistent.
face, i.e., an extremal surface of minimal afedth respect Similar comments apply of course to gravity plus torsion,
to deformations in the appropriate. null direction. Thus, a  although theories with torsion are distinguished from other
wormhole throat is anarginally anti-trapped surfaceHis- ~ variants of gravity by _the_fact that non-zero torsion gives rise
torically, Pagd 8] was the first to suggest that under suitableto @ non-trivial contribution to the Raychaudhuri equation

circumstances a wormhole throat could be viewed as an ant¥hich cannotbe absorbed into an effective total stress en-
(BLgy tensor. Moreover, torsion appears naturéipd un-

definition promises to be the most efficient and most physica?VOidably in theories of gravity based on low-energy closed

framework for generalizing the concept of throat to the fully string theories. These facts .make it of Interest to treat thg
arbitrary and dynamic case. torsion case separately and in some detail to assess the abil-

While this definition captures the intuitive concept of a 'y of torsion to defocusinul) geodesics and to chec_:k the
throat admirably, there can be cases calling for slight definiStatus of the NEC for throats in the presence of torsion. We

tional refinements, for example, whedd. /du.>0 is find that totally antisymmetric torsion actualpromotesthe

strictly positive on the throat, in which case we are dealingEn€r9y condition violation at the throgiut helps to lessen it

with a strongly anti-trapped surfaceas well as other cases W& from the throat by genfe_rating tvx)i;O ther attempts to
for which weaker, averaged notions of flare-out will suffice. 96t arqund the_energy-condmon violations havg led to con-
In general, the vanishing of the independent expansion§'c!er"’m0nS of Flme-dependent .Wormholes. In th!s dqmam, It
6.=0 andf_=0 will take place on two distinct hypersur- 'S indeed possible to temporarily suspend the violations, but
= _= .
faces. Thus(dynamical wormholes generally possesso only at the heavy expense of totally destroying the flare-out

throats provided each hypersurface is individually fIared-out.prOp.erties of the throalt. . . . L
dé./du,=0 on 3,,, and d6_/du =0 on 3, . Of Since the Raychaudhuri equation with torsion is not stan-

course, the two throats mugand they dp coincide in the dard textbook fgre, we mclu_de a brlef resume of torsion in
static limit. Sec. Il to establish the notation used in the rest of the paper
and provide a simple derivation of the generalized Ray-

With these definitions in place, we move on to develop a dhuri and th ion twist i d
number of theorems about the existence of matter at or ne&rhau uran € companion twist equations corresponding

the throats) violating the null energy conditio{NEC). to the two independent null congruences in Sec. lll. We then

These theorems make repeated use of the Raychaudh fmed wormhtc;:e throlats in terrr}str(l)f g,:/e (ta;part]s[onfhm ?et_c.
equation for the expansiors. . These results are local and and prove the coalescence of the two throats in the stalic

pointwise, in distinction to energy conditions obtained byI|m|t. Armed with these definitions, we go on to derive the

averaging over inextendible null geodesics, which are gIobai?nergy condition theorems for wormholes in normal space-

in nature. These energy theorems generalize the origin jme as well as in the presence of torsion in Sec. V. Worked

Morris-Thorne result by demonstrating unequivocally thate?amples of dyr:r?mlf[:hyvormholesr] arehprO\t/Ldettd n Secl. Vi
the NEC is generically violated at some points omearthe where, among other things, we Show Row e tempora sus-

two-dimensional hypersurface comprising the thigafThis pension of energy-condition violations eradicates the throat.
is an important result since these theorems hold for an arbgoncl\l;ﬁlons and a discussion of our results are collected in
trary dynamic or static wormhole irrespective of symmetries ec. Vi

or other global concerns and demonstrate that the energy II. GEOMETRIC PRELIMINARIES:

condition violations are_truly gener_ic. Our resultg aod SPACETIMES WITH TORSION
coursg also completely in accord with the topological cen-
sorship theorem of Friedman, Schleich, and Wit In preparation for the derivation of the Raychaudhuri

The striking nature of the violations of the null energy equation governing the expansion in the presence of torsion,
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and to establish the notation to be used throughout, we col- 5 4, ~\ _ d T oyd T d e yd
lect here a few basic definitions and identitiegs which will Rabe (€)= Rane (1) =(VaHpe = VeHad) + 2HpgcHpe,
prove useful later onBasic definitions regarding torsion can
be gleaned fromgi10—-12, while an overview of torsion in the \where the covariant derivatives of the torsion are calculated
string theory context can be extracted froh8].) with respect to the symmetrichristoffe) part of the con-

As we are interested in keeping our discussion as generalection only; that is,
as possible, we endeavor to work in a coordinate-free lan- ~
guage and to this e.nd_, _shaII make use of the abstract |r.1d.ex VaH§c= 5ach—F§ngc—F§cng+ rge e.. (7)
notation, later specializing when and if needed, to explicit
coordinate systems. For the time being then, the use of loweérhis identity (6) suggests that the torsion can be regarded as
case latin letters designates abstract indicesb,C,...) a dynamic field propagating over a normal Riemannian
and run from 0 to 3(See Wald 14] for a discussion of the spacetime, i.e., may either be regarded as fundamentally geo-
subtleties associated with the use of “abstract indicesét  metric, as part and parcel of the connect{@) or as a “mat-

v, be a covariant vector, its covariant derivative is ter” tensor field in a spacetime with a conventional symmet-
ric connection. We can make this latter association more
Vavp=3d0p— CSpve, (1) precise by writing the action from which we will infer the

corresponding equations of motion. We form the equivalent
where C2_ denotes the connection of the underlying four-of the Einstein-Hilbert action for the generalized curvature
dimensional spacetime. In principle, the connection can band allow for the presence of ordinary mattevery other
any “tensor” field guaranteeing that the covariant derivativedynamical field imaginable except for the metric and tor-
(1) based upon it satisfies all the usual proper{igsear, sion):
Leibnitz, etc) [14]. However, we will not impose the

torsion-free condition, which means that tfietal) connec- :_LJ' 4y o f 4y [~
tion can be decomposed as S=~ 16, | 9XVTORO)+ [ dXV=9Lmatter, (8)

Capr=TaptHap, (20 where the generalized scalar curvature iB(C)

. . . =0%R,, L (C) and is related to the scalar of Riemannian
whereCf,,) = %(cgbf Cha)=T'gy is the ordinary symmetric curvature via

Christoffel connection, depending on the metric in the usual

way, while Cf,y = %(Cg_b— Cpa)=Hgp defines the torsion, R(C)=R(I")— g°V H2 — H, H2®, 9)
which is manifestly anti-symmetric in its two lower indices. ac

Due to the mixed symmetry of the connection, the com-yhich follows from(6) and using the covariant constancy of

tmhgtitjor:/acl’tfutrget :r?ggr“wérdkzrgllit%e’b;VhICh is used to defmethe metric%agbc=0, with respect tov. (Mathematically, it

is possible to consider even more general affine connections

for which the covariant derivative of the metric is not zero.

