
PHYSICAL REVIEW D, VOLUME 58, 044019
Combining Cauchy and characteristic codes. V. Cauchy-characteristic matching for a spherical
spacetime containing a perfect fluid

Mark R. Dubal, Ray A. d’Inverno, and James A. Vickers
Faculty of Mathematical Studies, University of Southampton, Southampton SO17 1BJ, United Kingdom

~Received 5 March 1998; published 24 July 1998!

This paper is part of a long term program to develop CCM~combined Cauchy and characteristic! codes as
investigative tools in numerical relativity. The approach has two distinct features:~i! it dispenses with an outer
boundary condition and replaces this with matching conditions at an interface between the Cauchy and char-
acteristic regions, and~ii ! by employing a compactified coordinate, it proves possible to generate global
solutions. In this paper it is shown that CCM can be used effectively to model a spherically symmetric perfect
fluid. A particular advantage of CCM in avoiding arbitrary mass inflow-outflow boundary conditions is pointed
out. Results are presented which include fluid distributions which form black holes and those which give rise
to mass outflow.@S0556-2821~98!06516-3#

PACS number~s!: 04.25.Dm, 04.20.Ha, 04.40.Nr, 04.70.Bw
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I. INTRODUCTION

Cauchy-characteristic matching~CCM! is a technique
which replaces thead hocboundary conditions at the edge
a finite numerical grid by a compactified characteristic
gion. The characteristic region provides the correct beha
for waves at the boundary. Information is passed between
inner and outer grids via an interface region which tak
account of coordinate transformations@1#.

In recent years CCM has been applied to a numbe
problems, particularly scalar fields@2# and cylindrical gravi-
tational waves@3# with work on axisymmetric gravitationa
waves in progress@4#. A notable exception is its applicatio
to spacetimes containing a perfect fluid. Since this is one
the most important sources in astrophysics, an investiga
using CCM would be very interesting. Indeed it could pr
vide a way of dealing with other boundary problems whi
arise in fluid spacetimes, but are absent in scalar field
gravitational wave spacetimes. Some previous works h
looked at incorporating matter, usually dust@5# or radiation
fluid @6#, into purely characteristic codes. These have bee
the context of cosmology and critical behavior respectiv
and so have not used a compactified coordinate system
particular problem with this approach, especially when m
ter is present, is the appearance of caustics which req
special treatment if they are not to halt the numerical co
Careful use of CCM can circumvent this difficulty by co
fining the large density, strong field dynamics to the inn
Cauchy region. Moreover purely characteristic formulatio
often have stability problems atr 50 which are avoided with
CCM.

When modelling spacetimes with a perfect fluid a num
of numerical methods can be used. Particle type hydro
namics is possible@7#, where the fluid is followed in a La-
grangian manner. This would appear to avoid outer bound
problems; the main difficulty can be the loss of accura
when the fluid becomes very dispersed. The more traditio
finite-difference and finite-element approaches usually
an Eulerian type scheme where the fluid moves across a
~which may or may not be moving itself!. For one-
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dimensional problems it is quite easy to follow the flui
vacuum interface and apply boundary conditions there.
higher dimensions, however, such an approach becomes
tremely difficult. Normally the initial fluid distribution is se
up near the center of the grid while the ‘‘vacuum’’ region
filled with a very low density material@8#. The boundary
conditions are then fixed at the edge of the grid. This can
satisfactory if the grid is sufficiently large that significa
amounts of fluid never reach the boundary, but it does in
duce a number of difficulties which CCM can address.

First, as in the case of a scalar field or gravitation
waves, the outer boundary is an artificial one and can g
rise to spurious reflections of waves which in time can se
ously affect the numerical evolution. This is the problem th
CCM usually deals with. In the fluid case there is a seco
difficulty. There is an arbitrary inflow-outflow boundary a
the edge of the grid. To avoid significant mass changes
grid must be large enough to ensure that the density is
ways very low near the boundary. This can mean a very la
grid for something like the simulation of super-nova exp
sions. Since one of the main advantages of CCM is to m
a large grid for gravitational wave extraction unnecessary
would be useful to be able to use a small grid even if fluid
present. This is the goal of the current work.

In this paper we investigate CCM for a spherical spa
time with a perfect fluid. The inner Cauchy portion of th
calculation uses a standard Arnowitt-Deser-Misner~ADM !
311 approach@9# and is described quite briefly. Here w
concentrate on the details of the characteristic region and
the interface. In particular we look at the asymptotic beh
ior of the fluid density and energy which is required to ha
a finite mass at future-null-infinity. The interface conditio
which match the Cauchy portion~using a radial gauge with
polar time slicing! to the characteristic region~using Bondi
coordinates! are described in detail. Results from a numb
of runs of the code are shown. They include fluid distrib
tions which form black holes and those which give rise
mass outflow. The code is shown to be second-order con
gent and stable over long periods of time.
© 1998 The American Physical Society19-1
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II. CAUCHY EINSTEIN EQUATIONS

In the following c5G51 and the spacetime metric ha
the signature~2,1,1,1! and spacetime tensor indices a
denoted by lowercase Greek letters~e.g.m, n, . . .!.

