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Dynamical evolution of boson stars in Brans-Dicke theory
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We study the dynamics of a self-gravitating scalar field solitonic okjgason starin the Jordan-Brans-
Dicke (BD) theory of gravity. We show dynamical processes of this system su@hlaack hole formation of
a perturbed equilibrium configuration on an unstable bratidhmigration of a perturbed equilibrium configu-
ration from an unstable branch to a stable branch,(@indhe transition from an excited state to a ground state.
We find that the dynamical behavior of boson stars in BD theory is quite similar to that in general relativity
(GR), with comparable scalar wave emission. We also demonstrate the formation of a stable boson star from
a Gaussian scalar field packet with flat gravitational scalar field initial data. This suggests that boson stars can
be formed in the BD theory in much the same way as in (8®556-282(98)00916-3

PACS numbds): 04.40.Dg, 04.50-h

[. INTRODUCTION In this paper, we study the dynamical behavior of boson
stars in the Jordan-Brans-DickBD) theory of gravity[11].
Gravitational solitonic objects are quite an interestingln particular, we compare the dynamics with those in GR.
topic in general relativit(GR). A boson star consists of a The BD theory is one of the alternative theories of gravity to
massive complex scalar field, and was first discussed b@R, and the most simple and prototype in all the scalar-
Kaup[1] and then by Ruffini and Bonazzo]2] (for a thor-  tensor theories of gravitysee Will[12] for a review. The
ough review, se€3,4]). They can form stable configurations previous experimental test using the delay of radar echos in
having negative binding energy, as a result of a balance dhe solar system shows the bound of the BD parameter as
the dispersion due to the classical analogue of the uncertaintygp>500 [13,14], of which the infinite limit agrees with
principle and the attractive effects of gravity. If we include GR. This bound is also considered to be limited by the direct
even a small self-interaction term, then their maximum al-observations of gravitational wavésee[15] and references
lowed stable mass can be close to the order of a solar masisereir). (Recently, more strict limitations of the BD param-
[5]. It is also speculated that they are a form of dark matteeter wgp are reported16]: however, the results are model
that could have been created during a phase transition in thgependent and we thinkgy>500 is still the generally ac-
early universe(see Friemaret al. [6]). Although we still  cepted observational limijt.
have no evidence for their astrophysical existence, these sys- So far, boson stars in scalar-tensor gravity have also been
tems are a good model from which to learn the nature of aliscussed by Gundersen and JengEf| and Torres[18]
strong gravitational field. who showed the existence of equilibrium ground state boson
The stability of boson stars has also been studied by sewstar solutions in the BD coupling and in the three different
eral authors. Lee and Paff] discussed ground state stabil- couplings in the scalar-tensor theories, respectively. Comer
ity using linearized perturbation theory, and Seidel and Sueand Shinka[19] showed the existence of excited state boson
[8] studied their dynamical behavior by evolving field equa-stars in both BD and the Damour-Nordtvedt quadratic cou-
tions numerically. In GR, the ground state boson star conpling (attractoy model [20] in the scalar-tensor theories.
figurations are comprised of a stable branch and an unstablney also discussed the stabilities of ground state boson stars
branch. Upon perturbations, boson stars on the stable brancising catastrophe theory. One of our purposes of this paper is
remain on the stable branch, settling down into a configurato study the stability of boson stars in BD theory. By evolv-
tion with a different mass. In the process, it emits scalaiing the field equations numerically for slightly or heavily
radiation with some characteristic normal mode frequenciegerturbed equilibrium data, we clarify the stability of boson
On the other hand, stars on the unstable branch do not retars both for ground and excited states.
main there after perturbations. They either disperse com- Our system includes two scalar fields: the bosonic matter
pletely, form black holes, or migrate to the stable branchicomplex and massiyescalar field and the gravitationakal
depending on the size of the perturbations. These qualitativand masslessscalar field(which hereafter we call the BD
features are also discussed applying catastrophe thi8dry field). We expect to be able to study the fundamental mecha-
Recently, Balakrishna, Seidel, and Sugi®] studied dy- nism of the interactions between these two fields in their
namical boson stars with the self-coupling term and excitedlynamics. Several previous simulations have shown emis-
states. They found that excited state boson star equilibriursions of scalar waves in B[21-23 or scalar-tensor theory
configurations have branches similar to that of the ground24,25 from a collapse of the dust or star model. Our second
state, but all branches are unstable. interest is in how much difference appears in the scalar
gravitational wave emissions during the dynamical boson
star system between BD theory and GR: whether they will be
*Email: bala@wurel.wustl.edu enhanced or suppressed.
"Email: shinkai@wurel.wustl.edu Throughout this paper, we stand at the point to see if they
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in any way differ from boson stars in a detectable manner; 1 — _
that is, we imposevgp>500 in most simulations. Sy=ra = j d*xV—g[¢R— ¢ w()g"",$3,¢]
; | . . 167
The outline of this paper is as follows. In Sec. Il, we will
introduce the field equations and basic outline of our numeri- {1 .
cal techniques. With a view to study this problem in scalar- —J d*xV—g > g”V&M¢T&V¢+ V()| (2.1

tensor theories in the near futufd2], we describe funda-
mental equations not only in BD theory but in general scalar
tensor theories. coupling of ¢ to the matter. The complex scalér(with its

0" V\\A//e describe the equilibrium cqnf|gurat|on bngfly in Sec.. complex conjugate being/’) has massm and is self-

. We plot the sequences of excited state configurations in t ting th h th tential

BD theory and also discuss fractional anisotropy measure. " cracting through the potentia

ments in this system, both of which have not appeared before m2 A

in the references. V()= — yTy+ — (yTy)2 (2.2
Section 1V is devoted to stable boson star configurations. 2 4

