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Dynamic wormholes, antitrapped surfaces, and energy conditions
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It is by now apparent that topology is too crude a tool to accurately characterize a generic traversable
wormhole. In two earlier papers we developed a complete characterization of generic but static traversable
wormholes, and in the present paper extend the discussion to arbitrary time-dependent~dynamical! wormholes.
A local definition of a wormhole throat, free from assumptions about asymptotic flatness, symmetries, future
and past null infinities, embedding diagrams, topology, and even time dependence is developed that accurately
captures the essence of what a wormhole throat is, and where it is located. Adapting and extending a sugges-
tion due to Page, we define a wormhole throat to be a marginally anti-trapped surface, that is, a closed
two-dimensional spatial hypersurface such that one of the two future-directed null geodesic congruences
orthogonal to it is just beginning to diverge. Typically a dynamic wormhole will possesstwo such throats,
corresponding to the two orthogonal null geodesic congruences, and these two throats will not coincide~though
they do coalesce into a single throat in the static limit!. The divergence property of the null geodesics at the
marginally anti-trapped surface generalizes the ‘‘flare-out’’ condition for an arbitrary wormhole. We derive
theorems regarding violations of the null energy condition~NEC! at and near these throats and find that, even
for wormholes with arbitrary time dependence, the violation of the NEC is a generic property of wormhole
throats. We also discuss wormhole throats in the presence of fully antisymmetric torsion and find that the
energy condition violationscannotbe dumped into the torsion degrees of freedom. Finally by means of a
concrete example we demonstrate that even temporary suspension of energy-condition violations is incompat-
ible with the flare-out property of dynamic throats.@S0556-2821~98!04916-9#

PACS number~s!: 04.20.Gz, 04.20.Cv, 04.40.2b
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I. INTRODUCTION

Traversable Lorentzian wormholes@1–3# have often been
viewed as intrinsically topological objects, with the topolog
cal nature of their spatial sections revealed graphically
means of embedding diagrams and ‘‘shape’’ functions as
ther ‘‘handles’’ in spacetime~intra-universe wormholes join
ing two distant regions of the same universe! or as
‘‘bridges’’ ~inter-universe wormholes linking two distinc
spacetimes!. Both of these types of wormhole give rise to th
notion of multiply connected universes and spatio-tempo
networks possessing a non-trivial topology@4#. More often
than not, global geometric constraints are imposed on
wormhole, as well as symmetry properties. For example,
static Morris-Thorne inter-universe wormhole is an exam
of this more restrictive class in that it requires exact spher
symmetry and the existence of two asymptotically flat
gions in spacetime@1#. As we have previously argued@5,6#
there are many other spacetime configurations and ge
etries that one might still quite reasonably want to classify
wormholes that either do not possess any asymptotically
regions, or have trivial topology, or exhibit both these fe
tures. An example of the former is provided by th
Hochberg-Popov-Sushkov self-consistent semi-class
wormhole ~which is a wormhole of the inter-universe typ
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joining up two spacetimes with no asymptotically flat spat
regions! @7#. Examples of the topologically trivial wormhole
@3# are provided by a closed Friedmann-Robertson-Wal
~FRW! spacetime joined to an ordinary Minkowski spac
time by a narrow neck or two closed FRW spacetimes join
by a bridge@5,6#.

The only difference between these two classes of wo
holes ~i.e. bridges and handlesversustopologically trivial!
arises at the level ofglobal geometry andglobal topology.
This suggests that it is important to identify a fundamen
local property that can be used to characterize what
means by a wormhole, an intrinsic property to be abstrac
from the broad phylum of wormholes which can then
used to unambiguously define what is meant by a wormh
Indeed, the local physics, that which is operative near
‘‘throat’’ of the wormhole, is insensitive to global propertie
and indicates that a local definition of what is meant by
wormhole throat is called for. This definition should b
based solely on local properties and be free from techn
assumptions about asymptotic flatness, future and past
infinities, global hyperbolicity, symmetries, embeddings a
topology.

In two previous papers@5,6# we have performed such a
analysis for static traversable wormholes. In this paper,
lift the static restriction and shall investigate the generic~not
necessarily static! traversable wormhole. We make no a
sumptions about symmetries, spherical or otherwise, nor
we assume the existence of asymptotically flat regions.
proceed, we first have to define exactly what we mean b
© 1998 The American Physical Society21-1
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DAVID HOCHBERG AND MATT VISSER PHYSICAL REVIEW D58 044021
wormhole and we find, just as in the treatment of the gen
static case@5,6#, that there is a natural localgeometric~not
topological! characterization of the existence and location
a wormhole ‘‘throat.’’ This characterization is developed
the language of the expansion of null geodesic congruen
propagating outward from, and orthogonal to, closed tw
dimensional spatial hypersurfaces~denotedS). The congru-
ence is subject to a ‘‘flare-out’’ condition that suitably ge
eralizes that of the Morris-Thorne analysis. But, unlike th
earlier definition@1,2#, ours makes no reference to embe
dings or shape functions. In this language, the spatial hy
surface in question will be a wormhole throat provided t
expansionu6 of one of the two orthogonal null congruenc
vanishes on that surface:u150 and/oru250, and if the
rate-of-change of the expansion along thesamenull direction
(u6) is positive-semi-definite at the surface:du6 /du6>0.
This latter constraint is precisely the ‘‘flare-out’’ conditio
generalized to an arbitrary wormhole. These two conditio
on the expansion define the throat to be a minimal hyper
face, i.e., an extremal surface of minimal area~with respect
to deformations in the appropriateu6 null direction!. Thus, a
wormhole throat is amarginally anti-trapped surface. His-
torically, Page@8# was the first to suggest that under suitab
circumstances a wormhole throat could be viewed as an a
trapped surface in spacetime, and we shall soon see tha
definition promises to be the most efficient and most phys
framework for generalizing the concept of throat to the fu
arbitrary and dynamic case.

While this definition captures the intuitive concept of
throat admirably, there can be cases calling for slight defi
tional refinements, for example, whendu6 /du6.0 is
strictly positive on the throat, in which case we are deal
with a strongly anti-trapped surface, as well as other case
for which weaker, averaged notions of flare-out will suffic

In general, the vanishing of the independent expansi
u150 andu250 will take place on two distinct hypersur
faces. Thus~dynamical! wormholes generally possesstwo
throats provided each hypersurface is individually flared-o
du1 /du1>0 on Su1 , and du2 /du2>0 on Su2 . Of
course, the two throats must~and they do! coincide in the
static limit.

With these definitions in place, we move on to develo
number of theorems about the existence of matter at or
the throat~s! violating the null energy condition~NEC!.
These theorems make repeated use of the Raychau
equation for the expansionsu6 . These results are local an
pointwise, in distinction to energy conditions obtained
averaging over inextendible null geodesics, which are glo
in nature. These energy theorems generalize the orig
Morris-Thorne result by demonstrating unequivocally th
the NEC is generically violated at some points on ornear the
two-dimensional hypersurface comprising the throat~s!. This
is an important result since these theorems hold for an a
trary dynamic or static wormhole irrespective of symmetr
or other global concerns and demonstrate that the en
condition violations are truly generic. Our results are~of
course! also completely in accord with the topological ce
sorship theorem of Friedman, Schleich, and Witt@9#.

The striking nature of the violations of the null energ
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condition discovered for the Morris-Thorne wormhole@1–3#,
has led numerous authors to try and find ways of evading
minimizing these violations. Most of these attempts focus
alternative gravity theories, be they Brans-Dicke, dilat
gravity, higher-derivative theories, etc. What all these ext
sions of Einstein gravity ‘‘accomplish’’ from a practica
point of view is to provide one with additional degrees
freedom ~beyond the metric!, which under certain circum-
stances can be coerced into absorbing the energy cond
violations~leaving the remaining ordinary-matter sector fr
to satisfy the classical energy conditions!. Nevertheless, the
total effective stress energy tensor will violate the null e
ergy condition at or near the throat, so sweeping the unav
able energy condition violations into a specific sector do
not make the problem go away. This important but oft
overlooked point has been treated in some detail in@6#. ~We
would be remiss in not warning the reader that a siza
fraction of the published papers claiming to build wormho
without violating the energy conditions suffer from seve
technical problems, and are often internally inconsistent.!

