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Late-time tails in gravitational collapse of a self-interacting„massive… scalar-field
and decay of a self-interacting scalar hair

Shahar Hod and Tsvi Piran
The Racah Institute for Physics, The Hebrew University, Jerusalem 91904, Israel

~Received 20 January 1998; published 24 July 1998!

We studyanalytically the initial value problem for aself-interacting~massive! scalar field on a Reissner-
Nordström spacetime. Following the no-hair theorem we examine thedynamicalphysical mechanism by which
the self-interacting~SI! hair decays. We show analytically that the intermediate asymptotic behavior of SI
perturbations is dominated by an oscillatory inverse power-law decaying tail. We confirm numerically this
result. However, the numerical examination reveals that at late times the decay of SI hair isslower than any
power law.@S0556-2821~98!03916-2#

PACS number~s!: 04.20.Ex, 04.70.Bw
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I. INTRODUCTION

The late-time evolution of various fields outside a collap
ing star has important implications for two major aspects
black-hole physics: the no-hair theorem and the ma
inflation scenario. Theno-hair theorem@1#, introduced by
Wheeler in the early 1970s, states that theexternalfield of a
black hole relaxes to a Kerr-Newman field characteriz
solely by the black-hole mass, charge, and angular mom
tum. Thus, it is of interest to explore thedynamicalphysical
mechanism responsible for the relaxation of perturbati
fields outside a black hole and to determine the decayrates
of the various perturbations~which differ from one field to
the other!. The mechanism by which massless neutral fie
are radiated away was first studied by Price@2#. The physical
mechanism by which a massless charged scalar hair is
ated away was studied in@3,4#. In this paper we study the
physical mechanism responsible for the decay ofself-
interacting ~SI! (massive)scalar hair.

The asymptotic late-time tails along the outer horizon o
rotating or a charged black hole are used as the initial in
for the ingoing perturbations which penetrate into the bla
hole. These perturbations are the physical cause for the w
known phenomena ofmass-inflation@5#. In this context, one
should take into account the existence ofmassivetails out-
side the collapsing star. Here we study analytically the in
mediate asymptotic behavior of such self-interacting~mas-
sive! perturbation fields. We study the late-time asympto
behavior numerically and confirm the numerical results
Burko @6#.

The plan of the paper is as follows. In Sec. II we descr
the physical system and formulate the evolution equa
considered. In Sec. III we formulate the problem in terms
the black-hole Green’s function using the technique of sp
tral decomposition~this section is analogous to the one giv
in @4#!. In Sec. IV we study the intermediate asymptotic ev
lution of SI scalar perturbations on a Reissner-Nordstr¨m
background. We find anoscillatory inversepower-law be-
havior of the perturbations at a fixed radius and along
black-hole outer horizon. We find that the dumping exp
nents which describe the intermediate fall off of SI perturb
tions are smaller compared with the massless~neutral!
0556-2821/98/58~4!/044018~6!/$15.00 58 0440
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dumping exponents. In Sec. V we verify ouranalytical re-
sults by numerical simulations. We conclude in Sec. VI w
a brief summary of our results and their implications.

II. DESCRIPTION OF THE SYSTEM

We consider the evolution of self-interacting~SI! scalar
perturbation fields outside a collapsing star. The exter
gravitational field of a spherically symmetric collapsing s
of massM and chargeQ is given by the Reissner-Nordstro¨m
metric

ds252S 12
2M

r
1

Q2

r 2 D dt2

1S 12
2M

r
1

Q2

r 2 D 21

dr21r 2dV2. ~1!

Using the tortoise radial coordinatey, defined by dy
5dr/l2 wherel2512 2M /r 1 Q2/r 2, the metric becomes

ds25l2~2dt21dy2!1r 2dV2. ~2!

The wave equation for the SI scalar field is

f ;abg
ab2U8~ ufu2!f50, ~3!

where U(ufu2) is the self-interaction potential an
U8(ufu2)5dU(ufu2)/df* . Since we study the evolution o
small perturbations we approximateU8(ufu2) by m2f ~we
assume thatm is real!, neglecting terms of higher order inf.
Resolving the field into spherical harmonicsf
5( l ,mcm

l (t,r )Yl
m(u,w)/r one obtains a wave equation fo

each multiple moment:

c ,tt2c ,yy1Vc50, ~4!

where

V5VM ,Q,l ,m~r !