In GR, under the effects of finite perturbations, these star . . :

react by expanding and contracting with emitting scalar ra—% he strgngth of the self-interaction, is normally taken to

diation at each expansigB]. The star loses mass and settlesbe posmv_e. . . .

to a lower mass configuration. Each expansicontraction There is an“al_terngtwe reprfsentanon of the action above,

of the core of the star is accompanied by the contractio’® SO-called “Einstein frame.” The expression is given by

(expansioh of the radial metric. We study whether the ex- the conformal transformation

pansions and contractions of the star set the BD field into ~ 2a(p)

oscillations and whether this results in any measurable gravi- 9., =99, 2.3

tational radiation in addition to the scalar radiation. Under

infinitesimal perturbations, boson stars in GR start oscillatini/

at their fundamental quasinormal mode frequencies that re=

main constant and virtually undamped for large periods of

time. We also study whether this is seen in BD theory.

Section V shows the behavior of unstable boson stars. I here G, s the effective gravitational constant in the Ein-

GR, equilibrium boson stars on the unstable branch, whegq, .. : ; ; _
perturbed, begin forming black holes or migrating to a newgte'n frame. The relationship betweetd) anda(y) is ob

equilibrium configuration on the stable branch. The excitea[alned from
state configurations of boson stars are expected to be un- o?=(2w+3)" 1, (2.5
stable. If they cannot lose enough mass and settle to the
ground state configuration, they collapse to black holes. Wegyhere
also show the cascading of a BD boson star in an excited
state to the ground state. da
In Sec. VI, we look at the formation of boson stars in BD ale)= s (2.6
theory. The collection of bosonic matter localized in a region
of space is represented by a Gaussian initial boson field. Thehe action in the Einstein frame is thus
BD field itself is initially set to zero: we discuss whether or
how an equilibrium configuration actually forms in BD _ " Y
theory. Finally, in Sec. VIl we make some concluding re- £~ 167G, f d*xV~9[R—29""3,¢d,¢]
marks.
We use the unitc=1 and#=1. This implies that the _f d4x\/—_g
scalar field masm is an inverse lengtkactually, the inverse
Compton wavelength of the scalar partiglesd the bare
gravitational constan®, has units of length squared.

The gravitational scalar igp and w(¢) is the Jordan-frame

herea(¢) is the functional transformation from to the
instein-frame gravitational scala;

¢ 1=G,e?¥), (2.4

1
5 €29gm 9,410, e N (YY) .

(2.7)

I FIELD E It does not deliver GR exactly because the megrj¢ is not

' QUATIONS the true physical metric that encodes the distance between
In this section, we present our basic field equations§pacetime points. However, the Einstein frame does deliver

boundary conditions, and numerical techniques to solve thequations that are similar enough to GR that we will use it

system. For our future convenienf22], we show the field for our calculations.

equations not only in the Brans-Dicke theory of gravity (  1he Einstein-frame stress-energy tensor is

= wpp= const), but also in the general scalar-tensor theory of

gravity [w= w(d))] T#VZEeZa(qo)(o',#l//To-)yw_i_ (?Vlzb-ré’,ul;b)
A. Lagrangians and field equations 1
The action for our system of scalar-tensor gravity coupled -3 e? 9,y o"y+ 2OV (YY) ]g,,, -
to a self-interacting, complex scalar field in the physical
“Jordan frame” is (2.8
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The gravitational field equations fgy,, and ¢ are r
G,Mg=lim E(l—l/grr). (2.18
G,,=87G,T,,+20,0d,¢—0d.0d"¢Q,, (2.9 r—o
and However, sincey,, =e?*#)g,, and we set(¢.)=0 (to be
discussed beloyy then the limits on the right-hand sides are
Vo V7p=—4maT, (210 equal and therefort ;=Mg=M.

whereT is the trace of the stress-energy tensor. The matter

field equations are B. Equilibrium state equations

The gravitational scalar, which is real, is assumed also to

oV be spherically symmetric and static when we solve the equi-
o, t tor  — 2a(e)
VoVIyi+2ad ot e=2e" 2, @10 ibrium configuration:
paiey IV e=e(r). (2.19
V Voy+2a0. o o=2e2¢ . . .
W As for the matter scalar field, Friedbeegal.[27] show that
(212 the minimum energy configurations are those for which
The coupling functiora(¢) is given by choosing a theory =e 1 Ud(r), (2.20
of gravity. In this paper, we only consider the Brans-Dicke
coupling where(} is real and positive an@ (r) is real function. Their
proof (see the Appendix if27]) also goes through for scalar-
©— Qo tensor gravity, and so we will také to have this form.
a(e)= 205513’ (2.13 We will take advantage of the scale invariance of the field

equations to redefine some of the fields, parameters, and the
where the parameten=wgp is constant, which observa- radial and time coordinates:

tional constraint is known asgp>500[13,14]. The termep.,
represents the asymptotic value of the gravitational scalar mr—r, VanG,o—®, mNO-N,
field. AAmG, m?—A, Qt/m—t. (2.20)

Because the potential(y'y) is a functional ofy'y, it
preserves the global (@) gauge symmetryy—e€'“ys, where  Note that the rescaling changes the asymptotic valul,of
o is a constantpresent in the theory. This symmetry results which is now
in a conserved current, whose explicit form in the Jordan

frame is lim N(X):m/ﬂ (222
r—oo
~
J“zze‘za(@g“”(wydﬁ— Jro,p). (2.14 The field equations, then, become
241
This conserved current leads to a conserved charge, whichis 9,9, ¢=| — +2e*rg2V(®) |9, ¢
Ny, the number of particles making up the star: r
1
+0%2ae? =V OVID+2e22V(P
szf d3xy— g, (2.15 9 [ N PAr eV )H
(2.23
The spacetime considered here is spherically symmetric,
with the Einstein-frame metric taking the form g®+1 )
o P=| == +2e*rg2v(®) |9, D
ds?= — N2(t,r)dt?+ g?(t,r)dr2+r2[d6?+ sir? 6d¢?],
(2.19 g? dV(d)
_ 2 2a__ o
N7®+29 e i aV, oV (p},

whereN is the lapse function and is the circumferential
radius. We dropped the shift vector, since we use a polar- (2.29
slicing condition[26] in evolution.

