PHYSICAL REVIEW D, VOLUME 58, 044020

Treating instabilities in a hyperbolic formulation of Einstein’s equations
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We have recently constructed a numerical code that evolves a spherically symmetric spacetime using a
hyperbolic formulation of Einstein’s equations. For the case of a Schwarzschild black hole, this code works
well at early times, but quickly becomes inaccurate on a time scale of @0, whereM is the mass of
the hole. We present an analytic method that facilitates the detection of instabilities. Using this method, we
identify a term in the evolution equations that leads to a rapidly growing mode in the solution. After elimi-
nating this term from the evolution equations by means of algebraic constraints, we can achieve free evolution
for times exceeding 10 080. We discuss the implications for three-dimensional simulations.
[S0556-282(198)00318-X
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[. INTRODUCTION the hole. For non-hyperbolic representations of general rela-
tivity such as the usual Arnowitt-Deser-Misn@DM) [10]
When solving Einstein’s equations as an initial valueformulation, the evolution equations are of no mathematical
problem, one considers spacetime as a foliation of spacelikeype for which well-posedness has been proven, and so the
hypersurfaces, or “slices.” Einstein’s equations then sepasuitability of these formulations for black hole excision must
rate into two types: constraint equations, which relate thde determined empirically on a case-by-case basis. It is in
dynamical variables on each particular slice, and evolutiorpart for this reason that much attention has been recently
equations, which describe how these variables propagafecused on hyperbolic representations of Einstein's equa-
from one slice to the next. The constraints are analogous thons[11-19.
the divergence equations in Maxwell’s theory, and the evo- A key stumbling block in numerical work, particularly in
lution equations are analogous to the curl equations. finite-difference solutions of initial value problems, is the
As in Maxwell's theory, the evolution equations admit tendency for numerical computations to become unstable.
solutions that violate the constraints. However, if the con-nstabilities have many origins, and the cause of any particu-
straints are satisfied on the initial slice and on all spatialar instability found in a numerical code is often difficult to
boundaries, then the evolution equations guarantee that tiilieduce. Furthermore, if the desired analytic solution is un-
constraints are satisfied elsewhere. This permits numeric&hown, it can be difficult to distinguish between an instabil-
solution schemes in which only the evolution equations aréty and a case in which the analytic solution simply grows
explicitly solved at each time step. without bound. Examples of the latter include systems that
Such “free evolution” schemes are desirable for severalevolve to physical singularitiege.g., Oppenheimer-Snyder
reasons. First, the constraints are typically nonlinear ellipticollapse evolved using geodesic slicingnd those that
equations, which are difficult and costly to solve on a com-evolve toward coordinate singularitiés.g., a Schwarzschild
puter, especially in the general case of three spatial dimerblack hole evolved with maximal time slicing, and several
sions. Second, a free evolution scheme allows one to tradkarmonic-slicing examples that become singular for certain
numerical errors by monitoring the constraints at each timehoices of the initial lapse functidr20,21]). When diagnos-
step. ing instabilities in numerical simulations, it is therefore pref-
For numerical evolution of black holes, an additional ad-erable to study instances in which the analytic solution is
vantage of a free evolution scheme is that one can, in prinknown and well-behaved.
ciple, excise a black hole from the spacetime and evolve only We distinguish between two types of instabilities: a type
the exterior region, and one can do so without imposing exin which the numerical finite-difference equations admit rap-
plicit boundary conditions on the horizon. This is the basisidly growing solutions that do not satisfy the underlying con-
for so-called “apparent horizon boundary condition” meth- tinuum differential equations and a type in which the con-
ods, which are thought to be crucial for long-term numericattinuum equations themselves admit growing modes that are
evolution of black hole spacetimgs—9|. However, excising absent in the desired solution but are excited by numerical
a black hole from a spacetime is known to be mathematicallyperturbations. An example of the former type, which we will
well-defined only if the evolution equations are hyperboliccall a numerical instability because it depends on the numeri-
and if the characteristic curves of the hyperbolic system areal finite-difference equations, is the well-known Courant in-
“physical,” that is, if they lie within the local light cone. In stability that can arise in explicit finite-difference solutions
this case, the structure of the equations guarantees that b hyperbolic partial differential equatiof®DES. The high-
information, including gauge information, can emerge fromfrequency modes that characterize a Courant instability do
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not satisfy the underlying differential equations. each ER evolution equation separately. For each equation,
The latter type, which we will call a “continuum” insta- we examine the free evolution of the ER variable governed
bility because the unstable mode satisfies the continuum diy that equation, treating all other ER variables as fixed and
ferential equations, commonly occurs in systems of equagiven by the Schwarzschild solution. We ask whether pertur-
tions that admit both well-behaved and growing solutions bations of the evolved ER variable about its Schwarzschild
Although one might be interested in the well-behaved soluvalue grow rapidly with time. We find that most of the ER
tion, the growing mode eventually dominates if it at any time€quations, when treated individually in this manner, are

acquires a nonzero amplitude via numerical errors. A simplétable, but that one of the ER equations is sensitive to a
example is the equation=v/9 with initial conditions continuum instability. A single term on the right-hand side of
P a =y the unstable equation is responsible for the growing mode.

y=1,y=—1/3. For these initial conditions the unique ana- |n Sec. V we construct a modified set of evolution equa-
lytic solution isy=e~"3, but a naive numerical integration tions that no longer contain this troublesome term. This is
of this problem is unstable as it proceeds forward in timedone primarily by using algebraic constraints to rewrite the
because numerical perturbations excite the growing solutioright-hand side of one equation. We find that numerical free
y=e"3, evolution of the modified set of equations remains accurate