5S 12
2M

r
1

Q2

r 2 D F l ~ l 11!

r 2
1

2M

r 3
2

2Q2

r 4
1m2G . ~5!
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III. FORMALISM

The time evolution of a SI scalar field described by E
~4! is given by

c~y,t !5E @G~y,x;t !c t~x,0!1Gt~y,x;t !c~x,0!#dx,

~6!

for t.0, where the~retarded! Green’s functionG(y,x;t) is
defined as

F ]2

]t2 2
]2

]y2 1V~r !GG~y,x;t !5d~ t !d~y2x!. ~7!

The causality condition gives us the initial conditio
G(y,x;t)50 for t<0. In order to findG(y,x;t) we use the
Fourier transform

G̃~y,x;w!5E
02

`

G~y,x;t !eiwtdt. ~8!

The Fourier transform is analytic in the upper halfw plane
and it satisfies

S d2

dy2 1w22VD G̃~y,x;w!5d~y2x!. ~9!

G(y,x;t) itself is given by the inversion formula

G~y,x;t !5
1

2pE2`1 ic

`1 ic

G̃~y,x;w!e2 iwtdw, ~10!

wherec is some positive constant.
Next, we define two auxiliary functionsc̃1(y,w) and

c̃2(y,w) which are linearly independent solutions to the h
mogeneous equation

S d2

dy2 1w22VD c̃ i~y,w!50, i 51,2. ~11!

Let the Wronskian be

W~w!5W~ c̃1 ,c̃2!5c̃1c̃2,y2c̃2c̃1,y , ~12!

whereW(w) is y independent. Using the two solutionsc̃1

andc̃2, the black-hole Green’s function can be expressed

G̃~y,x;w!52
1

W~w! H c̃1~y,w!c̃2~x,w!, y,x,

c̃1~x,w!c̃2~y,w!, y.x.
~13!

In order to calculateG(y,x;t) using Eq.~10!, one may
close the contour of integration into the lower half of t
complex frequency plane. Then, one finds three distinct c
tributions toG(y,x;t) @7#.

~1! Prompt contribution. This arises from the integra
along the large semicircle. It is this part, denotedGF, which
propagates thehigh-frequency response. For large freque
cies the Green’s function approaches to the one of amassless
scalar field on a flat spacetime background. This term c
04401
.

-

s

n-

-

n-

tributes to theshort-time response and can be shown to
effectively zero beyond a certain time. Thus, it is not r
evant for the late-time behavior of the field.

~2! Quasinormal modes. These arise from the distinct sin
gularities ofG̃(y,x;w) in the lower half of the complexw
plane and is denoted byGQ. These singularities occur a
frequencies for which the Wronskian~12! vanishes.GQ is
just the sum of the residues at the poles ofG̃(y,x;w). Since
each mode has Imw,0, it decaysexponentiallywith time.

~3! Tail contribution. As will be shown later the interme
diate asymptotic tail is associated with the existence o
branch cut~in c̃2) placed along the interval2m<w<m.
This tail arises from the integral ofG̃(y,x;w) around the
branch cut~denoted byGC) which leads to anoscillatory
inversepower-lawbehavior of the field. Since we are inte
ested in the intermediate asymptotic behavior of a SI sc
field our goal is to evaluateGC(y,x;t).

IV. INTERMEDIATE ASYMPTOTIC BEHAVIOR
OF A SELF-INTERACTING SCALAR FIELD

A. M !r !M /„Mm…

2 approximation

It is well known that the late-time behavior ofmassless
fields is determined by the backscattering from asympt
cally far regions@8,2,3#. Thus, the late-time tails of massles
fields are dominated by thelow-frequency contribution to the
Green’s function, for only low frequencies will be backsca
tered by the small spacetime curvature or by the small e
tromagnetic interaction at these asymptotic regions. On
other hand, it is also well known thatmassivetails exist even
in a flat spacetime@9#. This phenomenon is related to the fa
that different frequencies forming a massive wave pac
have different phase velocities. As will be shown in th
paper, the intermediate asymptotic behavior of a SI sc
field on a Reissner-Nordstro¨m background is dominated b
flat spacetime effects. Namely, at intermediate times
backscattering from asymptoticallyfar regions~which domi-
nates the tails of massless fields! is negligible compared to
the flat spacetime massive tails that appear here.