In this coordinate system, the Jordan-frame Arnowitt- g°r 9°—1
D i is gi 3:(9%) =09 Tz Too— (2.25
eser-MisneADM) massM is given by r NZ '00 r )’
o ~ g>-1
G My=lim 5 (1-17.). (2.19) (?r(NZ):NZ(rTllJr : ) 228
The similar Einstein-frame ADM madd g is where
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N2 2 2a 2 NZ 2 2.2a 1
TOOZEZ(ﬁrQD) +e d +F(§r®) +2N“e”V(D)|, ﬂth::((9rB)’9r(r‘P)+B(9rﬁr(r‘P)_(arﬂ)(rﬁo)F
(2.27 1
o —Ngr2ae?? Evgqfkuzezf"vomﬂ) ,
Ti=(d¢)?+e* (a,cl>)2+ﬁzc1>2—2gzeZaV(cb)} -
(2.28 (233
The boundary conditions for this system of equationsat(r‘y):'gn‘l" (234
must take into account three things: the solutions must be 1
geometrically regular at the origiriji) the solutions must 4,11, =(4,8)d,(r¥)+ B34,d,(r¥)—(4,8)(r¥)=
yield an asymptotically flat spacetime, afiiil) the solutions r
must take into account the cosmological input for both the dv(wwh
couplinga(¢) as well ase. —2Ngr ezaW—aVUWV”¢ . (2.39

Geometrical regularity at the origin means there is no
conical singularity; i.e., the proper radius divided by the
proper circumference should reduce t@ & r=0. This im-
plies thatg(0)=1. Also, to maintain regularity in the field
equations asr—0, we impose thatd®/dr|,_,=0 and
de/dr|,—o=0.

For a purely technical reason to 9dt;=Mg, we desire 1
solutions that are asymptotically flat in both the Jordan and gtg:N[H¢(9r¢+eza§ (HTy@r\I""H\I’ar\PT)}v

Einstein frames. That is, we want bcﬁpy andg,,, to reduce (2.36
to the flat spacetime metric at spatial infinity. The implica-

tion of this is that the value op..= ¢() must be such that N Nr 1

a(¢.)=0. This is guaranteed since there is one more rescal- dN==—(g>—1)+ —((&rgo)er Hi—z

ing that has no analogue in GR. That is an invariance of the 2r 2 r
field equations if an arbitrary constant is added to the scalar-

Note that¥ and Il are complex variables, and so Egs.
(2.34 and (2.35 have two components. The momentum
constraint and th&,, component of the Einstein equations
become

1
tensor coupling. If we simultaneously do the rescaling +e2@ (a,\If)(r?r‘l”)Jqu,HTI,r—z
ex—x, ed—-®d, e°N—N, eA—A (2.29
—2g°e®V (¥ ) (2.37)
on the variables defined by Ed2.21) and leta(¢)+c

—a(¢), then the field equations remain unchanged.

For the BD coupling,®.=®(0) and ¢.. are the only
freely specified field values. The value H{0) is not speci-
fied freely, but rather is determined so thh{>)=0. The
value of ¢ at the origin is not specified freely; it must be

We use the above set of equatiof®.32—(2.37) for
evolving the system and use the Hamiltonian constraint
equation

a9 ¢?—1 II?

determined in such a way that the solution fogoes top.. 2 = =~ —__F 1 (5 ()2

at spatial infinity. We will use the freedom to add an arbi- 9f r r

trary constant to the BD coupling(¢) so that all the solu- LIt

. . — ‘\I[ \I,

tions we consider have, =0. +g22 — + (0, V) (9, ¥T)
r

C. Evolution equations

+2g%e®v(v¥h (2.39

We here assume that the gravitational scalar field is time
dependentp= ¢(t,r), and use the rescaled bosonic fidid
asV=47G, ®. Analogous to Eqs3.6)—(3.10 in [8], we  to check the accuracy of our simulation.
introduce scalar field momenta, andIly :

D. Numerical techniques

g 1
= Nat(rgo)z Eat(rgo), (2.30 1. Equilibrium configurations

We use a fourth-order Runge-Kutta algorithm to solve the
g differential equation$2.23—(2.26). In order to find an equi-
Iy = Nat(rq’)z ,E (1), (2.31 librium configuration, our system requires a two parameter
search to find a solution that satisfies the boundary condi-
where we sef3=N/g. The field equations become tions for both®., and ¢.,. Operationally, we choose a cen-
tral value of the scalar fiel®. first together with a guessed
d(re)=plII1,, (2.32 central value of the gravitational scalar fiekd0), and inte-
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grate out to large radii for different values N{0). Wethen  spacetime, and which is the proper assumption for the
check if the resultingp., is close to our expected boundary asymptotic region. Differentiating, one gets
value.

