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Combining Cauchy and characteristic codes. V. Cauchy-characteristic matching for a spherical
spacetime containing a perfect fluid
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This paper is part of a long term program to develop C@6dmbined Cauchy and characteristiodes as
investigative tools in numerical relativity. The approach has two distinct feat(iyésdispenses with an outer
boundary condition and replaces this with matching conditions at an interface between the Cauchy and char-
acteristic regions, andii) by employing a compactified coordinate, it proves possible to generate global
solutions. In this paper it is shown that CCM can be used effectively to model a spherically symmetric perfect
fluid. A particular advantage of CCM in avoiding arbitrary mass inflow-outflow boundary conditions is pointed
out. Results are presented which include fluid distributions which form black holes and those which give rise
to mass outflow[S0556-282(198)06516-3

PACS numbe(s): 04.25.Dm, 04.20.Ha, 04.40.Nr, 04.70.Bw

[. INTRODUCTION dimensional problems it is quite easy to follow the fluid-
vacuum interface and apply boundary conditions there. In

Cauchy-characteristic matchinCCM) is a technique . : .
which replaces thad hocboundary conditions at the edge of higher d|r_m_en5|ons, however, _su_c_h an _app_rogch _bec_omes ex-
tremely difficult. Normally the initial fluid distribution is set

a finite numerical grid by a compactified characteristic re—up near the center of the grid while the “vacuum” region is

gion. The characteristic region provides the correct behavio, illed with a very low density materia8]. The boundary

for waves at the bom_mdar_y. Informatlon IS pa_ssed bgtween th(‘:aonditions are then fixed at the edge of the grid. This can be
inner and outer grids via an interface region which takes

. . satisfactory if the grid is sufficiently large that significant
account of coordinate transformatiofi. . : :
. mounts of fluid never reach the boundary, but it does intro-
In recent years CCM has been applied to a number o

i , L - “duce a number of difficulties which CCM can address.
problems, particularly scalar field&] and cylindrical gravi- ; . . oo
X . . : e First, as in the case of a scalar field or gravitational
tational waveq 3] with work on axisymmetric gravitational : e .

. L ... waves, the outer boundary is an artificial one and can give
waves in progrespt]. A notable exception is its application . . . o .
to spacetimes containing a perfect fluid. Since this is one o?se to spurious reflect-|ons of waves Wh'c.h In time can ser-

. . ; . C o ly affect the numerical evolution. This is the problem that

the most important sources in astrophysics, an investigatio usly . . P!
using CCM would be very interesting. Indeed it could pro- .C.M usually degls with. I.n the .ﬂu'd case there is a second
vide a way of dealing with other boundary problems Whichdlfﬂculty. There is an arb|tra_ry |r_1flqu—outflow boundary at
arise in fluid spacetimes, but are absent in scalar field anff'® €dge of the grid. To avoid significant mass changes the
gravitational wave spacetimes. Some previous works hav8fid must be large enough to ensure that the density is al-
looked at incorporating matter, usually diis or radiation ~ Ways very low near the boundary. This can mean a very large
fluid [6], into purely characteristic codes. These have been i§rid for something like the simulation of super-nova explo-
the context of cosmology and critical behavior respectivelysions. Since one of the main advantages of CCM is to make
and so have not used a compactified coordinate system. A large grid for gravitational wave extraction unnecessary, it
particular problem with this approach, especially when matwould be useful to be able to use a small grid even if fluid is
ter is present, is the appearance of caustics which requingresent. This is the goal of the current work.
special treatment if they are not to halt the numerical code. In this paper we investigate CCM for a spherical space-
Careful use of CCM can circumvent this difficulty by con- time with a perfect fluid. The inner Cauchy portion of the
fining the large density, strong field dynamics to the innercalculation uses a standard Arnowitt-Deser-Misf&DM )
Cauchy region. Moreover purely characteristic formulations3+1 approach 9] and is described quite briefly. Here we
often have stability problems at=0 which are avoided with concentrate on the details of the characteristic region and on
CCM. the interface. In particular we look at the asymptotic behav-

When modelling spacetimes with a perfect fluid a numberor of the fluid density and energy which is required to have
of numerical methods can be used. Particle type hydrodya finite mass at future-null-infinity. The interface conditions
namics is possiblé7], where the fluid is followed in a La- which match the Cauchy portiofusing a radial gauge with
grangian manner. This would appear to avoid outer boundarpolar time slicing to the characteristic regiofusing Bondi
problems; the main difficulty can be the loss of accuracycoordinatesare described in detail. Results from a number
when the fluid becomes very dispersed. The more traditionadf runs of the code are shown. They include fluid distribu-
finite-difference and finite-element approaches usually us&ons which form black holes and those which give rise to
an Eulerian type scheme where the fluid moves across a gritiass outflow. The code is shown to be second-order conver-
(which may or may not be moving itsglf For one- gent and stable over long periods of time.
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Il. CAUCHY EINSTEIN EQUATIONS 3-velocity of the fluid,I" is the adiabatic index and the dy-

In the following c=G=1 and the spacetime metric has namical fluid variables have been defined as

the signatureg(—,+,+,+) and spacetime tensor indices are D=p,aav', (10
denoted by lowercase Greek lettéesg. i, v, ...).