For numerical solutions of Einstein's equations, a con-for times in excess of 10 000. This substantial improve-
tinuum instability may be due to a gauge mode excited byment indicates that the rapidly growing mode found by our
inaccuracies in numerically determined coordinate condianalysis in Sec. IV is the dominant instability afflicting free
tions. Or in the case of a free evolution scheme, it may beVvolution of the unmodified ER equations. In Sec. VI we
caused by a rapidly growing mode that satisfies the evolutiofliscuss our method of stability analysis and apply it to the
equations but violates the constraints. This latter case is po§iree-dimensional Einstein-Ricci equations, as well as to the
sible despite the fact that the evolution equations preservEinstein-Bianch[19] and ADM systems. We discuss the im-
the constraints, because in numerical computations neithdYications for three-dimensional free evolution schemes.
the evolution equations nor the constraints exactlysatis-
fied. Constraint-violating modes have been discussed in the Il. EQUATIONS
literature [22—24 but their importance for numerical free
evolution schemes remains controversial.

Eliminating a continuum instability often requires a dif- Here we summarize the fundamental variables and equa-
ferent approach than removing a numerical one, becaugg)ns used in the ER representation of general rE|atiVity. For
these two types of instability stem from quite different details of the ER formulation and a derivation of the equa-
sources. To remove a numerical instability, one must chang8ons, seq12,13.
the numerical algorithnfor details of the algorithm such as ~ We write the metric in the usual-81 form
the size of the time steqhat is used to solve the equations, . Co
so that this algorithm nF:) longer introduces growir?g modes. ds*= —det2+gij(dx'+,8'dt)(dx'+,8'dt), @)

To remove a continuum instability, one must either remove, ereN is the lapse functiong' is the shift vector, and;
the numerical perturbations that excite the undesired solutio ihe three-metric on a spatial hypersurface of c,onstta{Jnt
of the continuum equations, change the numerical scheme in pqfine the variables

order to damp out this solution, or modify the continuum
equations themselvegpossibly including the choice of .
gauge so that no growing solution is present. Kij=— ENilU’)Ogij ; (29

In this paper we examine instabilities in a numerical free
evolution code that solves a spherically symmetric black-

A. ER formalism

—N—15

hole spacetime. Our code, which has been described in detail Lij=N""doKij , (2b)
elsewherd7], is based on a hyperbolic formulation of gen- Mo =D.K.: (20
eral relativity[the “Einstein-Ricci” (ER) formulation] origi- kil kM
nally proposed by Choquet-Bruhat and Ydik2,13. For a=D;(In N) (2d)
short integration times our code performs well, but we show ! ' ’
in Sec. Il that for the case of a Schwarzschild black hole it =13

agi=N""dpaq;, (29

becomes unstable and terminates on a time scale of

(10-100M, whereM is the mass of the hole. This occurs a.=D.a.. (2f)

even in a gauge in which the analytic solution is regular at v

the horizon and time-independent. The rate at which our erHereD is the three-dimensional covariant derivative compat-

rors grow is independent of the numerical time discretizationple with the three-metrig;; , the time derivative operator is

At and the spatial discretizatiodr, suggesting that the

growth is due to a continuum instability rather than a nu- A 0

merical one. 9= at
In Sec. IV we present a method of analyzing the evolution

equations that facilitates the detection of continuum instabili-and £ denotes a Lie derivative. The quanily is the usual

ties. In the simplest application of this method we consideextrinsic curvature.
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The vacuum evolution equations for the general three- _ a, -
dimensional case can be found [ih2,13,7. The vacuum doar=N| (2M ;=M r—a,Ky) A2 T 5azgy dor
constraint equations include
0=§ij—Lij+HKij—2KikK}(—aiaj—aij , (46) +2KTaT ’ (7g)
OZL:+Kinij+aiai+a:, (4b) . N
) : (7OF:r:_KZ[Krrar+Mrrr]r (7h)
OZM]“_M”‘], (4C)
O=ag +Ha+M,], (4d) ol rr=— N[ KT+ 2Br(a,Ks+M7)], (7i)
Whereﬁij is the three-dimensional Ricci tensor formed from ., 't (L
the three-metriag;; . Equations(4a—(4c) follow from the JoM1r=N| Kr(ZM 1+ M;r+aKy) + 2Br ﬁ_LT
Gauss-Codazzi-Ricci equations for embedding a foliation
into a higher-dimensional space, and E4yd) follows from (o .
harmonic time slicing. Additional constraints that must be +Ki2Mp=Mr—aKy) |, (7D
satisfied at all times are the definitiof&c), (2d), and (2f),
and the usual relation betwedﬂ‘fij and derivatives og;; . J aM
~ r 201 rVirrr
aoarr:NEaOr+N —I'ragr+a K+ A2 Taay |,
B. Spherical symmetry (7K)
The spherically symmetric three-metric can be written in
the general form - N g
30801 = 37 7@ +N| 7 (2K =KJ)
(ds?=A2dr?+B?r?(d6%+sir? 6 d¢?), (5)
1
where ,6,¢) are the usual spherical coordinates. Define +a,| (a’~Ly) E_ZKKK;_BKT))
[r=2BrI'%, =2Brr?,, a, T
+-——=|3a,— 2|, + =—
2A2 2A2 A Br
TR -T: sir? 0Fr¢¢' Ui
6a) +2M K +ay 4ar—§”, (71
ar=a’y=a’, 6 p
aOMrrr = NELH + N[(ar_zr:r)l-rr +2KF(Krrar+ Mrrr)]u
Ly=L%=L?%,, (60)
(7m)
Kr=K’)=K%,, (6d) 5
dolyr =5 —Mp + —5K!)+
MFTEMrgﬁzMr¢¢l (66) dolre A2 &errr N| Ly (4Kt 5Kr) 8Mra,
M r 2M+, I’
MTrEMBHr:M¢¢rr (6f) +Tr; 3(ar—F{r)+B—rrT —%
where the subscripf denotes “transverse.” ; 2 ;
The evolution equations can be written in the form +2a, (3K1—K) +a, (10Kt —Ky)
doA=—NAK', (7a) — K, (5KI?—BKIK 1+ 2KT2)}, (7n)
doBr=—NBrKr, (7o) P
. ﬁOMrT:NELT+N[ZKT(arKT+2MrT)+arLT]v
oK =NL,,, (70) (70)
doK1=N(L1+2K+?), (7d) i N g aK]
R aoLTzﬁEMrT‘FN LTKr+ A2
doN=—N?(K[+2K), (7@
1
- +(Ly+ r— —2K,°
doa,=Nay, , (7f) (Lyr arr)(Kr KT) KZ 2Ky
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+2ar(KI+Kq)— 2K?K+ K3

