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Treating instabilities in a hyperbolic formulation of Einstein’s equations
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We have recently constructed a numerical code that evolves a spherically symmetric spacetime using a
hyperbolic formulation of Einstein’s equations. For the case of a Schwarzschild black hole, this code works
well at early times, but quickly becomes inaccurate on a time scale of (10–100)M , whereM is the mass of
the hole. We present an analytic method that facilitates the detection of instabilities. Using this method, we
identify a term in the evolution equations that leads to a rapidly growing mode in the solution. After elimi-
nating this term from the evolution equations by means of algebraic constraints, we can achieve free evolution
for times exceeding 10 000M . We discuss the implications for three-dimensional simulations.
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I. INTRODUCTION

When solving Einstein’s equations as an initial val
problem, one considers spacetime as a foliation of space
hypersurfaces, or ‘‘slices.’’ Einstein’s equations then se
rate into two types: constraint equations, which relate
dynamical variables on each particular slice, and evolut
equations, which describe how these variables propa
from one slice to the next. The constraints are analogou
the divergence equations in Maxwell’s theory, and the e
lution equations are analogous to the curl equations.

As in Maxwell’s theory, the evolution equations adm
solutions that violate the constraints. However, if the co
straints are satisfied on the initial slice and on all spa
boundaries, then the evolution equations guarantee tha
constraints are satisfied elsewhere. This permits nume
solution schemes in which only the evolution equations
explicitly solved at each time step.

Such ‘‘free evolution’’ schemes are desirable for seve
reasons. First, the constraints are typically nonlinear ellip
equations, which are difficult and costly to solve on a co
puter, especially in the general case of three spatial dim
sions. Second, a free evolution scheme allows one to t
numerical errors by monitoring the constraints at each t
step.

For numerical evolution of black holes, an additional a
vantage of a free evolution scheme is that one can, in p
ciple, excise a black hole from the spacetime and evolve o
the exterior region, and one can do so without imposing
plicit boundary conditions on the horizon. This is the ba
for so-called ‘‘apparent horizon boundary condition’’ met
ods, which are thought to be crucial for long-term numeri
evolution of black hole spacetimes@1–9#. However, excising
a black hole from a spacetime is known to be mathematic
well-defined only if the evolution equations are hyperbo
and if the characteristic curves of the hyperbolic system
‘‘physical,’’ that is, if they lie within the local light cone. In
this case, the structure of the equations guarantees tha
information, including gauge information, can emerge fro
0556-2821/98/58~4!/044020~12!/$15.00 58 0440
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the hole. For non-hyperbolic representations of general r
tivity such as the usual Arnowitt-Deser-Misner~ADM ! @10#
formulation, the evolution equations are of no mathemati
type for which well-posedness has been proven, and so
suitability of these formulations for black hole excision mu
be determined empirically on a case-by-case basis. It i
part for this reason that much attention has been rece
focused on hyperbolic representations of Einstein’s eq
tions @11–19#.

A key stumbling block in numerical work, particularly in
finite-difference solutions of initial value problems, is th
tendency for numerical computations to become unsta
Instabilities have many origins, and the cause of any part
lar instability found in a numerical code is often difficult t
deduce. Furthermore, if the desired analytic solution is
known, it can be difficult to distinguish between an instab
ity and a case in which the analytic solution simply grow
without bound. Examples of the latter include systems t
evolve to physical singularities~e.g., Oppenheimer-Snyde
collapse evolved using geodesic slicing! and those that
evolve toward coordinate singularities~e.g., a Schwarzschild
black hole evolved with maximal time slicing, and seve
harmonic-slicing examples that become singular for cert
choices of the initial lapse function@20,21#!. When diagnos-
ing instabilities in numerical simulations, it is therefore pre
erable to study instances in which the analytic solution
known and well-behaved.

We distinguish between two types of instabilities: a ty
in which the numerical finite-difference equations admit ra
idly growing solutions that do not satisfy the underlying co
tinuum differential equations and a type in which the co
tinuum equations themselves admit growing modes that
absent in the desired solution but are excited by numer
perturbations. An example of the former type, which we w
call a numerical instability because it depends on the num
cal finite-difference equations, is the well-known Courant
stability that can arise in explicit finite-difference solution
of hyperbolic partial differential equations~PDEs!. The high-
frequency modes that characterize a Courant instability
© 1998 The American Physical Society20-1
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not satisfy the underlying differential equations.
The latter type, which we will call a ‘‘continuum’’ insta

bility because the unstable mode satisfies the continuum
ferential equations, commonly occurs in systems of eq
tions that admit both well-behaved and growing solutio
Although one might be interested in the well-behaved so
tion, the growing mode eventually dominates if it at any tim
acquires a nonzero amplitude via numerical errors. A sim

example is the equationÿ5y/9 with initial conditions

y51, ẏ521/3. For these initial conditions the unique an
lytic solution is y5e2t/3, but a naive numerical integratio
of this problem is unstable as it proceeds forward in ti
because numerical perturbations excite the growing solu
y5et/3.

For numerical solutions of Einstein’s equations, a co
tinuum instability may be due to a gauge mode excited
inaccuracies in numerically determined coordinate con
tions. Or in the case of a free evolution scheme, it may
caused by a rapidly growing mode that satisfies the evolu
equations but violates the constraints. This latter case is
sible despite the fact that the evolution equations prese
the constraints, because in numerical computations ne
the evolution equations nor the constraints areexactlysatis-
fied. Constraint-violating modes have been discussed in
literature @22–24# but their importance for numerical fre
evolution schemes remains controversial.

Eliminating a continuum instability often requires a d
ferent approach than removing a numerical one, beca
these two types of instability stem from quite differe
sources. To remove a numerical instability, one must cha
the numerical algorithm~or details of the algorithm such a
the size of the time step! that is used to solve the equation
so that this algorithm no longer introduces growing mod
To remove a continuum instability, one must either remo
the numerical perturbations that excite the undesired solu
of the continuum equations, change the numerical schem
order to damp out this solution, or modify the continuu
equations themselves~possibly including the choice o
gauge! so that no growing solution is present.