The most general such affine connection is then a linear

3) combination of th_e C_hristoffel connection, the torsior_1 tensor,
and a “non-metricality tensor.” We will not generalize our
analysis to this level of abstraction as little seems to be
gained, and there are good physics reasons for keeping the

= 4 d e ~d covariant derivative of the metric zejo.

Rap,c (C) == 20{aCpyc+ 2C(41cChpe.» (4) Thus far, we have kept the treatment of the torsion part of

. . ) ... the connection completely general. If we now identify the
is the associated curvature tensor. The vertical bar within the) <ion with the totally anti-symmetric rank-three field

antisymmetrization prackets indicates that one is to ,‘"‘”_tisymétrengtthdA, where A is a two-form potential, or in
metrize over the paia andb, but notc. We have distin-

- X : __terms of components
guished the curvature with an overbar in order to emphasize
that this tensor is not the ordinary Riemann tensor, unless the Habe= aPoet dpAcat dchap (10)
torsion vanishes identically. Is however the curvature as-
sociated with a general connecti@h We note that the de- then we have an explicit realization of torsion that is known
rivative of a vector couples directly to the torsion, as evi-to arise naturally in closed string-theoretic low energy grav-
denced by the second term in the above idenf®y The ity [13,15,16. In this particular incarnation as an antisym-
torsion also shows up explicitlfand implicitly in the cova- metric rank-three tensor, the torsion is also known as the

[Va.Vplve=(—20[aChjc+2CFyChie)va—2C ay Veve
= Rab,cd(c)vd_ 2Hgbvevc )

where

riant derivatives in the commutator of two vector fields: Kalb-Ramond field. From here on, when we refer to torsion,
it will be of this form.
[v,W]P=02V WP— W3V P — 202WCH?, . (5) The equations of motion now follow immediately upon

varying the full action(8) with respect to the metric, torsion,
Although Eq.(4) is not the standard Riemann tensor, it is and whatever other matter fields may be present. The equa-
related to it as follows: tion of motion for the metric is given by
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1 Physically, this decomposition leads to a parametrization of
Gab(r):(Rab_ EgabR) spacetime points in terms of two spatial coordinatypi-
cally denotedx) plus two null coordinate§u.., or some-
B ge 1 cde times (u,v)]. (We do not want to prejudice matters by tak-
=87 Tapt 3HageHp — 59ab Heaed™ (1D ing the words “outgoing” and “ingoing™ too literally, since
outside and inside do not necessarily make much sense in
whereT,;, is the complete stress-energy tensor for the mattesituations of nontrivial topology. The critical issue is that the
fields. We see that although originates from the connec- spacelike hypersurface must have two sides andnd —
tion, it can also be treated as simply an additional species dire just two convenient labels for the two null directions.
matter and can therefore be shifted into an effective matter We consider the tensor fields defined by the covariant
stress tensor. However, it is of more than academic interesterivative of the future-directed null vectotthere is one
not to do so at this stage. When we come to consider thguch tensor field for each null congruence
expansion and twist dfull) geodesic congruences in space- .
times with torsion, we will find that the torsion makes ex- Bab="Vbl +a; (17)
plicit non-dynamic contributions to the differential equations ) )
for the expansion and twist that cannot be re-defined away2d ask for their rate of change along the corresponding null
as it were, by invoking the equations of motion, or by rede-geodesic parametrized with affine parameter.
fining the total effective stress energy tensor. Thus, it will be .
of interest to see what influence the torsion may have to %zlc VBE=I° V.V,
focus and defocus bundles of null geodesics. The equation of du, * "¢ ab "= Tcibiza

motion for the torsion that follows from varying E is
ying £ =18 YVl at1$[Ve, Vpllq

simply that
%aHabczo_ (12) :_vbli Vclia'}_li[vmvb]lia
—_p*t p*rip . d c _o|C *
Using the metric equatiofiLl), it follows that the Ricci ten- = =B BactRepa (C)ldls =21 HepBae.
sor obeys the equation (18
R —galT. _ 1 o T H ad This uses the fact that the parallel transport of a tangent
ab=O7| Tap™ 5 Yab *+3HadeHb™~ Gap (HageH™™), vector along its corresponding geodesic vanishg§: | ..,
(13 =0 (see technical comment below dealing with non-affine
. . parametrizations plus the commutator identity in E¢3).
while the scalar curvature is In contrast to the case of timelike geodesics, the tensor
R= — 87T —H,yHad (14) field B, |s'not purely spac.ellke but has in addition, mixed
null-spacelike components:
lll. NULL GEODESIC CONGRUENCES Val b= Y7Vl a1 72l S Val e
We start by considering a compact two-dimensional hy- =vap—lip¥alS Vlic, (19
persurface that is both orientable and embedded into space-
time in a two-sided manner in such a way that the inducegg
two metric is spacelike. To discuss the null geodesic congru-
ences orthogonal to this surfgce, we shall, following the de- V.l _p= J’gygvd 7d_|7b'}’glc+vd| e
scription of Carter[17] begin by introducing a future- B e
directed “outgoing” null vector 12, a future-directed =vap— | b7al *Vdl ¢ (20)
“ingoing” null vector 12 and a spatial orthogonal projection ) . ) . . d
tensory?® satisfying the following relations: which define the purely spatial tensosg,=7va¥Vcl 2
which admit the further decomposition as follows*Py,,
131, ,=121_,=0, =2):
181 _ =121, ,=—1,  _ + +
Vab™ 5 0+ Yapt Tapt 0ap, (21
12 Yab=0,
A cd. ad 0= ,=09%V,l-p, (22
YeY =Y (15)
+ + 1
In terms of these null vectors and projector, we can decom- O-E;bzv(_ab)_i O+ Vab (23
pose the full spacetime metrimdeed, any tenspuniquely:
Gab= Yab— ! —al +p—1+al -+ (16) wib:v[iab] ! (24
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whered.. is the trace ob,;, and provides the measure of the guide, we recall that in the generic bstatic case, the throat
instantaneous expansion of the cross-sectional area of was defined as a two-dimensional hypersurface of minimal
bundle of null geodesics, while,, and w,, denote the area[5,6]. The time independence allows one to locate that
shear, and twist, respectively, and are also purely spatial tefidinimal hypersurface entirely within one of the constant-
Sors. time three-dimensional spatial slices, and the conditions of
From these relations one may derive rate-of-change equ&xtremality and minimality can be applied and enforced
tions for the expansion, shear and twist with respect to thavithin that single time slice. For a static throat, variational
corresponding affine parametars starting from Eq.(18), principles involve performing arbitrary time-independent
though we shall be primarily interested in the rate of changésurface deformations of the hypersurface in the remaining
of the expansior.. as this equation will play a fundamental spatial direction orthogonal to the hypersurface, which can
role later on when we come to define a generic wormholeédlways be taken to be locally Gaussian. By contrast, in the
throat. So, taking the trace of E(L8) yields a generalized time-dependent case, it may not be possible to locate the
version of the Raychaudhuri equatiégeneralized as it con- €ntire throat within one time slice, as the dynamic throat is
tains the effects of torsigrfor the two expansionfone for ~ an extended object in spacetime, and the variational principle