We list here the equations for the Cauchy portion of
code. These are obtained using standard ADM 311 methods
on the Einstein equations@9#, the divergence of the stress
energy tensor and baryon conservation. A radial gaug
used for which the spherically symmetric line element is

ds252a2~r ,t !dt21a2~r ,t !dr21r 2dV2, ~1!

wherer is such thatA54pr 2 is the proper area of a spher
cal surface at coordinate distancer from the origin,dV2 is
the flat metric onS2, a is the radial metric function anda is
the lapse function. The lapse function will be determined
imposing the polar time-slicing condition@10#

Ku
u1Kf

f50. ~2!

The stress-energy tensor of the perfect fluid is given by

Tmn5r* wvmvn1pgmn , ~3!

wherer* , w511e1p/r* andp are, respectively, the res
mass density, the relativistic enthalpy and the thermal p
sure, all measured in the fluid co-moving frame. The quan
e is the specific internal energy andvm is the fluid 4-velocity.
Given the metric~1! and the stress-energy tensor~3! the set
of equations to be solved is

D ,t1
1

r 2
~r 2DVr ! ,r50 ~4!

E,t1
1

r 2
@r 2~E1p!Vr # ,r50 ~5!

Z,t1
1

r 2
@r 2~ZVr1aap!# ,r2

a

a2
ZUa,r

1a~E1p!a ,r2
p

r 2
~r 2aa! ,r50 ~6!

a ,r

a
2

a221

2r
24pr ~a2p1ZU!50, ~7!

a,r

a
1

a221

2r
24pra2E50 ~8!

supplemented by the equation of state

p5~G21!r* e. ~9!

Note that this system is more general than that of a radia
fluid, where the evolution equation fore would not need to
be considered. However it is required for a consistent tre
ment of shocks. In the aboveVr5v r /v t5aU/a is the local
04401
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3-velocity of the fluid,G is the adiabatic index and the dy
namical fluid variables have been defined as

D5r* aav t, ~10!

E5r* w~av t!22p, ~11!

Z5r* wa2~av t!2U. ~12!

The pressure can be obtained from the fundamental varia
and the equation of state via the implicit equation

X5H S aX

~g21!D D 2FgE2X2
~g21!

X S Z

a2D 2G 2

1S Z

a2D 2J 1/2

~13!

whereX5E1p. The 3-velocity can then be found as

Vr5
aZ

a3~E1p!
5

a

a
U. ~14!

III. CHARACTERISTIC EINSTEIN EQUATIONS

On the characteristic side we use a Bondi coordinate s
tem. Bondi’s line element for an axially symmetric spac
time possessing azimuth-reflection invariance with signat
~2,1,1,1! is @11#

ds252~Ve2b/ r̃ 2 r̃ 2U2e2g!du222e2bdudr̃

22r̃ 2Ue2gdudu1 r̃ 2e2gdu21 r̃ 2e22g sin2 udf2,

~15!

where V, U, b and g are all functions of (u, r̃ ,u). If we
make the additional assumption that the line element
spherically symmetric, then Eq.~15! reduces to the form~see
Appendix A!

ds252
Ve2b

r̃
du222e2bdudr̃1 r̃ 2dV2, ~16!

whereV5V(u, r̃ ) andb5b(u, r̃ ) only.
The assumption of spherical symmetry means that in

characteristic region the fluid 4-velocity has components

vm5~vu, v r̃ , 0, 0!, ~17!

where the fluid variablesvu, v r̃ , p, r* ande are all func-
tions of (u, r̃ ) only. The normalizing condition

vmvm52Ve2b~vu!2/ r̃ 22e2bvuv r̃521 ~18!

then enables us to eliminatev r̃ in terms of metric variables
and vu, sincevuÞ0. In addition, the equation of state~9!
enables us to eliminatep, in which case there are three re
maining independent physical variables, namelye, r* and
vu.

Defining the field equations in terms of
9-2
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Emn[Gmn28pTmn50, ~19!

then

L1[E1150 determinesb , r̃ , ~20!

L2[2g01E111g11E1150 determinesV, r̃ , ~21!

L3[E2250 determines~b , r̃ ! ,u , ~22!

where all the other quantities in the three equations
known at each stage of the integration. In addition,

E0050 determinesV,u . ~23!

We use this last equation to eliminate null derivatives of
metric variableV from subsequent equations. Then the co
servation equations

Tmn
;n50, ~24!

together with the equation of baryon conservation

~r* vm! ;m50, ~25!

provide three equations which between them determine
null derivatives of the three physical variablese, r* andvu.
Specifically, after substitution,

L4[Tum
;m50 determinese,u , ~26!

L5[~r* um! ;m50 determinesr* ,u , ~27!

L6[Tr̃m
;m50 determinesvu

,u , ~28!

where all the other quantities in the three equations
known at each stage of the integration.

We next introduce a compactified radial coordinate

y51/r̃ , ~29!

define

B5b ,u , ~30!

and replaceV with the function

W5V2e2b/y, ~31!

which remains finite at null infinity. The resulting line ele
ment is

ds252~We2by1e4b!du21
2e2b

y2 dudy1
1

y2 dV2.