In this paper we examine instabilities in a numerical fr
evolution code that solves a spherically symmetric bla
hole spacetime. Our code, which has been described in d
elsewhere@7#, is based on a hyperbolic formulation of ge
eral relativity@the ‘‘Einstein-Ricci’’ ~ER! formulation# origi-
nally proposed by Choquet-Bruhat and York@12,13#. For
short integration times our code performs well, but we sh
in Sec. III that for the case of a Schwarzschild black hole
becomes unstable and terminates on a time scale
(10– 100)M , whereM is the mass of the hole. This occu
even in a gauge in which the analytic solution is regular
the horizon and time-independent. The rate at which our
rors grow is independent of the numerical time discretizat
Dt and the spatial discretizationDr , suggesting that the
growth is due to a continuum instability rather than a n
merical one.

In Sec. IV we present a method of analyzing the evolut
equations that facilitates the detection of continuum instab
ties. In the simplest application of this method we consi
04402
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each ER evolution equation separately. For each equa
we examine the free evolution of the ER variable govern
by that equation, treating all other ER variables as fixed a
given by the Schwarzschild solution. We ask whether per
bations of the evolved ER variable about its Schwarzsch
value grow rapidly with time. We find that most of the E
equations, when treated individually in this manner, a
stable, but that one of the ER equations is sensitive t
continuum instability. A single term on the right-hand side
the unstable equation is responsible for the growing mod

In Sec. V we construct a modified set of evolution equ
tions that no longer contain this troublesome term. This
done primarily by using algebraic constraints to rewrite t
right-hand side of one equation. We find that numerical f
evolution of the modified set of equations remains accur
for times in excess of 10 000M . This substantial improve-
ment indicates that the rapidly growing mode found by o
analysis in Sec. IV is the dominant instability afflicting fre
evolution of the unmodified ER equations. In Sec. VI w
discuss our method of stability analysis and apply it to
three-dimensional Einstein-Ricci equations, as well as to
Einstein-Bianchi@19# and ADM systems. We discuss the im
plications for three-dimensional free evolution schemes.

II. EQUATIONS

A. ER formalism

Here we summarize the fundamental variables and eq
tions used in the ER representation of general relativity.
details of the ER formulation and a derivation of the equ
tions, see@12,13#.

We write the metric in the usual 311 form

ds252N2dt21gi j ~dxi1b idt!~dxj1b jdt!, ~1!

whereN is the lapse function,b i is the shift vector, andgi j
is the three-metric on a spatial hypersurface of constantt.

Define the variables

Ki j [2
1

2
N21]̂0gi j , ~2a!

Li j [N21]̂0Ki j , ~2b!

Mki j[DkKi j , ~2c!

ai[Di~ ln N!, ~2d!

a0i[N21]̂0ai , ~2e!

ai j [D jai . ~2f!

HereD is the three-dimensional covariant derivative comp
ible with the three-metricgi j , the time derivative operator is

]̂0[
]

]t
2£b , ~3!

and £ denotes a Lie derivative. The quantityKi j is the usual
extrinsic curvature.
0-2
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The vacuum evolution equations for the general thr
dimensional case can be found in@12,13,7#. The vacuum
constraint equations include

05R̄i j 2Li j 1HKi j 22KikK j
k2aiaj2ai j , ~4a!

05Li
i1Ki j Ki j 1aiai1ai

i , ~4b!

05M j
ji 2Mi j

j , ~4c!

05a0i1Hai1Mi j
j , ~4d!

whereR̄i j is the three-dimensional Ricci tensor formed fro
the three-metricgi j . Equations~4a!–~4c! follow from the
Gauss-Codazzi-Ricci equations for embedding a foliat
into a higher-dimensional space, and Eq.~4d! follows from
harmonic time slicing. Additional constraints that must
satisfied at all times are the definitions~2c!, ~2d!, and ~2f!,
and the usual relation betweenGk

i j and derivatives ofgi j .

B. Spherical symmetry

The spherically symmetric three-metric can be written
the general form

~3!ds25A2dr21B2r 2~du21sin2 u df2!, ~5!

where (r ,u,f) are the usual spherical coordinates. Define

G rT[2BrGu
ur52BrGf

fr

52
2A2

Br
G r

uu52
2A2

Br sin2 u
G r

ff ,

~6a!

aT[au
u5af

f , ~6b!

LT[Lu
u5Lf

f , ~6c!

KT[Ku
u5Kf

f , ~6d!

MrT[Mr
u

u5Mr
f

f , ~6e!

MTr[M u
ur5Mf

fr , ~6f!

where the subscriptT denotes ‘‘transverse.’’
The evolution equations can be written in the form

]̂0A52NAKr
r , ~7a!

]̂0Br52NBrKT , ~7b!

]̂0Krr 5NLrr , ~7c!

]̂0KT5N~LT12KT
2!, ~7d!

]̂0N52N2~Kr
r12KT!, ~7e!

]̂0ar5Na0r , ~7f!
04402
-

n

]̂0aT5NF ~2MTr2MrT2arKT!
ar

A2 1
G rT

2A2Br
a0r

12KTaTG , ~7g!

]̂0G rr
r 52

N

A2 @Krr ar1Mrrr #, ~7h!

]̂0G rT52N@KTG rT12Br~arKT1MrT!#, ~7i!

]̂0MTr5NFKT~2MTr1MrT1arKT!1
G rT

2Br S Lrr

A2 2LTD
1Kr

r~2MTr2MrT2arKT!G , ~7j!

]̂0arr 5N
]

]r
a0r1NF2G rr

r a0r1ar
2Kr

r1
arMrrr

A2 1ara0r G ,
~7k!

]̂0a0r5
N

A2

]

]r
arr 1NFMrrr

A2 ~2KT2Kr
r !

1ar S ~ar
22Lrr !