M+ (T
+2K:KT2+ A—?(B—r:_4ar)

22 (B—rr+3ar—rhﬂ. (7p)

The constraint$4) become

1 J . )
a _a_rFrT+FrrFrT — Q4
+K(2Kt—K[) =L, =0, (8a)
! O 4TI T Ler?
2A2Br| ogr T T 2By
1 r
+W+KTKr_aT_LT:0, (8b)

er 2 r2 1 2
2LT+ ?"‘ZKT +Kr +2a-|—+ E(ar +a.”):0,

(80
Mir—M,=0,
(8d)
Mrrr
am+a42KT+KD+7§r+2MW=O.
(8¢)

The additional constraint&c), (2d), (2f), and the usual re-

lation betweeri“kij and derivatives of;; take the form

J
EKrr_ZF;rKrr_Mrrrzoa (8f)
J
oy K= Mir=0, (89
Ui
M= 55, (Ki—Kn)=0, (8h)
J .
E(In N)—a,=0, (8i)
| .
a1 oAz =0 ®)
(9 r
Ear_ a—I'a, =0, (8k)
(? r
S-A=AT}, =0, (8l)
d r
&—rBr—TrT=O. (8m)

PHYSICAL REVIEW [38 044020

I1l. FREE EVOLUTION OF THE ER SYSTEM
A. Method

We solve the spherically symmetric ER evolution equa-
tions (7) at every time step using the causal differencing
method described ifi7]. The constraints are satisfied on the
initial time slice but are not solved explicitly during the evo-
lution.

The inner boundary of the numerical domain is a surface
that remains within a grid spacing of the apparent horizon,
r=ry. Because the apparent horizon is an outgoing null or
spacelike surface, the hyperbolic evolution equations require
no boundary condition there. The outer boundary is an arbi-
trary spherical surface far from the black hole &atr ,,,,. At
the outer boundary, we use the “extended Robin” condition
discussed in7]. This outer boundary condition does not
properly handle wavelike behavior, but in practice it is ad-
equate for the cases shown here.

The lapse function can be freely specified on the initial
time slice, and is subsequently determined by the harmonic
time slicing conditionCJt=0. The shift is chosen to satisfy
the minimal strain equatiofi25]. This equation minimizes
the average change in the three-metric as one evolves from
one time slice to the next, and is used to provide a shift
vector that does not produce coordinate singularities. The
minimal strain equation requires two boundary conditions,
for which we choose

N
B’—K=O atr=rpy, 9

J
E(rzﬁ')=0 at r=ryay. (10)

The inner boundary condition ensures that at the apparent
horizon, the coordinates move outward at the local speed of
light, c=N/A. This prevents the coordinates from falling
into the black hole. The outer boundary condition ensures
that the shift falls off liker 2, in accordance with the time-
independent Schwarzschild solution written in harmonic slic-
ing [Egs. (11) below]. We use a feedback techniq(ig] to
keep the horizon near=2M.

B. Initial data

Our initial data are chosen on a time slice corresponding
to a well-behaved, fully time-independent harmonic foliation
of the Schwarzschild geometigf. Refs.[26—28). Such a
slice penetrates the event horizon without encountering a co-
ordinate singularity, and extends to the physical singularity
atr=0. With an appropriate choice of spatial coordinates on
the slice, all dynamical variables are time-independest
and are given by

- 2o 24]

B=1,

(113

(11b
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3042 2 3 4 FIG. 1. Thel, norm of A minus its analytic solution(113),
_ AN"M 6+ 18M + 35M + 40M + 56M shown as a function of time for five grid resolutions. The outer
e 4 r re rs r4 boundary is at,,=64M and the Courant factakt/Ar is 3/4. All
five plots terminate when the code crashes.
64M°>  48M°© ,
r5 + r_6 , (11|)
C. Results
4AN3M?2 5M 8M2 12M3 Figure 1 shows the error in the metric functidnas a
L -tz r—3} (11j))  function of time. We plot the quantityA—A2",, whereA?"
is the analytic value of\ given by Eq.(11a, and thd , norm
M =M, (11K) of a quantityq is defined by
16N4M 42\ 85M2  120M3 VE 1
= lal.=—5— (12)
L,= 5 [144— + 2 + 3 N
136M*  128v° 80M°© ] ] ] ] ) ]
Tt T s } (1)  The sum is over all grid points that contain valid déita.,
all grid points outside the horizgnThe quantity A— A, is
16N*M* [ M 4M3} shown for several different grid resolutions, each with the
L= 5 — = (11m)  same Courant factakt/Ar.
r rr At early times, the error irA varies with resolution like
NZM AM 12M2 O(Ar)z, as expected for our second-order convergent nu-
a=— [ +—t } (11  merical method. However, after about (10—BD}he error
r r r grows rapidly, approximately like* at late times. The
4 5 growth rate is independent of the grid resolution. Eventually,
- N*M 14 am N 12Mm (119  Whenerrors have become sufficiently large, the code crashes,
3 r rZ | typically because it fails to locate an apparent horizon.
It is common for numerical finite-difference schemes to
MN* 13M  56M2 40M3 48m° produce solutions with errors that grow as the truncation
ar=""3 PR ] 3 PR error accumulates. However, such growth is typically linear
(11p) in time, with a slope proportional toAt)? (for a second-
order schemg and can be easily defeated by increasing the
16M3N° 6M 24M2 24M°3 16M* resolution. In contrast, Fig. 1 shows a more rapid growth rate
aOr:r—S[ - r2 r3 pral that increases with time, indicating that we are observing

