PHYSICAL REVIEW D, VOLUME 58, 044018

Late-time tails in gravitational collapse of a self-interacting (massiveg scalar-field
and decay of a self-interacting scalar hair
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We studyanalytically the initial value problem for &elf-interacting(massivé scalar field on a Reissner-
Nordstran spacetime. Following the no-hair theorem we examinagmamicalphysical mechanism by which
the self-interacting(Sl) hair decays. We show analytically that the intermediate asymptotic behavior of Sl
perturbations is dominated by an oscillatory inverse power-law decaying tail. We confirm numerically this
result. However, the numerical examination reveals that at late times the decay of Sldlaweésthan any
power law.[S0556-282(98)03916-2

PACS numbegps): 04.20.Ex, 04.70.Bw

I. INTRODUCTION dumping exponents. In Sec. V we verify oanalytical re-
sults by numerical simulations. We conclude in Sec. VI with
The late-time evolution of various fields outside a collaps-a brief summary of our results and their implications.

ing star has important implications for two major aspects of
black-hole physics: the no-hair theorem and the mass- Il. DESCRIPTION OF THE SYSTEM
inflation scenario. Thano-hair theorem[1], introduced by
Wheeler in the early 1970s, states that éixéernalfield of a
black hole relaxes to a Kerr-Newman field characterize
solely by the black-hole mass, charge, and angular mome
tum. Thus, it is of interest to explore tligynamicalphysical
mechanism responsible for the relaxation of perturbations
fields outside a black hole and to determine the deeatgs ( Q2

We consider the evolution of self-interactii§l) scalar
dperturbation fields outside a collapsing star. The external
ravitational field of a spherically symmetric collapsing star
f massM and charge is given by the Reissner-Nordstro
etric

of the various perturbation@vhich differ from one field to ds’=

the othe). The mechanism by which massless neutral fields

are radiated away was first studied by Pfigé The physical (
+

-1

2M 2
Q dr2+r2dQ2. (1)

1-—+=

mechanism by which a massless charged scalar hair is radi-
r r2

ated away was studied {i8,4]. In this paper we study the
physical mechanism responsible for the decay seff- ) ) ) _ ]
Using the tortoise radial coordinatg, defined by dy

interacting (Sl) (massive)scalar hair. ) ) 5 ,
The asymptotic late-time tails along the outer horizon of a= dT/A" wherex®=1-2M/r + Q“/r*, the metric becomes

rotating or a charged black hole are used as the initial input N2 442 2 24002

for the ingoing perturbations which penetrate into the black- ds’=N*(- dt*+dy’) +r*d0> @

hole. These perturbations are the physical cause for the well- The wave equation for the Sl scalar field is

known phenomena ahass-inflatior{5]. In this context, one

should take into account the existencenodssivetails out- $.a09%°— U’ (|$]?) $=0, 3

side the collapsing star. Here we study analytically the inter-

mediate asymptotic behavior of such self-interactingas- Where U(|¢|?) is the self-interaction potential and

sive) perturbation fields. We study the late-time asymptoticU’ (| ¢|%)=dU(| ¢|?)/d¢*. Since we study the evolution of

behavior numerically and confirm the numerical results ofsmall perturbations we approximaté’ (| ¢|?) by m?¢ (we

Burko [6]. assume tham is rea), neglecting terms of higher order i
The plan of the paper is as follows. In Sec. Il we describeResolving the field into spherical harmonicsy

the physical system and formulate the evolution equation= E,,ml/;'m(t,r)Y{"(a,go)/r one obtains a wave equation for

considered. In Sec. Il we formulate the problem in terms ofeach multiple moment:

the black-hole Green'’s function using the technique of spec-

tral decompositiorithis section is analogous to the one given b=yt V=0, (4)

in [4]). In Sec. IV we study the intermediate asymptotic evo-

lution of SI scalar perturbations on a Reissner-Nofastro Where

background. We find awscillatory inverse power-law be-

havior of the perturbations at a fixed radius and along the V=V, m(r)

black-hole outer horizon. We find that the dumping expo- 2 2
nents which describe the intermediate fall off of SI perturba- =(1- M + Qi+ + M 20 +m?|. (5)
tions are smaller compared with the masslesseutra) r r2 r2 3 rt
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Ill. FORMALISM tributes to theshorttime response and can be shown to be
effectively zero beyond a certain time. Thus, it is not rel-
‘evant for the late-time behavior of the field.