1

A222Kr
r~Kr

r23KT! D
1

arr

A2 S 3ar22G rr
r 1

G rT

Br D
12MrTKr

r1aTS 4ar2
G rT

Br D G , ~7l!

]̂0Mrrr 5N
]

]r
Lrr 1N@~ar22G rr

r !Lrr 12Kr
r~Krr ar1Mrrr !#,

~7m!

]̂0Lrr 5
N

A2

]

]r
Mrrr 1NFLrr ~4KT25Kr

r !18MrTar

1
Mrrr

A2 S 3~ar2G rr
r !1

G rT

Br D2
2MTrG rT

Br

12arr ~3KT2Kr
r !1ar

2~10KT2Kr
r !

2Krr ~5Kr
r226Kr

rKT12KT
2!G , ~7n!

]̂0MrT5N
]

]r
LT1N@2KT~arKT12MrT!1arLT#,

~7o!

]̂0LT5
N

A2

]

]r
MrT1NFLTKr

r1
ar

2Kr
r

A2

1~Lrr 1arr !~Kr
r2KT!

1

A222KT
3

0-3
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12aT~Kr
r1KT!22Kr

r2KT1Kr
r3

12Kr
rKT

21
MTr

A2 S G rT

Br
24ar D

1
MrT

A2 S G rT

Br
13ar2G rr

r D G . ~7p!

The constraints~4! become

1

Br F2
]

]r
G rT1G rr

r G rTG2arr 2ar
2

1Krr ~2KT2Kr
r !2Lrr 50, ~8a!

1

2A2Br F2
]

]r
G rT1G rr

r G rT2
G rT

2

2Br G
1

1

B2r 2 1KTKr
r2aT2LT50, ~8b!

2LT1
Lrr

A2 12KT
21Kr

r212aT1
1

A2 ~ar
21arr !50,

~8c!

MrT2MTr50,
~8d!

a0r1ar~2KT1Kr
r !1

Mrrr

A2 12MrT50.

~8e!

The additional constraints~2c!, ~2d!, ~2f!, and the usual re-
lation betweenGk

i j and derivatives ofgi j take the form

]

]r
Krr 22G rr

r Krr 2Mrrr 50, ~8f!

]

]r
KT2MrT50, ~8g!

MTr2
G rT

2Br
~Kr

r2KT!50, ~8h!

]

]r
~ ln N!2ar50, ~8i!

aT2
G rT

2A2Br
ar50, ~8j!

]

]r
ar2arr 2G rr

r ar50, ~8k!

]

]r
A2AG rr

r 50, ~8l !

]

]r
Br2

G rT

2
50. ~8m!
04402
III. FREE EVOLUTION OF THE ER SYSTEM

A. Method

We solve the spherically symmetric ER evolution equ
tions ~7! at every time step using the causal differenci
method described in@7#. The constraints are satisfied on th
initial time slice but are not solved explicitly during the ev
lution.

The inner boundary of the numerical domain is a surfa
that remains within a grid spacing of the apparent horiz
r 5r AH . Because the apparent horizon is an outgoing nul
spacelike surface, the hyperbolic evolution equations req
no boundary condition there. The outer boundary is an a
trary spherical surface far from the black hole atr 5r max. At
the outer boundary, we use the ‘‘extended Robin’’ conditi
discussed in@7#. This outer boundary condition does n
properly handle wavelike behavior, but in practice it is a
equate for the cases shown here.

The lapse function can be freely specified on the init
time slice, and is subsequently determined by the harmo
time slicing conditionht50. The shift is chosen to satisf
the minimal strain equation@25#. This equation minimizes
the average change in the three-metric as one evolves
one time slice to the next, and is used to provide a s
vector that does not produce coordinate singularities. T
minimal strain equation requires two boundary conditio
for which we choose

b r2
N

A
50 at r 5r AH , ~9!

]

]r
~r 2b r !50 at r 5r max. ~10!

The inner boundary condition ensures that at the appa
horizon, the coordinates move outward at the local spee
light, c5N/A. This prevents the coordinates from fallin
into the black hole. The outer boundary condition ensu
that the shift falls off liker 22, in accordance with the time
independent Schwarzschild solution written in harmonic s
ing @Eqs. ~11! below#. We use a feedback technique@7# to
keep the horizon nearr 52M .

B. Initial data

Our initial data are chosen on a time slice correspond
to a well-behaved, fully time-independent harmonic foliati
of the Schwarzschild geometry~cf. Refs. @26–28#!. Such a
slice penetrates the event horizon without encountering a
ordinate singularity, and extends to the physical singula
at r 50. With an appropriate choice of spatial coordinates
the slice, all dynamical variables are time-independent@28#
and are given by

A25S 11
2M

r D F11S 2M

r D 2G , ~11a!

B51, ~11b!
0-4
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N5
1

A
, ~11c!

b r5
4N2M2

r 2 , ~11d!

G rr
r 52

N2M

r 2 F11
4M

r
1

12M2

r 2 G , ~11e!

G rT52, ~11f!

KT5
4NM2

r 3 , ~11g!

Krr 52
4NM2

r 3 F21
3M

r
1

4M2

r 2 1
4M3

r 3 G , ~11h!

Mrrr 5
4N3M2

r 4 F61
18M

r
1

35M2

r 2 1
40M3

r 3 1
56M4

r 4

1
64M5

r 5 1
48M6

r 6 G , ~11i!

MrT52
4N3M2

r 4 F31
5M

r
1

8M2

r 2 1
12M3

r 3 G , ~11j!

MTr5MrT , ~11k!

Lrr 52
16N4M4

r 6 F141
42M

r
1

85M2

r 2 1
120M3

r 3

1
136M4

r 4 1
128M5

r 5 1
80M6

r 6 G , ~11l!