(119 something other than accumulating truncation errors.

In Fig. 2 we plot the error irA as a function of radius for
whereM is the mass of the black hole. One can explicitly several different times. The error is greatest near the horizon
check the time-independence of this solution by insertingand remains smooth in both space and time as it grows. The
Egs.(11) into the ER evolution equationd) and verifying  fact that our errors are largest near the black hole does not
that all time derivatives are zero. Note that E(fsl) satisfy  necessarily indicate that the instability is somehow associ-
the minimal strain shift condition, as does any time-ated with our treatment of the inner boundary; one expects
independent solution of Einstein’s equations. numerical errors to be greater for smaller values sfmply
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FIG. 2.
Ar/M=1/16 case shown in Fig. 1. The functidn- A2" is plotted

Error inA as a function of coordinate radius, for the
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FIG. 4. Thel, norm of the Hamiltonian constrairi8c) versus
time, shown for the same five cases as in Fig. 1.

at five times. The error grows rapidly but smoothly until the code

crashes.

because most quantities in Eqd41) behave like 17" with
positiven.
Other quantities behave much like the errofAinin Fig.

(111), and in Fig. 4 we plot the left-hand side of the Hamil-

grid resolution.
merical. Numerical instabilities typically grow like', where
At would make the instability groviasteras a function of

time, because integrating to a particular valuet eéquires
more steps. However, in Figs. 1-At is decreased with
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FIG. 3. Thel, norm ofL,, minus its analytic solutiol1l) as a
function of time, shown for the same cases as plotted in Fig. 1.

each finer grid resolution, but the growth rate is unaffected.
Similarly, at late times we see no change in the growth rate if
we varyAt while keeping the grid resolution fixed, as shown
in Fig. 5. Instead, fon\t— 0 our errors converge to a limit
(this is simply the limit in which numerical truncation error
3 we plot the error in_,, with respect to the analytic solution i dominated byAr instead ofAt).
Our results instead suggest that our code suffers from a
tonian constraint(8c). Both quantities are approximately continuum instability. In this case, the code should remain
second-order convergent, but at late times they increase rapecond-order convergent and the growth rate of errors should
idly (faster than linearlyin time at a rate independent of the depend only on the continuum equations and not on numeri-
cal parameters likAr or At. A smallerAt or Ar should not
Figures 1—4 suggest that the instability is not purely nuintensify the instability, but instead should improve our
simulations by virtue of reducing the numerical perturbations

instability one expects that reducing the time discretizatiofVith these expectations. . . o .
One possible source of a continuum instability is a rapidly

increasing constraint-violating solution of the evolution

T T T T T T T T4
L 3/4 |
0.1 E =
c 3/8 ]
FOAt/Ar = _____ 3/16 ]
i __ 3/32 i
0.01 | —-om 3/64 <
% 0001k -
< E :
= N ]
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;«q.\ ..... . :
-5 N -
: Ry -
C 1 \\IIIH\T// Ll 11T
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t/M

FIG. 5. Thel, norm of A—A?" versus time shown for five
different values ofAt, each withAr/M =1/16. The outer boundary
is atr=64M. At late times, the dominant error is independent of

At.
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equations that is being excited by numerical perturbationdnitial perturbation falls off with radius more slowly than
Another is a gauge mode that is not present in the analytie”"?'#), the perturbation grows exponentially with time; if
solution. In the case of a gauge mode, one would exped®<0 (assuming that the initial perturbation grows with ra-
gauge-invariant quantities to remain relatively unaffecteddius more slowly thare'R8), the perturbation decays.
while other quantities blow up. However, at late times, both  For the more realistic case of nonconst&and &, the
gauge-dependent quantities likg, (Fig. 3 and gauge- solution to Eq(14) is more complicated than E¢L5) and is
invariant quantities like the Hamiltonian constraiig. 4  considered in the Appendix. Nevertheless, one can roughly
increase rapidly with time at approximately the same rate. determine whether a given ER evolution equation is indi-
vidually stable by examining the sign of the functi®r)
IV. STABILITY OF INDIVIDUAL associated with that evolution equation.
EVOLUTION EQUATIONS Applying this criterion to the ER evolution equatio(i3,
_ . ) ) ... we find thatR(r) is everywhere negative for all but four of
To gain further insight into the nature of the instability, hese equations, indicating that these equations should be
we consider each ER evolution equation separately. For eadjape to small perturbations. The four remaining equations

evolution equation, we treat the ER variable governed by, e nositiveR(r), suggesting that they might be unstable.
that equation as freely evolving, but we fix the remaining ER\¢ R(r), denotes the functioR(r) associated with pertur-