The falling off behavior for the gravitational scalar figid 1d¢ N e N (¢~ @)
is much slower than the matter scalar fidi Therefore, at cat o r
the numerical boundary, say=r.,, we set the expected
boundary value fokp(rend @S ¢(rend = @+ C/Teng, Where  Note that this is the same technique used by Noj2HK,
a constanC is given byC= —rgnddgo(r)/drh:,end. If the  who studied a stellar collapse in scalar-tensor theory.
computede(r ¢, is not the expected value, then we change For the boson fieldV, an asymptotic solution of the form
¢(0) and repeat the whole procedure. We set the tolerance® “'e''/r to order 1f is assumed. This gives an outgoing
to judge convergence ip(re,9 as 510 7. More details boundary condition to this order of

are in[19].
1l B?k?=0%—N*m?e*. (2.41

=0. (2.40

outer edge

2. Evolutions . . . . . .
This dispersion relation is nontrivial for a massive scalar

We use the same code that was useBirfor evolutions  field. There is no perfect algorithm to implement it. At the
with modifications to incorporate BD theory. A polar-slicing outermost grid point we require that
condition[26] for the lapse is hard wired into the code. This
slicing is highly singularity avoiding, and in the event of the - - N2 _
formation of an apparent horizon, the lapse rapidly collapses 0oy = — B,V — 2 We?, (2.42
and the radial metric blows up, crashing the code, indicating
@mminent black hole formaFion. The Iapse equ_at(@rB?) is_ whereW =r¥. The second term on the right is a finite mass
integrated once on every time slice using a sixth-order inte-

- o . correction to leading order.
gration scheme. The Hamiltonian constraint equatias8 In addition to removing second-order reflections we sub-

is monitored as an indicator of the accuracy of the SimUIatio%tituted a sponge for the matter fiiti reduces the momen-
and is not solved during the evolution. A leapfrog evolutlontum of the boson field artificially, and is irrelevant for the

SCT:eoT?hIZ Lljjsoi?\gasr;/jecsocr::dbi'([ai(g[r?s@];egularity dictates that themassless BD fieldwhich is a potential term that is large for
radial metric be equal to 1 at the origin. The boson field andncommg wavegproportional tok-+ () and small for outgo

the BD field are both specified at the origin. The boson fieIo?.?. Wa?/?s(prqp(zrr]tlonal ItOF ). Trlgref;)d’%e, WE ad(zj gn ad-

goes to zero ak and the BD field goes to a constant which itional term in the evolution equation féy , Eq. (2.35,

is fixed during the evolution. This constant does not enter V(TP

into any of the evolution equations as all the terms in the set _—

of equations are derivatives in the BD field. e’N
The inner boundary at the origin requires that the deriva;

tives of all the metrics and fields vanish at this point. This is'°" fond dDS.rfreng'D"Yhereregﬁ 'St”EfI” value 0‘; the outer- t
implemented by extending the rangeratfo include negative most grid point andv IS an adjustablé parameter represent-

values. The metric componergsN, the boson field, and the ing the width of the spongd is typically chosen to be a few

BD field are required to be symmetric abaut 0. The code times the wayelength of the scalfa_r r_adiation r_noving out.
itself uses new field variables which are the original fields The code is tes_ted with equ|I|b.r|um conflguratlon. data
timesr for both the boson fields as well as the BD field and(the zero-perturbatlon ca)se)(\le confirm that thg evolutions
the momentum variabldg described in the previous section leave the metric and BD fields perfectly static for sevgral
Thus the code field variables as well B, and Il are " thousand time steps. We also checked the code by taking a
antisymmetric about=0. The bosonic and BD fields at the large number of BD parameteissp which would converge

origin during the evolution are determined from the first de—t0 the results in GR.
rivatives of the code fields there. For the radial metric the
value at the boundary is determined from the Hamiltonian lll. EQUILIBRIUM SEQUENCES
constraint equatio2.38).

In order to prevent reflections from the edge of the gridde
we use aroutgoing wavecondition at the outer edge of the
grid (far away from the starfor the matter fieldV” and the

(Ily+0,¥), (2.43

Before starting the dynamical study of boson stars, we
scribe briefly the equilibrium solutions in BD theory.

The existence of ground state boson stars in BD theory is
reported in[17] for the case ofwgp=6. The masses of the

BDFﬂeIdhqp.BD field . h dition that th boson stars become smaller than the corresponding configu-
beh:\ié aes ielde, we impose the condition that the Wave 4iiqng jn GR. They also show the effects of the interaction

term A. In [19], the existence of higher nodexcited states

is reported. They find that if the observational limit gy is
t— [) , (2.39 admitted, then the obtained configurations are very similar to
c GR. They also describe the stability of the ground state con-
figurations using catastrophe theory. However, the whole
which is a natural outgoing wave condition in spherically flatdiscussion on the stability including the excited states is un-

1
e(r,t)=¢.+ ;F
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FIG. 1. Stable configurations of a boson star in Brans-Dicke FIG. 2. Fractional anisotropy3.1) is plotted for ground state
theory. Masses of the ground state and excited state stars up to threenfigurations of central boson densi#y,=0.2 for GR and BD
nodes are shown as functions of the central matter fleld The theory (wgp=600 and 6Q. The inset is the magnification of the
solid lines and the dotted lines are the m&4G, /m) and the ranger=7.0-7.4.

particle numbeiN, /(G, /m?), respectively.
fo=(TI=THIT! (3.0

confirmed up to now. Also the dynamical behavior of this )
system is totally unknown. for a groynd state boson star wm9=0.2 for GR and BD

In Fig. 1, we show the sequences of equilibrium configu-tN€ory with wgp=600 and 60. In Fig. 3, we show the frac-
rations of boson stars in BD theory both for ground state ional anlsot_ropy for three node$th|r<_j exqted states of
and excited states up to three nodes. These sequences pson stars in BD theoryyBD_= 600, W'th d|ﬁergnt®c. At
given by solving the set of equations described in Sec. I gine UOdeS where th? boson field der|vat|ve_van_|shes, all tho_se

. = . . fractional anisotropies are close to 2, which is the analyti-

and we applied the BD parametegy= 600 for plotting this I .
! ) ) cally expected number. This is because we can write the
figure. The t.otal mass of the boson stist, and its partlcle. equilibrium fractional anisotropy as
numberN, (in units of m) versus the central boson density
@, profile is plotted. We see that, in the grc')un.d and excited 2[(d,¢)2+€?3(3,®)?]
si[eriTt]el\l sequences, the _S|gnature_ _of the bln_dlng endgy (&,qo)2+e23[(&,q>)2+ (92/N2)¢2—2g2e23V(d>)]'

L goes from negative to positive according to the value 3.2
of ®.. Configurations with positive binding energy are ex-
pected to be dispersive. At the nodes® =0, and as a resuly(®) also vanishes.