(2) Quasinormal modesThese arise from the distinct sin-

gularities of G(y,x;w) in the lower half of the complexv

z//(y,t)=f [G(Y. 1) #(X,0) + Gy, ;1) ¢h(x,0) ]dX, plane and is denoted b@®. These singularities occur at
(6) frequencies for which the Wronskiaii2) vanishes.G® is
just the sum of the residues at the poles3gfy,x;w). Since
each mode has Im<0, it decaysexponentiallywith time.

The time evolution of a Sl scalar field described by Eq
(4) is given by

for t>0, where theretarded Green's functionG(y,x;t) is

defined as (3) Tail contribution As will be shown later the interme-
2 g2 diate asymptotic tail is associated with the existence of a
2 a—y2+V(r) G(y.x;t)=6(t) oy —X). (7)  branch cut(in ¥,) placed along the interval msw=<m.

This tail arises from the integral dB(y,x;w) around the
The causality condition gives us the initial condition branch cut(denoted byG®) which leads to aroscillatory
G(y,x;t)=0 for t<0. In order to findG(y,x;t) we use the inversepower-lawbehavior of the field. Since we are inter-
Fourier transform ested in the intermediate asymptotic behavior of a Sl scalar
) field our goal is to evaluat&“(y,x;t).
= . _ . iwt
Gy x;w)= ﬁrG(y,X,t)e dt. ®) IV. INTERMEDIATE ASYMPTOTIC BEHAVIOR

. . o OF A SELF-INTERACTING SCALAR FIELD
The Fourier transform is analytic in the upper halfplane
and it satisfies A. M<r<M/(Mm)? approximation

42 It is well known that the late-time behavior ofiassless
(—2+w2—v>é(y,x;w)=b‘(y—x). (9) fields is determined by the backscattering from asymptoti-
dy cally far regions[8,2,3]. Thus, the late-time tails of massless

fields are dominated by tHew-frequency contribution to the
Green'’s function, for only low frequencies will be backscat-
1 [etic _ _ tered by the small spacetime curvature or by the small elec-
G(y,x;t)= > G(y,x;w)e” "tdw, (100  tromagnetic interaction at these asymptotic regions. On the
TJ—oetic other hand, it is also well known thatassivdails exist even
h . . in aflat spacetimg9]. This phenomenon is related to the fact
wherec 1s some 'posmve con.sFant. o~ that different frequencies forming a massive wave packet
_ Next, we define two auxiliary functiong/,(y,w) and  have different phase velocities. As will be shown in this
¥-(y,w) which are linearly independent solutions to the ho-paper, the intermediate asymptotic behavior of a Sl scalar
mogeneous equation field on a Reissner-Nordstmo background is dominated by
flat spacetime effects. Namely, at intermediate times the

G(y,x;t) itself is given by the inversion formula

d? 2 ~ . backscattering from asymptoticallgr regions(which domi-
(Wﬂ—w _V) Yilyw)=0, i=12. (11 nates the tails of massless fields negligible compared to
the flat spacetime massive tails that appear here.
Let the Wronskian be Let us assume that both the observer and the initial data
o o o are situated far away from the black hole. We expand the
W(W) =W( iy, th2) = hribay— a1y, (12 wave-equatior(11) for the Sl scalar fieldin the field of the

o _ . black hole as a power series ivi/r and Q/r and obtain
whereW(w) is y independent. Using the two solutions (neglecting terms of orde®[(Mm/r)?] and highey

and,, the black-hole Green’s function can be expressed as
_ _ d> . 4AMwA-2Mm®  I(1+1) o
1 [lﬂl(y,W)lﬂz(X,W), y<X, E—FW —me r 2 ¢=0,