variables to the analytic expressions given in EG). In bations of the variablg, then the four positivér(r are
this way we can study the stability of each individual evolu- v P (N

tion equation in the absence of all couplings to other equa-

, . e, . : 273
tions. Although this analysis will not shed light on any insta- = - ==
bilities that are caused by these couplings, it is likely that if RNy =ANKe M(1+2)(1+2°)’ (163
any of the evolution equations are found to be unstable indi-
vidually, they will remain unstable when coupled to the other z°
equations. R(r)a=2N KT:m,
We note that the method of analysis described below can (16h
also be used to examine coupled sets of equations as long as
the couplings do not arise from derivative terms—this is de- 3
scribed in more detail in the Appendix. However, we will see R(Nw.j=4NKr+ — B
that treating one equation at a time is sufficient for the case ” or
discussed here. 3 > 3
Let y represent any of the ER variables that evolve ac- _Z (2+32+fz +5222) , (160
cording to Eqs(7). If all ER variables other thag are con- 2M(1+2)%(1+Z%)
sidered known functions of, then the evolution equation for
y takes the form d
R(r)[L”]:N(4KT—5K{)+ZE,B
17 J
Y B Zry=Sly.r), 13 23(20+ 192+ 1872+ 177%)
- AM(1+2)%(1+2%)? (169

where the functior8(y,r) contains no derivatives of. If we
perturb the quantity about its time-independent solution by

writing y—y+£, then Eq.(13) yields, to first order irg, wherez=2M/r and the expressions in termsohave been

obtained from the analytic solutiofil).
P P We can test whether perturbations of individual evolution
—E—B(r) —E=R(r)¢, (14)  equations are indeed unstable by modifying our code so that
at ar a single dynamical variable may be evolved in time while all
other variables, including the shift, are held fixed to the ana-
lytic solution (11). We find numerically that all evolution
equations(7) are individually stable except Ed7n), the
equation forL,, .
n Our above analysis predicted that the equation should
be individually unstable because it is associated with a posi-
tive R(r). However, it also predicted that the;, a;, and
M, equations should be unstable for the same reason. As
shown by a more detailed analysis in the Appendix,Khe
ar, andM ; equations are stable because their correspond-
ing values ofR(r) are much smaller in magnitude than the
E(r,t)=&(r+Bt)ert, (15)  Vvalue ofR(r) associated with the,, equation.

The growing mode allowed by tHe,, evolution equation
whereéy(r) is the initial perturbation at=0. The stability is  (7n) can be described as a continuum instability: it depends
determined by the sign dR: If R>0 (assuming that the only on the equation itself and the equilibrium solution, and

whereR(r) does not depend oé

For each of the ER evolution equatio®) there is a
corresponding perturbation equation of the fofid). Each
perturbation equation has a different functiB(r) that de-
pends on the right-hand side of the corresponding evolutio
equation. We will see that the form &{(r) is what deter-
mines whether a particular evolution equation is individually
stable.

For the simple case in whicB(r) andR(r) are constants
and 8>0, the solution to Eq(14) onr e[2M,x] is
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not on numerics. The only role of numerics is to produce the We have found several methods of obtaining an individu-
initial perturbations that excite the unstable mode. ally stable evolution ofL,, . These all involve the use of
algebraic constraint equations, and some also employ a
change of variables. We have had the most success with the
following approach: First eliminate from Egs.(8c) and

A. Modifications for stability (17) to obtain

V. MODIFIED EVOLUTION EQUATIONS

The large positiveR(r) associated with perturbations of T -2—4A2
L,, originates from the ternNL, (4K;—5K;}) that appears rZBﬁ
on the right-hand side of the,, evolution equation(7n). r

This term must be modified if thie,, evolution equation is to Then write down the evolution equation for the quantif
be made individually stable. There are several ways to ac- q q %

complish this. and addN(4K;—5K[)/A? times Eq.(18) to the right-hand

One possibility is to change variables. If one evolvesSide yielding
some quantityQL,, instead ofL,, , whereQ is some com-

- arz_ Ay _AZ(KT2+ Kiz) —L,=0. (18

bination of the other ER variables, then perturbations of (‘;OL;ZEZ iM;rJFN 2K{L{+8M—gar
QL,, will be governed by Eq(14) with some new value of A® or A

R(r). By a careful choice of) one hopes to obtain a more r MT
favorable(more negativeR(r). For example, the evolution +M' | 3a,~T" + —| —2— T
equation for the quantityB%r?L,, vyields R(r)=N(2K; Br A“Br
—5K[)+2dB/dr, which is still positive but is slightly 1 T2
smaller in magnitude than E¢L6d). Similarly, the evolution +(5K;—4Ky) 822 (1— A2
equation forL; yieldsR(r) =N(2K—3K]). However, there

are two reasons why such a procedure is unattractive as the a,’ S ]
sole method of stabilizing thé,, equation. First, the ER Az (6K 4K+ 77 (2K +3K))

equations are linear ihj , Mikj , &jj, andag; (but nonlinear

in the other variables and evolvingQL,, whereQ is any-
thing other than the metric functions or the lapse would spoil
this linearity. Second, in order to mak&(r) nonpositive
everywhere by evolving the quanti®"r"L,. /A", it turns  Because we now evolve| instead ofL,, , we also choose to
out that the required value oh is large enough that evolve M;, instead ofM,,, . This preserves the symmetry
B"r"L,. /A™ grows withr, hampering our ability to impose between the_-M pairs of evolution equations that make up

an accurate outer boundary condition. _ _ wave equations. The evolution equation ff, is
Another approach is to use the constraint equations to

eliminate the troublesome term that appears on the right- . 9
hand side of theL,, evolution equation(7n). In order to 6’0M?r:NELHN[arL?+2K:Zar+4K£M:r]- (19b)
avoid changing the hyperbolic character of the evolution

equations, one must use only constraint equations that a‘i?volving M

. . ; - has an additional advantage: perturbations of
algebraic, that is, those that contain no derivatives. Fortqu governrerd by Eq(19b have a smallé](mcl)are negative
nately, many of the ER constraints are algebraic. For somg '’

constraints this is merely a result of spherical symmetry, buF(r) than perturbations o, governed by Eq(7m), and