LT5
16N4M4

r 6 F11
M

r
2

4M3

r 3 G , ~11m!

ar5
N2M

r 2 F11
4M

r
1

12M2

r 2 G , ~11n!

aT5
N4M

r 3 F11
4M

r
1

12M2

r 2 G , ~11o!

arr 52
MN4

r 3 F21
13M

r
1

56M2

r 2 1
40M3

r 3 2
48M5

r 5 G ,
~11p!

a0r5
16M3N5

r 5 F11
6M

r
1

24M2

r 2 1
24M3

r 3 1
16M4

r 4 G ,
~11q!

whereM is the mass of the black hole. One can explici
check the time-independence of this solution by insert
Eqs. ~11! into the ER evolution equations~7! and verifying
that all time derivatives are zero. Note that Eqs.~11! satisfy
the minimal strain shift condition, as does any tim
independent solution of Einstein’s equations.
04402
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C. Results

Figure 1 shows the error in the metric functionA as a
function of time. We plot the quantityuA2Aanu2 , whereAan

is the analytic value ofA given by Eq.~11a!, and thel 2 norm
of a quantityq is defined by

uqu2[
A( i 51

N qi
2

N
. ~12!

The sum is over all grid points that contain valid data~i.e.,
all grid points outside the horizon!. The quantityuA2Aanu2 is
shown for several different grid resolutions, each with t
same Courant factorDt/Dr .

At early times, the error inA varies with resolution like
O(Dr )2, as expected for our second-order convergent
merical method. However, after about (10– 30)M the error
grows rapidly, approximately liket4 at late times. The
growth rate is independent of the grid resolution. Eventua
when errors have become sufficiently large, the code cras
typically because it fails to locate an apparent horizon.

It is common for numerical finite-difference schemes
produce solutions with errors that grow as the truncat
error accumulates. However, such growth is typically line
in time, with a slope proportional to (Dt)2 ~for a second-
order scheme!, and can be easily defeated by increasing
resolution. In contrast, Fig. 1 shows a more rapid growth r
that increases with time, indicating that we are observ
something other than accumulating truncation errors.

In Fig. 2 we plot the error inA as a function of radius for
several different times. The error is greatest near the hori
and remains smooth in both space and time as it grows.
fact that our errors are largest near the black hole does
necessarily indicate that the instability is somehow ass
ated with our treatment of the inner boundary; one expe
numerical errors to be greater for smaller values ofr simply

FIG. 1. The l 2 norm of A minus its analytic solution~11a!,
shown as a function of time for five grid resolutions. The ou
boundary is atr max564M and the Courant factorDt/Dr is 3/4. All
five plots terminate when the code crashes.
0-5
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SCHEEL, BAUMGARTE, COOK, SHAPIRO, AND TEUKOLSKY PHYSICAL REVIEW D58 044020
because most quantities in Eqs.~11! behave like 1/r n with
positiven.

Other quantities behave much like the error inA. In Fig.
3 we plot the error inLrr with respect to the analytic solutio
~11l!, and in Fig. 4 we plot the left-hand side of the Ham
tonian constraint~8c!. Both quantities are approximatel
second-order convergent, but at late times they increase
idly ~faster than linearly! in time at a rate independent of th
grid resolution.

Figures 1–4 suggest that the instability is not purely n
merical. Numerical instabilities typically grow likeen, where
n is the number of time steps. Consequently, for a numer
instability one expects that reducing the time discretizat
Dt would make the instability growfaster as a function of
time, because integrating to a particular value oft requires
more steps. However, in Figs. 1–4,Dt is decreased with

FIG. 2. Error inA as a function of coordinate radius, for th
Dr /M51/16 case shown in Fig. 1. The functionA2Aan is plotted
at five times. The error grows rapidly but smoothly until the co
crashes.

FIG. 3. Thel 2 norm ofLrr minus its analytic solution~11l! as a
function of time, shown for the same cases as plotted in Fig. 1
04402
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n

each finer grid resolution, but the growth rate is unaffect
Similarly, at late times we see no change in the growth rat
we varyDt while keeping the grid resolution fixed, as show
in Fig. 5. Instead, forDt→0 our errors converge to a limi
~this is simply the limit in which numerical truncation erro
is dominated byDr instead ofDt!.

Our results instead suggest that our code suffers fro
continuum instability. In this case, the code should rem
second-order convergent and the growth rate of errors sh
depend only on the continuum equations and not on num
cal parameters likeDr or Dt. A smallerDt or Dr should not
intensify the instability, but instead should improve o
simulations by virtue of reducing the numerical perturbatio
that excite the offending mode. Our results are consis
with these expectations.

One possible source of a continuum instability is a rapi
increasing constraint-violating solution of the evolutio

FIG. 4. Thel 2 norm of the Hamiltonian constraint~8c! versus
time, shown for the same five cases as in Fig. 1.

FIG. 5. The l 2 norm of A2Aan versus time shown for five
different values ofDt, each withDr /M51/16. The outer boundary
is at r 564M . At late times, the dominant error is independent
Dt.
0-6
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TREATING INSTABILITIES IN A HYPERBOLIC . . . PHYSICAL REVIEW D 58 044020
equations that is being excited by numerical perturbatio
Another is a gauge mode that is not present in the ana
solution. In the case of a gauge mode, one would exp
gauge-invariant quantities to remain relatively unaffec
while other quantities blow up. However, at late times, bo
gauge-dependent quantities likeLrr ~Fig. 3! and gauge-
invariant quantities like the Hamiltonian constraint~Fig. 4!
increase rapidly with time at approximately the same rat

IV. STABILITY OF INDIVIDUAL
EVOLUTION EQUATIONS

To gain further insight into the nature of the instabilit
we consider each ER evolution equation separately. For e
evolution equation, we treat the ER variable governed
that equation as freely evolving, but we fix the remaining E
variables to the analytic expressions given in Eqs.~11!. In
this way we can study the stability of each individual evo
tion equation in the absence of all couplings to other eq
tions. Although this analysis will not shed light on any inst
bilities that are caused by these couplings, it is likely tha
any of the evolution equations are found to be unstable in
vidually, they will remain unstable when coupled to the oth
equations.