~32!

In these new coordinates, the three equationsL15L25L3

50 for determining the metric become, respectively,

b ,y522pyS~vu!2e4b~11Ge!, ~33!

W,y54pSe2b @~vu!2e4b~11Ge!1e~22G!# ~34!
04401
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B,y5AS,y1B~vu! ,y1Ce,y1D1E, ~35!

where

S5r* /y4, ~36!

and

A5py3e2b@e2b~vu!2~eG11!~yW1e2b!

1~eG22e21!#,

B52py3~eG11!vue4bSF,

C5py3e2bS@G~vu!2e2bF1G22#,

D58py4e6b~vu!2S2@~2e12e2G2e2G211!

2~112eG1e2G2!~vu!2e2bF#,

E52py2e2bS@~vu!2e2b~11eG!~e2b12yW!

1~3eG24e21!#,

F5yW1e2b.

The three equationsL45L55L650 for determining the evo-
lution of the three independent physical variables becom

S,u5@y2BS,y1ySC2y2SD~vu! ,y1y2Ee,y#/A, ~37!

where

A5~112eG2eG2!~vu!2,

B5~eG222eG21!F/21e~G21!e22b,

C5~2eG223eG21!F14e~G21!e22b,

D5~eG11!e22b/vu,

E5S~G21!e22b,

F5@yW~vu!21e2b~vu!22e22b#

for the density,

e,u5@y2eBS,y1yeSC2y2eD~vu! ,y1y2SEe,y#/A,
~38!

where

A5~112eG2eG2!S~vu!2,

B5e~G222G11!e22b,

C5FG12~eG223eG2G1112e!e22b,

D5SFe22b/vu,

E5~eG222eG21!G/21~11e!e22b,
9-3
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F5~eG22eG1G21!,

G5@yW~vu!21e2b1e22b#,

for the specific internal energy, and

v ,u
u 5@2y2B~eS! ,y1y2SC~vu! ,y1SD22py3S2e2bE#/A,

~39!

where

A5~112eG2eG2!S~vu!2,

B5~G21!e22b,

C5~eG222eG21!Fvu/21~eG211!e22b/2vu,

D52B~eG222eG21!~vu!22y2W~eG211!~vu!2/2

1yeGe22b~12G!~vu!21ye~G225G14!e22b,

E5@yE~vu!2e2b1~vu!2e4b11#

3~e2G322e2G21eG223eG21!

12~2e2G2e2G22eG21e12eG11!,

F5yW1e2b

for the zeroth component of the fluid 4-velocity. The nume
cal integration scheme for these and the Cauchy equat
~4!–~8! is described in Sec. VI.

IV. INTERFACE MATCHING

The two line elements we wish to relate are given
(t,r ,u,f) Cauchy coordinates by

ds252a2~r ,t !dt21a2~r ,t !dr21r 2~du21sin2 udf2!,
~40!

and in (u, r̃ ,ũ,f̃) Bondi coordinates by

ds252A~ r̃ ,u!du222B~ r̃ ,u!dr̃du1 r̃ 2~dũ 21sin2 ũdf̃2!.
~41!

The quantitiesA andB are given in the Bondi parametriza
tion of the metric by

A5Ve2b/ r̃ , ~42!

B5e2b. ~43!

In this section it is more convenient to work withA and B
rather thanV ~or W) andb, although Appendix B gives the
results in terms of the variables used for the numerical co
Because of the spherical symmetry, we may takeũ5u and
f̃5f. Since the transformation between (t,r ) and (u, r̃ ) is
independent of the angular variables a comparison betw
Eqs.~40! and ~41! shows us we must have

r̃ 5r . ~44!
04401
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Note however that we will retain the tilde in this section
distinguish between]/]r and]/] r̃ . Because of the spherica
symmetry, we may write

u5 f ~r ,t !. ~45!

Differentiating this gives

2Adu222Bdudr̃52A f ,t
2dt222 f ,t~A f ,r1B!dtdr

2~A f ,r
2 12B f ,r !dr2. ~46!

Comparing with Eq.~40! we see that

a25A f ,t
2 , ~47!

05 f ,t~A f ,r1B!, ~48!

2a25A f ,r
2 12B f ,r . ~49!

Since we do not wantf ,t50, Eq. ~48! gives

f ,r52BA21, ~50!

and substituting in Eq.~49! gives

a25B2A21. ~51!

To calculatea2 we need to knowf ,t . We choose to labe
the null hypersurfaces so thatu and t agree on the interface
at radiusr 5r 0 . Thus

f ~r 0 ,t !5t, ~52!

and hence

f ,t~r 0 ,t !51. ~53!

Substituting this in Eq.~47! gives

a2~r 0 ,t !5A~r 0 ,t !. ~54!

Note that Eq.~54! is valid only on the interface whereas E
~51! is valid everywhere.

We also need to calculate how the derivatives of the m
ric coefficients are related. Since the angular and time v
ables for the two coordinate systems agree on the interf
we may calculate these derivatives by differentiating E
~51! and ~54!. Also since Eq.~51! is valid everywhere, we
may calculate the radial derivative ofa using the chain rule
to obtain

a,r5~BA21/2! , r̃ 2BA21~BA21/2! ,u . ~55!