In the case of GR, we know the star ground state configu- The plots end at the radius of the boson $tee define the
rations to the left of the central maximum aséable By radius to be the 95% mass radius of these syste@mnsis-
“stable,” we mean that under perturbations they move to
new configurations on the same bran@éft of the maxi- 4 - '
mum). We naturally suspect that the branch to the left of the
maximum in the BD profile is also stable. Therefore, in this
and all further sections of this paper, we will refer to ground
state boson star configurations to the left of the maximum
mass in Fig. 1 as th&-branch configurations and others as
U-branch configurations. From the catastrophe discussion
[19], we also suspect that tHg-branch configurations are
unstable.

The boson star system exhibits anisotropies due to the
presence of scalar fields. Here, “anisotropy” means the dif- !
ference of the radial pressure from the tangential pressure in i
these configuration§|Tf|#|TY|, where T, is the energy- NUA J
momentum tensor defined as the right-hand side of Eq. 0
(2.9)]. In the case of a scalar-tensor theory this anisotropy
could change from GR due to the presence of the additional F|G. 3. Fractional anisotropy3.1) is plotted for three-node
gravitational scalar field. In the case of BD theory, we find third excited states in BD theory ¢gp=600) with different cen-
the anisotropy slightly but not significantly lower as com- tral boson densitied,=0.05, 0.1, and 0.2. The plots end at the
pared to GR. In Fig. 2, we show the fractional anisotropy radius of each staf95% of the total mags

w
T
1
%
i
S ﬂen
I
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-
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[ &)
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tent with Gleiser’s results in the GR ca<8], we have seen 12570 - - -
that the fractional anisotropy at the radius of the stars is
almost the same number for all configurations. One of the

1.2365

consequences of these anisotropies is that we cannot apply 12360 ¢
the adiabatic perturbation method to discuss the stability of 12385
this system, as discussed by Kguy. % L350
R
IV. STABILITY OF GROUND STATE * 12345
EQUILIBRIUM STATES 12340 F
In order to confirm whether the stars on t&éranch of 12335 ¢
the ground state in Fig. 1 are stable, we show our simulation - . . .
of the perturbed configurations of ttf&branch stars in this e 1000 2000 3000 4000

section. @ time
Our perturbations themselves simulate the annihilation T

(creation of particles by enhancingreducing the boson

field smoothly in some region of the star. A typical pertur-

bation is put in for a region of the star from tor, and is of

the form

=525 -

|

wherep is the perturbation size and is positive for particle
creation and negative for annihilation, andis an integer SSBTTTI0 1000 1500 2000 2500 3000 3500 4000
that can be varied. (b) time

This perturbation is put in at the initial time step and the FIG. 4. Quasinormal mode oscillation of a stable boson star.
lapse equation_ and Hamiltonian (_aquation ar.e_reintegre}ted ®he maximum value of the metrig,, and the central Brans-Dicke
give new metrics for th's scal.ar field a”‘?' 0”9'”3' BD field. fig|g ¢(r=0) are plotted as functions of time. Both of them take on
The momentum associated with the BD field is set ta@® 1o QNM frequency of the star. The oscillation is virtually un-

on the initial time slice. damped for a long period of time.

-526

o perturbe& r=ao original( r

Central BD Field X10~

. ro—r
1+p sm”(wr )}

2_rl -527

—

4.1

A. Small perturbation of bosonic scalar field oscillation (Flg 4 in Flg 5. The time interval between the

. L ... ticks on the horizontal axis ig.
After we confirmed that our code retains its equilibrium

profile for long time evolutions, we start our evolutions of an
S-branch equilibrium state with a tiny perturbation. Here,
“tiny” means that the difference of the mass between the Under large perturbations, a stable boson star in GR ex-
original and new configuration is less than 0.1%. We findpands and contracts, losing its mass at each expansion. The
that the system begins oscillating with a specific fundamentabscillations damp out in time and the system finally settles
frequency, called a quasinormal mo@@NM) frequency. down into a new configuration on th& branch. These fea-
Figure 4 shows the oscillations of the metric and the BD fieldtures are now observed in BD theory.

for a boson star of central boson field denslty=0.2 and We show the effects of a large perturbation on a stable
with wgp=600. We see the BD field, as well as the metricBD boson star described above. The example we present is
function, start oscillating at the same frequency. A Fouriethe case of initial data with ®.=0.2, mass M
transform of the metric and BD field data shows the overall=0.5405, /m after perturbatior(about 13% lower in mass
frequency of the star to be (2J0.03 in nondimensional compared to an unperturbed equilibrium configuration of
units. This is quite close to the case in GR. M=0.6225, /m).