We note that the method of analysis described below
also be used to examine coupled sets of equations as lon
the couplings do not arise from derivative terms—this is
scribed in more detail in the Appendix. However, we will s
that treating one equation at a time is sufficient for the c
discussed here.

Let y represent any of the ER variables that evolve
cording to Eqs.~7!. If all ER variables other thany are con-
sidered known functions ofr , then the evolution equation fo
y takes the form

]

]t
y2b~r !

]

]r
y5S~y,r !, ~13!

where the functionS(y,r ) contains no derivatives ofy. If we
perturb the quantityy about its time-independent solution b
writing y→y1j, then Eq.~13! yields, to first order inj,

]

]t
j2b~r !

]

]r
j5R~r !j, ~14!

whereR(r ) does not depend onj.
For each of the ER evolution equations~7! there is a

corresponding perturbation equation of the form~14!. Each
perturbation equation has a different functionR(r ) that de-
pends on the right-hand side of the corresponding evolu
equation. We will see that the form ofR(r ) is what deter-
mines whether a particular evolution equation is individua
stable.

For the simple case in whichb(r ) andR(r ) are constants
andb.0, the solution to Eq.~14! on r P@2M ,`# is

j~r ,t !5j0~r 1bt !eRt, ~15!

wherej0(r ) is the initial perturbation att50. The stability is
determined by the sign ofR: If R.0 ~assuming that the
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initial perturbation falls off with radius more slowly tha
e2rR/b!, the perturbation grows exponentially with time;
R,0 ~assuming that the initial perturbation grows with r
dius more slowly thaner uRu/b!, the perturbation decays.

For the more realistic case of nonconstantR and b, the
solution to Eq.~14! is more complicated than Eq.~15! and is
considered in the Appendix. Nevertheless, one can roug
determine whether a given ER evolution equation is in
vidually stable by examining the sign of the functionR(r )
associated with that evolution equation.

Applying this criterion to the ER evolution equations~7!,
we find thatR(r ) is everywhere negative for all but four o
these equations, indicating that these equations should
stable to small perturbations. The four remaining equati
have positiveR(r ), suggesting that they might be unstab
If R(r ) [ y] denotes the functionR(r ) associated with pertur
bations of the variabley, then the four positiveR(r ) [ y] are

R~r ! [KT]54NKT5
2z3

M ~11z!~11z2!
, ~16a!

R~r ! [aT]52NKT5
z3

M ~11z!~11z2!
,

~16b!

R~r ! [ MrT]54NKT1
]

]r
b

5
z3~213z14z215z3!

2M ~11z!2~11z2!2 , ~16c!

R~r ! [Lrr ]5N~4KT25Kr
r !12

]

]r
b

5
z3~20119z118z2117z3!

4M ~11z!2~11z2!2 , ~16d!

wherez[2M /r and the expressions in terms ofz have been
obtained from the analytic solution~11!.

We can test whether perturbations of individual evoluti
equations are indeed unstable by modifying our code so
a single dynamical variable may be evolved in time while
other variables, including the shift, are held fixed to the a
lytic solution ~11!. We find numerically that all evolution
equations~7! are individually stable except Eq.~7n!, the
equation forLrr .

Our above analysis predicted that theLrr equation should
be individually unstable because it is associated with a p
tive R(r ). However, it also predicted that theKT , aT , and
MrT equations should be unstable for the same reason
shown by a more detailed analysis in the Appendix, theKT ,
aT , andMrT equations are stable because their correspo
ing values ofR(r ) are much smaller in magnitude than th
value ofR(r ) associated with theLrr equation.

The growing mode allowed by theLrr evolution equation
~7n! can be described as a continuum instability: it depe
only on the equation itself and the equilibrium solution, a
0-7
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not on numerics. The only role of numerics is to produce
initial perturbations that excite the unstable mode.

V. MODIFIED EVOLUTION EQUATIONS

A. Modifications for stability

The large positiveR(r ) associated with perturbations o
Lrr originates from the termNLrr (4KT25Kr

r) that appears
on the right-hand side of theLrr evolution equation~7n!.
This term must be modified if theLrr evolution equation is to
be made individually stable. There are several ways to
complish this.

One possibility is to change variables. If one evolv
some quantityQLrr instead ofLrr , whereQ is some com-
bination of the other ER variables, then perturbations
QLrr will be governed by Eq.~14! with some new value of
R(r ). By a careful choice ofQ one hopes to obtain a mor
favorable~more negative! R(r ). For example, the evolution
equation for the quantityB2r 2Lrr yields R(r )5N(2KT

25Kr
r)12]b/]r , which is still positive but is slightly

smaller in magnitude than Eq.~16d!. Similarly, the evolution
equation forLr

r yieldsR(r )5N(2KT23Kr
r). However, there

are two reasons why such a procedure is unattractive as
sole method of stabilizing theLrr equation. First, the ER
equations are linear inLi j , Mi j

k , ai j , anda0i ~but nonlinear
in the other variables!, and evolvingQLrr whereQ is any-
thing other than the metric functions or the lapse would sp
this linearity. Second, in order to makeR(r ) nonpositive
everywhere by evolving the quantityBnr nLrr /Am, it turns
out that the required value ofn is large enough tha
Bnr nLrr /Am grows with r , hampering our ability to impose
an accurate outer boundary condition.

Another approach is to use the constraint equations
eliminate the troublesome term that appears on the ri
hand side of theLrr evolution equation~7n!. In order to
avoid changing the hyperbolic character of the evolut
equations, one must use only constraint equations that
algebraic, that is, those that contain no derivatives. Fo
nately, many of the ER constraints are algebraic. For so
constraints this is merely a result of spherical symmetry,
several ER constraint equations are algebraic even in
general case of three spatial dimensions plus time. In sph
cal symmetry, the algebraic constraints are Eqs.~8c!, ~8d!,
~8e!, ~8h!, and~8j!. An additional algebraic constraint can b
formed from Eqs.~8a! and~8b! by eliminating the derivative
of G rT , yielding

2LT2
Lrr

A2 2Kr
r212aT2

1

A2 ~ar
21arr !