Let us assume that both the observer and the initial d
are situated far away from the black hole. We expand
wave-equation~11! for the SI scalar field~in the field of the
black hole! as a power series inM /r and Q/r and obtain
„neglecting terms of orderO@(Mm/r )2# and higher…

F d2

dr2
1w22m21

4Mw222Mm2

r
2

l ~ l 11!

r 2 Gj50,

~14!

wherej5lc̃. The term proportional toM /r represents the
Newtonian potential. If we further assume that both the o
server and the initial data are situated in the regionr
!M /(Mm)2 ~andM!r ), and we are interested in the inte
mediate asymptotic behavior of the field@r !t!M /
(Mm)2#, we can further approximate Eq.~14! by

F d2

dr2
1w22m22

l ~ l 11!

r 2 Gj50. ~15!
8-2
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LATE-TIME TAILS IN GRAVITATIONAL COLLAPS E . . . PHYSICAL REVIEW D 58 044018
Replacing Eq.~14! with Eq. ~15! means that weneglectthe
backscattering of the field from asymptoticallyfar regions.
Thus, the intermediate asymptotic behavior of SI scalar p
turbations on a black hole~or a star! background depend
only on the field’s parameters~namely, on the mass of th
field! and it doesnot depend on the spacetime paramete
The validity of this conclusion is verified by numerical sim
lations ~see Sec. V!.

Let us now introduce a second auxiliary fieldf̃ defined
by

j5r l 11eiAw22m2rf̃~z!, ~16!

where

z522iwr . ~17!

f̃~z! satisfies the confluent hypergeometric equation

Fz
d2

dz2
1~2l 122z!

d

dz
2~ l 11!G f̃~z!50. ~18!

The two basic solutions required in order to build the bla
hole Green’s function are~for uwu<m)

c̃15Arl 11e2ÃrM ~ l 11,2l 12,2Ãr ! ~19!

and

c̃25Brl 11e2ÃrU~ l 11,2l 12,2Ãr !, ~20!

whereÃ5Am22w2. A andB are normalization constants
M (a,b,z) and U(a,b,z) are the two standard solutions
the confluent hypergeometric equation@10#. U(a,b,z) is a
many-valued function; i.e., there is a cut inc̃2. Using Eqs.
13.6.6 and 13.6.24 of@10# one may write these solutions in
more familiar form

c̃15
1

2
Ar1/2GS l 1

3

2D S 1

2
Ã D 2~ l 1 1/2!

I l 1 1/2~Ãr !, ~21!

and

c̃25p2 1/2Br1/2~2Ã!2~ l 1 1/2!Kl 1 1/2~Ãr !, ~22!

whereI l 1
1
2

andKl 1
1
2

are modified Bessel functions.

Using Eq.~10!, one finds that the branch cut contributio
to the Green’s function is given by
04401
r-

.

-

GC~y,x;t !5
1

2pE2m

m

c̃1~x,Ã!

3F c̃2~y,Ãep i !

W~Ãep i !
2

c̃2~y,Ã!

W~Ã!
Ge2 iwtdw.

~23!

For simplicity we assume that the initial data have a cons
erable support only forr values which are smaller than th
observer’s location. This, of course, does not change
late-time behavior.

Using Eqs. 9.6.30 and 9.6.31 of@10#, one finds

c̃1~r ,Ãep i !5c̃1~r ,Ã! ~24!

and

c̃2~r ,Ãep i !52c̃2~r ,Ã!1
B

A

p1/2~21! l 11222l

G~ l 1 3
2 !

c̃1~r ,Ã!.

~25!

Using Eqs.~24! and ~25! it is easy to see that

W~Ãep i !52W~Ã!, ~26!

from which we obtain the relation

c̃2~r ,Ãep i !

W~Ãep i !
2

c̃2~r ,Ã!

W~Ã!
5

B

A

p1/2~21! l222l

G~ l 1 3
2 !

c̃1~r ,Ã!

W~Ã!
.

~27!

Since W(Ã) is r independent, we may use theÃr→0
asymptotic expansions of the Bessel functions~given by Eqs.
9.6.7 and 9.6.9 in@10#! in order to evaluate it. One finds

W~Ã!52
1

4
ABp2 1/2~2l 11!GS l 1

1

2DÃ2~2l 11!.

~28!

Finally, substituting Eqs.~27! and~28! into Eq. ~23! we ob-
tain

GC~y,x;t !5
~21! l 112222l

A2~2l 11!G~ l 1 1
2 !G~ l 1 3

2 !

3E
0

m

c̃1~y,Ã!c̃1~x,Ã!Ã2l 11e2 iwtdw.

~29!