the (+) congruence, the other for the-{ congruencg must be carried out employing surface deformations in the
two independentull directions orthogonal to the hypersur-
do.. 1 5 ab face: saydu, anddéu_ . This, by the way, suggests why it is
du. 50: O T OhapT 0T T W gy that the embedding of the spatial part of a wormhole space-
- time in an EuclidearR® is no longer a reliable operational
—RID)IC T g—2HI BRI + HoadH®AS ] g technique for defining “flare-out” in the time-dependent
25) case. Of course, in the static limit these two variations will

no longer be independent and arbitrary deformations in the

With a view to applications for deriving the energy condi- W0 null directions reduce to a single variation in the
tions associated with generic wormhole throats, it is useful t¢onstant-time spatial directidsee below. Realizing that the
have at hand the companion equation governing the rate ¢fme-dependent wormhole typically has two non-coincident
change of the twist along null geodesics. This is derived byhroats was perhaps the major conceptual stumbling block to
going back to Eq(18), antisymmetrizing on the free indices ©vercome in developing this formalism.

and projecting out the purely spatial part of the resulting

equation. These two operations yield a generalization of the A. Preliminaries

twist equatiorfagain, one for the{) congruence, the other

for the () congruenck In the following, we set up and define the properties of

throats in terms of the null congruences. Bear in mind that a
throat will be characterized in terms of the behavior of a

dwy, ~ , ; . .
3 ba__eiwga_zo't([:awt?]c—'—vcHgblciltd single set of null geodesics orthogonal to it. We define a
U+ wormhole throat3, . (there is also one for the other null
i Hg[aHg]elil 42l icHs[bBia]e- (26) congruencgto be a closed two-dimensional hypersurface of

minimal area taken in one of the constant-slices, where

The term linear irH that appears in both the expansion andU+ iS an affine parameter suitable for parametrizing the
twist equations is purely geometrical in origin, arising as itfuture-directed null geodesits orthogonal tax .. . All this
does, from the commutator of two torsion-bearing covarianfn€ans is that we imagine “starting” off a collection of light
derivatives(3). The other torsion contributions are dynamic Pulses along the hypersurface and we can always arrange the
in origin, as these arise instead directly from the action andffine parametrizations of each pulse to be equal to some
equations of motion. These features distinguish the torsiofonstant on the hypersurface; we take this constant to be
from all other fields. Of course, in the absence of torsionZero. We wish to emphasize that there is a corresponding
these reduce to the standard Raychaudhuri and twist equélefinition for the other throak,_ . In the following, we
tions, for 6. andw™, respectively[18,14. define and develop the conditions that both hypersurfaces
Technical aside: if one is working with a non-affine pa- must satisfy individually to be considered as throats, and
rameterization for the null congruences, then the parallefhall do so in a unified way by treating them together by

transport equation becomd& V.l .,=K.l., where K. employing the= label. Qur next task is to compute the hy-_
—_ab v, The expansi(_)n is still gi(/eﬁ by the trace of Persurface areas and impose the conditions of extremality
F'E *a-

ab, =+ and minimality directly and to express these constraints in

Teaspatlal part ofVl ., and we haye tha@i:y Yab  terms of the expansion of the null geodesics. The area of
=g**V,.,—K+. The Raychaudhuri equatiof25) will 3. Is given by
ux

then pick up an extra factor &f.. 6. [17].
_ 2
IV. DEFINITION OF GENERIC WORMHOLE THROATS AZys)= L ) Jy d. (27)

Our aim is to provide a precise, local, and robust geomet-
ric definition of a (traversablg wormhole throat, equally An arbitrary variation of the surface with respect to de-
valid for static as well as time-dependent wormholes. As dormations in the null direction parametrized by is
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d
5A(2ui)=f2 df&m(x) d?x

Yab

1 _.d
= —.,ab 2
J2u+\/7 57 0 su.(x) d®x. (28

If this is to vanish for arbitrary variation8u-.(x), then we
must have that

(29

which expresses the fact that the hypersurfage is ex-
tremal.

This condition of hypersurface extremality can also be
phrased equivalently and directly in terms of the expansio
of the null congruences. The simplest way to do so is t
consider the Lie derivative;~ acting on the full spacetime

metric:

L Itgab: I(-:_*—chab"_ gcbvalct + JacVol [-:_*- =ValiptVplia

:Biba'i'Biab:ZBi(ab): (30

with the second equality holding provided the metric is co-
variantly constant with respect to the full covariant deriva-
tive, which is in fact the case, even in the presence of arbi

trary torsion. We now use the decomposititt6) of the

spacetime metric and work out the Lie derivative using th

Leibnitz rule:
+ + 1 +
B_(ab)ziﬁl_gab: E‘CI_(')’ab_ I_also—lial —p),

1 + 1 + +
= Eﬁr')’ab_ E[I—a£r|+b+|+b£r|—a+(a<_>b)]a
(3D

from which, and using the properties in E45), implies
abp=*= abp = ab * 1 abp, *=
0-.=9""B” (ap)= Y B (an)= ¥ V= 57 L[ Yab

= yab T (32)

So the condition that the area of the hypersurface be extrem
is simply that the expansion of the null geodesics vanish

the surfaced..=0. To ensure that the area b@nimal we

need to impose an additional constraint and shall require th

5°A(S,.)=0. By explicit computation,

do.
62A<2ut>=J2 6(9:4—‘

2
du. SU. (X) Su (X)dox

do.
=f \/;ﬁéut(x)éui(x) d’x=0, (33
DI +

€
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where we have used the extremality conditidh. £0) in
arriving at this last inequality. For this to hold at the throat
for arbitrary variationssu . (x), and sincesu.. (x))>=0, we
must have

(34

in other words, the expansion of the cross-sectional area of
the future-directed null geodesics must be locally increasing
at the throat. This is the precise generalization of the Morris-
Thorne “flare-out” condition to arbitrary wormhole throats.
This makes eminent good sense since the expansion is the
measure of the cross-sectional area of bundles of null geode-

(;éics, and a positive derivative indicates that this area is lo-

cally increasing or “flaring-out” as one moves along the null
direction. Note that this definition is free from notions of
embedding and “shape” functions. So in general, we have to
deal with two throatsX,, such that¢, =0 anddé, /du,

=0 andX,_ such thatd_=0 anddé_/du_=0. We shall
soon see that for static wormholes the two throats coalesce
and this definition automatically reduces to the static case
considered if5,6]. The logical development in the present
paper closely parallels that of the static case though there are
many technical differences.