2
2

B2r 2 1
G rT

2

2A2B2r 2 50. ~17!

Because we wish to modify theLrr term on the right-hand
side of Eq.~7n! for the case in which all variables exceptLrr
are fixed to the analytic solution, the only relevant algebr
constraints are those that involveLrr , namely Eqs.~8c! and
~17!.
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We have found several methods of obtaining an individ
ally stable evolution ofLrr . These all involve the use o
algebraic constraint equations, and some also emplo
change of variables. We have had the most success with
following approach: First eliminateLT from Eqs. ~8c! and
~17! to obtain

G rT
224A2

4B2r 2 2ar
22arr 2A2~KT

21Kr
r2!2Lrr 50. ~18!

Then write down the evolution equation for the quantityLr
r ,

and addN(4KT25Kr
r)/A2 times Eq.~18! to the right-hand

side, yielding

]̂0Lr
r5

N

A2

]

]r
Mrr

r 1NF2Kr
rLr

r18
MrT

A2 ar

1Mrr
r S 3ar2G rr

r 1
G rT

Br D22
MTrG rT

A2Br

1~5Kr
r24KT!

1

B2r 2 S 12
G rT

2

4A2 D
1

ar
2

A2 ~6KT14Kr
r !1

arr

A2 ~2KT13Kr
r !

1KT~2Kr
r213KTKr

r24KT
2!G . ~19a!

Because we now evolveLr
r instead ofLrr , we also choose to

evolve Mrr
r instead ofMrrr . This preserves the symmetr

between theL-M pairs of evolution equations that make u
wave equations. The evolution equation forMrr

r is

]̂0Mrr
r 5N

]

]r
Lr

r1N@arLr
r12Kr

r2ar14Kr
rMrr

r #. ~19b!

Evolving Mrr
r has an additional advantage: perturbations

Mrr
r governed by Eq.~19b! have a smaller~more negative!

R(r ) than perturbations ofMrrr governed by Eq.~7m!, and
so perturbations ofMrr

r should decay more rapidly.

B. Results

Figures 6–8 show thel 2 norms of the error inA, the error
in Lrr , and the Hamiltonian constraint for simulations
which we solve the modified evolution equations~19! in
place of Eqs.~7m! and ~7n!. The numerical method used i
these simulations is identical to the one used to integrate
unmodified evolution equations in Sec. III. We use a larg
outer boundary radius,r max5128M , to suppress oute
boundary difficulties that become important at late times.

For the same grid resolution, our code integrates sev
orders of magnitude farther in time when using the modifi
evolution equations than when using the unmodified on
The large errors that grow on a time scale of (10–100)M in
Figs. 1–5 are not present in Figs. 6–8. Instead, numer
errors increase linearly with time~or slower than linearly! for
over 10 000M until difficulties associated with our treatmen
0-8
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of the outer boundary eventually halt the simulation.
The errors in all dynamical variables exceptN and Br

exhibit the same linear growth as seen in Figs. 6 and
Errors inN andBr are instead dominated by outer-bounda
effects that grow rapidly and eventually terminate our co
Figure 9 shows the error in the lapse functionN at various
times, plotted as a function of radius for several simulatio
with different outer boundary radiir max but with the same
grid resolutionDr and time discretizationDt. Increasing the
outer boundary radius suppresses the rapid growth of ou
boundary-related errors at late times and allows for m
longer simulations. It should also be possible to improve
results by modifying our outer boundary condition, but t
integration times achieved by our code are already bey

FIG. 6. Thel 2 norm of the error inA versus time, computed fo
three resolutions using the modified evolution equations. The o
boundary is atr max5128M andDt/Dr 53/4. Fort*5M the growth
is only linear in time, and the code runs much longer than for
case shown in Fig. 1.

FIG. 7. Thel 2 norm of the error inLrr versus time, shown for
the same three cases as in Fig. 6.
04402
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what should be necessary for modeling interesting 3D as
physical problems such as black-hole binary coalescenc

VI. DISCUSSION

The success of our free evolution scheme when solv
the modified ER equations is strong evidence that the gr
ing continuum mode identified in Sec. IV is responsible f
the instability discussed in Sec. III C. The key modificati
required to suppress the instability was the removal of a te
on the right-hand side of theLrr equation, the very term tha
our analysis in Sec. IV singled out as problematic. Althou
we have also improved the performance of our code by us
Lr

r andMrr
r as dynamical variables instead ofLrr andMrrr ,

we have verified that making this change of variables alo
without removing the troublesome term in theLr

r equation by

er

e

FIG. 8. Thel 2 norm of the Hamiltonian constraint versus tim
shown for the same three cases as in Fig. 6. There is no signifi
growth at late times.

FIG. 9. The absolute value of the error inN as a function of
radius, shown at various times for several cases of differingr max.
All plots haveDr /M51/32 andDt/Dr 53/4. The simulation with
r max564M crashes at 12 000M .
0-9
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means of constraints, yields results only marginally be
than those shown in Sec. III C. Conversely, removing
unstable term and evolvingLrr and Mrrr instead ofLr

r and
Mrr

r still allows evolutions to thousands ofM .
It is no surprise that the detailed behavior of the instabi

shown in Sec. III C is much more complicated than that p
dicted by our simple analysis in Sec. IV and in Appendix
We considered the evolution of a single variable according
a single linear advective equation that possesses only fi
ingoing ~for b.0! characteristic curves. The ER system
actually a coupled system of nonlinear advective and w
equations, and its three families of characteristic cur
~along the ingoing and outgoing light cones, and along
normal to the foliation of time slices! depend on the solution
One could do better than our treatment in Sec. IV by line
izing Eqs. ~7! about the analytic solution and solving th
entire system of coupled linear partial differential equatio
however, our approach is far simpler and appears to give
correct qualitative results.