Similar comments apply of course to gravity plus torsio
although theories with torsion are distinguished from oth
variants of gravity by the fact that non-zero torsion gives r
to a non-trivial contribution to the Raychaudhuri equati
which cannotbe absorbed into an effective total stress e
ergy tensor. Moreover, torsion appears naturally~and un-
avoidably! in theories of gravity based on low-energy clos
string theories. These facts make it of interest to treat
torsion case separately and in some detail to assess the
ity of torsion to defocus~null! geodesics and to check th
status of the NEC for throats in the presence of torsion.
find that totally antisymmetric torsion actuallypromotesthe
energy condition violation at the throat~but helps to lessen i
away from the throat by generating twist!. Other attempts to
get around the energy-condition violations have led to c
siderations of time-dependent wormholes. In this domain
is indeed possible to temporarily suspend the violations,
only at the heavy expense of totally destroying the flare-
properties of the throat.

Since the Raychaudhuri equation with torsion is not st
dard textbook fare, we include a brief resume of torsion
Sec. II to establish the notation used in the rest of the pa
and provide a simple derivation of the generalized R
chaudhuri and the companion twist equations correspond
to the two independent null congruences in Sec. III. We th
define wormhole throats in terms of the expansions in S
IV and prove the coalescence of the two throats in the st
limit. Armed with these definitions, we go on to derive th
energy condition theorems for wormholes in normal spa
time as well as in the presence of torsion in Sec. V. Work
examples of dynamic wormholes are provided in Sec.
where, among other things, we show how the temporal s
pension of energy-condition violations eradicates the thro
Conclusions and a discussion of our results are collecte
Sec. VII.

II. GEOMETRIC PRELIMINARIES:
SPACETIMES WITH TORSION

In preparation for the derivation of the Raychaudh
equation governing the expansion in the presence of tors
1-2
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DYNAMIC WORMHOLES, ANTITRAPPED SURFACES, . . . PHYSICAL REVIEW D58 044021
and to establish the notation to be used throughout, we
lect here a few basic definitions and identities which w
prove useful later on.~Basic definitions regarding torsion ca
be gleaned from@10–12#, while an overview of torsion in the
string theory context can be extracted from@13#.!

As we are interested in keeping our discussion as gen
as possible, we endeavor to work in a coordinate-free
guage and to this end, shall make use of the abstract in
notation, later specializing when and if needed, to expl
coordinate systems. For the time being then, the use of lo
case latin letters designates abstract indices: (a,b,c, . . . )
and run from 0 to 3.~See Wald@14# for a discussion of the
subtleties associated with the use of ‘‘abstract indices.’’! Let
va be a covariant vector, its covariant derivative is

¹avb5]avb2Cab
c vc , ~1!

where Cac
b denotes the connection of the underlying fou

dimensional spacetime. In principle, the connection can
any ‘‘tensor’’ field guaranteeing that the covariant derivati
~1! based upon it satisfies all the usual properties~linear,
Leibnitz, etc.! @14#. However, we will not impose the
torsion-free condition, which means that the~total! connec-
tion can be decomposed as

Cab
c 5Gab

c 1Hab
c , ~2!

whereC(ab)
c 5 1

2 (Cab
c 1Cba

c )5Gab
c is the ordinary symmetric

Christoffel connection, depending on the metric in the us
way, while C[ab]

c 5 1
2 (Cab

c 2Cba
c )5Hab

c defines the torsion
which is manifestly anti-symmetric in its two lower indice

Due to the mixed symmetry of the connection, the co
mutator of the covariant derivative, which is used to defi
the curvature tensor, works out to be

@¹a ,¹b#vc5~22] [aCb]c
d 12C[auc

e Cb]e
d !vd22C[ab]

e ¹evc

5R̄ab,c
d~C!vd22Hab

e ¹evc , ~3!

where

R̄ab,c
d~C!522] [aCb]c

d 12C[auc
e Cb]e

d , ~4!

is the associated curvature tensor. The vertical bar within
antisymmetrization brackets indicates that one is to antis
metrize over the paira and b, but not c. We have distin-
guished the curvature with an overbar in order to empha
that this tensor is not the ordinary Riemann tensor, unless
torsion vanishes identically. Itis however the curvature as
sociated with a general connectionC. We note that the de
rivative of a vector couples directly to the torsion, as e
denced by the second term in the above identity~3!. The
torsion also shows up explicitly~and implicitly in the cova-
riant derivatives! in the commutator of two vector fields:

@v,w#b5va¹awb2wa¹avb22vawcHac
b . ~5!

Although Eq.~4! is not the standard Riemann tensor, it
related to it as follows:
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R̄ab,c
d~C!5Rab,c

d~G!2~¹̃aHbc
d 2¹̃bHac

d !12H [auc
e Hb]e

d ,
~6!

where the covariant derivatives of the torsion are calcula
with respect to the symmetric~Christoffel! part of the con-
nection only; that is,

¹̃aHbc
d 5]aHbc

d 2Gab
e Hec

d 2Gac
e Hbe

d 1Gae
d Hbc

e . ~7!

This identity~6! suggests that the torsion can be regarded
a dynamic field propagating over a normal Riemann
spacetime, i.e., may either be regarded as fundamentally
metric, as part and parcel of the connection~2!, or as a ‘‘mat-
ter’’ tensor field in a spacetime with a conventional symm
ric connection. We can make this latter association m
precise by writing the action from which we will infer th
corresponding equations of motion. We form the equival
of the Einstein-Hilbert action for the generalized curvatu
and allow for the presence of ordinary matter~every other
dynamical field imaginable except for the metric and to
sion!:

S52
1

16pE d4xA2gR̄~C!1E d4xA2gLmatter, ~8!

where the generalized scalar curvature isR̄(C)

5gacR̄ab,c
b(C) and is related to the scalar of Riemanni

curvature via

R̄~C!5R~G!2gbc¹̃bHac
a 2HabcH

abc, ~9!

which follows from~6! and using the covariant constancy

the metric¹̃agbc50, with respect to¹̃. ~Mathematically, it
is possible to consider even more general affine connect
for which the covariant derivative of the metric is not zer
The most general such affine connection is then a lin
combination of the Christoffel connection, the torsion tens
and a ‘‘non-metricality tensor.’’ We will not generalize ou
analysis to this level of abstraction as little seems to
gained, and there are good physics reasons for keeping
covariant derivative of the metric zero.!

Thus far, we have kept the treatment of the torsion par
the connection completely general. If we now identify t
torsion with the totally anti-symmetric rank-three fie
strengthH5dA, where A is a two-form potential, or in
terms of components

Habc5]aAbc1]bAca1]cAab , ~10!

then we have an explicit realization of torsion that is know
to arise naturally in closed string-theoretic low energy gra
ity @13,15,16#. In this particular incarnation as an antisym
metric rank-three tensor, the torsion is also known as
Kalb-Ramond field. From here on, when we refer to torsio
it will be of this form.

The equations of motion now follow immediately upo
varying the full action~8! with respect to the metric, torsion
and whatever other matter fields may be present. The e
tion of motion for the metric is given by
1-3
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DAVID HOCHBERG AND MATT VISSER PHYSICAL REVIEW D58 044021
Gab~G!5S Rab2
1

2
gabRD

58pTab13HadeHb
de2

1

2
gab HcdeH

cde, ~11!

whereTab is the complete stress-energy tensor for the ma
fields. We see that althoughH originates from the connec
tion, it can also be treated as simply an additional specie
matter and can therefore be shifted into an effective ma
stress tensor. However, it is of more than academic inte
not to do so at this stage. When we come to consider
expansion and twist of~null! geodesic congruences in spac
times with torsion, we will find that the torsion makes e
plicit non-dynamic contributions to the differential equatio
for the expansion and twist that cannot be re-defined aw
as it were, by invoking the equations of motion, or by red
fining the total effective stress energy tensor. Thus, it will
of interest to see what influence the torsion may have
focus and defocus bundles of null geodesics. The equatio
motion for the torsion that follows from varying Eq.~8! is
simply that

¹̃aHabc50. ~12!