The conditions that a wormhole throat be both extremal
and minimal are the simplest requirements that one would
want a putative throat to satisfy and which may be summa-
rized in the following definition(in the following, the hyper-
surfaces are understood to be closed and spafiaice these
definitions hold of course for both throats, we momentarily
drop the distinction and suppress thelabel.

1. Definition: Simple flare-out condition

A two-surface satisfies the “simple flare-out” condition if
and only if it is extremal #=0, and also satisfies @/du
=0. The characterization of a generic wormhole throat in
terms of the expansion of the null geodesics shows that any
two-surface satisfying the simple flare-out condition is a
marginally anti-trapped surfagavhere the notion of trapped
surfaces is a familiar concept that arises primarily in the
context of singularity theorems, gravitational collapse and
black hole physic$14,18. We hasten to point out however,
that in the present context, identifying a wormhole throat as
& marginally anti-trapped surface in no way, shape or form is
meant to convey that we are dealing with horizons, apparent

ahorizons, or singularities. Nor should this nomenclature sug-
é;cest that wormholes are somehow allied with or are analo-

gous to black holes or white hole@:or some special cases
where wormholes do have applications in black hole physics,
see[6].)

Generically, we would expect the inequalig?A(S,)
>0 to be strict, so that the surface is truly a minirtradt just
extremal surface. This will pertain provided the inequality
do/du>0 is a strict one for at leastomepoints on the
throat. This suggests the following definition.
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2. Definition: Strong flare-out condition which can be minimal in the integrated, averaged sense.
(See, e.g.5,6].) Independently from this, averaged flare-out
conditions of various types crop up in energy conditions av-
eraged over the hypersurfagg6l.

Finally, it is also useful to define a weighted flare-out
condition.

A two-surface satisfies the “strong flare-out” condition at
the point x if and only if it is extremalg=0, satisfies
d#/du=0 everywhere on the surface and if at the point x
the inequality is strict:

de
ﬁ> 0. (35 4. Definition: Averaged f-weighted flare-out condition

A two-surface satisfies the “f-weighted flare-out” condi-
If the latter strict inequality holds for akke %, in the sur-  tion if and only if it is extremalp=0, and
face, then the wormhole throat is seen to correspond to a
strongly anti-trapped surfacédgain, this terminology is not f \/—f ) sgn
intended to convey any relation between wormholes and 3, ¥i(X) sg
black holes. The physical distinction between simple and
strong flare-out will become evident when we come to exwheref is a positive definite function defined on the two-
plore the consequences these definitions have on the energyrface.
conditions required to maintain a generic traversable worm- Note that the strong flare-out condition implies both the
hole throat. It is sometimes sufficient and convenient to worksimple flare-out condition and the averaged flare-out condi-
with a weaker, integrated form of the flare-out condition. tion, but the simple flare-out condition does not necessarily

imply the averaged flare-out conditigithe integral might

d0d2>0 3
ﬁ X ) (37

3. Definition: Averaged flare-out condition vanish. However, we see that if the averagédveighted
A two-surface satisfies the “averaged flare-out” condi- flare-out condition is satisfied for all pOSitive deﬁnﬂ:ﬁthen
tion if and only if it is extremalp=0, and it implies the simple flare-out condition, which follows from
identifying f(x) = 6u(x)?=0 and using the minimality con-
de straint(33).
J Jy sgn(ﬁ)d2x>0, (36)
2y

5. Technical aside: degenerate throats

where sgnx) is the sign ofx. This averaged flare-out con- A class of wormholes for which we have to extend these
dition places a constraint on the putative throat by askinglefinitions arises when the wormhole throat possesses an ac-
that the extremal surface be outward flaring over at least halfidental degeneracy in the expansion of the null geodesics at
its area before one can be justified in calling it a wormholethe throat. The above discussion has been tacitly assuming
throat. This definition has been carefully constructed to rethat in the vicinity of the throat we can Taylor expand the
main invariant under arbitrary affine reparametrizations ofexpansion

the null geodesic congruence. An apparently plausible
alternative to the above, wusing the integral
Efzu\/; (dé/du)d?x, is deficient in that if the integrand

d#/du changes sign anywhere on the surfacéhen by ap- ) o )
propriate affine reparametrizations of the null geodesic conwith the constant term vanishing by the extremality con-
gruence the integral may be made arbitrarily positive or arstraint and theT .f|rst derivative term being constrained by the
bitrarily negative[19]. (Thus if one were to require the flare-out conditions. _

integral Z to be positive for all affine parametrizations, one ~ Now if the extremal two-surface has an accidental degen-
would simply recover the strong flare-out condition, while if €racy with the first derivative termiand possibly higher-
we were to merely require that the integfabe positive for order term$ vanishing |dent.|cally, then we would h_ave to
at least one choice of affine parameterization we would haveevelop the above expansion further out to the first non-
the extremely weak constraint thd®/du be positive for at vanishing term. This would mean we would have to re-
least one point on the surfade Either option though math- phrase the flare-out in terms of _these higher-order (_jenvatlves
ematically consistent is physically unreasonable, and th€ the null geodesic expansion. In fact, the first non-
definition in terms of the sgn function is the best intermedi-v&nishing term would appear at odd orderuin

ate strength definition we have found. This comment also ON—1/ 42N—1
implies that constraints on weighted averages of the form B(x,u) = u (d B(x,u)
fzu\/; f(x) (do/du)d®x are too subject to reparametriza- ' (2N)!\ duN-1

tion effects to be usefyl.

The conditions under which the average flare-out are apsince the surface is by definition extremal. It must be odd in
propriate arise for example for situations with multiple throatu otherwise the throat would be a point of inflection and not
wormholes. Indeed, suppose we have a double throat worna true minimum of the area. Simply put, even-order surface
hole where each of the two throats are flared-out in theleformations involve odd-order derivatives of the expansion.
strong sense. Then the spacetime between the throats cdi¥e can see this in another way by computing higher-order
tains an extremal hypersurface which is not minimal, butvariations in the area. The condition that it be a minimum is

do(x,u)

0 +0(u?), (39

0(x,u)=6(x,0)+u

u=0

+0@u?Y), (39

u=0
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d2N-1g wheren?=(4/dn)?, n?n, =+ 1, andvy,, is the two-metric of
62NA(EU)=f ﬁm(au(x))z’“ d?x>0, (40) the hypersurface. Putting these facts together implies that in
I, du the vicinity of any static throat we may write the spacetime
metric as
which leads to the flare-out condition being stated in terms of
the (2N—1)-th derivative of the expansion. Note: fot Oab=— VaVp+NaNp+ yap - (45)
=1, this reduces to the minimality constraint (83). This
motivates the following definition. But Eqg. (16) holds in general, so comparing both metric

representations yields the identity

6. Definition: N-fold degenerate flare-out condition aib  iaib b b
o —1215 1512 =Va/° 4+ n?n®, (46)

A two-surface satisfies the N-fold degenerate flare out
condition if and only if it is extremalg=0, the first (2N and the following (linean transformation relates the two-
—2) u-derivatives of6 vanish (d="" "6(x,u)/du""")=0  metric decompositions and preserves the inner-product rela-
everywhere on the surface and if finally, for at least somejons in Eq.(15):
point x on the surface, the inequality is strict:

1 1

I§=§(Va+na), 8 ==(V3—n?). (47)

d2N-1g +=5

Since the throat is staticy,, is time independent, hence
when we come to vary the aréa7) with respect to arbitrary

;?g;;cizllgé ear;[ tgnbl\:g(tjr e?r?zglet?pe:iti r gggl tvfclﬁhv;/gsr?ehccile perturbations in the two independent null directions we find
that

to the derivatives of the expansion, i.e., the flare-out condi-

tion is d_elaye_d in théoutgoing null direction Wlth respect to IVab 1 Yab Vet 1 9yap
throats in which the flare-out occursdt=1, which (by the du, =5 expl¢] St+——6én|= > on,
way we have set up the definitibnorresponds to the strong + Jt an an
flare-out condition. 1
These considerations bring us to the following surprising 9%ab 5u=—( exp[¢>](97ab St— 9%ab Bn)
result already alluded to above: namely, there isarriori du_ 2 gt an
reason for the two independent null variatiofis, ,su_ to
. .. . . 1 19’yab
single out thesameminimal hypersurface. That is, in general == sn. (48)
an

DS S 42 iati i
u+t u (“42) Thus the variations are no longer independent, and reduce to

and we must conclude that generic time-dependent Wom{_aking a single surface variation in the spatial Gaussian di-
holes possess two throats. If these hypersurfaces are in caugftion- S0,6.. =0« 6_=0 at the same hypersurface, prov-
contact then it will be possible to enter the wormhole via ond"d that2, =%, in the static limit, and so static worm-
throat and exit through the other. If the two throats are not irholes have only one throat. An exhaustive analysis of the
causal contact then the wormhole is not two-way traversablegeometric structure of the generic static traversable worm-
and you have at best two one-way traversable wormholeBole may be found i5,6].
with no way of getting back to where you started from. With the definition of wormhole throat made precise we
now turn to derive constraints that the stress energy tensor
must obey or(or neaj any wormhole throat. The constraints
follow from combining the Raychaudhuri equati(2b) with

In a static spacetime, a wormhole throat is a closed twothe flare-out conditions, and using the Einstein equatldi
dimensional spatial hypersurface of minimal area that, with1t js clear that these constraints apply with equal validity at
out loss of generality, can be located entirely within a singlepoth the + and — throats, and in the following we cover
constant-time spatial slice5,6]. Now, for any static space- poth classes simultaneously and without risk of confusion by

time, one can always decompose the spacetime metric in &opping the= labels. We first treat the zero-torsion case.
block-diagonal form as

B. Static limit

9ap=—VaVp+¥gap, (43 C. Zero torsion

Since all throats are extremal hypersurfacés-0Q) the
whereV@=exp[ ¢](d/dt)? is a timelike vector field orthogo- Raychaudhuri equation at the thrd@6) reduces to
nal to the constant-time spatial slices afids some function

of the spatial coordinates only. In the vicinity of the throat %—I—o'aba' — 87T 3P (49)
we can always set up a system of Gaussian coordimages du ab ab '
that

where we have used the Einstein equatibh) after setting
) g.5=NaNp+ Yab, (44)  the torsion terms to zero and the fact that the null geodesic
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congruences are hypersurface orthogonal, so that the twikuckily, we can dispense with the twist immediately. Indeed,
w,p= 0 vanishes identically on the throat. We make no claimthe (torsion-fre@ twist equation(26) is a simple, first-order
regarding the shear, except to point out that singg is linear differential equation:

purely spatial, its square®®o,,=0 is positive semi-definite

everywhere(not just on the throat Consider a marginally d“’ba= — B —20C (55)
anti-trapped surface, i.e., a throat satisfying the simple flare- du @ba™ £0a@blc:

out condition. Then the stress energy tensor on the throat o ) _
must satisfy whose exact solutiofif somewhat formal in appearancis

Tap 181°=<0. (50 wab(u)zexp<—fou0(s)ds) ULU) Ud(U)weg(0),

The NEC is therefore beither violated, or on the verge of (56)
H H ajp—
bemg violated Tqy 1°1°=0), on the.throat. Of course, where the quantitg/(u) denotes the path-ordered exponen-
whichever one of the two null geodesic congruendesdr tial
| _) you are using to define the wormhole thréati-trapped
surface, you must use theamenull geodesic congruence for u c
deducing null energy condition violations. ULS(u)=P exp( —J o dS) : (57
For throats satisfying the strong flare-out condition, we 0 a
have instead the stronger statement that for all points on th

throat §o, an initially hypersurface orthogonal congruence remains

twist-free everywhere, both on and off the throas;,(0)

Tapl?°<0, andIxe, such that T,, 131°<0, =0=wp,(u)=0. Then the equation

(51) %4—}02"‘ O'abUab:—S’JTTab Ialb, (58)
so that the NEC is indeed violated for at leasimepoints
lying on the throat. By continuity, i 121°<0 atx, then s seen to be valid for al. Coming back to simply-flared

it is strictly negative within a finite open neighborhoodof throats, we have two pieces of information regarding the
B.(x). For throats that are strongly anti-trapped surfaces, Wexpansion: namely that(0)=0 and[d#(u)/du],_,=0, so
derive the most stringent constraint stating that that if we expand in a neighborhood of the throat as in Eq.

b (38), then we have that
T 131°<0 Vxel,, (52)

do(u) dé(u)
so that the NEC is violatedverywhereon the throat. du _ du +0O(u), (59)
Weaker, integrated energy conditions are obtained for u=0
throats satisfying the averaged flare-out conditions. For &p over each point on the throat, there exists a finite range
throat that is flared-out on the average, integrating the Rayn, affine parameteru e (Ou*) for which dé(u)/du=0.

chaudhuri equatio49) over the throat implies Since both#? ando?Po-,,, are positive semi-definite, we con-
clude that the stress energy is either violating, or on the
sgn (T, 121°)d?x<0, 53 verge of violating, the NEC along the partial null curfse
Jzu\/; 9n(Tay ) ®3 X (0u}) based atx. If the throat is of the strongly flared

variety, then we see that the NEC is definitely violated at
indicating that the NEC, when averaged over the throat, ideast over some finite regions surrounding the throat:
strictly violated (Warning: this has nothing to do with the U,{x}X(0,uf), and including the base pointg. For
violation of the averaged null energy condition, or ANEC. In strongly anti-trapped surfaces, the NEC is violated every-
the ANEC, the averaging is defined to take place along inwhere in a finite region surrounding the entire throat, and
extendible null geodesics. See, in particulgd].) By the including the throat itself.
same token, throats satisfying theveighted averaged flare- Finally, if the throat isN-fold degeneratdand N>1),

out condition imply that then there exist pointsx on the throat for which
(d2N"1g(x,u)/duN"1)|,_o>0. This implies that the first
by 12 derivative
f Vy f(X) sgn(T,p, 121°) d2x<0, (54)
3 _ _
v dé(x,u) (2N—1)uN=2 d2N~1g(x,u
(x,u) _( ). 2( | oy,
indicating that the sign of the NEC, when weighted with the ~ dU (2N)! du?™t |
positive definite functiorf(x) is strictly violated on the av- (60)

erage over the throat.