We emphasize that the results presented in Sec. V B w
obtained using free evolution, and that no constraints h
been enforced. Furthermore, we note that the modificat
discussed in Sec. V do not alter the hyperbolic characte
the system. A different version of our code evolves Eqs.~7!
while enforcing several algebraic constraint equations@spe-
cifically, we solve Eq.~8d! for MrT , Eqs.~17! and ~8c! for
LT , and Eq.~8e! for a0r after every time step#, and yields
evolutions accurate for times on the order of 1000M . While
constraint enforcement allows our simulations to remain
curate for far longer times than with free evolution of t
unmodified ER equations~7!, our partially constrained
method eventually succumbs to an instability slightly af
1000M . The details of exactly how constraint enforceme
suppresses the continuum instability found in Sec. IV
unknown.

We have concentrated on a case in which the anal
solution is manifestly time-independent, namely, when ini
data given by Eqs.~11! are evolved using a harmonic tim
coordinate. However, modifying our evolution equatio
also dramatically improves our numerical results when ini
data are chosen on a minimally modified ingoing Eddingt
Finkelstein~MMIEF! @6# time slice, so that subsequent ev
lution using harmonic time slicing yields a time-depende
result. Using our partially constrained code, we have sho
@28# that the evolution of MMIEF initial data using harmon
time slicing relaxes to the solution~11! at late times. The
same result holds for free evolution of the modified ER eq
tions.

It is straightforward to extend the analysis in Sec. IV
the three-dimensional ER system. In this case, it is usefu
include couplings between tensor components. For exam
three-dimensional perturbations ofLi j , with all other quan-
tities held constant, obey

]

]t
j2b i

]

]xi j5R~x,y,z!j, ~20!

which is similar to Eq.~14! except that herej is a column
vector containing (dLxx ,dLxy ,...,dLzz) and R(x,y,z) is a
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matrix. For perturbations about the spherically symmetric
lution ~11!, we find that the largest eigenvalue ofR(x,y,z) is
given by the same expression~16d! as in the spherically
symmetric case, indicating that the three-dimensional
equations should suffer from the same instability as th
spherically symmetric counterparts. Applying the sam
analysis to theKi j evolution equation in the ADM system
@using the same analytic solution~11!# results in eigenvalues
of R(x,y,z) that are the same size as Eq.~16b! and applying
it to the Ei j , Hki, j , Ki j , andG i j

k equations in the Einstein
Bianchi system@19# yields eigenvalues ofR(x,y,z) that are
no larger than 3/2 the size of Eq.~16b!; so we expect that the
type of continuum instability we find in the ER syste
should not be present in either of these two other formalis

Although our stability analysis makes use of the analy
solution ~11!, in principle any other solution can be use
instead as a background for perturbations. Because the
of the ER evolution equations given by Eqs.~7! assumes
harmonic slicing, the only relevant time-independent so
tion is Eqs. ~11!. However, for the case of the Einstein
Bianchi or ADM system evolved using a different gaug
one might be interested in a different background soluti
The features of the background solution that are import
for determining stability are the signs and relative mag
tudes of components ofKi j and derivatives ofb i . We note
that these features are approximately the same for
Schwarzschild solution on time-independent MMIEF slic
as they are for the Schwarzschild solution on tim
independent harmonic slices, and so one obtains similar
bility criteria in both cases.

In the case of the ER equations, we are fortunate to h
algebraic constraints that can be used to modify the evolu
equations without affecting the hyperbolic character of
system, even in three dimensions. However, not all the
constraints are algebraic, and it is unclear in the thr
dimensional case which constraints must be used in orde
suppress instabilities. In particular, Eq.~18!, which seems
necessary for removing the growing mode, is not algebrai
three dimensions. This is because Eq.~18! results from
eliminating second derivatives of the metric from Eqs.~8a!
and ~8b!; the three-dimensional equivalent is forming a li
ear combination of components of Eq.~4a! that eliminates all
second derivatives ofgi j appearing in the Ricci tensorR̄i j ,
and is not possible for a general spacetime.

One might ask why we do not use Eq.~8c! instead of Eq.
~18! to obtain a stable evolution equation forLr

r , since Eq.
~8c! is algebraic in the general three-dimensional case.
answer is that itis possible to use Eq.~8c! to obtain an
individually stable evolution equation forLr

r . However, do-
ing so introduces a term containingLT on the right-hand side
of the Lr

r evolution equation, where no such term exist
previously. This term generates a continuum instability in
coupled Lr

r-LT system~where all variables exceptLr
r andLT

are held fixed to the analytic solution!.
To better understand why Eq.~8c! alone cannot stabilize

the ER equations, consider as fundamental variables notLrr
andLT , but instead the trace and the trace-free parts ofLi j ,
which in spherical symmetry are given byLi

i[Lr
r12LT and
0-10
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LTF[Lr
r2LT . If one constructs evolution equations forLi

i

andLTF, one finds that perturbations ofLTF, holdingLi
i and

all other ER variables fixed, obey Eq.~14! with

R~r !5
N~10KT27Kr

r !

3
5

z3~48141z134z2127z3!

12M ~11z!2~11z2!2 .

~21!

The perturbations grow rapidly with time becauseR(r ) is
large and positive. The source of the problem is a lar
positiveLTF term on the right-hand side of theLTF evolution
equation. Because Eq.~8c! involves only the trace ofLi j and
not its trace-free part, this equation cannot be used to el
nate theLTF term and thus cannot be used to stabilize
system.

If one wishes to use the ER formulation in a 3D fr
evolution, one must find a way of dealing with the unsta
continuum mode afflicting the ER evolution equations. U
fortunately, the above analysis suggests that in 3D, this c
not be done in a simple way using algebraic constraint eq
tions. Accordingly, for 3D simulations it may be mor
fruitful to pursue other hyperbolic formulations such as t
Einstein-Bianchi system, which, according to our analys
should not suffer from this type of instability.
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APPENDIX

1. Solution of Eq. „14… on an infinite domain

Solutions to Eq. ~14! propagate along characterist
curvesr 5r (t) that depend only on the shift vector and a
defined by

dr

dt
52b~r !. ~A1!