We list here the equations for the Cauchy portion of the E=p,W(avh)?-p, (12)
code. These are obtained using standard ADML3methods
on the Einstein equation®], the divergence of the stress- Z=p,wa’(av')?U. (12)

energy tensor and baryon conservation. A radial gauge is
used for which the spherically symmetric line element is  The pressure can be obtained from the fundamental variables
and the equation of state via the implicit equation

ds?=—a?(r,t)dt?+a?(r,t)dr2+r2dQ?, )
ax 2 (y—1) [ Z 272 212 1/2
wherer is such thatA=41r? is the proper area of a spheri- X:{ (——1)D> yE—X— X - - ]
cal surface at coordinate distancdrom the origin,dQ? is Y a a
the flat metric or8?, a is the radial metric function and is (13

the lapse function. The lapse function will be determined bywhereX= E+p. The 3-velocity can then be found as
imposing the polar time-slicing conditidi.0] '

Z
KI+K2=0. @ Vi =2y, (14
a’(E+p) @
The stress-energy tensor of the perfect fluid is given by
T,w:P*WUMUV*‘ PYu., 3) IIl. CHARACTERISTIC EINSTEIN EQUATIONS

On the characteristic side we use a Bondi coordinate sys-

wherep, , w=1+e+plp, andp are, respectively, the rest (om Bondi's line element for an axially symmetric space-
mass density, the relativistic enthalpy and the thermal pres;me nossessing azimuth-reflection invariance with signature
sure, all measured in the fluid co-moving frame. The quant|ty(_ +4+,+) is [11]

e is the specific internal energy and is the fluid 4-velocity.
Given the metriq1l) and the stress-energy teng8y the set ds?= — (VAT —T 2U2e?7)du?— 2e?Adudr
of equations to be solved is
—2r2Ue?"dudd+r 2e27d6%+r 2e 27 sir? 6d¢?,
1
D+ —(r’DV") =0 (4 (15
r

whereV, U, B and v are all functions of @,r,6). If we

1, ] make the additional assumption that the line element is
Et r_z[r (E+p)V'],=0 (5)  spherically symmetric, then E(L5) reduces to the forrtsee
Appendix A
1, . @ veh ~ ~
Z+ r_z[r (zv +aap)],,—?ZUa,, ds?’=— ——du?—2e?Adudr+r2dQ?, (16)
r
p whereV=V(u,r) and 8= B(u,r) onl
+a(E+p)a,— —(r2aa),=0 6 * ; Y-
aE+pay rz(r @), © The assumption of spherical symmetry means that in the

characteristic region the fluid 4-velocity has components
2

a, a—1 ) -
o op 4mr(@p+zU)=0, ) vh=(v", v", 0,0), 7
a. a’-1 where the fluid variables", v?, p, ps ande are all func-
?r+ o —4mra’E=0 (8)  tions of (u,r) only. The normalizing condition
_ 277 2 Y_
supplemented by the equation of state viu,= —VetP(u!)?/r —2e*Pu "= —1 (18)
p=(I'-1)p,e. 9) then enables us to eliminaté~ in terms of metric variables

and v, sincev'#0. In addition, the equation of stat8)
Note that this system is more general than that of a radiatioenables us to eliminatg, in which case there are three re-
fluid, where the evolution equation ferwould not need to maining independent physical variables, namelyp, and
be considered. However it is required for a consistent treaty".
ment of shocks. In the abow¢' =v'/v'=aU/a is the local Defining the field equations in terms of
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E..=G,,—87T,,=0, (199 and
then
L'=E;;=0 determinesgy, (200  where
L2=2¢g%E,,;+g"E;;=0 determinesVy, (21
L3=E»=0 determines(S;) u, (22 and

where all the other quantities in the three equations are
known at each stage of the integration. In addition,

Eqp=0 determinesV ,. (23

We use this last equation to eliminate null derivatives of the
metric variableV from subsequent equations. Then the con-
servation equations

PHYSICAL REVIEW D 58 044019

B,=AS,+B(v") ,+Ce,+D+E, (35

S=p. Iy", (36)

A=my3e®P[e?B(vY)2(el + 1) (yW+e?P)
+(el'-2e—-1)],

B=2my3(el'+1)v'e*’SF,
C=my%e®qI'(v')%e?F+TI'—2],

D =8my*e®$(v")2S(2e+2e’T —e’T'?+1)

TMVJVZO' (24) _(1+ 2eF+e2F2)(UU)ZeZﬁF],
together with the equation of baryon conservation E=2my2e?fS] (v")2e2A(1+el")(e2h + 2y W)
(pxv™).,=0, (295 +(3el'—4e—1)],

provide three equations which between them determine the
null derivatives of the three physical variabkss p, andv".
Specifically, after substitution,

F=yW+e?’.