What can we say about the energy conditions in the reis positive along a partial null curviex} X (0,uy) based ak
gion surrounding the throat? This requires knowledge of thend it follows by Eq.(49) that the NEC is violated along the
expansion, shear, and twist in the neighborhood of the throafinite “bristles” U,{x}x (0,u}).
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TABLE I. Summary of the flare-out conditions for wormhole throats; all quantities are evaluated on the
throat. The flare-out conditions are understood to apply to both throats, and we draplétel.

Flare-out condition Expansion Constraints on the throat
Simple 6=0 ¥=0
Strong 0=0 =0, andIxe3, §¢>0
Strongly anti-trapped 6=0 Vxe3,, $£>0
f-averaged 6=0 Fs NvH(x) sgn §)d?x>0, for anf(x)=0
d™o d>N"1g

N-fold degenerate 6=0 aur =0, for m=1,---,2N-2 and g1 =0

D. Non-zero H-torsion is positive definite for allv. Such a torsion-field aggravates

the violation of the NEC and all of the above constraints on

Einstein(11) and Raychaudhuri equatiof@5) does not nec- the stress tensor derived at and near the throat in the zero-
essarily alleviate the problem of the violation of the NEC ontorsion case apply as well to throats in the presence of this

or near wormhole throats. This state-of-affairs holds at bottflass of non-zero torsion. Actually, with a little more work, it
throats so without loss of generality, take the)(throats and IS POSSible to relax the assumption of total antisymmetry and
consider the term linear iRl that appears in Eq25). This demonstrate thaall torsion leads to enhanced violation of

can be simplified as follows: the NEC. To see why this comes about first consider the
general decomposition of an arbitrary antisymmetric rank-
1S Hgb |3+('3:|C+ Hgb(vgb—ﬁﬁ'ivehc), two tensorA,,=—A,, in terms of null vectors and spatial
projector. We find that we can write

Torsion, although contributing additional terms to the

=15 HY of® (61)

Aab:al—[a|+b]+7fa')’g]Acd+2|—[a|3—7g]Adc

since the mixed spatial-null componentsB)*fg are orthogo- c d

nal to Hgb, and by virtue of the latter's antisymmetry, +20 4 1l = o1 Ades (66)
projects out the twist from the purely spatial tensqrb.

Now consider an initially hypersurface orthogonal null con-

gruence, then at the throat of the wormhole we have

where the coefficiera= —21° 1A 4. Now evaluate this for
Age=12H,ge. One finds thata=—2121%1%H_,,=0. The
third term above also vanishes sinbe[ayglliliHedczo,

do, cab 4 atb de 1aib which leaves us with
du++0 Do ap= = 87T 1917 =2HagHp" 1515, _
(62) Aab=Aapt+2l 1ol Vg]Acd : (67)
after using the expression for the Ricci tensor in Bcp). Whereﬂabz YFaYg]Adc is a purely spatial tensor. Now, the

We could now run through the list of flare-out conditions square of Eq(67) involves only the purely spatial compo-
(see Table )l as before and we would obtain, as expectedpents:

constraints on the combination of stress energy and torsion

appearing on the right-hand side of E§2). Thus, for a A Ade=[ap jbpde_ 7 ZAde=q 68
simply-flared throat, or marginally anti-trapped surface, we aeAT =15 Hagd < Hy = AdAT=0, (68)
must have and this is precisely the combination appearing in &®).
Thus, the torsion terms cannot be made to absorb any energy
a|b de ja|b
AmTap 1515 +HagdHp 1515<0, 63 yiolations. On the contrary, torsion tends to focus null geo-

gesics. While the “normal” stress energy must continue to
violate (or be on the verge of violatingthe NEC on the
throat, the presence of any non-zero torsion does act to
lessen the violation off the throat. This is simply because
torsion acts as a source of the twist, and even if the twist

at the throat and one might propose sweeping the violation
into the torsion sector. We will find that this is not possible.
For illustrative purposes, suppose we consider the ansatz

Habczifabcewe(x)v (64)  Vvanishes on the throat, nonvanishing twist is eventually gen-
NE- erated in the neighborhood surrounding the throat, as can be
appreciated by examining E(R6), and twist comes in with
for any vector fieldw®. Then the combination the just the right sign in the Raychaudhuri equation. Of
de 1aib 5 course, without further input, we have no way of knowing if
HageHp~ 1315 = +2(W% 1 5)*=0, (65  this happens in the region near the throat or far away from
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the throat. If it occurs near the throat, then the energy violadecomposed in terms df. 5,1 _,, v1ap Just as in Eq.(16).
tions in that region might bépartially) absorbed into the The expansions of these null geodesics are calculated in a

twist, but the violation persists nonetheless. straightforward manner:
V. CONFORMALLY EXPANDING MORRIS-THORNE ab Q 2 b(ry)\ Y2
WORMHOLE 0+=7v1 Val +p= 2@ 0 1- m) (72)

We shall illustrate these basic concepts and constructs
with the following explicit example. Consider the time- where the overdot stands for the derivative with respect to
dependent spherically symmetric inter-universe wormholdconforma) timet. The derivatives, taken with respect to the
described by a pair of coordinate patches in which the metriaffine parameter, used for testing for flare-out are

takes the form (d6, /du, =196, lat+1".96, ar), etc.,
2 2 dri, de 1 0% « b 12
dSZZQ (t) —dt +W T _ 2 |Fz—{1- (rl)
(122 du. 02\ Q ‘2] 0 r
+r2 Jd@*+sirtg dq&z]). (69 1 b(r,)| 1 b(ry)
e e (O .
r2 r ra r

This metric is conformally related to a zero-tidal force inter-
universe Morris-Thorne wormhole by a simple time-
dependent but space-independent conformal f4@0+232. . . .
(Other versions of time-dependent wormholes are discussqd Now we can search for throats. in this pz_itch. F'r?t we

in [23—25.) Each coordinate system used to exhibit the met_ocate the extremal hype.rsurfaces, these coincide with the
ric given above covers only half the wormhole spacetime,Zeroes of the expansions:
and there are two radial coordinates, and r,, each of :
which runs only fronr, to infinity, wherer, is obtained by 1 b(r)\*? _Q

solving the implicit equatiorb(ro) =r,. See[1,3]. The two Hizo‘:'ﬁ 1- o
radial coordinates cover two distinct universes and overlap

only atry=ro=r, which defines theenterof the wormhole ~ \hich defines the time-dependent throat radifigt) implic-
(we will find that the center coincides with the throat only in ity. We note that the factor involving the square root is

the static limi}. For simplicity this wormhole is taken to be always positive semi-definite, hence we find thiatthe r,

symmetric under interchange of the two asymptotically flate,ordinate patchit is only 6 that can vanish for an expand-
regions but this is not essential to the analysis. .