In GR, a QNM frequency increases @s become larger The maximum radial metrig,, and the central BD field
(radius becomes smalleup to a point before starting to as a function of time are shown in Figs. 6 and 7, respectively.
decrease rapidly to zero as it approaches the density corr& both figures, we plotted the case ®f,=600,60 as well
sponding to maximum mass, signalling the onset of instabilas GR. The increase of the maximwgp indicates that the
ity [8]. We found the same feature in BD theory. star is contracting, reaching its maximum value at the end of

In addition, the system takes on the proper underlyinghe contraction in a cycle. Then, as the star expands, the
frequency, which originates from the time dependence of thenaximumg,, decreases, reaching its minimum at the end of
boson field¥ ~e''. This frequency corresponds to ar pe-  the expansion. These processes repeat themselves with the
riod in t in our units, and appears in the metric and BD field oscillations damping out in time as the star settles to a new
oscillation with a7 period, from the structure of the equa- stable configuration with the maximum radial metric of a
tions. To show this feature we have enhanced the BD fieldmaller value than it started witfiower mass The lower

B. Large perturbation of the bosonic scalar field
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time FIG. 7. The same model as Fig. 6. The central Brans-Dicke field

¢(r=0) is plotted. We see that the oscillations damp out as the star
settles, indicating again a transition to a new stable boson star con-
figuration.

FIG. 5. The magnification of the second figure of Fig. 4. The
time interval between the ticks on the horizontal axisrisNe see
that the Brans-Dicke field has the underlyimgoscillation that it
takes on. ) )

the two BD parameters is shown. Again we see the phase
value of the BD parameter shows a phase shift in comparisoﬁh'ftt forf_the” lowftrl B? paramet?(fturthfer frolqn GR. The
to GR which might be suggestive of a different rate of ap_sysv\(/amh ina ylse esdo "f[‘ r;e:/v Sf( a e.t?] smta Er tmass.th t
proach to the final configuration. We see the same dynamic?l € thave also (I;on ltjcb? bes S r\1NIt pertur aﬂ:ons a ?nG-R
behavior in the BD fieldFig. 7). It has the same oscillation ance the mass. or stable branch stars as in thé case o

frequency as that of the metric. The oscillations damp out i18] the star loses mass and settles to a new configuration on
time and the BD field settles to a value closer to zero than if'€ Same branch.
started aflower final mask
The system loses mass through radiation during its evolu- V. EVOLUTION OF U-BRANCH STARS
tion. A comparison of the mass as a function of time for the AND EXCITED STARS

BD case fvpp=600 and 6Das well as GR shows little dif- Boson stars on thel branch and excited states are inher-
ference, indicating that the radiation is mostly scalar f|eldem|y unstable in GR10]. Under perturbations that reduce
radiation and not scalar gravitational radiation. This is deyhe ‘mass. boson stars on thebranch can migrate to the
spite the BD field oscillating in the BD case and being zerogaple pranch. In this section, we will see these features in
in the GR case. _ _ BD theory too. They can be perturbed in a way so as to
The amount of mass radiated progressively decreases g8 rease their mass enough that they migrate to new configu-
can be seen in the luminosity profile-@M/dt versus im¢  34ions on thes branch. On the other hand, in GR, if they do
shown in Fig. 8. Here again a comparison between GR anf{ot |ose mass and migrate, then the boson stars of configu-

rations with M<N,m collapse to black holes. Stars with

125 " T T T
08— ' . ; . .
— GR
1.20 | s @y =600 b
T 0y,=60 0.6 1
* '?O
% 2
E s i
o = 04 —— GR 4
b 3 )
3 —=== W,,=60
110
02 .
105 : : . . o0 . AN N
0 500 1000 1500 2000 0 500 1000 1500 2000
time time
FIG. 6. Finite perturbation of aB-branch boson star. The maxi- FIG. 8. The same model as the previous figures. The “luminos-
mum metricg,, is plotted. The metric is damped in time as the starity” L=-—dM/dt is plotted versus time. Clearly the radiation is
settles to a new configuration. decreasing in time.
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FIG. 9. Migration of an unstable boson star to a stable configu- 0.78 0 25'00 50'00 7500

ration; the central Brans-Dicke field(r =0) and maximum ofy,, Time
are plotted. There is a sharp initial drop in the radial metric as the

star moves to the stable branch. The oscillations damp out in time FIG. 19' C_:c_)r_nparlsons of the_ total mass .Of the systdmes-
as the star settles. caled by its initial massv;,; during a migration process from a

U-branch star. Three lines are plotted. Although the mass loss is
similar in the three cases, the higher Brans-Dicke case clearly is

. . . s ... closer to GR as it should be.
M>N,m are dispersive and radiate out to infinity. We will

see also these features in BD theory.

initial datum of this plot is the boson star of the central boson
field ® .= 0.35, which is the same value as the previous mi-

Our first dynamical example frotd-branch boson stars is gration case with an unperturbed mass of 0G25m. The
a migration process. As in GR, we have also seen migrationsystem is perturbed very slightly so that the perturbed initial
of these stars to the stable branch when we remove enoughass is 0.628, /m, which is less than 0.5% greater than its
scalar field smoothly from some region of the star so as tenitial mass. This is less than the maximum mass of a boson
decrease the mass by about 10%. In particular, we show th&tar of 0.63%5, /m in the sequence abgp=600. The sud-
migration of a star of the central boson fielgt=0.35 with  den collapse of the lapse function is indicative of the immi-
unperturbed mass 0.625 /m. After perturbation, its mass nent formation of an apparent horizon due to the polar-
is reduced to 0.588, /m. In Fig. 9, we show the maximum slicing condition in our codd26]. In addition to this the
value of metricg,, and central value of the BD fielg(r  radial metric starts to blow up and the code is no longer
=0) versus time. The initial sharp drops in both lines occurcapable of dealing with the sharp gradients and crashes. As
as the star rapidly expands and moves to the stable branchn indicator of the suddenness of the process, we see that in
After that it oscillates and finds a new configuration to settlethe configuration shown the lapse has fallen to a value of
into. The damping of oscillations as it settles is clearly seerbout 0.003 by a time of 60 after being at 0.230 at a time of
in the figure. We see also the BD field oscillations dampings5 and 0.5 at a time of 5Qthe latter two points are not
out as the star gets closer and closer to its final state.