The three equatioris*=L%=L%=0 for determining the evo-
lution of the three independent physical variables become

L4=Tu ,=0 determinese,, (26)
Su=[y’BS,+ySC-y?SD(v") ,+y’Ee,l/A, (37)
L5=(p,u*).,=0 determinesp, . (27)
) where
LS=T'» ,=0 determinesv",, (28)

A=(1+2el'—el'?)(vY)?,
where all the other quantities in the three equations are

known at each stage of the integration.
We next introduce a compactified radial coordinate

B=(el'>—2el'-1)F/2+e(I'—1)e 2,

C=(2el'>-3el'—1)F+4e(I'—1)e ?#,

=1, 29
y 29 D=(el'+1)e2F/p",
define
E=S(I'-1)e ?A,
B=Bu, (30)
F=[yW(")?+e*(v")?~e 2]
and replace/ with the function
for the density,
W=V-e?fly, (31

e, =[y?eBS,+yeSC-y%eD(v") ,+y?SEe/]/A,
which remains finite at null infinity. The resulting line ele- (38
ment is
where
2B

1
dudy+ —dQ?2.

2
dszz_(WEsz+e4'B)dU2+ © y—
(32)

vl A=(1+2el—el®)S(vY)?,

B=e(I'?-2I'+1)e 25,
In these new coordinates, the three equatibhs: L?=13

=0 for determining the metric become, respectively, C=FG+2(el*~3el -I'+1+2e)e ?#,

By=—2myS(v")%e*¥(1+Te), (33 D=SFe ?/Iv",

W, =47SeA[(v")%e*#(1+Te)+e(2-T)] (39 E=(el'>—2el'—1)G/2+(1+e)e A,
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F=(el>—el+I'—1), Note however that we will retain the tilde in this section to
distinguish between/ar anda/dr. Because of the spherical
G=[yW(v")*+e*+e %], symmetry, we may write
for the specific internal energy, and u="f(r,t). (45)

v =[—y?B(e9S) ,+y?SCQuv") ,+SD—2my3S?e?PE]/A, Differentiating this gives
(39

—Adw?—2Bdudr= —Af2dt?—2 f (Af ,+B)dtdr
where ' ' '

—(Af2+2Bf )dr. 46
A=(1+2el —el'2)S(vY)2, (AT, ) (46)

Comparing with Eq(40) we see that

B=(I'-1)e 28,
a®=Af%, (47
C=(el'>—2el'—1)Fv'/2+ (el'?+1)e ?A[2v", ’
0=f (Af,+B), (48
D=2B(el'*—2el'—1)(v")2—y?W(el'?+1)(v")?/2 S
—a?=Af;+2Bf,. (49

+yele 2A(1-T)(vY)%+ye(I'2— 5T +4)e 2P,

Since we do not wart ;=0, Eq.(48) gives
E=[yE(v")%e?+ (v")%e**+1] t q.-(49 g

— -1
X (€213~ 26?2+ eI'2— 3¢l — 1) fr="BAT (50
+2(2eT —e2I?—el?+e+2el +1) and substituting in Eq49) gives
a’=B%A" 1. (51)

F=yW+e?#

To calculatea? we need to know ;. We choose to label

for the zero;h component of the fluid 4-velocity. The NUMET e null hypersurfaces so thatandt agree on the interface
cal integration scheme for these and the Cauchy equation

(4)—(8) is described in Sec. VI. at radiusr =rq. Thus

f(r01t)=t! (52)
IV. INTERFACE MATCHING
. . . ._and hence
The two line elements we wish to relate are given in
(t,r,0,¢) Cauchy coordinates by f(ro,t)=1. (53
ds?= —o?(r,t)dt?+a%(r,t)dr’+r?(d¢*+sir? 9d¢2%, ) Substituting this in Eq(47) gives
40
a®(ro,t)=A(ro.t). (54)

and in (u,r,6,¢) Bondi coordinates by
Note that Eq(54) is valid only on the interface whereas Eq.
ds?=—A(r,u)du?—2B(r,u)drdu+r 2(d@?+sir? 8d$?).  (51) is valid everywhere.
(42) We also need to calculate how the derivatives of the met-
ric coefficients are related. Since the angular and time vari-
The quantitiesA andB are given in the Bondi parametriza- aples for the two coordinate systems agree on the interface,

tion of the metric by we may calculate these derivatives by differentiating Egs.
- (51) and (54). Also since Eq.(51) is valid everywhere, we
A=Verlr, (42) may calculate the radial derivative afusing the chain rule
to obtain
B=e?h. (43
a,=(BA '); -BA{(BA ') . (55)