Each spacetime point (r ,t) intersects exactly one characte
istic curve. If we defines(r ,t) to be the radial coordinate a
which the characteristic curve passing through (r ,t) inter-
sects the initial slicet50, then forb(r ) given by Eq.~11d!
we can integrate Eq.~A1! to find a relation betweens, t, and
r :

t

2M
5 ln

s

r
1

1

3 S r

2M D 3F S s

r D
3

21G1
1

2 S r

2M D 2F S s

r D
2

21G
1

r

2M Fs

r
21G . ~A2!
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Treatings and t as independent variables, we can write E
~14! in the form

]j

]t U
s5const

5R„r ~s,t !…j. ~A3!

Each value ofR(r ) listed in Eqs.~16! can be written in
the form

R~r !5
z3@a1bz1cz21~b1c2a!z3#

2M ~11z!2~11z2!2 , ~A4!

wherea, b, and c are constants andz[2M /r . Using this
expression forR(r ) we can integrate Eq.~A3! together with
Eq. ~A2! to obtain the general solution

j~r ,t !5j0~s!S s

r D
aS 112M /r

112M /sD
b2aS 11~2M /r !2

11~2M /s!2D ~c2a!/2

,

~A5!

wherej0(r ) denotesj on the initial slicet50.
For a fixed value ofr we haves@r at late times, and so

Eq. ~A2! reduces tot;s3/12M2 and Eq.~A5! reduces to

j~r ,t !;j0~121/3M2/3t1/3!S 12M2t

r 3 D a/3

, ~A6!

where time-independent factors have been dropped. Ifj ini-
tially falls off like r 2m, then for a fixedr it will behave like
t (a2m)/3 at late times. Fora.m13, perturbations will grow
superlinearly with time, but fora<m13 the growth is at
most linear~for a,m the perturbation is actually damped!,
and so it does not represent an instability.

For the Lrr equation (a510) to be individually stable,
numerical errors must fall off at least as fast asr 27. For the
KT equation (a54) to be stable, the leading-order fallo
rate must be no slower thanr 21. TheMrT andaT equations
(a52) will be stable even if numerical errors grow wit
radius, as long as these errors grow no faster thanr .

Empirically, we find that the dominant numerical errors
the wavelike variables~Lrr , LT , MrT , arr , anda0r! fall off
like r 21 and propagate outward from the strong-field regi
near the hole. This is what one would expect for modes t
behave like gravitational radiation~these modes are not a
lowed in spherical symmetry but nevertheless can be pre
in numerical error terms!. The dominant errors in other vari
ables also propagate outward from the strong-field reg
and fall off either liker 21 or r 22. These falloff rates explain
our observation that theLrr equation is individually unstable
but theKT , MrT , andaT equations are individually stable

For background solutions other than Eqs.~11!, the forms
of b(r ) andR(r ) will be different, and so the details of th
solution ~A5! will change. For example, if one takes th
MMIEF solution as a background@this is not relevant for
Eqs.~7! because the MMIEF solution is not preserved und
harmonic slicing, but is relevant for other systems of evo
tion equations to which one might apply this analysis#, R(r )
typically falls off like r 22 instead ofr 23, andb(r ) falls off
like r 21 instead ofr 22; so the stability criterion become
0-11
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a<m12 instead ofa<m13. At the same time, the coeffi
cient a is typically smaller for the MMIEF background; s
both the MMIEF background and the background~11! yield
similar predictions for stability.

Furthermore, note that our stability criterion can be a
plied to coupledevolution equations as long as there are
couplings through derivatives. For example, consider
coupled system consisting of all ER variables exceptMrrr ,
MrT , and a0r . If Mrrr , MrT , and a0r are held fixed, the
perturbation equation for the 13 other variables can be w
ten in the form~14!, where in this casej is a 13-element
column vector andR(r ) is a 13313 matrix. To determine
stability, one examines each eigenmode of the perturba
equation in the manner described above. An example
which this analysis cannot be used without modification
the coupled system consisting ofLrr andMrrr . In this case,
the spatial derivatives ofLrr in the Mrrr equation~7m! and
the spatial derivatives ofMrrr in the Lrr equation~7n! pre-
vent one from writing down a matrix perturbation equati
of the form ~14!. Instead, the perturbation equations poss
more than one family of characteristic curves, and so
solution is more complicated.

2. Solution of Eq. „14… on a finite domain

In numerical simulations one often does not have a
main that extends tor 5`, but instead one imposes an ar
ficial boundary condition at some finite value ofr . For sim-
plicity, consider a Dirichlet condition: assumej is fixed to
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some constant valuej0 at the outer boundaryr 5r 0 . If we let
t0(r ) be the time it takes for information to propagate fro
the outer boundaryr 0 to some radiusr ,r 0 , then for (t,r )
such that t.t0(r ), the solution of Eq. ~14! is time-
independent, and for (t,r ) such thatt,t0(r ), the solution is
the same as for the case considered in above, in the
subsection of this appendix.

For b(r ) given by Eq.~11d!, the time it takes for infor-
mation to propagate inward from radiuss to radiusr ,s is
given by Eq.~A2!. In this case, forR(r ) given by Eq.~A4!
the time-independent solution is

j~r !5j0S r 0

r D aS 112M /r

112M /r 0
D b2aS 11~2M /r !2

11~2M /r 0!2D ~c2a!/2

.

~A7!

For r 0@r , the time-independent solution behaves roug
like r 2a.

One consequence of the above analysis is that if one
a Dirichlet outer boundary condition and an unstable mo
of this type is present~that is, if numerical perturbations fal
off more slowly thanr 2a!, then the instability will become
more severe if the outer boundary location is moved to
larger radius. This is because the unstable mode has m
time to grow before the time-independent state is reach
We have verified this numerically for the simple case of t
Lrr evolution equation solved with all other variables he
constant.
ss.
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