Using the metric equation~11!, it follows that the Ricci ten-
sor obeys the equation

Rab58pFTab2
1

2
gabTG13HadeHb

de2gab ~HadeH
ade!,

~13!

while the scalar curvature is

R528pT2HadeH
ade. ~14!

III. NULL GEODESIC CONGRUENCES

We start by considering a compact two-dimensional
persurface that is both orientable and embedded into sp
time in a two-sided manner in such a way that the indu
two metric is spacelike. To discuss the null geodesic cong
ences orthogonal to this surface, we shall, following the
scription of Carter @17# begin by introducing a future
directed ‘‘outgoing’’ null vector l 1

a , a future-directed
‘‘ingoing’’ null vector l 2

a and a spatial orthogonal projectio
tensorgab satisfying the following relations:

l 1
a l 1a5 l 2

a l 2a50,

l 1
a l 2a5 l 2

a l 1a521,

l 6
a gab50,

gc
agcd5gad. ~15!

In terms of these null vectors and projector, we can deco
pose the full spacetime metric~indeed, any tensor! uniquely:

gab5gab2 l 2al 1b2 l 1al 2b . ~16!
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Physically, this decomposition leads to a parametrization
spacetime points in terms of two spatial coordinates~typi-
cally denotedx) plus two null coordinates@u6 , or some-
times (u,v)]. ~We do not want to prejudice matters by ta
ing the words ‘‘outgoing’’ and ‘‘ingoing’’ too literally, since
outside and inside do not necessarily make much sens
situations of nontrivial topology. The critical issue is that t
spacelike hypersurface must have two sides and1 and 2
are just two convenient labels for the two null directions.!

We consider the tensor fields defined by the covari
derivative of the future-directed null vectors~there is one
such tensor field for each null congruence!

Bab
6 [¹bl 6a , ~17!

and ask for their rate of change along the corresponding
geodesic parametrized with affine parameteru6 :

dBab
6

du6
[ l 6

c ¹cBab
6 5 l 6

c ¹c¹bl 6a

5 l 6
c ¹b¹cl 6a1 l 6

c @¹c ,¹b# l 6a

52¹bl 6
c ¹cl 6a1 l 6

c @¹c ,¹b# l 6a

52B6
b
c Bac

6 1R̄cb,a
d~C!l 6dl 6

c 22l 6
c HcbBae

6 .

~18!

This uses the fact that the parallel transport of a tang
vector along its corresponding geodesic vanishes:l 6

c ¹cl 6b

50 ~see technical comment below dealing with non-affi
parametrizations!, plus the commutator identity in Eq.~3!.

In contrast to the case of timelike geodesics, the ten
field Bab

6 is not purely spacelike but has in addition, mixe
null-spacelike components:

¹al 1b5ga
cgb

d¹cl 1d2 l 1bga
dl 2

c ¹dl 1c

5vab
1 2 l 1bga

dl 2
c ¹dl 1c , ~19!

and

¹al 2b5ga
cgb

d¹cl 2d2 l 2bga
dl 1

c ¹dl 2c

5vab
2 2 l 2bga

dl 1
c ¹dl 2c . ~20!

which define the purely spatial tensorsvab
6 5ga

cgb
d¹cl 6d ,

which admit the further decomposition as follows (gabgba
52):

vab
6 5

1

2
u6gab1sab

6 1vab
6 , ~21!

u65gabvab
6 5gab¹al 6b , ~22!

sab
6 5v ~ab!

6 2
1

2
u6gab , ~23!

vab
6 5v [ab]

6 , ~24!
1-4
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whereu6 is the trace ofvab
6 and provides the measure of th

instantaneous expansion of the cross-sectional area
bundle of null geodesics, whilesab

6 and vab
6 denote the

shear, and twist, respectively, and are also purely spatial
sors.

From these relations one may derive rate-of-change e
tions for the expansion, shear and twist with respect to
corresponding affine parametersu6 starting from Eq.~18!,
though we shall be primarily interested in the rate of chan
of the expansionu6 as this equation will play a fundament
role later on when we come to define a generic wormh
throat. So, taking the trace of Eq.~18! yields a generalized
version of the Raychaudhuri equation~generalized as it con
tains the effects of torsion! for the two expansions@one for
the (1) congruence, the other for the (2) congruence#:

du6

du6
52

1

2
u6

22s6abs6ab1v6abv6ab

2Rc
d~G!l 6

c l 6d22Hcb
d B6

d
bl 6

c 1HeacH
eadl 6

c l 6d .

~25!

With a view to applications for deriving the energy cond
tions associated with generic wormhole throats, it is usefu
have at hand the companion equation governing the rat
change of the twist along null geodesics. This is derived
going back to Eq.~18!, antisymmetrizing on the free indice
and projecting out the purely spatial part of the result
equation. These two operations yield a generalization of
twist equation@again, one for the (1) congruence, the othe
for the (2) congruence#:

dvba
6

du6
52u6vba

6 22s6
[a
c vb]c

6 1¹̃cHab
d l 6

c l 6d

1Hc[a
e Hb]e

d l 6
c l 6d22l 6cHc[b

e B6
a]e . ~26!

The term linear inH that appears in both the expansion a
twist equations is purely geometrical in origin, arising as
does, from the commutator of two torsion-bearing covari
derivatives~3!. The other torsion contributions are dynam
in origin, as these arise instead directly from the action a
equations of motion. These features distinguish the tors
from all other fields. Of course, in the absence of torsi
these reduce to the standard Raychaudhuri and twist e
tions, foru6 andv6, respectively@18,14#.

Technical aside: if one is working with a non-affine p
rameterization for the null congruences, then the para
transport equation becomesl 6

c ¹cl 6b5K6l 6b where K6

52 l 7
a l 6

b ¹bl 6a . The expansion is still given by the trace
the spatial part of¹al 6b and we have thatu65gabvab

6

5gab¹al 6b2K6 . The Raychaudhuri equation~25! will
then pick up an extra factor ofK6u6 @17#.

IV. DEFINITION OF GENERIC WORMHOLE THROATS

Our aim is to provide a precise, local, and robust geom
ric definition of a ~traversable! wormhole throat, equally
valid for static as well as time-dependent wormholes. A
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guide, we recall that in the generic butstaticcase, the throat
was defined as a two-dimensional hypersurface of minim
area@5,6#. The time independence allows one to locate t
minimal hypersurface entirely within one of the consta
time three-dimensional spatial slices, and the conditions
extremality and minimality can be applied and enforc
within that single time slice. For a static throat, variation
principles involve performing arbitrary time-independe
surface deformations of the hypersurface in the remain
spatial direction orthogonal to the hypersurface, which c
always be taken to be locally Gaussian. By contrast, in
time-dependent case, it may not be possible to locate
entire throat within one time slice, as the dynamic throa
an extended object in spacetime, and the variational princ
must be carried out employing surface deformations in
two independentnull directions orthogonal to the hypersu
face: say,du1 anddu2 . This, by the way, suggests why it i
that the embedding of the spatial part of a wormhole spa
time in an EuclideanR3 is no longer a reliable operationa
technique for defining ‘‘flare-out’’ in the time-depende
case. Of course, in the static limit these two variations w
no longer be independent and arbitrary deformations in
two null directions reduce to a single variation in th
constant-time spatial direction~see below!. Realizing that the
time-dependent wormhole typically has two non-coincide
throats was perhaps the major conceptual stumbling bloc
overcome in developing this formalism.