Similarly differentiating Eq.~47! gives

a ,r5~A1/2! , r̃ f ,t2BA21~A1/2! ,uf ,t1A1/2f ,tr . ~56!

But, by Eq.~48!,

f ,tr52 f ,t~BA21! ,u . ~57!

Using f ,t51 on the interface we obtain
9-4
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COMBINING CAUCHY AND . . . . V. . . . PHYSICAL REVIEW D 58 044019
a ,r5~A1/2! , r̃2~BA21/2! ,u on r 5r 0 . ~58!

The matter variablesr* and e are scalars and therefor
agree on the interface, as do their angular and time der
tives. The radial derivatives are related by the chain rule

F ,r5F , r̃ 2BA21F ,u . ~59!

The transformation of the 4-velocityvm is given by

v r̃5v r , ~60!

vu5 f ,tv
t1 f ,rv

r . ~61!

Taking r 5r 0 and solving forv t andv r gives

v r5v r̃ , ~62!

v t5vu1BA21v r̃ . ~63!

As with the metric coefficients we also require the re
tionship between the derivatives. Taking the radial derivat
of Eq. ~60! using the chain rule gives

v ,r
r 5v , r̃

r̃
2~BA21! ,u

r̃ . ~64!

Similarly taking the radial derivative of Eq.~61! gives

v ,r
u 5 f ,trv

t1 f ,rr v
r1 f ,tv ,r

t 1 f ,rv ,r
r . ~65!

Using Eq.~57! to substitute forf ,tr , differentiating Eq.~50!
to find f ,rr , and calculatingv ,r

u using the chain rule yields

v ,r
t 5v , r̃

u
2BA21v ,u

u 1BA21v , r̃
r̃

2B2A22v ,u
r̃

5~BA21! ,uvu1~BA21! , r̃v
r̃ . ~66!

Thus Eqs.~51!, ~54!, ~55!, ~58!, ~62!, ~63!, ~64! and ~66!
give the metric variables, matter variables and their rad
derivatives in the Cauchy region in terms of the correspo
ing quantities in the Bondi region. A very similar calculatio
gives the inverse transformation. The final formulas
given in Appendix B.

V. FLUID BEHAVIOR AT NULL INFINITY

In Newtonian theory stars are often described as st
polytropic gas spheres with equation of statep5KrG. A
solution of considerable interest is the caseG56/5 for which
the matter extends to infinity, but the total mass is finite.
relativistic analogue of this solution was obtained by Buc
dahl @12#. The initial data we evolve numerically will consis
of the Buchdahl solution perturbed by a Gaussian pu
Buchdahl originally gave his solution in isotropic coord
nates as

ds25endt22e2m~dR21R2dV2! ~67!

where

en5~12 f !2~11 f !22, ~68!
04401
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em5~11 f !4, ~69!

f 5
a

2
~11kR2!21/2. ~70!

This solution represents a static fluid with pressurep and
densityr given by

p5b f6~11 f !25~12 f !, ~71!

r53b f5~11 f !25, ~72!

b58k/~a4p!. ~73!

This is not an exact polytrope asp is related tor by

p5
r6/5

112qc~12r1/5!
, qc5S 3p

r D
center

; ~74!

however, the density falls off liker 25, and so this is close to
an exact polytropic equation of state in the asymptotic
gion. Note thatp and r are related to our choice of matte
variablesr* ande by

p5~G21!r* e, ~75!

r5~11e!r* . ~76!

Since the solution is static, the 4-velocity of the fluid is giv
by

v t5~11 f !~12 f !21, ~77!

va50 otherwise. ~78!

The purpose of this section is to find the asymptotic b
havior of the Buchdahl solution in Bondi coordinates. W
start by noting that

f 5
c

R
1O~R23! where c5

a

2Ak
, ~79!

which enables us to calculate the asymptotic behavior of
various quantities in terms of the isotropic radius coordin
R. The next step is to convert the metric to the radial gau
coordinate system used in the Cauchy region. The ra
gauger coordinate is related to the isotropicR coordinate
system by

r 25~11 f !4R2, ~80!

so that

r 5R12c1
c2

R2 1O~R23!. ~81!

This gives

en5124c/r 1~8c214ac!/r 21O~r 23!, ~82!

em5114c/r 1~6c224ac!/r 21O~r 23!, ~83!
9-5
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dR25@112c2/r 21O~r 23!#dr2. ~84!

Equating Eq.~67! with Eq. ~1! gives

a25124c/r 1~8c214ac!/r 21O~r 23!, ~85!

a25114c/r 1~8c224ac!/r 21O~r 23!. ~86!

We now change to Bondi coordinates. As we have see
the previous section the transformation between Cauchy
Bondi coordinates is not straightforward in general. Ho
ever, in the special case of a static solution which we
considering here it is possible to obtain transformation f
mulas which are valid everywhere and not just at the in
face. These give

A5a2, ~87!