In this section it is more convenient to work with and B

rather thanV (or W) and B, although Appendix B gives the Similarly differentiating Eq.(47) gives

results in terms of the variables used for the numerical code. " e "

Because of the spherical symmetry, we may takes and a,=(AT)TT = BATHAT) Jf AT (56)
¢= . Since the transformation betweenr) and () is gyt by Eq.(48),

independent of the angular variables a comparison between

Egs.(40) and(41) shows us we must have fo=-— f,t(BA_l),u- (57)

T=r. (44) Using f ;=1 on the interface we obtain
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a,=(AY?):—(BA Y2, onr=r,. (58 et=(1+f )%, (69)

The matter variablep, ande are scalars and therefore a o1
agree on the interface, as do their angular and time deriva- f=51+kR") % (70)
tives. The radial derivatives are related by the chain rule

This solution represents a static fluid with presspreand

— P~ — -1

¢, =07 -BA D . (59 densityp given by

The transformation of the 4-velocigy* is given by p=bfS(1+f ) 5(1-f) (7D
v'=0", (60) p=3bf3(1+f )75, (72)
vi=f '+ f o (61) b=8k/(a"m). (73

Takingr=r, and solving forv' andv" gives This is not an exact polytrope gsis related top by
Ur:l)?, (62) p6/5 3p .
- P= 120,10 T\ center (79

vi=v'+BA 1" (63

) ) o ) however, the density falls off like™®, and so this is close to
~ As with the metric coefficients we also require the rela-5n exact polytropic equation of state in the asymptotic re-
tionship between the derivatives. Taking the radial der|vat|vegi0n_ Note thatp and p are related to our choice of matter

of Eq. (60) using the chain rule gives variablesp, ande by
vl =0 —(BA Y. (64) p=(I—1)p,e, (75
Similarly taking the radial derivative of Eq61) gives p=(1+e)p, . (76)
v =f o o+l ol (65  Since the solution is static, the 4-velocity of the fluid is given
Using Eq.(57) to substitute forf ;,, differentiating Eq.(50) >y
to find f ., and calculating; using the chain rule yields v'=(1+f)(1-f)7, (77)
vt = U’l_JF_ BA LY+ BA" 1U}_ BZA*ZU?U v3=0 otherwise. (79
=(BA‘1)YUUU+(BA‘1);U7. 66) The purpose of this section is to find the asymptotic be-

havior of the Buchdahl solution in Bondi coordinates. We

Thus Egs(51), (54), (55), (58), (62), (63), (64) and(66)  Start by noting that

give the metric variables, matter variables and their radial

Qerivativgs in Fhe Cauchy_ regi_on in terms (_)f t.he corresppnd— f= ¢ +O(R™3) where c= i, (79)

ing quantities in the Bondi region. A very similar calculation R 2k

gives the inverse transformation. The final formulas are

given in Appendix B. which enables us to calculate the asymptotic behavior of the
various quantities in terms of the isotropic radius coordinate

V. FLUID BEHAVIOR AT NULL INFINITY R. The next step is to convert the metric to the radial gauge

coordinate system used in the Cauchy region. The radial

In Newtonian theory stars are often described as statigauger coordinate is related to the isotropit coordinate
polytropic gas spheres with equation of staeKp'. A system by

solution of considerable interest is the cédse 6/5 for which

the matter extends to infinity, but the total mass is finite. A r’=(1+f )*R? (80)
relativistic analogue of this solution was obtained by Buch-

dahl[12]. The initial data we evolve numerically will consist SO that

of the Buchdahl solution perturbed by a Gaussian pulse. 2
Buchdahl originally gave his solution in isotropic coordi- r=R+2c+C—+O(R*3). (81)
nates as R
ds’=e’dt’— e #(dR?+ R2dQ?) (67)  This gives
where e’=1—4c/r+(8c?+4ac)/r’>+0(r 3, (82
e’'=(1—f )2(1+f )2 (69) et=1+4c/r+(6¢c>—4ac)/r>+0(r 3, (83
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dR?=[1+2c?/r’+0(r 3)]dr2. (84) o

J
—+3—3(r2f)+820. (99
Equating Eq.(67) with Eqg. (1) gives at ar
a?=1—4c/r+(8c?+4ac)/r>+0(r 3), (85  The discrete form of Eq(99) has improved behavior near
) ) ) s r=0. The equation is differenced using a two-step, predictor-
a®=1+4c/r+(8c“—4ac)/r°+0(r ). (86)  corrector MacCormack schen#3],