Gy, X;W)=——1 _ - 13
0= W) | Gy Tayaw), y=x. (14

In order to calculates(y,x;t) using Eq.(10), one may Where§_= N9 Thg term proportional td/r represents the
close the contour of integration into the lower half of the Newtonian potential. If we further assume that both the ob-

complex frequency plane. Then, one finds three distinct cons€rver and the initial data are situated in the region

tributions toG(y,x;t) [7]. <M/(M m)? (andM_«r), and we are interested in the inter-
(1) Prompt contribution This arises from the integral Mediate asymptotic behavior of the fielfr<t<M/

along the large semicircle. It is this part, deno@®, which ~ (Mm)?], we can further approximate E¢l4) by

propagates thdaighfrequency response. For large frequen- 42 1(1+1)

cies the Green'’s function approaches to the onerofasless +wW2—m2— £=0. (15)

scalar field on a flat spacetime background. This term con- dr? r2
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Replacing Eq(14) with Eq. (15 means that weaeglectthe 1 (m_

backscattering of the field from asymptoticafyr regions. GC(y.x;t)= zf (X, @)

Thus, the intermediate asymptotic behavior of S| scalar per- -

turbations on a black holéor a stay background depends ~ iy 7

only on the field’s parameter®amely, on the mass of the [%(y’m: ) _ Yoy @) e Widw.
field) and it doesnot depend on the spacetime parameters. W(we™) W(w)

The validity of this conclusion is verified by numerical simu- (23
lations (see Sec. V.
Let us now introduce a second auxiliary figfddefined ~ For simplicity we assume that the initial data have a consid-
by erable support only for values which are smaller than the
observer’s location. This, of course, does not change the
late-time behavior.

g=rltlghWwi-mg o) (16) Using Egs. 9.6.30 and 9.6.31 (0], one finds
where (1 we™)=Y(r,w) (24
and
z=—2iwr. 17 _ . _ B al/2(— 1) +1p-2_
z/;z(r,me”')z—z//z(r,m)—f—x ra+2) (1, @).
$(2) satisfies the confluent hypergeometric equation 2 (25)
42 q Using Eqgs.(24) and(25) it is easy to see that
ZE+(2I+2—z)d—Z—(I+l) H(z)=0. (18 W(we™) = —W(w), 26

from which we obtain the relation
The two basic solutions required in order to build the black-

hole Green’s function aréfor |w|<m) Yo(r,we™)  Yo(r,w) B aHA(—1)'272 Yy(r,w)
W(we™)  Ww) A pi+3) Ww)
P=Ar' e " M(1+1,2 + 2,2wr) (19 (27

Since W(w) is r independent, we may use thar—0
and asymptotic expansions of the Bessel functi¢gisen by Egs.
9.6.7 and 9.6.9 if10]) in order to evaluate it. One finds

Yr=Br'tle "U(1+1,2+2,2wr), (20) 1 1
W(w)=—ZABm" Y221+ 1)T| 1 + > w 2D,
wherew={m?Z—w?. A andB are normalization constants. (28)

M(a,b,z) andU(a,b,z) are the two standard solutions to

the confluent hypergeometric equatifit0]. U(a,b,z) is a Finally, substituting Eqs(27) and (28) into Eq.(23) we ob-

~ tain
many-valued function; i.e., there is a cut . Using Eqs.
13.6.6 and 13.6.24 ¢fL0] one may write these solutions in a (—1)!*t1p2-2
more familiar form GC(y,x;t)= - .
A1+ D)1+ HIr(+ 2)
~ 1 3 1 —(1+ 1/2) m_ - »
=5 AT 1+ 5 Em) Ly 1a(®r), (20) X |y m) (v w) o e Mdw.
(29
and
B. Intermediate asymptotic behavior at a fixed radius
Yo=m VBr2(2w) 1T VK, (), (22 It is easy to verify that in the large limit the effective
contribution to the integral in Eq(29) arises from|w|
- _ =0(m— 1/t) or equivalentlyw =O(ym/t). This is due to
wherel|, 7 andK, . > are modified Bessel functions. the rapidly oscillating terme™ "' which leads to a mutual
Using Eq.(10), one finds that the branch cut contribution cancellation between the positive and the negative parts of
to the Green'’s function is given by the integrand. In order to obtain the intermediate asymptotic
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behavior of the field at a fixed radiusvhere x,y<t), we

may use thesr <1 limit of J,(r,w). Using Eq. 9.6.7 from
[10] one finds

~ 1 1+1
wl(r,w):EAr . (30)

We obtain
(_ 1)|+1771/2m|+1

GC(y,x;t)=
(y.x:t) 2'2I+1)T(1+ %)

(xy) DI (Y,

(31

which in thet>m~1 limit becomes

I+1
GC(y,x:t) = \/5 (=D m* V2(xy) 10+ 312

w21+ 1)1
1|+3 32
X cos mt— St (32

Thus, the intermediate asymptotic behavior of the Sl field

at a fixed radius is dominated by awscillatory inverse
power-lawtail.