B5aa, ~88!

which by Eqs.~85!,~86! give

A5124c/r 1~8c214ac!/r 21O~r 23!, ~89!

B511O~r 23!. ~90!

In terms of the Bondi parametrization this is equivalent t

b5O~r 23!, ~91!

V5r 24c1~8c214ac!/r 1O~r 22!. ~92!

For the matter variables one finds

r* 5O~r 25!, ~93!

e5O~r 21!, ~94!

p5O~r 26!, ~95!

vu5112c/r 1~2c22ac!/r 21O~r 23!, ~96!

v ã50 otherwise. ~97!

In terms of the numerical evolution the important point
note is the fact thatb vanishes to third order at null infinity
despite the presence of matter. We are therefore still ab
use the boundary conditionb50 at null infinity in this more
general setting.

VI. NUMERICAL METHODS

The equations are discretized using finite-difference me
ods which are accurate to second-order in the grid space
time intervals. The evolution equations~4!–~6! for D, E
andZ ~represented byU below! can be written in the form

]

]t
U~r ,t !1

1

r 2

]

]r
@r 2F~r ,t;U,a,a!#1S~r ,t;U,a,a!50,

~98!

which can also be written as
04401
in
nd
-
e
-
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nd

]U
]t

13
]

]r 3
~r 2F!1S50. ~99!

The discrete form of Eq.~99! has improved behavior nea
r 50. The equation is differenced using a two-step, predic
corrector MacCormack scheme@13#,

Ũi5U i
n2

3Dt

r i 11
3 2r i

3 ~r i 11
2 F i 11

n 2r i
2F i

n!2DtS i
n , ~100!

whereX i
n5X(r i ,tn). Once all the predicted valuesŨ have

been found, the metric variablesa anda must also be pre-
dicted using the methods described below. The corrected
ues of the fluid quantities are, then,

U i
n1151/2~ Ũi1U i

n!2
3/2Dt

r i
32r i 21

3 ~r i
2F̃i2r i 21

2 F̃i 21!

21/2DtS̃i . ~101!

Near r 50 the variablesD and E are expanded as eve
functions, e.g.

D~r→0!5A1Br2, ~102!

where the time-dependent coefficientsA and B are deter-
mined using interior values ofD. The quantityZ is an odd
function and atr 50 we haveZ50.

On the characteristic side the evolution equations~37!–
~39! for the U5$r* ,e,vu% variables can be written in the
non-conservative form

]U
]u

1A
]U
]y

1S50, ~103!

whereS may contain spatial derivatives of the other va
ables. It is simple to modify the MacCormack differen
scheme for this type of equation. At the interface the re
tionships listed in Appendix B are used to obtain differen
formulas which express Cauchy quantities and their ra
derivatives in terms of characteristic quantities, and v
versa. This enables us to continue the Cauchy and chara
istic integrations through the interface in both direction
Note that some of the relationships involvet and u deriva-
tives: hence more than one time level is required to obt
some of the difference formulas.

It is not possible to have values ofD5E5p5r* 5e
50 anywhere on the grid since it would then be impossi
to solve Eq.~14! and some type of fluid-vacuum interfac
tracking would be required. To avoid this complication eve
grid point has at least a ‘‘vacuum’’ level of these variabl
@8#. Typically the ‘‘vacuum’’ level is around 10210 times
that of the peak value of the variable in the initial data se

Because the evolution equations~4!–~6! and ~37!–~39!
are non-linear and are propagating waves in a compress
fluid, it is highly likely that shocks and other discontinuitie
will occur. It is well known that second-order accurate d
9-6
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cretizations of such equations produce spurious oscillat
at shock fronts and require some form of artificial dissipat
to reduce the effect. A highly satisfactory solution is to u
so-called high-order Godunovmethods along with flux-
limiters, usually of the total variation diminishing~TVD!
type. These have recently been used for spherical gen
relativistic flows where they are far more accurate than s
dard artificial viscosity when the flow velocities are ve
close to the speed of light@14#. The main problem with such
schemes is their complexity. For the work considered in t
paper the flow velocities are kept to values typically less th
80% of the speed of light. Furthermore, their implementat
with CCM has yet to be investigated. Thus the advantage
the high-order Godunov schemes are less appealing for
work considered here. Here we use a second-order vis
term ~described below! to dissipate solutions of Eqs.~4!–~6!
tio

d

04401
s
n
e

ral
n-

is
n
n
of
he
us

and ~37!–~39! near steep gradients. An additional proble
which can be solved by artificial dissipation arises due to
‘‘vacuum’’ levels of the variables at certain points on th
grid, as described previously. The fluid has a very low d
sity, but can have a significant velocity. This gives rise to
noisy evolution, which, if left unchecked, can begin to dom
nate the numerical solution due to erratic behavior in
3-velocity. A small amount of dissipation can eliminate th
problem very effectively.