A. Preliminaries

In the following, we set up and define the properties
throats in terms of the null congruences. Bear in mind tha
throat will be characterized in terms of the behavior of
single set of null geodesics orthogonal to it. We define
wormhole throatSu1 ~there is also one for the other nu
congruence! to be a closed two-dimensional hypersurface
minimal area taken in one of the constant-u1 slices, where
u1 is an affine parameter suitable for parametrizing
future-directed null geodesicsl 1 orthogonal toSu1 . All this
means is that we imagine ‘‘starting’’ off a collection of ligh
pulses along the hypersurface and we can always arrang
affine parametrizations of each pulse to be equal to so
constant on the hypersurface; we take this constant to
zero. We wish to emphasize that there is a correspond
definition for the other throatSu2 . In the following, we
define and develop the conditions that both hypersurfa
must satisfy individually to be considered as throats, a
shall do so in a unified way by treating them together
employing the6 label. Our next task is to compute the h
persurface areas and impose the conditions of extrem
and minimality directly and to express these constraints
terms of the expansion of the null geodesics. The area
Su6 is given by

A~Su6!5E
Su6

Ag d2x. ~27!

An arbitrary variation of the surface with respect to d
formations in the null direction parametrized byu6 is
1-5
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dA~Su6!5E
Su6

dAg

du6
du6~x! d2x

5E
Su6

Ag
1

2
gab

dgab

du6
du6~x! d2x. ~28!

If this is to vanish for arbitrary variationsdu6(x), then we
must have that

1

2
gab

dgab

du6
50, ~29!

which expresses the fact that the hypersurfaceSu6 is ex-
tremal.

This condition of hypersurface extremality can also
phrased equivalently and directly in terms of the expans
of the null congruences. The simplest way to do so is
consider the Lie derivativeL l

6 acting on the full spacetime
metric:

L l
6gab5 l 6

c ¹cgab1gcb¹al 6
c 1gac¹bl 6

c 5¹al 6b1¹bl 6a

5B6
ba1B6

ab52B6
~ab! , ~30!

with the second equality holding provided the metric is c
variantly constant with respect to the full covariant deriv
tive, which is in fact the case, even in the presence of a
trary torsion. We now use the decomposition~16! of the
spacetime metric and work out the Lie derivative using
Leibnitz rule:

B6
~ab!5

1

2
L l

6gab5
1

2
L l

6~gab2 l 2al 1b2 l 1al 2b!,

5
1

2
L l

6gab2
1

2
@ l 2aL l

6l 1b1 l 1bL l
6l 2a1~a↔b!#,

~31!

from which, and using the properties in Eq.~15!, implies

u65gabB6
~ab!5gabB6

~ab!5gabvab
6 5

1

2
gabL l

6gab

5
1

2
gab

dgab

du6
. ~32!

So the condition that the area of the hypersurface be extre
is simply that the expansion of the null geodesics vanish
the surface:u650. To ensure that the area beminimal, we
need to impose an additional constraint and shall require
d2A(Su6)>0. By explicit computation,

d2A~Su6!5E
Su6

Ag S u6
21

du6

du6
D du6~x!du6~x!d2x

5E
Su6

Ag
du6

du6
du6~x!du6~x! d2x>0, ~33!
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where we have used the extremality condition (u650) in
arriving at this last inequality. For this to hold at the thro
for arbitrary variationsdu6(x), and since„du6(x)…2>0, we
must have

du6

du6
>0, ~34!

in other words, the expansion of the cross-sectional are
the future-directed null geodesics must be locally increas
at the throat. This is the precise generalization of the Mor
Thorne ‘‘flare-out’’ condition to arbitrary wormhole throats
This makes eminent good sense since the expansion is
measure of the cross-sectional area of bundles of null ge
sics, and a positive derivative indicates that this area is
cally increasing or ‘‘flaring-out’’ as one moves along the nu
direction. Note that this definition is free from notions
embedding and ‘‘shape’’ functions. So in general, we have
deal with two throats:Su1 such thatu150 anddu1 /du1

>0 andSu2 such thatu250 anddu2 /du2>0. We shall
soon see that for static wormholes the two throats coale
and this definition automatically reduces to the static c
considered in@5,6#. The logical development in the prese
paper closely parallels that of the static case though there
many technical differences.

The conditions that a wormhole throat be both extrem
and minimal are the simplest requirements that one wo
want a putative throat to satisfy and which may be summ
rized in the following definition~in the following, the hyper-
surfaces are understood to be closed and spatial!. Since these
definitions hold of course for both throats, we momentar
drop the distinction and suppress the6 label.

1. Definition: Simple flare-out condition

A two-surface satisfies the ‘‘simple flare-out’’ condition
and only if it is extremal, u50, and also satisfies du/du
>0. The characterization of a generic wormhole throat
terms of the expansion of the null geodesics shows that
two-surface satisfying the simple flare-out condition is
marginally anti-trapped surface, where the notion of trapped
surfaces is a familiar concept that arises primarily in t
context of singularity theorems, gravitational collapse a
black hole physics@14,18#. We hasten to point out howeve
that in the present context, identifying a wormhole throat
a marginally anti-trapped surface in no way, shape or form
meant to convey that we are dealing with horizons, appa
horizons, or singularities. Nor should this nomenclature s
gest that wormholes are somehow allied with or are ana
gous to black holes or white holes.~For some special case
where wormholes do have applications in black hole phys
see@6#.!

Generically, we would expect the inequalityd2A(Su)
.0 to be strict, so that the surface is truly a minimal~not just
extremal! surface. This will pertain provided the inequalit
du/du.0 is a strict one for at leastsomepoints on the
throat. This suggests the following definition.
1-6
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2. Definition: Strong flare-out condition

A two-surface satisfies the ‘‘strong flare-out’’ condition
the point x if and only if it is extremal,u50, satisfies
du/du>0 everywhere on the surface and if at the point,
the inequality is strict:

du

du
.0. ~35!

If the latter strict inequality holds for allxPSu in the sur-
face, then the wormhole throat is seen to correspond
strongly anti-trapped surface. Again, this terminology is not
intended to convey any relation between wormholes
black holes. The physical distinction between simple a
strong flare-out will become evident when we come to
plore the consequences these definitions have on the en
conditions required to maintain a generic traversable wo
hole throat. It is sometimes sufficient and convenient to w
with a weaker, integrated form of the flare-out condition.

3. Definition: Averaged flare-out condition

A two-surface satisfies the ‘‘averaged flare-out’’ cond
tion if and only if it is extremal,u50, and

E
Su

Ag sgn S du

duDd2x.0, ~36!

where sgn(x) is the sign ofx. This averaged flare-out con
dition places a constraint on the putative throat by ask
that the extremal surface be outward flaring over at least
its area before one can be justified in calling it a wormh
throat. This definition has been carefully constructed to
main invariant under arbitrary affine reparametrizations
the null geodesic congruence. An apparently plaus
alternative to the above, using the integralI
[*Su

Ag (du/du)d2x, is deficient in that if the integrand

du/du changes sign anywhere on the surfaceS then by ap-
propriate affine reparametrizations of the null geodesic c
gruence the integral may be made arbitrarily positive or
bitrarily negative @19#. ~Thus if one were to require th
integralI to be positive for all affine parametrizations, on
would simply recover the strong flare-out condition, while
we were to merely require that the integralI be positive for
at least one choice of affine parameterization we would h
the extremely weak constraint thatdu/du be positive for at
least one point on the surfaceS. Either option though math
ematically consistent is physically unreasonable, and
definition in terms of the sgn function is the best interme
ate strength definition we have found. This comment a
implies that constraints on weighted averages of the fo
*Su

Ag f (x) (du/du)d2x are too subject to reparametriz
tion effects to be useful.!

The conditions under which the average flare-out are
propriate arise for example for situations with multiple thro
wormholes. Indeed, suppose we have a double throat wo
hole where each of the two throats are flared-out in
strong sense. Then the spacetime between the throats
tains an extremal hypersurface which is not minimal, b
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which can be minimal in the integrated, averaged sen
~See, e.g.,@5,6#.! Independently from this, averaged flare-o
conditions of various types crop up in energy conditions
eraged over the hypersurface@5,6#.

Finally, it is also useful to define a weighted flare-o
condition.