We now change to Bondi coordinates. As we have seen in 3At

the previous section the transformation between Cauchy and U=u"- ﬁ(rf+ JFM—r2FM—AtS, (100
Bondi coordinates is not straightforward in general. How- rie—r

ever, in the special case of a static solution which we are

considering here it is possible to obtain transformation forwhere X'= A(r; ,t"). Once all the predicted valués have
mulas which are valid everywhere and not just at the interpeen found, the metric variabl@sand a must also be pre-
face. These give dicted using the methods described below. The corrected val-

ues of the fluid quantities are, then,

A= a?, (87)
_ ~ 3/2At ~ ~
B=aa, (88) UM = VAU~ o (PR F)
which by Eqgs.(85),(86) give ~ bt
2 2 -3 —1/2AtS;. (101
A=1—4c/r+(8c“+4ac)/r<+0(r °), (89
3 Nearr=0 the variabledd andE are expanded as even
B=1+0(r 3. 90 functions, e.g.
In terms of the Bondi parametrization this is equivalent to D(r—0)=A+Br2, (102
B=0(r"%), (91 . .
where the time-dependent coefficieisand B are deter-
V=r—4c+(8c2+4ac)/r+O(r 2). (920  Mined using interior values dd. The quantityZ is an odd
function and ar =0 we haveZ=0.
For the matter variables one finds On the characteristic side the evolution equati¢dis—
(39 for the U={p, ,e,v"} variables can be written in the
px=0(r7°), (939)  non-conservative form
e=0(r 1), (94 au
%+A (9—+S=0, (103
p=0(r~9), (95) y
pU=142¢/r +(2¢2—ac)/r2+O(r %), (96) where S may contain spatial derivatives of the other vari-

ables. It is simple to modify the MacCormack difference
T ) scheme for this type of equation. At the interface the rela-
v?=0 otherwise. (97)  tionships listed in Appendix B are used to obtain difference
. . . . formulas which express Cauchy quantities and their radial
In terms of the numerical evolution the important point to ;. " - . L . X
derivatives in terms of characteristic quantities, and vice

note is the fact thag vanishes to third order at null infinity versa. This enables us to continue the Cauchy and character-
despite the presence of matter. We are therefore still able to ' y

use the boundary conditigh=0 at null infinity in this more IStic integrations through the m'gerche in both dlrgctlons.
general setting. Note that some of the relationships involvendu deriva-

tives: hence more than one time level is required to obtain
some of the difference formulas.
VI. NUMERICAL METHODS It is not possible to have values @=E=p=p,=¢€

The equations are discretized using finite-difference meth=0 anywhere on the grid since it would then be impossible
ods which are accurate to second-order in the grid space ari@l solve Eq.(14) and some type of fluid-vacuum interface
time intervals. The evolution equatiorid)—(6) for D, E  tracking would be required. To avoid this complication every

andZ (represented by below) can be written in the form  9rid point has at least a “vacuum” level of these variables
[8]. Typically the “vacuum” level is around 10'° times

d 149 , that of the peak value of the variable in the initial data set.
St U O+ [ F(r tla,a) ]+ S(rtida,e) =0, Because the evolution equatio®)—(6) and (37)—(39)
(98) are non-linear and are propagating waves in a compressible
fluid, it is highly likely that shocks and other discontinuities
which can also be written as will occur. It is well known that second-order accurate dis-
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cretizations of such equations produce spurious oscillationand (37)—(39) near steep gradients. An additional problem
at shock fronts and require some form of artificial dissipationwhich can be solved by artificial dissipation arises due to the
to reduce the effect. A highly satisfactory solution is to use“vacuum” levels of the variables at certain points on the
so-called high-order Godunovmethods along with flux- grid, as described previously. The fluid has a very low den-
limiters, usually of the total variation diminishingl'vVD) sity, but can have a significant velocity. This gives rise to a
type. These have recently been used for spherical generabisy evolution, which, if left unchecked, can begin to domi-
relativistic flows where they are far more accurate than stannate the numerical solution due to erratic behavior in the
dard artificial viscosity when the flow velocities are very 3-velocity. A small amount of dissipation can eliminate this
close to the speed of ligit4]. The main problem with such problem very effectively.

schemes is their complexity. For the work considered in this Once the quantitie have been evaluated at the new time
paper the flow velocities are kept to values typically less thatevel, they are dissipated according to the formula