Once the quantitiesU have been evaluated at the new tim
level, they are dissipated according to the formula

U i
n115U i

n111h i~U i 11
n 2U i

u!2h i 21~U i
n2U i 21

n ! ~104!

where the dissipation coefficient,h, is calculated in the fol-
lowing way:
max$ ln~Evac /Ẽmax!,min@0,ln~Ẽ/Ẽmax!#/ ln~Evac /Ẽmax!%5j,

min~j,1!65j* ,

1/16~12j* !1j* 5j** . ~105!
-
ince

te-

he

n
q.

in

e

q.
In the aboveEvac is the ‘‘vacuum’’ level ofE set at the start
of the evolution andẼmax is the maximum value ofẼ on the
current time slice. Note that the predicted values ofE are
used. Then

h51/3j** ~1/21e2!, ~106!

where

e5
Dt

Dr
Vr ~107!

for the D andZ variables, while

e5
Dt

Dr S E1p

E DVr ~108!

for the E variable. The property of expression~105! is such
that j** '1 when Ẽ'Evac and j** '1/16 otherwise. The
large power inj* ensures thatj** moves rapidly away from
1 and towards 1/16 asẼ increases aboveEvac . Analogous
expressions may be obtained for the characteristic equa
with e used in place ofE.

Both of the radial constraint equations~7! and ~8! on the
Cauchy side can be written in the form

d

dr
ln A~r !5Y~r ;U,a!, ~109!

whereA representsa or a and importantlyY is independent
of a, but dependent upona. This equation can be difference
to second order accuracy in space as
ns

ln Ai 112 ln Ai51/2Dr ~Yi 111Yi !, ~110!

whereDr 5r i 112r i . The solution fora requires iteration of
the discrete equation

ai 115ai exp@1/2Dr ~Yi 111Yi !# ~111!

with a starting valuea51 at r 50. By contrast the lapse is
found algebraically from

a i5a i 11 exp@21/2Dr ~Yi 111Yi !#, ~112!

where the outer starting value ofa is obtained from the char
acteristic portion of the spacetime as described below. S
a is an even function ofr , it is expanded nearr 50 as in Eq.
~102!. The radial equations~33!–~35! on the characteristic
side are straightforward to difference, but they must be in
grated in the correct order and the right direction~inwards or
outwards!. The integration scheme, in outline, consists of t
following. Given a distribution ofD, E, Z on the Cauchy
side andr* , e, vu on the characteristic side, either from a
initial data set or a previous evolution, we first integrate E
~8! for a outwards fromr 50 to the interfacer 5r 0 . Next we
integrate Eq.~33! for b inwards fromy50 to the interface
y5y051/r 0 . The boundary condition isb(y50)50 pro-
vided the asymptotic matter distribution is as described
Sec. V. From relationship~B12! it is then possible to obtain
a starting value fora at the interface so that Eq.~7! can be
integrated inwards fromr 5r 0 to r 50. In addition, from Eq.
~B13! a starting value forW can be found to enable th
integration of Eq.~34! outwards fromy5y0 to y50. Onceb
andW have been found, it is straightforward to integrate E
9-7
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~35! inwards to obtainB. The boundary condition isB(y
50)50, again valid when the asymptotic fluid behavior is
described in Sec. V. Afterwards Eqs.~4!–~6! and ~37!–~39!
are used to update the fluid variables. The whole proces
then repeated to continue the evolution.

VII. RESULTS

We have investigated two general scenarios with the c
bined code. The first describes configurations where the fl
flow is predominately outwards, crossing the interface fr
the Cauchy region into the characteristic region. In the s
ond case the initial conditions are arranged so that the fl
collapses inwards, leading to black hole formation. In ad
tion we investigate the stability and convergence behavio
the code.

A. Outflow

The initial data consist of specifying the density and v
locity profiles of the fluid. To determine the initial pressu
we use the relationship

p5Kr
*
G , ~113!

which is consistent with the adiabatic equation of state~9!.
HereK is a constant which controls the initial specific inte
nal energy,e, of the fluid. We then solve Eq.~8! for a, Eq.
~33! for b, Eq. ~7! for a and Eq.~34! for W in the manner
described at the end of Sec. VI. For simplicity we choose
initial 3-velocity to be zero everywhere. The density profi
must be chosen such that it satisfies]r* /]r 50 at r 50 and
must fall off asymptotically like the Buchdahl solution a
described in Sec. V. We satisfy these requirements by u
a Gaussian profile nearr 50 and an asymptotic Buchdah
solution attached at some patching radiusr P . The Gaussian
profile is given by

r* G~r !5r* M exp~2r 2/s2!, ~114!

where r* M is the maximum density atr 50 and s deter-
mines the width of the Gaussian. At radiusr P we attach the
profile

r* B~r !5
r* Mr P

5

r 6 H F2S r P

s D 2

25G r P2F2S r P

s D 2

26G r J
3exp~2r P

2 /s2!. ~115!

It can be seen that, at the patching radiusr P ,

r* G5r* B5r* M exp~2r P
2 /s2!, ~116!

r
* G8 5r

* B8 522r* MS r P

s2Dexp~2r P
2 /s2!. ~117!

Moreover, in the limit of larger ,

r* B;A/r 5, ~118!

where
04401
s

is

-
id

c-
id
i-
f

-

e

g

A5r* Mr P
5 F622S r P

s D 2Gexp~2r P
2 /s2!. ~119!

