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Dynamical evolution of boson stars in Brans-Dicke theory
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We study the dynamics of a self-gravitating scalar field solitonic object~boson star! in the Jordan-Brans-
Dicke ~BD! theory of gravity. We show dynamical processes of this system such as~i! black hole formation of
a perturbed equilibrium configuration on an unstable branch,~ii ! migration of a perturbed equilibrium configu-
ration from an unstable branch to a stable branch, and~iii ! the transition from an excited state to a ground state.
We find that the dynamical behavior of boson stars in BD theory is quite similar to that in general relativity
~GR!, with comparable scalar wave emission. We also demonstrate the formation of a stable boson star from
a Gaussian scalar field packet with flat gravitational scalar field initial data. This suggests that boson stars can
be formed in the BD theory in much the same way as in GR.@S0556-2821~98!00916-3#

PACS number~s!: 04.40.Dg, 04.50.1h
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I. INTRODUCTION

Gravitational solitonic objects are quite an interesti
topic in general relativity~GR!. A boson star consists of
massive complex scalar field, and was first discussed
Kaup @1# and then by Ruffini and Bonazzola@2# ~for a thor-
ough review, see@3,4#!. They can form stable configuration
having negative binding energy, as a result of a balanc
the dispersion due to the classical analogue of the uncerta
principle and the attractive effects of gravity. If we includ
even a small self-interaction term, then their maximum
lowed stable mass can be close to the order of a solar m
@5#. It is also speculated that they are a form of dark ma
that could have been created during a phase transition in
early universe~see Friemanet al. @6#!. Although we still
have no evidence for their astrophysical existence, these
tems are a good model from which to learn the nature o
strong gravitational field.

The stability of boson stars has also been studied by
eral authors. Lee and Pang@7# discussed ground state stab
ity using linearized perturbation theory, and Seidel and S
@8# studied their dynamical behavior by evolving field equ
tions numerically. In GR, the ground state boson star c
figurations are comprised of a stable branch and an unst
branch. Upon perturbations, boson stars on the stable br
remain on the stable branch, settling down into a configu
tion with a different mass. In the process, it emits sca
radiation with some characteristic normal mode frequenc
On the other hand, stars on the unstable branch do no
main there after perturbations. They either disperse c
pletely, form black holes, or migrate to the stable bran
depending on the size of the perturbations. These qualita
features are also discussed applying catastrophe theory@9#.
Recently, Balakrishna, Seidel, and Suen@10# studied dy-
namical boson stars with the self-coupling term and exc
states. They found that excited state boson star equilibr
configurations have branches similar to that of the grou
state, but all branches are unstable.

*Email: bala@wurel.wustl.edu
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In this paper, we study the dynamical behavior of bos
stars in the Jordan-Brans-Dicke~BD! theory of gravity@11#.
In particular, we compare the dynamics with those in G
The BD theory is one of the alternative theories of gravity
GR, and the most simple and prototype in all the sca
tensor theories of gravity~see Will @12# for a review!. The
previous experimental test using the delay of radar echo
the solar system shows the bound of the BD paramete
vBD.500 @13,14#, of which the infinite limit agrees with
GR. This bound is also considered to be limited by the dir
observations of gravitational waves~see@15# and references
therein!. ~Recently, more strict limitations of the BD param
eter vBD are reported@16#: however, the results are mode
dependent and we thinkvBD.500 is still the generally ac-
cepted observational limit.!

So far, boson stars in scalar-tensor gravity have also b
discussed by Gundersen and Jensen@17# and Torres@18#
who showed the existence of equilibrium ground state bo
star solutions in the BD coupling and in the three differe
couplings in the scalar-tensor theories, respectively. Co
and Shinkai@19# showed the existence of excited state bos
stars in both BD and the Damour-Nordtvedt quadratic c
pling ~attractor! model @20# in the scalar-tensor theories
They also discussed the stabilities of ground state boson
using catastrophe theory. One of our purposes of this pap
to study the stability of boson stars in BD theory. By evol
ing the field equations numerically for slightly or heavi
perturbed equilibrium data, we clarify the stability of boso
stars both for ground and excited states.

Our system includes two scalar fields: the bosonic ma
~complex and massive! scalar field and the gravitational~real
and massless! scalar field~which hereafter we call the BD
field!. We expect to be able to study the fundamental mec
nism of the interactions between these two fields in th
dynamics. Several previous simulations have shown em
sions of scalar waves in BD@21–23# or scalar-tensor theory
@24,25# from a collapse of the dust or star model. Our seco
interest is in how much difference appears in the sca
gravitational wave emissions during the dynamical bos
star system between BD theory and GR: whether they will
enhanced or suppressed.