C. Intermediate asymptotic behavior along the black-hole
outer horizon

Next, we consider the behavior of the Sl scalar field at th

black-hole outer horizom, . While Egs.(21) and (22) are
approximate solutions to the wave equatidd) in the M

<r<M/(Mm)? region, they do not represent the solution

near the horizon. Ay— —« the wave equatiofill) can be
approximated by the equation

¥ yy+W=0. (33
Thus, we chose
Py, w)=C(w)e ™, (34)

and we use the forr(80) for ¥, (x,w). In order to match the

PHYSICAL REVIEW D58 044018
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FIG. 1. Evolution of the Sl fieldy| on a Reissner-Nordstno
background, forl=0M=0.5Q=0.45 andm=0.01. The initial
data are a Gaussian distribution with=50 ando=2. The field at
a fixed radius ¥=50) is shown as a function of Along the black-
hole outer horizon the field is shown as a functiorvofThe oscil-
latory power-law falloff is manifest at intermediate times. The

epower-law exponents are 1.48 at a fixed radiugtop curve and

—1.47 along the black-hole outer horizdbottom curve. These
values are to be compared with thaalytically predicted value of
—1.5. The period of the oscillations &= 7/m to within 0.1%, in
agreement with the predicted value.

V. NUMERICAL RESULTS

It is straightforward to integrate E¢4) using the method
described if11]. The late-time evolution of a Sl scalar field
is independent of the form of the initial data used. The re-
sults presented here are for a Gaussian pulse-ei

Y(u=0p)=Aexp—[(v—vo)/o]?}, (36)

y<—M solution to they>M solution we assume that the where the amplituded is physically irrelevant due to the
two solutions have the same temporal dependence. This anearity of Eq. (4). It should be noted that the evolution
sumption has been proven to be very successful for masslesguation(4) is invariant under the rescaling

neutral[11] and charged3,4] perturbations. In other words
we assume tha€(w) is w independent. In this case one
should replace the roles of andy in Egs. (23) and (29).
Using Eq.(29), we obtain

r—ar, t—at, M—aM, Q—aQ, m—m/a,

(37)

" wherea is some positive constant. The black-hole mass and

2 (-1 B charge are set equal td =0.5 andQ=0.45, respectively.

GE(y.x;t)=T \/;(2|+—1)!!ml+ eyl 3 We have chosen an initial field profile witm=0.01, v,

=50, ando=2. We studied the behavior of the fiefdat a
fixed radius and along the black-hole outer horizapproxi-

X COE{ mo = Tr}’ mated by the null surface= U, a4y, Whereum,yis the largest

value ofu on the grid. The numerical results for thie=0

wherel’ is a constant. mode are shown in Fig. 1. Initially, the evolution is domi-

Thus, the intermediate asymptotic behavior of the Sl fieldnated by the prompt contribution and quasinormal ringing.

1 3
_|+_

2' "4 (35

along the black-hole outer horizon is dominated byoanil-
latory inversepower-lawtail.

However, at intermediate times a definite oscillatpower-
law falloff is manifest. The power-law exponents are
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FIG. 2. The amplitude of the fielty(y=501)| for different FIG. 3. Late-time evolution of the SI fielf)| on a Reissner-
multipoles| =0, 1, 2, and 3(from top to bottom. The power-law  Nordstran background. The field at future timelike infinityy (
exponents are-1.49,-2.50,-3.50, and—4.51, respectively, in  —50) js shown as a function of(top curve. Along the black-hole
excellent agreement with thanalytically predicted values of  gyter horizon the field is shown as a functionwofbottom curve.
—1.5-2.5-35, and—4.5. The oscillations period E=m/m1t0 o the clarity of the figure we display only the maxima of the
within 0.1%, in agreement with the predicted value. The initial dataoscillations(the field oscillates with a period af=7/m to within
are those of Fig. 1. 0.2%. At late times the field’s amplitude decagowerthan any