The free parameters specifying the initial data are thenr* M ,
K, G, s andr P . In order forA to be positive we should hav
s.r P /). Note that in the characteristic region the subs
tution r 51/y is used in Eq.~115! which remains well-
behaved in the limity→0.

We have performed many runs with the code. A typic
initial pressure profile which gives rise to outflow is show
in Fig. 1. The chosen values arer* M5231024, K5200
and s51.5 with G56/5 as required by the Buchdahl solu
tion. The Cauchy-characteristic interface is kept fixed atr 0
51 andr P50.95 for all runs of the code. If we were to tak
r 05106 cm, which is the radius of a typical neutron sta
then the central density value would correspond to'2.7
31012 g cm23, indicating dense relativistic matter. Th
ADM mass in geometric units isM50.3, which equates to
around 431033 g or 2M ( . This configuration is quite rela
tivistic, having a central lapse valueac50.64. Note that the
width of the Gaussian is somewhat larger than the radiu
the Cauchy region which results in quite a large density
the interface. This will show that the technique allows for
small Cauchy region even when a significant amount of m
ter is present. It is important that this be the case since C
allows for gravitational wave extraction close to the sour

A convergence check on the code has been performed
the results are shown in Fig. 2. This shows theL1 norm in
the error of the metric functiona for low (N5151), medium
(N5301) and high (N5601) resolution runs of the initia
data shown in Fig. 1. The reference solution hasN51201
grid points. The code exhibits 2nd-order convergence beh
ior, but note that for these initial conditions almost all of th
fluid has moved off the Cauchy portion of the grid by 20M
~where M is the ADM mass of the configuration! and the
code is evolving very low densities. Figures 3~a!, 3~b! and
3~c! show the evolution of the pressurep, the metric func-
tion a and the radial component of the 4-velocityv r respec-
tively. Since the particular relationships between the
Cauchy quantities and the characteristic ones are valid fo
r , and not just at the interface~see Sec. IV and Appendix B!,
it is possible to plot them using a radial coordinatez defined
by

FIG. 1. The pressure profile at timet50. The radial coordinate
z is defined by Eq.~120!. The interface is placed atz51 and future
null infinity is at z52. The Buchdahl solution is patched onto th
Gaussian profile atz50.95, denoted by the dashed line.
9-8
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z5H r for 0<r<1

22y for 0<y<1.
~120!

This means there is a change of coordinate systems f
radial-polar to Bondi atz51 and future null infinity is lo-
cated atz52. The figures have a break at the interfacer
51. Note that the grid resolution is increased towardsr 50
for improved accuracy. Figure 3~a! shows that after an initia
inwards collapse the fluid moves smoothly out across
interface. The metric functiona drops towards 1 everywher
in the Cauchy region as the fluid moves out. Note that
velocity component can become quite large in the low d
sity characteristic region. Its value can be greater than 1,
of course the local 3-velocity of the fluid,Vr5v r /v t, is al-
ways less than 1. This type of configuration will run inde
nitely.

B. Black hole formation

To obtain a black hole solution we begin with the sam
initial data as shown in Fig. 1, but modify the pressure p
file while keeping the rest mass density constant, e.g.

p5bKr
*
G . ~121!

The results from a run withb52 are shown in Figs. 4~a!–
4~c!. The total mass-energy of the configuration is increas
resulting in the formation of a black hole. In the radial-po
gauge the formation of a black hole is indicated by a ra
increase of the metric functiona and a corresponding rapi
decrease of the lapsea. In spherical symmetry the peak ofa
asymptotically approaches the horizon and therefore the
dius of the black hole can be approximated. Here the bl
hole radius isr BH50.87 which is not far from the interfac
at r 051. In the asymptotic region the solution is once ag
an outflow as can be seen in Fig. 4~c!. Note that the time-step
is reduced as the black hole forms to maintain accuracy. T
can be seen in the surface plots as the lines become clos
the time direction. The configuration evolves to about 13M ,
after which the rapid increase ina halts the code.

FIG. 2. Convergence behaviour of the CCM code. TheL1 error
norm of the metric functiona is shown for runs with grid resolu
tions of N5151 ~open circles!, N5301 ~open diamonds! and N
5601 ~open squares!. The reference solution hasN51201 grid
points. Convergence is 2nd-order up tot'20M after which the
code evolves very low densities and increased resolution gene
shows better than 2nd-order convergence.
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VIII. DISCUSSION

The work presented in this paper shows that the CC
technique can be applied effectively to perfect fluid spa
times. Since in non-symmetrical situations it is very difficu
to follow the fluid-vacuum interface, the approach adop
here has been to replace the vacuum region by one of
low density material@8#. The initial fluid distribution is de-
scribed by a Gaussian pulse, while the low density exte
region is initially taken to be asymptotic to the finite ma
static solution of Buchdahl.