; ; ;
several ER constraint equations are algebraic even in thie” perturbations ok, should decay more rapidly.

general case of three spatial dimensions plus time. In spheri-
cal symmetry, the algebraic constraints are Egs), (8d), B. Results
(88), (8h), and(8]) An additional alg.eprai.c ConStrain.t Ca.n be Figures 6—8 show thg norms of the error |m, the error
formed from Eqs(8a) and(8b) by eliminating the derivative iy |, and the Hamiltonian constraint for simulations in
of I'rr, yielding which we solve the modified evolution equatiof9) in
L 1 place of Eqs(7m) and (7n). The numerical method used in
L= 47 —Ki2+2ar— 7 (a+a,) these simulations is identical to the one used to integrate the
A A unmodified evolution equations in Sec. lll. We use a larger
2 P outer boundgry .radiusrmax=128\l/l, to suppress .outer
— =5+ =>5-275=0. (17 boundary difficulties that become important at late times.
B 2A"Br For the same grid resolution, our code integrates several
orders of magnitude farther in time when using the modified
Because we wish to modify thie,, term on the right-hand evolution equations than when using the unmodified ones.
side of Eq.(7n) for the case in which all variables except The large errors that grow on a time scale of (1@0)M in
are fixed to the analytic solution, the only relevant algebraid-igs. 1-5 are not present in Figs. 6—8. Instead, numerical
constraints are those that involg, , namely Eqs(8c) and  errors increase linearly with tim@r slower than linearlyfor
(7). over 10 000/ until difficulties associated with our treatment

+K7(2K[2+ 3KKI — 4K ;2) |. (193
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FIG. 6. Thel, norm of the error iPA versus time, computed for FIG. 8. Thel, norm of the Hamiltonian constraint versus time,

three resolutions using the modified evolution equations. The outeshown for the same three cases as in Fig. 6. There is no significant
boundary is at ,,,,=128M andAt/Ar=3/4. Fort=5M the growth  growth at late times.

is only linear in time, and the code runs much longer than for the

case shown in Fig. 1. what should be necessary for modeling interesting 3D astro-

physical problems such as black-hole binary coalescence.

of the outer boundary eventually halt the simulation.
The errors in all dynamical variables excdgtand Br
exhibit the same linear growth as seen in Figs. 6 and 7. The success of our free evolution scheme when solving
Errors inN andBr are instead dominated by outer-boundarythe modified ER equations is strong evidence that the grow-
effects that grow rapidly and eventually terminate our codeing continuum mode identified in Sec. IV is responsible for
Figure 9 shows the error in the lapse functidnat various the instability discussed in Sec. Il C. The key modification
times, plotted as a function of radius for several simulationgequired to suppress the instability was the removal of a term
with different outer boundary radiip,, but with the same on the right-hand side of thie,, equation, the very term that
grid resolutionAr and time discretizatiodt. Increasing the OUr analysis in Sec. IV singled out as problematic. Although
outer boundary radius suppresses the rapid growth of oute¥® have ?Iso improved the performance of our code by using
boundary-related errors at late times and allows for muct-r andM, as dynamical variables insteadlgf andM, ,
longer simulations. It should also be possible to improve oue have verified that making this change of variables alone,
results by modifying our outer boundary condition, but theWwithout removing the troublesome term in theequation by
integration times achieved by our code are already beyond

VI. DISCUSSION
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10—6 1 II\HH‘ Il IHIIH‘ L \I\HII‘ L IHIHI‘ 1 llllll\‘ L1l r/M I4/1\4
0.1 1 10 100 1000 10* ) .
t/M FIG. 9. The absolute value of the error W as a function of

radius, shown at various times for several cases of differipg.
FIG. 7. Thel, norm of the error irL,;, versus time, shown for All plots haveAr/M =1/32 andAt/Ar=3/4. The simulation with
the same three cases as in Fig. 6. I max=64M crashes at 12 000.
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means of constraints, yields results only marginally bettematrix. For perturbations about the spherically symmetric so-
than those shown in Sec. Il C. Conversely, removing theution (11), we find that the largest eigenvalueRfx,y,z) is
unstable term and evolving,, andM,,, instead ofL; and given by the same expressidfi6d as in the spherically
M7, still allows evolutions to thousands of. symmetric case, indicating that the three-dimensional ER
It is no surprise that the detailed behavior of the instabilityequations should suffer from the same instability as their
shown in Sec. Il C is much more complicated than that prespherically symmetric counterparts. Applying the same
dicted by our simple analysis in Sec. IV and in Appendix A. analysis to theK;; evolution equation in the ADM system
We considered the evolution of a single variable according tgusing the same analytic soluti¢hl)] results in eigenvalues
a single linear advective equation that possesses only fixe@f R(x,y,z) that are the same size as Efi6b) and applying
ingoing (for 8>0) characteristic curves. The E_R system isji o the Ei» Hiijs K, andl“!‘- equations in the Einstein-
actual_ly a couple_d system of r_u_)nllnear advect|v_e gnd WaVianchi systen[i9] yields eigeJr1vaIues dR(x,y,z) that are
equations, .and_ its three farmhe; of characteristic curves, o larger than 3/2 the size of EQL6D); S0 we expect that the
(along the mgoujg.and o_utgom_g light cones, and anr_1g th ype of continuum instability we find in the ER system
normal to the foliation of time slic¢slepend on the solution. should not be present in either of these two other formalisms.