] ] power law. The initial data are those of Fig. 1.
—1.48 at a fixed radiugtop curve and —1.47 along the

black-hole outer horizofbottom curve. These values are to VI. SUMMARY AND PHYSICAL IMPLICATIONS
be compared with thanalytically predicted value of-1.5; _ _ . . _
see Eqgs(32) and (35). The period of the oscillation§or We have studied analytically the intermediate asymptotic

|#]) equalsT = 7/m to within 0.1%, again in agreement with evolution of a S_I scalar fleI(_JI on a Reissner-Nordstroack-

the predicted value. Figure 2. depicts the dependence of tH#ound. Following theno-hair theoremwe have focused at-
intermediate asymptotic tailat a fixed radiuy=50) on the ~ tention on the physical mechanism by which a Sl hair de-
multipole index|. The numerical values of the power-law CaYs- The main results and their physical implications are the
exponents, describing the fall off of the field at intermediatefo!lowing.

times (after a period of quasinormal ringihgare —1.49, Oscillatory inversepower-lawtails develop at intermedi-
—2.50~3.50, and—4.51 forl =0, 1, 2, and 3, respectively. ate times at a fixed radius and along the black-hole outer

These numerical values are in excellent agreement with therizon[as long as the initial data ha\2/e a considerable sup-
analytically predicted values of—1.5-2.5-3.5 and Portonlyinthe regioM<r<M/(Mm) actually, our ana-
—45. Again, the period of the oscillations ®&=m/m to  Ytical der|\2/at|ons hold even in the caskl<r<MI(l
within 0.1%, in agreement with the predicted value. +1)/(Mm)“ for |>0). The dumping exponents, describing
The analytical derivations and their numerical confirma-the fall-off of a Sl field at intermediate times, asenaller
tions presented so far are restricted to tnéermediate cOmpared with those ofmasslessneutral perturbations
asymptotic regime. Thiatetime evolution of the fieldfor  [2,11]. Forl>(2/y/3) |leQ|— 3 (wheree is the field’s charge
the =0 mode is shown in Fig. 3(for the clarity of the these dumping exponents are also smaller than those of
figure we display only the maxima of the oscillatign$he  masslesgharged perturbatiorig]. While the asymptotic be-
initial data are those of Fig. 1. Shown is the behavior of thehavior of masslessperturbations is dominated by back-
field || along the asymptotic regions of timelike infinity scattering from asymptotically far regiofsnd thus depends
(top curve and along the black-hole outer horiz@mottom  on the spacetimeparameteraM (for neutral perturbations
curve. It is clear that the field’s amplitudgecayswith time, and Q (for charged perturbations the intermediate
in agreement with the no-hair theorem. The decay rate issymptotic behavior of a Sl field depends on fletd’s pa-
slowerthan any power law. Again, we find that the figig| rameters(namely, on the field’s mass). In other words,
oscillates with a period of = /m to within 0.2%. We have dealing with S| perturbations, one mayeglectthe back-
found that the larger the field’s mass is, the sooner it leavescattering from asymptotically far regions at intermediate
the intermediate asymptotic phase of an inverse power-lawmes.
decay. Using the numerical scheme we have shown thdatat
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times the inverse power law decay is replaced by anothenole. Moreover, Sl fields are expecteddominatethe mass-
pattern of decay, which islowerthan any power-law. This inflation phenomena during a gravitational collagts is
late-time behavior deserves a further analytic study. The latezaused by theslower decay of Sl perturbations compared
time behavior of S| perturbations implies that a black holewith massless ongs

which forms from a gravitational collapse of Sl fields be-

comes “bald” slowerthan one which forms during a gravi-

tgtional collapse of_ massless fields. Since Sl perturbation ACKNOWLEDGMENTS
fields decay at late times slower than any power law, they are
expected to causeraass-inflatiorsingularity during a gravi- This research was supported by a grant from the Israel

tational collapse which leads to the formation of a blackScience Foundation.
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