4. Definition: Averaged f-weighted flare-out condition

A two-surface satisfies the ‘‘f-weighted flare-out’’ cond
tion if and only if it is extremal,u50, and

E
Su

Ag f ~x! sgn S du

duDd2x.0, ~37!

where f is a positive definite function defined on the tw
surface.

Note that the strong flare-out condition implies both t
simple flare-out condition and the averaged flare-out con
tion, but the simple flare-out condition does not necessa
imply the averaged flare-out condition~the integral might
vanish!. However, we see that if the averagedf -weighted
flare-out condition is satisfied for all positive definitef , then
it implies the simple flare-out condition, which follows from
identifying f (x)5du(x)2>0 and using the minimality con
straint ~33!.

5. Technical aside: degenerate throats

A class of wormholes for which we have to extend the
definitions arises when the wormhole throat possesses a
cidental degeneracy in the expansion of the null geodesic
the throat. The above discussion has been tacitly assum
that in the vicinity of the throat we can Taylor expand t
expansion

u~x,u!5u~x,0!1uS du~x,u!

du U
u50

D 1O~u2!, ~38!

with the constant term vanishing by the extremality co
straint and the first derivative term being constrained by
flare-out conditions.

Now if the extremal two-surface has an accidental deg
eracy with the first derivative term~and possibly higher-
order terms! vanishing identically, then we would have t
develop the above expansion further out to the first n
vanishing term. This would mean we would have to r
phrase the flare-out in terms of these higher-order derivat
of the null geodesic expansion. In fact, the first no
vanishing term would appear at odd order inu:

u~x,u!5
u2N21

~2N!! S d2N21u~x,u!

du2N21 U
u50

D 1O~u2N!, ~39!

since the surface is by definition extremal. It must be odd
u otherwise the throat would be a point of inflection and n
a true minimum of the area. Simply put, even-order surfa
deformations involve odd-order derivatives of the expansi
We can see this in another way by computing higher-or
variations in the area. The condition that it be a minimum
1-7



o

ou

m

le

d

g

in

al

rm
au
n
t i
bl
ole

o
ith
gl
-
in

-

a

t in
e

ic

-
ela-

e

nd

e to
di-

v-
-
the
rm-

e
sor

ts

at
r
by
.

sic

DAVID HOCHBERG AND MATT VISSER PHYSICAL REVIEW D58 044021
d2NA~Su!5E
Su

Ag
d2N21u

du2N21 „
du~x!…

2N d2x.0, ~40!

which leads to the flare-out condition being stated in terms
the (2N21)-th derivative of the expansion. Note: forN
51, this reduces to the minimality constraint in~33!. This
motivates the following definition.

6. Definition: N-fold degenerate flare-out condition

A two-surface satisfies the N-fold degenerate flare
condition if and only if it is extremal,u50, the first (2N
22) u-derivatives ofu vanish, „d2N21u(x,u)/du2N21

…>0
everywhere on the surface and if finally, for at least so
point x on the surface, the inequality is strict:

d2N21u

du2N21
.0. ~41!

Physically, at anN-fold degenerate point, the wormho
throat is seen to be extremal up to order 2N21 with respect
to the derivatives of the expansion, i.e., the flare-out con
tion is delayed in the~outgoing! null direction with respect to
throats in which the flare-out occurs atN51, which ~by the
way we have set up the definition! corresponds to the stron
flare-out condition.

These considerations bring us to the following surpris
result already alluded to above: namely, there is noa priori
reason for the two independent null variationsdu1 ,du2 to
single out thesameminimal hypersurface. That is, in gener

Su1ÞSu2 , ~42!

and we must conclude that generic time-dependent wo
holes possess two throats. If these hypersurfaces are in c
contact then it will be possible to enter the wormhole via o
throat and exit through the other. If the two throats are no
causal contact then the wormhole is not two-way traversa
and you have at best two one-way traversable wormh
with no way of getting back to where you started from.

B. Static limit

In a static spacetime, a wormhole throat is a closed tw
dimensional spatial hypersurface of minimal area that, w
out loss of generality, can be located entirely within a sin
constant-time spatial slice@5,6#. Now, for any static space
time, one can always decompose the spacetime metric
block-diagonal form as

gab52VaVb1 ~3!gab , ~43!

whereVa5exp@f#(]/]t)a is a timelike vector field orthogo
nal to the constant-time spatial slices andf is some function
of the spatial coordinates only. In the vicinity of the thro
we can always set up a system of Gaussian coordinatesn so
that

~3!gab5nanb1gab , ~44!
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wherena5(]/]n)a, nana511, andgab is the two-metric of
the hypersurface. Putting these facts together implies tha
the vicinity of any static throat we may write the spacetim
metric as

gab52VaVb1nanb1gab . ~45!

But Eq. ~16! holds in general, so comparing both metr
representations yields the identity

2 l 2
a l 1

b 2 l 1
a l 2

b 5VaVb1nanb, ~46!

and the following ~linear! transformation relates the two
metric decompositions and preserves the inner-product r
tions in Eq.~15!:

l 2
a 5

1

2
~Va1na!, l 1

a 5
1

2
~Va2na!. ~47!

Since the throat is static,gab is time independent, henc
when we come to vary the area~27! with respect to arbitrary
perturbations in the two independent null directions we fi
that

]gab

]u1
du15

1

2S exp @f#
]gab

]t
dt1

]gab

]n
dnD5

1

2

]gab

]n
dn,

]gab

]u2
du25

1

2S exp @f#
]gab

]t
dt2

]gab

]n
dnD

52
1

2

]gab

]n
dn. ~48!

Thus the variations are no longer independent, and reduc
taking a single surface variation in the spatial Gaussian
rection. So,u150⇔u250 at the same hypersurface, pro
ing that Su1

5Su2
in the static limit, and so static worm

holes have only one throat. An exhaustive analysis of
geometric structure of the generic static traversable wo
hole may be found in@5,6#.

With the definition of wormhole throat made precise w
now turn to derive constraints that the stress energy ten
must obey on~or near! any wormhole throat. The constrain
follow from combining the Raychaudhuri equation~25! with
the flare-out conditions, and using the Einstein equation~11!.
It is clear that these constraints apply with equal validity
both the1 and 2 throats, and in the following we cove
both classes simultaneously and without risk of confusion
dropping the6 labels. We first treat the zero-torsion case

C. Zero torsion

Since all throats are extremal hypersurfaces (u50) the
Raychaudhuri equation at the throat~25! reduces to

du

du
1sabsab528pTab l al b, ~49!

where we have used the Einstein equation~11! after setting
the torsion terms to zero and the fact that the null geode
1-8
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congruences are hypersurface orthogonal, so that the
vab50 vanishes identically on the throat. We make no cla
regarding the shear, except to point out that sincesab is
purely spatial, its squaresabsab>0 is positive semi-definite
everywhere~not just on the throat!. Consider a marginally
anti-trapped surface, i.e., a throat satisfying the simple fla
out condition. Then the stress energy tensor on the th
must satisfy

Tab l al b<0. ~50!

The NEC is therefore either violated, or on the verge
being violated (Tab l al b[0), on the throat. Of course
whichever one of the two null geodesic congruences (l 1 or
l 2) you are using to define the wormhole throat~anti-trapped
surface!, you must use thesamenull geodesic congruence fo
deducing null energy condition violations.

For throats satisfying the strong flare-out condition,
have instead the stronger statement that for all points on
throat,

Tabl
al b<0, and 'xPSu such that Tab l al b,0,

~51!

so that the NEC is indeed violated for at leastsomepoints
lying on the throat. By continuity, ifTab l al b,0 at x, then
it is strictly negative within a finite open neighborhood ofx:
Be(x). For throats that are strongly anti-trapped surfaces,
derive the most stringent constraint stating that

Tab l al b,0 ;xPSu , ~52!

so that the NEC is violatedeverywhereon the throat.
Weaker, integrated energy conditions are obtained

throats satisfying the averaged flare-out conditions. Fo
throat that is flared-out on the average, integrating the R
chaudhuri equation~49! over the throat implies

E
Su

Ag sgn~Tab l al b!d2x,0, ~53!

indicating that the NEC, when averaged over the throat
strictly violated ~Warning: this has nothing to do with th
violation of the averaged null energy condition, or ANEC.
the ANEC, the averaging is defined to take place along
extendible null geodesics. See, in particular,@9#.! By the
same token, throats satisfying thef -weighted averaged flare
out condition imply that

E
Su

Ag f ~x! sgn~Tab l al b! d2x,0, ~54!

indicating that the sign of the NEC, when weighted with t
positive definite functionf (x) is strictly violated on the av-
erage over the throat.