The ratio of mass at time to the initial mass for BD
theory with parametemwgp=60, 600 and the GR case is
shown in Fig. 10. The flattening of the curve at later time is
indicative of the star settling down to a new configuration.
Although convergence towards GR with increasing is
clearly indicated, there is no significant difference between
the three cases. The amount of the total mass extraction from
the system is slightly suppressed if we evolve in BD theory.
By the time of 7500 shown in the plot, we see that the mass
of the star is about 0.04&, /m, which corresponds to an
equilibrium configuration withd.=0.06, while our central
density®. is about 0.061, meaning that the star is quite close
to its final configuration.

A. Migration to a stable configuration

B. Transition to black hole 00 10

Contrary to the previous example, if we add a small mass r

to U-branch stars, we can see the formation of a black hole FIG. 11. Dynamical transition from i-branch star to a black
in its evolution. In Fig. 11, we plotted an example of suchhole. The metrigy, is plotted. The collapse of the lapse function is
evolution, which indicates the formation of a black hole. Theindicative of imminent black hole formation.
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FIG. 12. Dynamical transition from an excited state to a ground 100 , ,
state boson star configuration. The metjg is plotted. The initial 0 20 40 60
four peaks indicative of a three-node star cascades to the ground r
state after a long time evolution. FIG. 13. Dynamical transition from an excited state to a ground
state boson star configuration. The metgi¢ is plotted at later
times to show its oscillations after the star reaches a ground state.

shown in the plot The lapse value at the edge of the grid is

greater than 1 because it has been scaled by the underlying
frequency of the systerf. the star from a time of 27 300 to 28 400 in Fig. 13. The 95%

There is almost no loss in mass in this system and th&ass radius at this stage is about 100 and the star has still to
time of collapse is quite similar to GR. In the GR case, wecontinue its evolution for a while longer. The amount of
confirmed the formation of a black ho[@9] very shortly =~ mass loss in this process is quite similar to the migration case
after this point &3M whereM is the mass of the systerny  (cf. Fig. 10. We also found that the difference of the theory

switching this data into a three-dimensional code and evolvis little.

ing the system. Therefore we expect almost the same behav- Any configuration of an excited state star with a mass less
ior in the BD case. than the maximum mass of a ground state star is expected to

Note that we have seen this behavior for denser bosof0 to the ground state. However, since higher excited state
stars with lower masses and the same order of perturbatio®-branch configurations have progressively greater masses
This is true as long as they hadk<Nm. for the same central density (mass of nodes>n—1>---

Black hole formation in BD theory is investigated by >1>ground state boson stars), the configurations with
Scheel, Shapiro, and Teukolsky for the dust collapse caseasses less than the maximum ground state mass get more
[23]. They found that the dynamical behavior of horizonsand more dilute. We have seen the tendency of these stars to
(both event horizon and apparent horigés quite different ~migrate to the ground state in our tests.[19], such cases
in the physical Brans-Dicke frame, but the same as GR in thBave been described for the GR case. Since these dilute con-
Einstein frame. Their results therefore also support our disfigurations correspond to large stars with low oscillation fre-
cussion of the formation of black hole in BD theory. guencies, to evolve them until they go to the ground state is

We cannot show the emitted scalar waveform because waumerically very costly as they take a very long time to do
are using the polar-slicing condition and cannot proceed witl$0. Configurations with slightly larger masses may also be
the evolution after the collapse of the lapse. We are planningble to lose enough mass during their evolution and transit to
to evolve this system after the formation of a black hole in athe ground state. An exact parameter search though would be

three-dimensional code. The results will be reported in thevery time consuming. We have rather chosen to just exem-
plify the possibility of transitions with our example. We have

future.
taken a denser configuration to reduce the time scale of evo-

lutions and then perturbed it so much to ensure that no black
) , hole forms. In fact we can just think of the system as a

Excited states of boson stars in general are not stable iferyrhed distribution of bosonic fields that has three nodes
the GR case. They form black holes if they cannot 10S€;q which transits to the ground state rather than compare
enough mass to go to the ground state. We confirm the samge perturbed system to the original unperturbed one.
features for the BD case. In Fig. 12, we plot the megricof
the dynamical transition from an excited state with three VI. FORMATION OF BOSON STARS
nodes to a ground state boson star configuration. This star ' IN BRANS-DICKE THEORY

had an unperturbed mass of 3.2549/m, corresponding to a
central density®.=0.01. After perturbation its mass was In the previous sections, we analyzed boson stars in BD

reduced to 0.91G, /m. The initial configuration has four theory, starting with those equilibrium or perturbed equilib-
metric maxima and the final has one showing the transitionrium configurations. However, we have not discussed
After it goes to the ground state, it oscillates and compactiwhether or how such an equilibrium configuration actually
fies to form a new configuration. We show the oscillations offorms in BD theory. In this section, we answer this question

C. Transition to the ground state from the excited state
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FIG. 15. An example of the formation of a boson star in Brans-
FIG. 14. An example of the formation of a boson star in Brans-Dicke theory. The dynamical behavior of the Brans-Dicke scalar

Dicke theory. Snapshots afgp(r) are plotted for the initial stage field ¢gp(x=0) is plotted for three evolution regions: earlier time,
of evolution. middle time, and later time. We can see the field settling down to an
equilibrium configuratior(periodic oscillation.

by demonstrating the formation of boson stars in BD theory.