80% of the speed of light. Furthermore, their implementation

with CCM has yet to be investigated. Thus the advantages of U =01+ U, . —U") — p_(UP—UP_)) (104

the high-order Godunov schemes are less appealing for the

work considered here. Here we use a second-order viscowghere the dissipation coefficient, is calculated in the fol-
term (described beloyto dissipate solutions of Eq&4)—(6) lowing way:

max{IN(Eyac/Emax), MmN 0,IN(E/E a0 1/IN(Eyac/Eman } = &,

min(¢,1)°=¢*,
V161~ &)+ &5 = & | (105
|
In the aboveE, .. is the “vacuum” level of E set at the start In Ay 1—In 4=12Ar (Y41t ), (110

of the evolution anc ., is the maximum value oE on the _ -
current time slice. Note that the predicted valuestofire ~ WhereAr=r;,;—r;. The solution fora requires iteration of

used. Then the discrete equation

n=1/3** (1/2+ €°), (106) aj1=a; exp[1/2Ar (Y41 + )] (119

where with a starting valuea=1 atr=0. By contrast the lapse is
At found algebraically from
==V 10

“r (107 w=apy e~ VANV, +))], (112

for the D andZ variables, while where the outer starting value afis obtained from the char-
acteristic portion of the spacetime as described below. Since

€= ﬂ ETP\\ s (108 a is an even function of, it is expanded near=0 as in Eq.

Ar E (102. The radial equation§33)—(35) on the characteristic

side are straightforward to difference, but they must be inte-
for the E variable. The property of expressi¢h05) is such  grated in the correct order and the right directiowards or
that £&* ~1 whenE~E,,. and £** ~1/16 otherwise. The outward$. The integration scheme, in outline, consists of the
large power inf* ensures thag** moves rapidly away from following. Given a distribution oD, E, Z on the Cauchy
1 and towards 1/16 a& increases abovE,,.. Analogous Side andp, , e, v" on the characteristic side, either from an
expressions may be obtained for the characteristic equatiogitial data set or a previous evolution, we first integrate Eq.

with e used in place of. (8) for a outwards front =0 to the interface =r,. Next we
Both of the radial constraint equatio(i® and(8) on the  integrate Eq(33) for g inwards fromy=0 to the interface
Cauchy side can be written in the form y=Yo=1/ry. The boundary condition ig(y=0)=0 pro-

vided the asymptotic matter distribution is as described in
d Sec. V. From relationshifB12) it is then possible to obtain
gy nAM=Xr:u,a), (109 3 starting value fom at the interface so that EG7) can be
integrated inwards from=rg to r =0. In addition, from Eqg.
where A representsy or a and importantly) is independent (B13) a starting value foW can be found to enable the
of a, but dependent upaan This equation can be differenced integration of Eq(34) outwards fromy=y, to y=0. Oncep
to second order accuracy in space as andW have been found, it is straightforward to integrate Eq.
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(35) inwards to obtainB. The boundary condition i#(y 0.008 - T T
=0)=0, again valid when the asymptotic fluid behavior is as
described in Sec. V. Afterwards Egg)—(6) and (37)—(39) 0.006 | - -

are used to update the fluid variables. The whole process is

then repeated to continue the evolution. 0.004 |

Pressure

VII. RESULTS 0.002 |

We have investigated two general scenarios with the com- 0.000 .
bined code. The first describes configurations where the fluid “00 05
flow is predominately outwards, crossing the interface from
the Cauchy region into the characteristic region. In the sec- FIG. 1. The pressure profile at tinte=0. The radial coordinate

ond case the initial conditions are arranged so that the fluid js gefined by Eq(120. The interface is placed at=1 and future
collapses inwards, leading to black hole formation. In addiy| infinity is at z=2. The Buchdahl solution is patched onto the

tion we investigate the stability and convergence behavior ogaussian profile at=0.95, denoted by the dashed line.

the code.
6—2| —
g

The free parameters specifying the initial data are {hgp,
K, T, oandrp. In order forA to be positive we should have
o>r1p/V3. Note that in the characteristic region the substi-

M m—mE——m—_—— e e

.0 1.5 20

N

A. Outflow A=pomrp exp(—r2/o?). (119

The initial data consist of specifying the density and ve-
locity profiles of the fluid. To determine the initial pressure
we use the relationship

p:Kpi, (113 tution r=1/ is used in EQ.(115 which remains well-
behaved in the limity— 0.
which is consistent with the adiabatic equation of si&e We have performed many runs with the code. A typical