B. Intermediate asymptotic behavior at a fixed radius

It is easy to verify that in the larget limit the effective
contribution to the integral in Eq.~29! arises from uwu
5O(m2 1/t) or equivalentlyÃ5O(Am/t). This is due to
the rapidly oscillating terme2 iwt which leads to a mutua
cancellation between the positive and the negative part
the integrand. In order to obtain the intermediate asympt
8-3
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SHAHAR HOD AND TSVI PIRAN PHYSICAL REVIEW D58 044018
behavior of the field at a fixed radius~where x,y!t), we
may use theÃr !1 limit of c̃1(r ,Ã). Using Eq. 9.6.7 from
@10# one finds

c̃1~r ,Ã!.
1

2
Arl 11. ~30!

We obtain

GC~y,x;t !5
~21! l 11p1/2ml 11

2l~2l 11!G~ l 1 1
2 !

~xy! l 11t2~ l 11!Jl 11~mt!,

~31!

which in thet@m21 limit becomes

GC~y,x;t !5A2

p

~21! l 11

~2l 11!!!
ml 1 1/2~xy! l 11t2~ l 1 3/2!

3cosFmt2S 1

2
l 1

3

4Dp G . ~32!

Thus, the intermediate asymptotic behavior of the SI fi
at a fixed radius is dominated by anoscillatory inverse
power-lawtail.

C. Intermediate asymptotic behavior along the black-hole
outer horizon

Next, we consider the behavior of the SI scalar field at
black-hole outer horizonr 1 . While Eqs.~21! and ~22! are
approximate solutions to the wave equation~11! in the M
!r !M /(Mm)2 region, they do not represent the solutio
near the horizon. Asy→2` the wave equation~11! can be
approximated by the equation

c̃ ,yy1w2c̃50. ~33!

Thus, we chose

c̃1~y,w!5C~w!e2 iwy, ~34!

and we use the form~30! for c̃1(x,w). In order to match the
y!2M solution to they@M solution we assume that th
two solutions have the same temporal dependence. This
sumption has been proven to be very successful for mas
neutral@11# and charged@3,4# perturbations. In other word
we assume thatC(w) is w independent. In this case on
should replace the roles ofx and y in Eqs. ~23! and ~29!.
Using Eq.~29!, we obtain

GC~y,x;t !5G0A2

p

~21! l 11

~2l 11!!!
ml 1 1/2yl 11v2~ l 1 3/2!

3cosFmv2S 1

2
l 1

3

4Dp G , ~35!

whereG0 is a constant.
Thus, the intermediate asymptotic behavior of the SI fi

along the black-hole outer horizon is dominated by anoscil-
latory inversepower-lawtail.
04401
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V. NUMERICAL RESULTS

It is straightforward to integrate Eq.~4! using the method
described in@11#. The late-time evolution of a SI scalar fiel
is independent of the form of the initial data used. The
sults presented here are for a Gaussian pulse onu50

c~u50,v !5A exp$2@~v2v0!/s#2%, ~36!

where the amplitudeA is physically irrelevant due to the
linearity of Eq. ~4!. It should be noted that the evolutio
equation~4! is invariant under the rescaling

r→ar, t→at, M→aM, Q→aQ, m→m/a,
~37!

wherea is some positive constant. The black-hole mass a
charge are set equal toM50.5 andQ50.45, respectively.
We have chosen an initial field profile withm50.01, v0
550, ands52. We studied the behavior of the fieldc at a
fixed radius and along the black-hole outer horizon~approxi-
mated by the null surfaceu5umax, whereumax is the largest
value of u on the grid!. The numerical results for thel 50
mode are shown in Fig. 1. Initially, the evolution is dom
nated by the prompt contribution and quasinormal ringin
However, at intermediate times a definite oscillatorypower-
law falloff is manifest. The power-law exponents a

FIG. 1. Evolution of the SI fielducu on a Reissner-Nordstro¨m
background, forl 50,M50.5,Q50.45 andm50.01. The initial
data are a Gaussian distribution withv0550 ands52. The field at
a fixed radius (y550) is shown as a function oft. Along the black-
hole outer horizon the field is shown as a function ofv. The oscil-
latory power-law falloff is manifest at intermediate times. Th
power-law exponents are21.48 at a fixed radius~top curve! and
21.47 along the black-hole outer horizon~bottom curve!. These
values are to be compared with theanalytically predicted value of
21.5. The period of the oscillations isT5p/m to within 0.1%, in
agreement with the predicted value.
8-4
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21.48 at a fixed radius~top curve! and 21.47 along the
black-hole outer horizon~bottom curve!. These values are to
be compared with theanalytically predicted value of21.5;
see Eqs.~32! and ~35!. The period of the oscillations~for
ucu) equalsT5p/m to within 0.1%, again in agreement wit
the predicted value. Figure 2. depicts the dependence o
intermediate asymptotic tails~at a fixed radiusy550) on the
multipole index l . The numerical values of the power-la
exponents, describing the fall off of the field at intermedia
times ~after a period of quasinormal ringing!, are 21.49,
22.50,23.50, and24.51 for l 50, 1, 2, and 3, respectively
These numerical values are in excellent agreement with
analytically predicted values of 21.5,22.5,23.5 and
24.5. Again, the period of the oscillations isT5p/m to
within 0.1%, in agreement with the predicted value.