The code is shown to be second order convergent an
be stable over long periods. There is no problem evolving
motion of the fluid until either it has moved off the Cauch
portion of the grid~and the code is then evolving the residu
low density fluid! or until a black hole has formed. Furthe

lly

FIG. 3. Time evolution of mass outflow initial data showing~a!
the pressure,~b! the metric functiona, and~c! thev r component of
the fluid 4-velocity. Note that for clarity thez-axis is reversed for
~a!.
9-9
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more, there appear to be no significant discontinuities of
variables or their derivatives either at the interface or
junction between the fluid and the background.

One of the problems of dealing with the fluid-vacuu
interface by replacing it with a low density background wh
using a traditional 311 code is that it involves the use o
outer boundary conditions at the edge of the grid. These m
deal with the inflow and outflow of matter as well as ens
ing outgoing gravitational radiation. Such a procedure can
very problematic, especially in the case of significant inflo
To minimize these problems the Cauchy grid has to be ta
to be very large, extending well beyond the boundary of
star, so that the boundary conditions can be applied i
region of very low density. A significant advantage in usi
CCM is the avoidance of having to apply such a bound

FIG. 4. Time evolution of initial data forming a black hol
showing~a! the pressure,~b! the metric functiona, and~c! the v r

component of the fluid 4-velocity. Black hole hole formation
indicated by a steep increase ina. Note that for clarity thez-axis is
reversed for~a!.
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condition. This allows the Cauchy region to be quite sm
and it is shown in this paper that there is no problem locat
the interface in a region where there is a significant flu
density. This shows the viability of using CCM to extra
gravitational wave information from a small Cauchy regio
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APPENDIX A: SPHERICALLY SYMMETRIC FORM
OF BONDI’S LINE ELEMENT

The solution of Killing’s equations

Lmn5LXgmn5gmn,sXs1gmsX,n
s 1gnsX,m

s 50 ~A1!

for the unit sphere

ds25du21sin2 udf2 ~A2!

in canonical spherical coordinates~u,f! is given by the three
rotations

cosf
]

]u
2sin f cot u

]

]f
5X1 , ~A3!

sin f
]

]u
1cosf cot u

]

]f
5X2 , ~A4!

]

]f
5X3 . ~A5!

The Bondi line element~15! already possessesX3 as a Kill-
ing vector since it is axially symmetric. The condition th
X1 be a Killing vector from Eq.~A1! results in the following
requirements

L0050⇒V,u50, ~A6!

L0150⇒b ,u50, ~A7!

L0250⇒U ,u50, ~A8!

L2350⇒g50. ~A9!

These conditions result inX2 automatically being a Killing
vector. Finally, using the requirement in spherical symme
of invariance under the discrete reflection

u→p2u, ~A10!

we find that

U50. ~A11!

Thus the spherically symmetric form of Bondi’s line eleme
is
9-10
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ds252
Ve2b

r̃
du222e2bdudr̃1 r̃ 2du21 r̃ 2 sin2 udf2,

~A12!

whereV5V(u, r̃ ) andb5b(u, r̃ ) only.

APPENDIX B: RELATIONSHIPS FOR INTERFACE
MATCHING

We list here all the relationships required to obta
Cauchy quantities and their first radial derivatives in terms
characteristic quantities at the interface, and vice versa.

Cauchy variables in terms of Bondi variables:

A1/25a, ~B1!

BA21/25a, ~B2!

2@y2A,y
1/21~BA21/2! ,u#5a ,r , ~B3!

2@y2~BA21/2! ,y1BA21~BA21/2! ,u#5a,r , ~B4!

v r̃5v r , ~B5!

vu1BA21v r̃5v t, ~B6!

2@y2v ,y
r̃ 1BA21v ,u

r̃ #5v ,r
r , ~B7!

2@y2v ,y
u 1BA21~y2v ,y

r̃ 2v ,u
u !1B2A22v ,u

r̃

1y2~BA21! ,yv
r̃2~BA21! ,uvu#5v ,r

t , ~B8!

2@y2F ,y1BA21F ,u#5F ,r , ~B9!

where
n-
v.
J

.

.
hy
ev

v
.

04401
f

A5e2b~yW1e2b!, ~B10!

B5e2b, ~B11!

the scalarsF5$r* ,e%, and v r̃ can be obtained from the
normalization condition~18!. Note that the relations~B2!
and ~B5! are valid for all r and not just at the interface
Bondi variables in terms of Cauchy quantities:

1

2
ln~aa!5b, ~B12!

aa21r ~12a2!5W, ~B13!

2r 2F ~aa21! ,t1
1

2
aa21~aa21! ,r

1a21a ,r1aa22a ,t] 5b ,y , ~B14!

2aa21r ~12a2!1r 2@2aa~aa21! ,t1~11a22!a2~aa21! ,r

12aa ,r12a2a21a ,t] 5W,y , ~B15!

v r5v r̃ , ~B16!

v t2aa21v r5vu, ~B17!

2r 2@v ,r
r 1aa21v ,t

r #5v ,y
r̃ , ~B18!

2r 2@v ,r
t 2v t~aa21! ,t2v r~aa21! ,r1aa21~v ,t

t 2v ,r
r !

2a2a22v ,t
r ] 5v ,y

u , ~B19!

2r 2@F ,r1aa21F ,t#5F ,y , ~B20!

where again the scalarF5$r ,e%.
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