It should be clear that we look for throats withemch N9 ({2>0) background, while it i, that can vanish for a
coordinate patch separately. We will see below that for suitcollapsing €2<<0) background. There is, therefore, always
able energy conditions, the above metric corresponds to anly one extremal hypersurface in the first patch.
wormhole with two time-dependent throats, each throat re- Irrespective of expansion or collapse, the flare out evalu-
siding in one of the two universes joined by the wormhole. ated on that extremal hypersurface works out to be

(73

- (74)

A. First coordinate patch dé. 1[0 292
The throats, when and if they exist, will be located on  du. 0+:0_§ Q ‘02
spheres ofinstantaneoysradii (t)r, (wherer,=rg) pos- B
sessing the spatial metrigvritten in block-diagonal form b(r* (1))
+——| b’ (T ()+ ———| .
0 0 2r¥(t)? ri(t)
Y1a= Q7 11 10 (70 (75
0 .
0 sirfe

The flare out of the hypersurface is a function of time. Note
We can easily find a set of two independent null vectordhat the second grouped term on the rig_ht-hand side is always
orthogonal to the spheres in this patch; they are given by greater than or equal to zero while the first grouped term can,
,0,0)' (71)  proposed in[21,22 as a means of temporarily suspending
and it is easy to verify that all the inner-product relationsric (69) can be easily worked o(i21,22 and taking its pro-

in principle, have any sign, depending on the nature of the
1 b(r 1/2
2 (1:(1— (ry ) as a mes i
the energy condition violations for dynamic wormholes.
(15) are satisfied and that the mett&9) in this patch can be jection along the radial null direction yields the combination

background expansiagir contraction. This observation was
- V20 s
However, the Einstein tensor associated with the above met-
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Giit+Grr=8m(p1— 1)

b(r,) b'(ry) O 02
—0~2| _ —2—+4—
Q =t 20453

(76)
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The search for throats in this second patch proceeds just as
above. For the location of the extremal hypersurfaces we
now have

( 1_

1 1/2

0i = 04:>_
)

b(ry)
r

wherep, andr, denote the energy density and radial tensionyhich now defines the throat radiug (t) implicitly. We

as seen by an observer in the proper reference frame. Eval
ate this atr;=r7 (t) and compare it to Eq.75) to conclude

Hgyain note that the left-hand side is always positive semi-
definite, hence we find that it is no#, that vanishes for an

that any conformal factor that is chosen so as to suspend th8panding background while it &_ that vanishes for a col-

violation of the NEC, will at the same time eradicate the
flare-out condition:

*

du.

(p1—711)=0& |r’l*(t)$0, (77)

and the hypersurface &f (t) will not be flared-outln other

lapsing backgroundin this patch).. Therefore, there is again
exactly one extremal hypersurface in this patch. Note that
because of the crucial sign flip, whichever of the two expan-
sions it is that vanishes in coordinate patch one, it is the
other expansion that will now vanish in patch two.

Because of the assumed symmetry between the two
patches the rest of the analysis follows through without dif-

words, the extremal hypersurface will be a throat of the simficulty and we can again see that any conformal fatghat

ply flared-out variety if and only if the NEC is violated or on
the verge of being violated there.

This is completely compatible with the topological cen-
sorship theoreni9]. If one picks an ingoing radial null geo-

desic along which the NEC is always satisfied, then by the

above argument the expansion can never flare out, one

forced to continue moving inward, and so one cannot pass

through a wormhole throat.

B. Second coordinate patch

Many of the results from the first coordinate patch can b
carried over to the second coordinate patch with a few ke
flips in signs. The throats in this second patch, when and i
they exist, will be located on spheres(afstantaneoysadii
Q(t)r, (with ro=ry) possessing the spatial metfjeritten
in block-diagonal form

0
1 0
0 sirfé

Yoan=0Q2 13 (78)

is chosen so as to suspend the violation of the NEC, will at
the samdime eradicate the flare-out condition at this second
throat:

do-

a0 <0.

(p2—12)=0 (82

IS =l

Once again, this extremal hypersurface will be a throat of the
simply flared-out variety if and only if the NEC is violated or
on the verge of being violated there.

[As indicated previously, the assumption that the worm-
ole is symmetric under the interchange of the two asymp-
otically flat regions is not essential to the analysis. To gen-

eralize this point one just needs to choose two un-equal
shape function®,(r;) andb,(r,) that need be linked only
by the fact that they simultaneously satisky(rg)=rg
=h,(ry). It is now a simple exercise to go through the pre-
ceding formulas making minor changes as appropliate.

C. Static limit

In the static limit, we haveﬂ=0 and the simultaneous

We can easily find a set of two independent null vectorsvanishing of the expansions now occurs at the unigue point

orthogonal to the spheres in this patch; they are given by

l,I(l

12
701

1

b(ry)
Iz

12 =

+ \/EQ

0|.

(79

where the two coordinate patches overlary)=r, this
value being none other than the center of the wormhole:
therefore, the static wormhole has only one throat, and the
throat coincides with the center of the wormhole. We thus
recover the zero-tidal force Morris-Thorne wormhole. Real-
ity of the expansions further restrains thefunction to sat-

It is easy to verify that the key sign flip above guarantees thaitsfy b(r)<r so thatb’(ro)<1. The flare-outs of this unique

the vector fieldd . defined as patch one connect smoothly
with their definitions on patch two. Furthermore all the
inner-product relationgl5) are satisfied and the metr{69)

in this patch can still be decomposed in termd of, |_,,
and y,,p, just as in Eq(16). Their respective expansions are
calculated in a straightforward manner:

Q_ﬁ(l_

e

b(ry)

etZYSbValib: 2 r,

12
) . (80

throat with respect to either coordinate patch are

1
r—z(—b’(ro)+1)>0,

(83

so that the sphere of constant radiyss a throat satisfying
the simple flare-out condition and is therefore a marginally
anti-trapped surface. It follows immediately from the above
theorems, and in complete agreement with the standard
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analyses, that the NEC is either violated, or on the verge of 1 2m
being violated, at the throat. Note of course, that if these 15= 159‘”(1— T) ,0-0}, 12=(0,—e"%,0,0).
inequalities are strictly positive at any point on the throat, (85)
then these derivatives are strictly positive everywhere on the

the throat(by spherical symmetjand the throat satisfies the The expansions of the associated two sets of null rays are
strong flare-out condition everywhere and is therefore a
strongly anti-trapped surface. The NEC is strictly violated in
this case.