Throughout this paper, we stand at the point to see if th
© 1998 The American Physical Society16-1



e

ill
er
ar

la

c

ur
fo

n
ta
ra
es

tio
x-
int
av
e
in
r
o

.
he
ew
te
u
t

W
ite

D
io
T
or
D
e

ns
th

y o

le
a

ve,
by

n-

een
iver

it
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in any way differ from boson stars in a detectable mann
that is, we imposevBD.500 in most simulations.

The outline of this paper is as follows. In Sec. II, we w
introduce the field equations and basic outline of our num
cal techniques. With a view to study this problem in scal
tensor theories in the near future@32#, we describe funda-
mental equations not only in BD theory but in general sca
tensor theories.

We describe the equilibrium configuration briefly in Se
III. We plot the sequences of excited state configurations
BD theory and also discuss fractional anisotropy meas
ments in this system, both of which have not appeared be
in the references.

Section IV is devoted to stable boson star configuratio
In GR, under the effects of finite perturbations, these s
react by expanding and contracting with emitting scalar
diation at each expansion@8#. The star loses mass and settl
to a lower mass configuration. Each expansion~contraction!
of the core of the star is accompanied by the contrac
~expansion! of the radial metric. We study whether the e
pansions and contractions of the star set the BD field
oscillations and whether this results in any measurable gr
tational radiation in addition to the scalar radiation. Und
infinitesimal perturbations, boson stars in GR start oscillat
at their fundamental quasinormal mode frequencies that
main constant and virtually undamped for large periods
time. We also study whether this is seen in BD theory.

Section V shows the behavior of unstable boson stars
GR, equilibrium boson stars on the unstable branch, w
perturbed, begin forming black holes or migrating to a n
equilibrium configuration on the stable branch. The exci
state configurations of boson stars are expected to be
stable. If they cannot lose enough mass and settle to
ground state configuration, they collapse to black holes.
also show the cascading of a BD boson star in an exc
state to the ground state.

In Sec. VI, we look at the formation of boson stars in B
theory. The collection of bosonic matter localized in a reg
of space is represented by a Gaussian initial boson field.
BD field itself is initially set to zero: we discuss whether
how an equilibrium configuration actually forms in B
theory. Finally, in Sec. VII we make some concluding r
marks.

We use the unitsc51 and \51. This implies that the
scalar field massm is an inverse length~actually, the inverse
Compton wavelength of the scalar particles! and the bare
gravitational constantG* has units of length squared.

II. FIELD EQUATIONS

In this section, we present our basic field equatio
boundary conditions, and numerical techniques to solve
system. For our future convenience@32#, we show the field
equations not only in the Brans-Dicke theory of gravity (v
5vBD5const), but also in the general scalar-tensor theor
gravity @v5v(f)#.

A. Lagrangians and field equations

The action for our system of scalar-tensor gravity coup
to a self-interacting, complex scalar field in the physic
‘‘Jordan frame’’ is
04401
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SJ5
1

16p E d4xA2g̃@fR̃2f21v~f!g̃mn]mf]nf#

2E d4xA2g̃F1

2
g̃mn]mc†]nc1V~c†c!G . ~2.1!

The gravitational scalar isf and v~f! is the Jordan-frame
coupling off to the matter. The complex scalarc ~with its
complex conjugate beingc†! has massm and is self-
interacting through the potential

V~c†c!5
m2

2
c†c1

L

4
~c†c!2. ~2.2!

The strength of the self-interaction,L, is normally taken to
be positive.

There is an alternative representation of the action abo
the so-called ‘‘Einstein frame.’’ The expression is given
the conformal transformation

g̃mn5e2a~w!gmn , ~2.3!

wherea(w) is the functional transformation fromf to the
Einstein-frame gravitational scalarw,

f215G* e2a~w!, ~2.4!

whereG* is the effective gravitational constant in the Ei
stein frame. The relationship betweenv~f! anda(w) is ob-
tained from

a25~2v13!21, ~2.5!

where

a~w![
]a

]w
. ~2.6!

The action in the Einstein frame is thus

SE5
1

16pG*
E d4xA2g@R22gmn]mw]nw#

2E d4xA2gF1

2
e2a~w!gmn]mc†]nc1e4a~w!V~c†c!G .

~2.7!

It does not deliver GR exactly because the metricgmn is not
the true physical metric that encodes the distance betw
spacetime points. However, the Einstein frame does del
equations that are similar enough to GR that we will use
for our calculations.

The Einstein-frame stress-energy tensor is

Tmn5
1

2
e2a~w!~]mc†]nc1]nc†]mc!