HereK is a constant which controls the initial specific inter- initial pressure profile which gives rise to outflow is shown
nal energye, of the fluid. We then solve E@8) for a, Eq.  in Fig. 1. The chosen values apg y=2x10"% K=200
(33 for B, Eq. (7) for @ and Eq.(34) for W in the manner and o=1.5 with I'=6/5 as required by the Buchdahl solu-
described at the end of Sec. VI. For simplicity we choose theion. The Cauchy-characteristic interface is kept fixed at
initial 3-velocity to be zero everywhere. The density profile =1 andr,=0.95 for all runs of the code. If we were to take
must be chosen such that it satisfigs, /or=0 atr=0 and  r,=10° cm, which is the radius of a typical neutron star,
must fall off asymptotically like the Buchdahl solution as then the central density value would correspond~t@.7
described in Sec. V. We satisfy these requirements by usingt10'2 g cm 3, indicating dense relativistic matter. The
a Gaussian profile near=0 and an asymptotic Buchdahl ADM mass in geometric units i =0.3, which equates to
solution attached at some patching radigs The Gaussian around 4<10*® g or 2M,. This configuration is quite rela-

profile is given by tivistic, having a central lapse value.=0.64. Note that the
5 o width of the Gaussian is somewhat larger than the radius of
Pxc(F)=psm eXQ(—r/o°), (1149 the Cauchy region which results in quite a large density at

the interface. This will show that the technique allows for a
small Cauchy region even when a significant amount of mat-
ter is present. It is important that this be the case since CCM

where p, v is the maximum density at=0 and o deter-
mines the width of the Gaussian. At radius we attach the

profile allows for gravitational wave extraction close to the source.
r5 ro\2 [\ 2 A convergence check on the code has been performed and
p,a(r)= p*'\g P Hz(_P) —5|rp— 2(_P> _GH the results are shown in Fig. 2. This shows thenorm in
r o the error of the metric functioa for low (N=151), medium
Xexq—rﬁ,/az). (115 (N=301) and high N=601) resolution runs of the initial

data shown in Fig. 1. The reference solution s 1201
grid points. The code exhibits 2nd-order convergence behav-
ior, but note that for these initial conditions almost all of the
PxG=Px=Pxm XA —T3/0?), (116)  fluid has moved off the Cauchy portion of the grid byM20
(whereM is the ADM mass of the configuratiprand the
code is evolving very low densities. Figure&@g 3(b) and
exp( —rg/a?). (117 3(c) show the evolution of the pressupe the metric func-
tion a and the radial component of the 4-velocity respec-
tively. Since the particular relationships between these
Cauchy quantities and the characteristic ones are valid for all
pep~AIrS (118 r, and not just at the interfadsee Sec. IV and Appendix)B
it is possible to plot them using a radial coordinatdefined
where by

It can be seen that, at the patching radigs

' ' e
PxG=PxB= ~2PxM ?

Moreover, in the limit of large,
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FIG. 2. Convergence behaviour of the CCM code. Theerror
norm of the metric functiora is shown for runs with grid resolu-
tions of N=151 (open circley N=301 (open diamondsand N
=601 (open squargs The reference solution has=1201 grid
points. Convergence is 2nd-order up tts20M after which the
code evolves very low densities and increased resolution generally
shows better than 2nd-order convergence.

r for O=sr=<1
“Zlo-y for 0=y=1. (129

This means there is a change of coordinate systems from
radial-polar to Bondi az=1 and future null infinity is lo-
cated atz=2. The figures have a break at the interface
=1. Note that the grid resolution is increased toward<)

for improved accuracy. Figurd® shows that after an initial
inwards collapse the fluid moves smoothly out across the
interface. The metric functioa drops towards 1 everywhere

in the Cauchy region as the fluid moves out. Note that the
velocity component can become quite large in the low den-
sity characteristic region. Its value can be greater than 1, but
of course the local 3-velocity of the fluid/"=v'/v!, is al-
ways less than 1. This type of configuration will run indefi-

nitely.
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B. Black hole formation

To obtain a black hole solution we begin with the same  FIG. 3. Time evolution of mass outflow initial data showitay
initial data as shown in Fig. 1, but modify the pressure pro-the pressurgb) the metric functiora, and(c) thev" component of
file while keeping the rest mass density constant, e.g. the fluid 4-velocity. Note that for clarity the-axis is reversed for

@).
p=BKp . (120
VIIl. DISCUSSION

The results from a run witlB=2 are shown in Figs. (&—
4(c). The total mass-energy of the configuration is increased, The work presented in this paper shows that the CCM

resulting in the formation of a black hole. In the radial-polartechnique can be applied effectively to perfect fluid space-
gauge the formation of a black hole is indicated by a rapidimes. Since in non-symmetrical situations it is very difficult
increase of the metric functiom and a corresponding rapid to follow the fluid-vacuum interface, the approach adopted
decrease of the lapse In spherical symmetry the peak af here has been to replace the vacuum region by one of very
asymptotically approaches the horizon and therefore the rdew density materia[8]. The initial fluid distribution is de-
dius of the black hole can be approximated. Here the blackcribed by a Gaussian pulse, while the low density exterior
hole radius ig g;=0.87 which is not far from the interface region is initially taken to be asymptotic to the finite mass
atro=1. In the asymptotic region the solution is once againstatic solution of Buchdahl.