06 1 v 2m
0:=2y"Vlp=5€" 1——], (86)

D. Summary and

This worked example shows how important it is to distin- 2
guish the “center” of the wormhole, defined by looking at 0_=2y"Vyl_p=— e v, 87
the spatial behavior of a fixed time slice, from the throat of

the wormhqle, defined by the fIarg—out condition applied torespectively. Provided(r,v) is non-singulala good idea if
null geodesics that are actually trying to traverse the wWormMspere are to be no horizonghe only expansion which can
hole. _ _ _ have zeros isf, and 6,=0&2m(r,v)=r, so thatr

If the null geodesics ever succeed in getting through the:r(v) gives the time-dependent radius of the extremal
traversable wormhole, into the “other universe,” then theyS here.

must at some stage have passed a region where their expan-tpg fiare-out evaluated at this hypersurface is readily cal-
sion satisfied the flare-out condition, and this region is wha, || ted to bdd/du, =12V, =I" (d/dv)+1".(aldr)]
+Ya~ '+ +

we define to be the throat of the wormhole. By the analysis

of this paper, the NEC must be violated at or near this throat. de 2 am(r,v)
The “center” of the wormhole is the wrong place to look for hi =— e"’( i ) (88)
NEC violations, except in the static limit where the two du, 9,=0 r?(v) dv rv)

throats coalesce trapping the center between them.
The Einstein equations are easy to work out in this metric. At
VI. GENERAL TIME-DEPENDENT SPHERICALLY this throat of the wormhole, the null-null component yields
SYMMETRIC TRAVERSABLE WORMHOLE

am(r,v)
The most general metric describing a time-dependent (T) =47r°T,,, (89
spherically symmetric spacetime cafwith appropriate 6,=0
choice of an atlas of coordinate patchbs written as
so that
2m
—_—e2¥1—- —— 24 2 de
ds?=—e?’| 1 — | dv?+2e"dv dr + ~05T,.|, _o=0. ©0)
du, 6,=0 "
+r2(de%+sirfod¢?). (84)

) ) Once again, this throat will be simply flared if and only if the
Here ¢(v,r) andm(uv,r) are two independent functions of ny|| energy condition is violated, or on the verge of being
the radial coordinate and an advanced time-parameter yijolated, at the throat. If the violations are suspended at the
(v~t+r atlarger) [26]. This metric can also be adapted t0 throat, the hypersurface will not satisfy any flare-out condi-
describe an inter-universe wormhole. As in the preViOUS EXtion, and so ceases to be a thrqﬁtor instance, this is what
ample, the coordinate system employed covers only half thgccurs in Refs[21—25.) An entirely similar analysis can be
wormhole spacetime and so two patches will be required angarried out for the other coordinate patch. Again, there are

the radial coordinate [r,>), wherero(v) is again the are total of two time dependent throats and again, they coa-
center of the wormhole. We should then introduce four in-lesce into a single throat locatedratin the static limit.

dependent functionsy; , andm; , where the labels refer to

the two coordinat_e_ patches. These fur_mtions must satisfy a VII. DISCUSSION

smoothness condition atrq(v) if there is to be nad func-

tion material concentrated on the thr@#te extrinsic curva- We have presented a local geometric definition of a

tures should match across the center of the wormhole, sagormhole throat that generalizes the notion of “flare-out” to

[3)). an arbitrary time-dependent wormhole and is free from tech-
In the interest of brevity and notational economy, we will nical assumptions about global properties. Flare-out is mani-

focus on one of the two coordinate patches only. So considdested in the properties of light ray®ull geodesics that

one of the universes joined by the wormhole. A throat, whertraverse a wormhole: bundles of light rays that enter the

it exists, will be a sphere of radius=r, with the spatial wormhole at one mouth and exit from the other must have

metric given by Eq(70) with Q=1. The two independent cross-sectional area that first decreases, reaching a true mini-

sets of null vectors orthogonal to the sphere are found to bewum at the throat, and then increases. These properties can

given by be quantified precisely in terms of the expansitbn of the
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(future-directedl null geodesics together with its derivative in the spectrum of closed strings, then we find it actually
do. /du., where all quantities are evaluated at the two-worsens the violations of the NEC at the throats. More re-
dimensional spatial hypersurface comprising the throatcently it has been realized that time-dependence lets one
Strictly speaking, this flaring-out behavior of the outgoing move the energy condition violating regions aroundiine
null geodesics I(,) defines one throat: the “outgoing” [21-25. Temporary suspension of the violation of the NEC
throat. But one can also ask for the flaring-out property to beat a time-dependent throat also leads to a simultaneous oblit-
manifested in the propagation of the set of ingoing null geo-eration of the flare-out property of the throat itself, so this
desics (_) as they traverse the wormhole, and this leads onstrategy ends up destroying the throat and nothing is to be
to define a second, or “ingoing” throat. In general, these twogained. (See also[6].) In arriving at this conclusion it is
throats need not be identical, but for the static limit they docrucial to note that we have defined flare-out in terms of the
coalesce and are indistinguishable. expansion properties of light rays at the throat amd in
The flaring-out property implies that all wormhole throats terms of “shape” functions or embedding diagrams. While
are in factanti-trappedsurfaces, an identification that was the latter can certainly be used without risk for detecting
anticipated some time ago by Padd. With this definition  flare-out in static wormholes, they are at best misleading if
and using the Raychaudhuri equation, we are able to placapplied to dynamic wormholes. This is simply because the
rigorous constraints on the Ricci tensor and the stress-energgmbedding of a wormhole spacetime requires selecting and
tensor at the thro&) of the wormhole as well as in the lifting out a particular time slice and embedding this instan-
regions near the thro@. We find, as expected, that worm- taneous spatial three geometry in a flat EuclidBdn For a
hole throats generically violate the null energy condition andstatic wormhole, any constant time slice will suffice, and if
we have provided several theorems regarding this matter. the embedded surface is flared-out in the spatial direction
The nature of the energy-condition violations associatearthogonal to the throat, then it is flared-out in spacetime as
with wormhole throats has led numerous authors to try tovell. But if the wormhole is dynamic, flare-out in the spatial
find ways of evading or minimizing the violations. Most at- direction does not imply flare-out in theull directions or-
tempts to do so focus on alternative gravity theories in whictthogonal to the throat.
one may be able to force the extra degrees of freedom to
absorb the energy-condition violatiofisome of these sce-
narios are discussed [B], see als¢27,28)). But the energy ACKNOWLEDGMENTS
condition violations are still always present, as sweeping the The work of M.V. was supported by the US Department
energy condition violations into a particular sector surelyof Energy. Additionally, M.V. wishes to thank the members
does not make the problem go away. As a striking case iof LAEFF (Spain for their hospitality during early phases of
point, we have treated in detail the case of gravity plus torthis work and acknowledges interesting and constructive
sion. If we identify the torsion with that appearing naturally comments made by Sean Hayw##®].
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