What can we say about the energy conditions in the
gion surrounding the throat? This requires knowledge of
expansion, shear, and twist in the neighborhood of the thr
04402
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Luckily, we can dispense with the twist immediately. Indee
the ~torsion-free! twist equation~26! is a simple, first-order
linear differential equation:

dvba

du
52uvba22s [a

c vb]c , ~55!

whose exact solution~if somewhat formal in appearance! is

vab~u!5exp S 2E
0

u

u~s!dsD U a
c~u! U b

d~u!vcd~0!,

~56!

where the quantityU(u) denotes the path-ordered expone
tial

U a
c~u!5P exp S 2E

0

u

s dsD
a

c

. ~57!

So, an initially hypersurface orthogonal congruence rema
twist-free everywhere, both on and off the throat:vba(0)
50⇒vba(u)50. Then the equation

du

du
1

1

2
u21sabsab528pTab l al b, ~58!

is seen to be valid for allu. Coming back to simply-flared
throats, we have two pieces of information regarding
expansion: namely thatu(0)50 and@du(u)/du#u50>0, so
that if we expandu in a neighborhood of the throat as in E
~38!, then we have that

du~u!

du
5

du~u!

du U
u50

1O~u!, ~59!

so over each pointx on the throat, there exists a finite rang
in affine parameteruP(0,ux* ) for which du(u)/du>0.
Since bothu2 andsabsab are positive semi-definite, we con
clude that the stress energy is either violating, or on
verge of violating, the NEC along the partial null curve$x%
3(0,ux* ) based atx. If the throat is of the strongly flared
variety, then we see that the NEC is definitely violated
least over some finite regions surrounding the thro
øx$x%3(0,ux* ), and including the base pointsx. For
strongly anti-trapped surfaces, the NEC is violated eve
where in a finite region surrounding the entire throat, a
including the throat itself.

Finally, if the throat isN-fold degenerate~and N.1),
then there exist pointsx on the throat for which
(d2N21u(x,u)/du2N21)uu50.0. This implies that the first
derivative

du~x,u!

du
5

~2N21!u2N22

~2N!!

d2N21u~x,u!

du2N21 U
u50

1O~u2N21!,

~60!

is positive along a partial null curve$x%3(0,ux* ) based atx
and it follows by Eq.~49! that the NEC is violated along th
finite ‘‘bristles’’ øx$x%3(0,ux* ).
1-9
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TABLE I. Summary of the flare-out conditions for wormhole throats; all quantities are evaluated o
throat. The flare-out conditions are understood to apply to both throats, and we drop the6 label.

Flare-out condition Expansion Constraints on the throat

Simple u50 du
du >0

Strong u50 du
du >0, and'xPSu

du
du.0

Strongly anti-trapped u50 ;xPSu , du
du.0

Averaged u50 *Su
Ag sgn (du

du)d2x.0
f -averaged u50 *Su

Ag f (x) sgn (du
du)d2x.0, for an f (x)>0

N-fold degenerate u50
dmu

dum
50, for m51,•••,2N22 and

d2N21u

du2N21
>0
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D. Non-zero H-torsion

Torsion, although contributing additional terms to t
Einstein~11! and Raychaudhuri equations~25! does not nec-
essarily alleviate the problem of the violation of the NEC
or near wormhole throats. This state-of-affairs holds at b
throats so without loss of generality, take the (1) throats and
consider the term linear inH that appears in Eq.~25!. This
can be simplified as follows:

l 1
c Hcb

d B1
d
b5 l 1

c Hcb
d ~vd

1b2 l 1
b gd

el 2
c ¹el 1c!,

5 l 1
c Hcb

d vd
1b ~61!

since the mixed spatial-null components ofB1
d
b are orthogo-

nal to Hcb
d , and by virtue of the latter’s antisymmetry

projects out the twist from the purely spatial tensorvd
1b .

Now consider an initially hypersurface orthogonal null co
gruence, then at the throat of the wormhole we have

du1

du1
1s1abs1

ab528pTab l 1
a l 1

b 22HadeHb
de l 1

a l 1
b ,

~62!

after using the expression for the Ricci tensor in Eq.~13!.
We could now run through the list of flare-out conditio

~see Table I! as before and we would obtain, as expect
constraints on the combination of stress energy and tor
appearing on the right-hand side of Eq.~62!. Thus, for a
simply-flared throat, or marginally anti-trapped surface,
must have

4pTab l 1
a l 1

b 1HadeHb
de l 1

a l 1
b <0, ~63!

at the throat and one might propose sweeping the violat
into the torsion sector. We will find that this is not possib
For illustrative purposes, suppose we consider the ansat

Habc5
1

A2g
eabcew

e~x!, ~64!

for any vector fieldwe. Then the combination

HadeHb
de l 1

a l 1
b 512~wal 1a!2>0, ~65!
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is positive definite for allw. Such a torsion-field aggravate
the violation of the NEC and all of the above constraints
the stress tensor derived at and near the throat in the z
torsion case apply as well to throats in the presence of
class of non-zero torsion. Actually, with a little more work,
is possible to relax the assumption of total antisymmetry a
demonstrate thatall torsion leads to enhanced violation o
the NEC. To see why this comes about first consider
general decomposition of an arbitrary antisymmetric ra
two tensorAab52Aba in terms of null vectors and spatia
projector. We find that we can write

Aab5al2[al 1b]1g [a
c gb]

d Acd12l 2[al 1
c gb]

d Adc

12l 1[al 2
c gb]

d Adc , ~66!

where the coefficienta522l 2
c l 1

d Acd . Now evaluate this for
Ade5 l 1

a Hade. One finds thata522l 2
a l 1

b l 1
c Hcab50. The

third term above also vanishes sincel 2[agb]
d l 1

c l 1
e Hedc50,

which leaves us with

Aab5Ãab12l 1[al 2
c gb]

d Acd , ~67!

where Ãab5g [a
c gb]

d Adc is a purely spatial tensor. Now, th
square of Eq.~67! involves only the purely spatial compo
nents:

AdeA
de[ l 1

a Hadel 1
b Hb

de5ÃdeÃ
de>0, ~68!

and this is precisely the combination appearing in Eq.~63!.
Thus, the torsion terms cannot be made to absorb any en
violations. On the contrary, torsion tends to focus null ge
desics. While the ‘‘normal’’ stress energy must continue
violate ~or be on the verge of violating! the NEC on the
throat, the presence of any non-zero torsion does ac
lessen the violation off the throat. This is simply becau
torsion acts as a source of the twist, and even if the tw
vanishes on the throat, nonvanishing twist is eventually g
erated in the neighborhood surrounding the throat, as ca
appreciated by examining Eq.~26!, and twist comes in with
the just the right sign in the Raychaudhuri equation.
course, without further input, we have no way of knowing
this happens in the region near the throat or far away fr
1-10
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the throat. If it occurs near the throat, then the energy vio
tions in that region might be~partially! absorbed into the
twist, but the violation persists nonetheless.

V. CONFORMALLY EXPANDING MORRIS-THORNE
WORMHOLE

We shall illustrate these basic concepts and constr
with the following explicit example. Consider the time
dependent spherically symmetric inter-universe wormh
described by a pair of coordinate patches in which the me
takes the form

ds25V2~ t !S 2dt21
dr1,2

2

12b~r 1,2!/r 1,2

1r 1,2
2 @du21sin2u df2# D . ~69!