The analytical derivations and their numerical confirm
tions presented so far are restricted to theintermediate
asymptotic regime. Thelate-time evolution of the field~for
the l 50 mode! is shown in Fig. 3~for the clarity of the
figure we display only the maxima of the oscillations!. The
initial data are those of Fig. 1. Shown is the behavior of
field ucu along the asymptotic regions of timelike infinityi 1

~top curve! and along the black-hole outer horizon~bottom
curve!. It is clear that the field’s amplitudedecayswith time,
in agreement with the no-hair theorem. The decay rate
slower than any power law. Again, we find that the fielducu
oscillates with a period ofT5p/m to within 0.2%. We have
found that the larger the field’s mass is, the sooner it lea
the intermediate asymptotic phase of an inverse power-
decay.

FIG. 2. The amplitude of the fielduc(y550,t)u for different
multipoles l 50, 1, 2, and 3~from top to bottom!. The power-law
exponents are21.49,22.50,23.50, and24.51, respectively, in
excellent agreement with theanalytically predicted values of
21.5,22.5,23.5, and24.5. The oscillations period isT5p/m to
within 0.1%, in agreement with the predicted value. The initial d
are those of Fig. 1.
04401
he

e

he

-

e

is

s
w

VI. SUMMARY AND PHYSICAL IMPLICATIONS

We have studied analytically the intermediate asympto
evolution of a SI scalar field on a Reissner-Nordstro¨m back-
ground. Following theno-hair theoremwe have focused at
tention on the physical mechanism by which a SI hair d
cays. The main results and their physical implications are
following.

Oscillatory inversepower-lawtails develop at intermedi-
ate times at a fixed radius and along the black-hole ou
horizon @as long as the initial data have a considerable s
port only in the regionM!r ! M /(Mm)2; actually, our ana-
lytical derivations hold even in the caseM!r ! Ml ( l
11)/(Mm)2 for l .0). The dumping exponents, describin
the fall-off of a SI field at intermediate times, aresmaller
compared with those ofmasslessneutral perturbations

@2,11#. For l .(2/A3) ueQu2 1
2 ~wheree is the field’s charge!

these dumping exponents are also smaller than thos
masslesscharged perturbations@4#. While the asymptotic be-
havior of masslessperturbations is dominated by back
scattering from asymptotically far regions@and thus depends
on the spacetimeparametersM ~for neutral perturbations!
and Q ~for charged perturbations!#, the intermediate
asymptotic behavior of a SI field depends on thefield’s pa-
rameters~namely, on the field’s massm). In other words,
dealing with SI perturbations, one mayneglect the back-
scattering from asymptotically far regions at intermedia
times.

Using the numerical scheme we have shown that atlate

a

FIG. 3. Late-time evolution of the SI fielducu on a Reissner-
Nordström background. The field at future timelike infinity (y
550) is shown as a function oft ~top curve!. Along the black-hole
outer horizon the field is shown as a function ofv ~bottom curve!.
For the clarity of the figure we display only the maxima of th
oscillations~the field oscillates with a period ofT5p/m to within
0.2%!. At late times the field’s amplitude decaysslower than any
power law. The initial data are those of Fig. 1.
8-5
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SHAHAR HOD AND TSVI PIRAN PHYSICAL REVIEW D58 044018
times the inverse power law decay is replaced by ano
pattern of decay, which isslower than any power-law. This
late-time behavior deserves a further analytic study. The l
time behavior of SI perturbations implies that a black h
which forms from a gravitational collapse of SI fields b
comes ‘‘bald’’ slower than one which forms during a grav
tational collapse of massless fields. Since SI perturba
fields decay at late times slower than any power law, they
expected to cause amass-inflationsingularity during a gravi-
tational collapse which leads to the formation of a bla
th
99

04401
er

e-

n
re

hole. Moreover, SI fields are expected todominatethe mass-
inflation phenomena during a gravitational collapse~this is
caused by theslower decay of SI perturbations compare
with massless ones!.
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