The formation of boson stars in GR has been discussed byat the mass at this stage is 0.3&bnsistent with the

Seidel and Suef80. o above we expect that the final mass will be between 0.355
We start our evolution with the initial data that have agnd 0.384.

local accumulation of the matter field: curve in Fig. 16 within the same periods as in Fig. 15. In the
early stage, we see that one pulse is emitted from the system.
®=a exp(—bx*), (6.1 This is related to the outgoing pulse from our initial boson
field setting. After this initial pulse the system slowly takes
n the characteristier oscillation of | W|? of the star as the
tar begins forming. After that, we see tthabegins damped
oscillations versus. (We cut out the initial large amplitude

wherea andb are free parameters. We set the BD fieltb

be flat at the initial stage, so as to see if local inhomogeneit
of the matter will form a boson star in BD theory. We inte-
grate the lapse equatiaf2.36) and Hamiltonian constraint L a \ N
equation (2.38 to provide metric functions on the initial luminosity aroundt=200) The system's evolution is fol-

slice. We then evolve the set of dynamical equati@h32— Ipwe_d for_ a long time: however_, the_ accuracy .Of the _cqlcula-
(2.35. tion is quite good with the Hamiltonian constraint satisfied to

7
We find that, with the particular parametersandb, this order 10°" or better. . .
We also note that certain parametarandb (mentioned

system actually forms a stable, equilibrium configuration, L ; L . .
which might be recognized as the formation of a boson sta! the beginning of this sectipmvill result in the formation

As a demonstration, we show here an evolution with param-
etersa=0.1 andb=0.025. The BD parametesg, is taken 1.80 preprry . . . . T
to be 600. In Fig. 14, we show the BD fieldas a function 11
of radial coordinates at various earlier times of evolution.
We see that the BD field becomes negative quickly and be- 4!
gins oscillating around a particular value. Actually the reader
will find that the BD field¢ is jumping around =40-50 at
t=>50. The long time evolution of the BD field is shown in
Fig. 15, in which we show the BD scalar fielgsy at the
center for earlier times, middle times, and later times. We /ﬂ‘

dM /de

0.50

can see the field settling down to a periodic oscillation in the
final phase, like in the migration and transition cases in the o
previous section. The initial mass of this configuration in
units of G, is 0.39 and the finafat the end of our simula- time

tion) about 0.384. At this stage the magnitude of the central rig. 16 Similar to Fig. 15, the emitted luminosity =

boson field is oscillating between 0.032 and 0.048. The BD_ gm/dt is plotted. In the first evolution stage, the luminosity data
field oscillates between—0.00126 and—0.00166. This take on the underlying boson field square oscillation, after having
range of boson oscillations corresponds to masses betweeitted one scalar pulse, related to the initial field configuration:
0.342 and 0.410, respectively, while the BD field oscillationsGaussian pulse. The amount of mass loss decreases in time as the
give a mass between 0.355 and 0.405, respectively. Givefarmed star settles.

0 100 200 5000 6000 7000 12000 13000 14000
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but others will not. If we choose a large amplitudeand  cate to us that the scalar modes of gravity in the boson star
small b, then the initial configuration has too large a masssystem are already dominated by the boson scalar field; thus
and is not dispersive enough, resulting in black hole formaan additional gravitational scalar field does not change the
tion during evolution. In the opposite limit, if we have a very dynamical behavior in the BD theory of gravity.

narrow localized wave packet, it has a tendency to be disper- We also demonstrated the formation of a boson star from
sive, since it has more momentum from the classical anaa Gaussian packet of a bosonic field and flat BD field. This
logue of the uncertainty principle. So, lif is too large, no  success suggests to us that the boson star is a realizable ob-
boson star forms. Intermediate between these two are colect even in BD theory, and opens windows to study them in
figurations that form stable stars. For examplega#0.1, b astrophysical roles including similar nontopological solitonic
=0.01, a black hole is formedy=0.025 results in boson objects.

star formation as we have shown, and 0.035 becomes flat By showing that théJ branch of ground state equilibrium
space at the end of the evolution. On the other handbfor is unstable, we have confirmed the stability discussions by

=0.01 anda=0.05 a boson star forms. Comer and Shinkdi19] for the BD ground state using ca-
tastrophe theory. Our next problem is to check their predic-
VII. CONCLUDING REMARKS tion in scalar-tensor theory, especially the Damour-

_ ) ) Nordtvedt attractor mod¢R0], with which they predict that
We studied the dynamical features of boson stars in thggson stars in the early universe will not be formed. We are
Jordan-Brans-DickéBD) theory of gravity. By evolving the 550 now studying the existence of “oscillation§31], self-
system numerically, we discussed the stability of thoseyravitating solitonic objects made from a real scalar field, in

ground states-branch equilibrium configurations, black hole scalar-tensor theory. These results will be reported else-
formation, and migration from &l-branch solution, and tran- \yhere.

sition processes from excited state to ground state, together
with those scalar wave emissiofmass loss from the sys-
tem).

We showed that the basic features are the same as the
general relativity(GR) caseq10]. Since we choose the BD We thank Ed Seidel and Wai-Mo Suen for letting us
parametefwgp= 600 for most simulations, as we are inter- modify their general relativity boson star cof to scalar-
ested in those observationable differences with GR, the sigensor gravity. We also thank Greg Comer and Clifford Will
natures of boson stars such as the oscillation frequency of tHer useful conversations. We again appreciate Wai-Mo Suen
final S-branch configurations and the emitted waves’ lumi-and Greg Comer for useful comments on our drafts. This
nosity are quite identical with GR. The scalar wave emis-work was partially supported by Grant Nos. NSF PHYS 96-
sions are slightly suppressed than in GR. These results ind30507, 96-00049, and NASA NCCS 5-153.
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