_O_ne CEUId (c;()) bﬁtte[ ttrrl]an ourl t;_eatmler':_t In Seg. IVIb_y Ilnt(;ar- Although our stability analysis makes use of the analytic
12Ing E0S. about the analytic soiution and solving the o, iqn (112), in principle any other solution can be used

entire system of coupled linear partial differential equat'onsinstead as a background for perturbations. Because the form

however, our approach is far simpler and appears to give thgf the ER evolution equations given by EqJ) assumes

correct qualitative results. i L
) : harmonic slicing, the only relevant time-independent solu-
We emphasize that the results presented in Sec. V B wer 9 y P

btained using fr volution. and that n nstraints h Vter‘on is Egs.(11). However, for the case of the Einstein-
obtained using free evolution, a at no constraints Navg;, ,ohi or ADM system evolved using a different gauge,
been enforced. Furthermore, we note that the modification

discussed in Sec. V do not alter the hyperbolic character ne might be interested in a different background solution.

the system. A different version of our code evolves Hds he features of the background solution that are important
- SY s ; . ; gs. for determining stability are the signs and relative magni-
while enforcing several algebraic constraint equatisyse-

o tudes of components d€;; and derivatives of3'’. We note
cifically, we solve Eq(8d) for M1, Egs.(17) and(8c) for X ;
L., and Eq.(86 for a,, after every time step and yields that these features are approximately the same for the

. . . Schwarzschild solution on time-independent MMIEF slices
evolutions accurate for times on the order of 1800While b

traint enf t all imulati " ; as they are for the Schwarzschild solution on time-
constraint énforcement aflows our simulations 1o remain aC|'ndependent harmonic slices, and so one obtains similar sta-
curate for far longer times than with free evolution of the ... TN
o . X . bility criteria in both cases.
unmodified ER equationg7), our partially constrained

thod wall be t nstability sliahtly aft In the case of the ER equations, we are fortunate to have
menod eventually succumbs 10 an Instabiiity slightly & eralgebraic constraints that can be used to modify the evolution
100QM. The details of exactly how constraint enforcement

X X o ) equations without affecting the hyperbolic character of the
suppresses the continuum instability found in Sec. IV aresystem, even in three dimensions. However, not all the ER
unknown. .constraints are algebraic, and it is unclear in the three-

W_e h_ave co_ncentrated_on a case in which the analyt'ﬁimensional case which constraints must be used in order to
solution is manifestly time-independent, namely, when mmalSuppress instabilities. In particular, E€L8), which seems

data given by Eqs(11) are eyqlved using a h_armomc time necessary for removing the growing mode, is not algebraic in
coordinate. 'How.ever, modifying our evolution equa.uc.)r.\sthree dimensions. This is because E§8) results from
also dramatically Improves our nume_n_cal _resu_lts wher_l Ir"t""‘leliminating second derivatives of the metric from E(32
data are (_:hosen ona m|_n|mally modified ingoing EdOIIngton'and (8b); the three-dimensional equivalent is forming a lin-
Finkelstein(MMIEF) [6] time slice, so that subsequent evo- ear combination of components of Héa) that eliminates all

lution using harmonic time slicing yields a time-dependent o L .

result. Using our partially constrained code, we have showﬁeco_nd derlvatlyes ad;; appearing in the_ Ricci tensd; ,
[28] that the evolution of MMIEF initial data using harmonic and is not possible for a general spacetime.

time slicing relaxes to the solutiofll) at late times. The One might ask why we do not use B@c) instead of Eq.

same result holds for free evolution of the modified ER equal18) to obtain a stable evolution equation f‘)?; since Eq.
tions. (80) is algebraic in the general three-dimensional case. The
It is straightforward to extend the analysis in Sec. IV to@nswer is that itis possible to use Eq(8c) to obtain an
the three-dimensional ER system. In this case, it is useful tf1dividually stable evolution equation fdr; . However, do-
include couplings between tensor components. For exampléd S0 introduces a term containig on the right-hand side
three-dimensional perturbations bf;, with all other quan-  of the L} evolution equation, where no such term existed

tities held constant, obey previously. This term generates a continuum instability in the
coupled L-L system(where all variables excepf, andL+
d .0 are held fixed to the analytic solutipn
S 6B g E=Rxy.2)¢, (20 To better understand why E¢8c) alone cannot stabilize

the ER equations, consider as fundamental variableg not
which is similar to Eq.(14) except that herg is a column andLy, but instead the trace and the trace-free parts;of
vector containing §Lyy,SLyy,....0L,;) andR(x,y,z) is a  which in spherical symmetry are given hy=L{+ 2L+ and
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L™=L!—L+. If one constructs evolution equations fb'r Treatings andt as independent variables, we can write Eq.

andL™", one finds that perturbations bfF, holdingL! and (14 in the form
all other ER variables fixed, obey E(L4) with

23
oy NAOKr—TK]) (481 412+ 3422+ 272) at|, ~ROsE (A3)
(r)= 3 T T IM(1+ 221+ D2
(22) Each value ofR(r) listed in Egs.(16) can be written in
i . o . the form