an outflow as can be seen in Figcy Note that the time-step The code is shown to be second order convergent and to
is reduced as the black hole forms to maintain accuracy. Thibe stable over long periods. There is no problem evolving the
can be seen in the surface plots as the lines become closernmotion of the fluid until either it has moved off the Cauchy
the time direction. The configuration evolves to about13 portion of the grid(and the code is then evolving the residual
after which the rapid increase @ halts the code. low density fluig or until a black hole has formed. Further-
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Pressure p

SR

N
2
Y

condition. This allows the Cauchy region to be quite small
and it is shown in this paper that there is no problem locating
the interface in a region where there is a significant fluid
density. This shows the viability of using CCM to extract
gravitational wave information from a small Cauchy region.
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APPENDIX A: SPHERICALLY SYMMETRIC FORM
OF BONDI'S LINE ELEMENT

The solution of Killing’s equations

LMV:LXgMV:gﬂV,UX(r+ gMUXfL—’—gVO'X,(;L:O (Al)
. for the unit sphere
ds?=d 62+ sir? dep? (A2)

in canonical spherical coordinatég¢) is given by the three
rotations

Jd
——sin
cos¢a0 sin ¢ cot

%:Xl, (A3)
sin ¢&%+cos¢ cot0%=xz, (A4)
J

£=X3. (A5)

The Bondi line elementl5) already possesseg as a Kill-
ing vector since it is axially symmetric. The condition that

X, be a Killing vector from Eq(A1) results in the following
requirements

FIG. 4. Time evolution of initial data forming a black hole

showing(a) the pressure(b) the metric functiora, and(c) the v" Loo=0=V =0, (AB)
component of the fluid 4-velocity. Black hole hole formation is
indicated by a steep increasedn Note that for clarity thez-axis is Lo1=0=8,=0, (A7)
reversed for(a).

L02=O:>U 0:0, (A8)
more, there appear to be no significant discontinuities of the '
variables or their derivatives either at the interface or the L,s=0=>y=0. (A9)
junction between the fluid and the background.

~ One of the problems of dealing with the fluid-vacuum These conditions result iX, automatically being a Killing
interface by replacing it with a low density background whenyector. Finally, using the requirement in spherical symmetry
using a traditional 3-1 code is that it involves the use of of invariance under the discrete reflection

outer boundary conditions at the edge of the grid. These must

deal with the inflow and outflow of matter as well as ensur-

0—m7— 6, (A10)
ing outgoing gravitational radiation. Such a procedure can be
very problematic, especially in the case of significant inflow.we find that
To minimize these problems the Cauchy grid has to be taken
to be very large, extending well beyond the boundary of the U=0. (Al1)
star, so that the boundary conditions can be applied in a

region of very low density. A significant advantage in using Thus the spherically symmetric form of Bondi’s line element
CCM is the avoidance of having to apply such a boundanyjs
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ve?t -~ -
ds’=— ——du?—2e?Pdudr+r2d6*+r 2 sir 6de?,
r
(A12)
whereV=V(u,r) and 3= B(u,r) only.

APPENDIX B: RELATIONSHIPS FOR INTERFACE
MATCHING

We list here all the relationships required to obtain
Cauchy quantities and their first radial derivatives in terms of

characteristic quantities at the interface, and vice versa.
Cauchy variables in terms of Bondi variables:

A= q, (B1)
BA 12=a, (B2)
~[y? Ay +(BA™) ]=a,, (B3)
—-[y3(BA™Y3 ,+BA YBA '} J=a,, (B4)
vF=vr, (B5)
vU+BA " =0, (B6)
~[y?',+BA W ]=0",, (B7)

~[y20Y+ BA Xy, — %) + B2A %,
+y2(BA ) o'~ (BA™Y) w']=vl,, (B8)
~[y?® ,+BA D =, (B9)

where

PHYSICAL REVIEW D 58 044019

A=e?P(yW+e?h), (B10)

B=e?#, (B11)

the scalarsb={p, ,e}, andv" can be obtained from the
normalization condition(18). Note that the relation$B2)
and (B5) are valid for allr and not just at the interface.
Bondi variables in terms of Cauchy quantities:

1
Eln(aa)=,3, (B12)
aa r(1-a%=w, (B13)
1
—r?(aa™t) + Eaa‘l(aa‘l)"
+a_la’r+aa_2a,t]=,3’y, (B14)

—aa r(l-a®+r2ac(ae ) (+(1+a Ha?(aa™ ),

+2aa,+2a% ta]=W,, (B15)
v’ =0, (B16)

vi—aa W' =0vY, (B17)
—rz[v’rr-i-aa*lv’rt]:v?y, (B19)

—rz[vfr—vt(aa_l),t—v'(aa_l)',-l—aa_l(vft—vfr)

—a?a %' =v'y, (B19)

1@, +aa 0, )=, (B20)

where again the scalar ={p, ,e}.
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