This metric is conformally related to a zero-tidal force inte
universe Morris-Thorne wormhole by a simple tim
dependent but space-independent conformal factor@20–22#.
~Other versions of time-dependent wormholes are discus
in @23–25#.! Each coordinate system used to exhibit the m
ric given above covers only half the wormhole spacetim
and there are two radial coordinates,r 1 and r 2, each of
which runs only fromr 0 to infinity, wherer 0 is obtained by
solving the implicit equationb(r 0)5r 0. See@1,3#. The two
radial coordinates cover two distinct universes and ove
only at r 15r 05r 2 which defines thecenterof the wormhole
~we will find that the center coincides with the throat only
the static limit!. For simplicity this wormhole is taken to b
symmetric under interchange of the two asymptotically
regions but this is not essential to the analysis.

It should be clear that we look for throats withineach
coordinate patch separately. We will see below that for s
able energy conditions, the above metric corresponds
wormhole with two time-dependent throats, each throat
siding in one of the two universes joined by the wormho

A. First coordinate patch

The throats, when and if they exist, will be located
spheres of~instantaneous! radii V(t)r 1 ~wherer 1>r 0) pos-
sessing the spatial metric~written in block-diagonal form!

g1ab5V2 r 1
2 S 0 0

0 F1 0

0 sin2uG D . ~70!

We can easily find a set of two independent null vect
orthogonal to the spheres in this patch; they are given b

l 6
a 5

1

A2V
S 1,6S 12

b~r 1!

r 1
D 1/2

,0,0D , ~71!

and it is easy to verify that all the inner-product relatio
~15! are satisfied and that the metric~69! in this patch can be
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decomposed in terms ofl 1a ,l 2a ,g1ab just as in Eq.~16!.
The expansions of these null geodesics are calculated
straightforward manner:

u65g1
ab¹al 6b5A2

V̇

V2
6

A2

r 1VS 12
b~r 1!

r 1
D 1/2

, ~72!

where the overdot stands for the derivative with respec
~conformal! time t. The derivatives, taken with respect to th
affine parameter, used for testing for flare-out a
(du1 /du15 l 1

t ]u1 /]t1 l 1
r ]u1 /]r ), etc.,

du6

du6
5

1

V2F S V̈

V
22

V̇2

V2D 7
V̇

r 1VS 12
b~r 1!

r 1
D 1/2

2
1

r 1
2S 12

b~r 1!

r 1
D1

1

2r 1
2S 2b8~r 1!1

b~r 1!

r 1
D G .

~73!

Now we can search for throats in this patch. First w
locate the extremal hypersurfaces; these coincide with
zeroes of the expansions:

u650⇔ 1

r 1
S 12

b~r 1!

r 1
D 1/2

57
V̇

V
, ~74!

which defines the time-dependent throat radiusr 1* (t) implic-
itly. We note that the factor involving the square root
always positive semi-definite, hence we find that~in the r 1
coordinate patch! it is only u2 that can vanish for an expand

ing (V̇.0) background, while it isu1 that can vanish for a

collapsing (V̇,0) background. There is, therefore, alwa
only one extremal hypersurface in the first patch.

Irrespective of expansion or collapse, the flare out eva
ated on that extremal hypersurface works out to be

du6

du6
U

u650

5
1

V2S F V̈

V
22

V̇2

V2G
1

1

2r 1* ~ t !2F2b8„r 1* ~ t !…1
b„r 1* ~ t !…

r 1* ~ t !
G D .

~75!

The flare out of the hypersurface is a function of time. No
that the second grouped term on the right-hand side is alw
greater than or equal to zero while the first grouped term c
in principle, have any sign, depending on the nature of
background expansion~or contraction!. This observation was
proposed in@21,22# as a means of temporarily suspendi
the energy condition violations for dynamic wormhole
However, the Einstein tensor associated with the above m
ric ~69! can be easily worked out@21,22# and taking its pro-
jection along the radial null direction yields the combinati
1-11
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Gt̂ t̂1Gr̂ r̂58p~r12t1!

5V22S 2
b~r 1!

r 1
3 1

b8~r 1!

r 1
2

22
V̈

V
14

V̇2

V2D ,

~76!

wherer1 andt1 denote the energy density and radial tens
as seen by an observer in the proper reference frame. Ev
ate this atr 15r 1* (t) and compare it to Eq.~75! to conclude
that any conformal factor that is chosen so as to suspend
violation of the NEC, will at the same time eradicate t
flare-out condition:

~r12t1!>0⇔du6

du6
ur

1* ~ t !<0, ~77!

and the hypersurface atr 1* (t) will not be flared-out.In other
words, the extremal hypersurface will be a throat of the s
ply flared-out variety if and only if the NEC is violated or o
the verge of being violated there.

This is completely compatible with the topological ce
sorship theorem@9#. If one picks an ingoing radial null geo
desic along which the NEC is always satisfied, then by
above argument the expansion can never flare out, on
forced to continue moving inward, and so one cannot p
through a wormhole throat.

B. Second coordinate patch

Many of the results from the first coordinate patch can
carried over to the second coordinate patch with a few
flips in signs. The throats in this second patch, when an
they exist, will be located on spheres of~instantaneous! radii
V(t)r 2 ~with r 2>r 0) possessing the spatial metric~written
in block-diagonal form!

g2ab5V2 r 2
2 S 0 0

0 F1 0

0 sin2uG D . ~78!

We can easily find a set of two independent null vect
orthogonal to the spheres in this patch; they are given b

l 6
a 5

1

A2V
F1,7S 12

b~r 2!

r 2
D 1/2

,0,0G . ~79!

It is easy to verify that the key sign flip above guarantees
the vector fieldsl 6 defined as patch one connect smooth
with their definitions on patch two. Furthermore all th
inner-product relations~15! are satisfied and the metric~69!
in this patch can still be decomposed in terms ofl 1a , l 2a ,
andg2ab just as in Eq.~16!. Their respective expansions a
calculated in a straightforward manner:

u65g2
ab¹al 6b5A2

V̇

V2
7

A2

r 2VS 12
b~r 2!

r 2
D 1/2

. ~80!
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The search for throats in this second patch proceeds jus
above. For the location of the extremal hypersurfaces
now have

u650⇔ 1

r 2
S 12

b~r 2!

r 2
D 1/2

56
V̇

V
, ~81!

which now defines the throat radiusr 2* (t) implicitly. We
again note that the left-hand side is always positive se
definite, hence we find that it is nowu1 that vanishes for an
expanding background while it isu2 that vanishes for a col-
lapsing background~in this patch.!. Therefore, there is again
exactly one extremal hypersurface in this patch. Note t
because of the crucial sign flip, whichever of the two expa
sions it is that vanishes in coordinate patch one, it is
other expansion that will now vanish in patch two.

Because of the assumed symmetry between the
patches the rest of the analysis follows through without d
ficulty and we can again see that any conformal factorV that
is chosen so as to suspend the violation of the NEC, wil
the sametimeeradicate the flare-out condition at this seco
throat:

~r22t2!>0⇔ du6

dv6
U

r
2* ~ t !

<0. ~82!

Once again, this extremal hypersurface will be a throat of
simply flared-out variety if and only if the NEC is violated o
on the verge of being violated there.

@As indicated previously, the assumption that the wor
hole is symmetric under the interchange of the two asym
totically flat regions is not essential to the analysis. To g
eralize this point one just needs to choose two un-eq
shape functionsb1(r 1) andb2(r 2) that need be linked only
by the fact that they simultaneously satisfyb1(r 0)5r 0
5b2(r 0). It is now a simple exercise to go through the pr
ceding formulas making minor changes as appropriate.#

C. Static limit

In the static limit, we haveV̇50 and the simultaneou
vanishing of the expansions now occurs at the unique p
where the two coordinate patches overlap:b(r 0)5r 0, this
value being none other than the center of the wormho
therefore, the static wormhole has only one throat, and
throat coincides with the center of the wormhole. We th
recover the zero-tidal force Morris-Thorne wormhole. Re
ity of the expansions further restrains theb function to sat-
isfy b(r )<r so thatb8(r 0)<1. The flare-outs of this unique
throat with respect to either coordinate patch are

du6

du6
U

r 0

5
1

r 0
2
„2b8~r 0!11…>0, ~83!

so that the sphere of constant radiusr 0 is a throat satisfying
the simple flare-out condition and is therefore a margina
anti-trapped surface. It follows immediately from the abo
theorems, and in complete agreement with the stand
1-12
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analyses, that the NEC is either violated, or on the verge
being violated, at the throat. Note of course, that if the
inequalities are strictly positive at any point on the thro
then these derivatives are strictly positive everywhere on
the throat~by spherical symmetry! and the throat satisfies th
strong flare-out condition everywhere and is therefore
strongly anti-trapped surface. The NEC is strictly violated
this case.