The perturbations grow rapidly with time becauRér) is
large and positive. The source of the problem is a large, Zla+bz+cZ+(b+c—a)Z’]
positiveLTF term on the right-hand side of the™ evolution R(r)= IM(1+2) A1+ )2 ; (Ad)

equation. Because E(Bc) involves only the trace df;; and

not its trace-free part, this equation cannot be used to elimiwherea, b, andc are constants ang=2M/r. Using this
nate theL ™" term and thus cannot be used to stabilize theexpression foR(r) we can integrate EQA3) together with

system. Eq. (A2) to obtain the general solution
If one wishes to use the ER formulation in a 3D free

evolution, one must find a way of dealing with the unstable

continuum mode afflicting the ER evolution equations. Un- £(r,t)=&o(s)
fortunately, the above analysis suggests that in 3D, this can-

not be done in a simple way using algebraic constraint equa-

tions. Accordingly, for 3D simulations it may be more where&y(r) denotest on the initial slicet=0.

fruitful to pursue other hyperbolic formulations such as the For a fixed value of we havessr at late times, and so
Einstein-Bianchi system, which, according to our analysisEq. (A2) reduces td~s®12M? and Eq.(A5) reduces to
should not suffer from this type of instability.

a b—a

1+2M/r
1+2M/s

S
r

1+(2M/r)?|(cmal2
1+(2M/s)?

g(r ,t) ,\_, go( 121/3M 2/3t1/3)

12M 2t al/3
: (A6)

r3
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1. Solution of Eq. (14) on an infinite domain Empirically, we find that the dominant numerical errors in
the wavelike variabled.,, , L1, M1, a,,, andag,) fall off

like r ! and propagate outward from the strong-field region

APPENDIX

Solutions to Eg.(14) propagate along characteristic
curvesr =r(t) that depend only on the shift vector and are

defined by near the hole. This is what one would expect for modes that
behave like gravitational radiatiofthese modes are not al-

dr lowed in spherical symmetry but nevertheless can be present
FT —B(r). (A1)  in numerical error terms The dominant errors in other vari-

ables also propagate outward from the strong-field region,
Each Spacetime poinr (t) intersects exacﬂy one character- and fall off either Iiker’l or r’z. These falloff rates explain
istic curve. If we defines(r,t) to be the radial coordinate at our observation that thee,, equation is individually unstable
which the characteristic curve passing throught) inter-  but theKs, M1, andar equations are individually stable.

sects the initial sliceé=0, then forB(r) given by Eq.(110) For background solutions other than E¢EL), the forms
we can integrate EqAL1) to find a relation betwees, t, and ~ of 5(r) andR(r) will be different, and so the details of the
r solution (A5) will change. For example, if one takes the
MMIEF solution as a backgrounfthis is not relevant for
t s 1[ r\3(s\® 1) r\q(s)\? Egs.(7) because the MMIEF solution is not preserved under
av - Mrtalam) (F) Y zlam) (e Tt harmonic slicing, but is relevant for other systems of evolu-
tion equations to which one might apply this analysi(r)
LA L (A2) typically falls off like r ~2 instead ofr ~3, and8(r) falls off
2M |1 ' like r ! instead ofr ~2; so the stability criterion becomes
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asm+2 instead ofa=m+ 3. At the same time, the coeffi- some constant valug, at the outer boundany=r,. If we let
cienta is typically smaller for the MMIEF background; so tq(r) be the time it takes for information to propagate from
both the MMIEF background and the backgroutid) yield  the outer boundary, to some radius <r, then for ¢,r)
similar predictions for stability. such thatt>ty(r), the solution of Eq.(14) is time-
Furthermore, note that our stability criterion can be ap-independent, and fott {r) such that<t,(r), the solution is
plied to coupledevolution equations as long as there are nothe same as for the case considered in above, in the first
couplings through derivatives. For example, consider theubsection of this appendix.
coupled system consisting of all ER variables exddpy; , For B(r) given by Eq.(110), the time it takes for infor-
M. r, andag, . If My, M7, andag, are held fixed, the mation to propagate inward from radissto radiusr <s is
perturbation equation for the 13 other variables can be writgiven by Eq.(A2). In this case, foR(r) given by Eq.(A4)
ten in the form(14), where in this cas€ is a 13-element the time-independent solution is
column vector andR(r) is a 13x 13 matrix. To determine
stability, one examines each eigenmode of the perturbation (Yo
equation in the manner described above. An example in £(r)=éo T
which this analysis cannot be used without modification is
the coupled system consisting lof, andM,,, . In this case,
the spatial derivatives df,, in the M,,, equation(7m) and
the spatial derivatives df1,,, in theL,, equation(7n) pre- like -2
vent one from writing down a matrix perturbation equation :

of the form(14). Instead, the perturbation equations possess One consequence of the above analysis is that if one uses

more than one family of characteristic curves, and so th‘%f?r']?sc?lete?gte:eggt&gg:{ﬁCﬁnr?dtr'ﬁgriigﬁ aer:tljjrrt])i?grl]i :‘T;(I)Ide
solution is more complicated. yP P ! P

off more slowly thanr ), then the instability will become
more severe if the outer boundary location is moved to a
larger radius. This is because the unstable mode has more

In numerical simulations one often does not have a dotime to grow before the time-independent state is reached.
main that extends to=, but instead one imposes an arti- We have verified this numerically for the simple case of the
ficial boundary condition at some finite valuerofFor sim-  L,, evolution equation solved with all other variables held
plicity, consider a Dirichlet condition: assungeis fixed to  constant.

a

1+2M/r )ba

1+(2M/r)? )\ (car2
1+2M/r,

1+(2M/rg)?

For ro>r, the time-independent solution behaves roughly

2. Solution of Eqg. (14) on a finite domain
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