D. Summary

This worked example shows how important it is to dist
guish the ‘‘center’’ of the wormhole, defined by looking
the spatial behavior of a fixed time slice, from the throat
the wormhole, defined by the flare-out condition applied
null geodesics that are actually trying to traverse the wo
hole.

If the null geodesics ever succeed in getting through
traversable wormhole, into the ‘‘other universe,’’ then th
must at some stage have passed a region where their ex
sion satisfied the flare-out condition, and this region is w
we define to be the throat of the wormhole. By the analy
of this paper, the NEC must be violated at or near this thr
The ‘‘center’’ of the wormhole is the wrong place to look fo
NEC violations, except in the static limit where the tw
throats coalesce trapping the center between them.

VI. GENERAL TIME-DEPENDENT SPHERICALLY
SYMMETRIC TRAVERSABLE WORMHOLE

The most general metric describing a time-depend
spherically symmetric spacetime can~with appropriate
choice of an atlas of coordinate patches! be written as

ds252e2cS 12
2m

r Ddv212ecdv dr

1r 2~du21sin2udf2!. ~84!

Here c(v,r ) and m(v,r ) are two independent functions o
the radial coordinater and an advanced time-parameterv
(v't1r at larger ) @26#. This metric can also be adapted
describe an inter-universe wormhole. As in the previous
ample, the coordinate system employed covers only half
wormhole spacetime and so two patches will be required
the radial coordinater P@r 0 ,`), where r 0(v) is again the
center of the wormhole. We should then introduce four
dependent functions:c1,2 andm1,2 where the labels refer to
the two coordinate patches. These functions must satis
smoothness condition atr 5r 0(v) if there is to be nod func-
tion material concentrated on the throat~the extrinsic curva-
tures should match across the center of the wormhole,
@3#!.

In the interest of brevity and notational economy, we w
focus on one of the two coordinate patches only. So cons
one of the universes joined by the wormhole. A throat, wh
it exists, will be a sphere of radiusr>r 0 with the spatial
metric given by Eq.~70! with V51. The two independen
sets of null vectors orthogonal to the sphere are found to
given by
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a 5F1,

1

2
ecS 12

2m

r D ,0,0G , l 2
a 5~0,2e2c,0,0!.

~85!

The expansions of the associated two sets of null rays a

u152guu¹ul 1u5
1

2
ecS 12

2m

r D , ~86!

and

u252guu¹ul 2u52
2

r
e2c, ~87!

respectively. Providedc(r ,v) is non-singular~a good idea if
there are to be no horizons!, the only expansion which can
have zeros isu1 and u150⇔2m(r ,v)5r , so that r
5r (v) gives the time-dependent radius of the extrem
sphere.

The flare-out evaluated at this hypersurface is readily c
culated to be@d/du15 l 1

a ¹a5 l 1
v (]/]v)1 l 1

r (]/]r )#

du1

du1
U

u150

52
2

r 2~v !
ecS ]m~r ,v !

]v D U
r ~v !

. ~88!

The Einstein equations are easy to work out in this metric.
this throat of the wormhole, the null-null component yield

S ]m~r ,v !

]v D U
u150

54pr 2Tvv , ~89!

so that

du1

du1
U

u150

>0⇔Tvvuu150<0. ~90!

Once again, this throat will be simply flared if and only if th
null energy condition is violated, or on the verge of bei
violated, at the throat. If the violations are suspended at
throat, the hypersurface will not satisfy any flare-out con
tion, and so ceases to be a throat.~For instance, this is wha
occurs in Refs.@21–25#.! An entirely similar analysis can be
carried out for the other coordinate patch. Again, there
are total of two time dependent throats and again, they c
lesce into a single throat located atr 0 in the static limit.

VII. DISCUSSION

We have presented a local geometric definition of
wormhole throat that generalizes the notion of ‘‘flare-out’’
an arbitrary time-dependent wormhole and is free from te
nical assumptions about global properties. Flare-out is m
fested in the properties of light rays~null geodesics! that
traverse a wormhole: bundles of light rays that enter
wormhole at one mouth and exit from the other must ha
cross-sectional area that first decreases, reaching a true
mum at the throat, and then increases. These properties
be quantified precisely in terms of the expansionu6 of the
1-13



e
o
a

ng
’
b

eo
on
wo
d

ts
s

la
er
e
-
n
r.
te
t

t-
ic

-

th
ely

o
lly

lly
re-
one

C
blit-
is
be

the

ile
ng
g if
the
and
n-

if
tion
as

al

nt
rs
f

tive

DAVID HOCHBERG AND MATT VISSER PHYSICAL REVIEW D58 044021
~future-directed! null geodesics together with its derivativ
du6 /du6 , where all quantities are evaluated at the tw
dimensional spatial hypersurface comprising the thro
Strictly speaking, this flaring-out behavior of the outgoi
null geodesics (l 1) defines one throat: the ‘‘outgoing’
throat. But one can also ask for the flaring-out property to
manifested in the propagation of the set of ingoing null g
desics (l 2) as they traverse the wormhole, and this leads
to define a second, or ‘‘ingoing’’ throat. In general, these t
throats need not be identical, but for the static limit they
coalesce and are indistinguishable.

The flaring-out property implies that all wormhole throa
are in factanti-trappedsurfaces, an identification that wa
anticipated some time ago by Page@8#. With this definition
and using the Raychaudhuri equation, we are able to p
rigorous constraints on the Ricci tensor and the stress-en
tensor at the throat~s! of the wormhole as well as in th
regions near the throat~s!. We find, as expected, that worm
hole throats generically violate the null energy condition a
we have provided several theorems regarding this matte

The nature of the energy-condition violations associa
with wormhole throats has led numerous authors to try
find ways of evading or minimizing the violations. Most a
tempts to do so focus on alternative gravity theories in wh
one may be able to force the extra degrees of freedom
absorb the energy-condition violations~some of these sce
narios are discussed in@6#, see also@27,28#!. But the energy
condition violations are still always present, as sweeping
energy condition violations into a particular sector sur
does not make the problem go away. As a striking case
point, we have treated in detail the case of gravity plus t
sion. If we identify the torsion with that appearing natura
tt
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tt.

,
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in the spectrum of closed strings, then we find it actua
worsens the violations of the NEC at the throats. More
cently it has been realized that time-dependence lets
move the energy condition violating regions around intime
@21–25#. Temporary suspension of the violation of the NE
at a time-dependent throat also leads to a simultaneous o
eration of the flare-out property of the throat itself, so th
strategy ends up destroying the throat and nothing is to
gained. ~See also@6#.! In arriving at this conclusion it is
crucial to note that we have defined flare-out in terms of
expansion properties of light rays at the throat andnot in
terms of ‘‘shape’’ functions or embedding diagrams. Wh
the latter can certainly be used without risk for detecti
flare-out in static wormholes, they are at best misleadin
applied to dynamic wormholes. This is simply because
embedding of a wormhole spacetime requires selecting
lifting out a particular time slice and embedding this insta
taneous spatial three geometry in a flat EuclideanR3. For a
static wormhole, any constant time slice will suffice, and
the embedded surface is flared-out in the spatial direc
orthogonal to the throat, then it is flared-out in spacetime
well. But if the wormhole is dynamic, flare-out in the spati
direction does not imply flare-out in thenull directions or-
thogonal to the throat.
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