2
1

2
e2a~w!@]tc

†]tc12e2a~w!V~c†c!#gmn .

~2.8!
6-2
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DYNAMICAL EVOLUTION OF BOSON STARS IN . . . PHYSICAL REVIEW D 58 044016
The gravitational field equations forgmn andw are

Gmn58pG* Tmn12]mw]nw2]tw]twgmn ~2.9!

and

¹s¹sw524paT, ~2.10!

whereT is the trace of the stress-energy tensor. The ma
field equations are

¹s¹sc†12a]tc
†]tw52e2a~w!

]V

]c
, ~2.11!

¹s¹sc12a]tc]tw52e2a~w!
]V

]c† .

~2.12!

The coupling functiona(w) is given by choosing a theor
of gravity. In this paper, we only consider the Brans-Dic
coupling

a~w!5
w2w`

A2vBD13
, ~2.13!

where the parameterv5vBD is constant, which observa
tional constraint is known asvBD.500@13,14#. The termw`

represents the asymptotic value of the gravitational sc
field.

Because the potentialV(c†c) is a functional ofc†c, it
preserves the global U~1! gauge symmetry (c→eisc, where
s is a constant! present in the theory. This symmetry resu
in a conserved current, whose explicit form in the Jord
frame is

J̃m5
i

2
e22a~w!gmn~c]nc†2c†]nc!. ~2.14!

This conserved current leads to a conserved charge, whi
Np , the number of particles making up the star:

Np5E d3xA2gJ̃t. ~2.15!

The spacetime considered here is spherically symme
with the Einstein-frame metric taking the form

ds252N2~ t,r !dt21g2~ t,r !dr 21r 2@du21sin2 udf2#,
~2.16!

where N is the lapse function andr is the circumferential
radius. We dropped the shift vector, since we use a po
slicing condition@26# in evolution.

In this coordinate system, the Jordan-frame Arnow
Deser-Misner~ADM ! massMJ is given by

G* MJ5 lim
r→`

r

2
~121/g̃rr !. ~2.17!

The similar Einstein-frame ADM massME is
04401
er

ar

n
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r-

-

G* ME5 lim
r→`

r

2
~121/grr !. ~2.18!

However, sinceg̃rr 5e2a(w)grr and we seta(w`)50 ~to be
discussed below!, then the limits on the right-hand sides a
equal and thereforeMJ5ME[M .

B. Equilibrium state equations

The gravitational scalar, which is real, is assumed also
be spherically symmetric and static when we solve the eq
librium configuration:

w5w~r !. ~2.19!

As for the matter scalar field, Friedberget al. @27# show that
the minimum energy configurations are those for which

c5e2 iVtF~r !, ~2.20!

whereV is real and positive andF(r ) is real function. Their
proof ~see the Appendix in@27#! also goes through for scalar
tensor gravity, and so we will takec to have this form.

We will take advantage of the scale invariance of the fi
equations to redefine some of the fields, parameters, and
radial and time coordinates:

mr→r , A4pG* F→F, mN/V→N,

L/4pG* m2→L, Vt/m→t. ~2.21!

Note that the rescaling changes the asymptotic value ofN,
which is now

lim
r→`

N~x!5m/V. ~2.22!

The field equations, then, become

] r] rw5F2
g211

r
12e4arg2V~F!G] rw

1g2H 2ae2aF1

2
¹sF¹sF12e2aV~F!G J ,

~2.23!

] r] rF5F2
g211

r
12e4arg2V~F!G] rF

2
g2

N2 F12g2Fe2a
dV~F!

dF
2a¹sF¹sw G ,

~2.24!

] r~g2!5g2S g2r

N2 T002
g221

r D , ~2.25!

] r~N2!5N2S rT111
g221

r D , ~2.26!

where
6-3
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T005
N2

g2 ~] rw!21e2aFF21
N2

g2 ~] rF!212N2e2aV~F!G ,
~2.27!

T115~] rw!21e2aF ~] rF!21
g2

N2 F222g2e2aV~F!G .
~2.28!

The boundary conditions for this system of equatio
must take into account three things:~i! the solutions must be
geometrically regular at the origin,~ii ! the solutions must
yield an asymptotically flat spacetime, and~iii ! the solutions
must take into account the cosmological input for both
couplinga(w) as well asw.

Geometrical regularity at the origin means there is
conical singularity; i.e., the proper radius divided by t
proper circumference should reduce to 2p at r 50. This im-
plies thatg(0)51. Also, to maintain regularity in the field
equations asr→0, we impose thatdF/drur 5050 and
dw/drur 5050.

For a purely technical reason to setMJ5ME , we desire
solutions that are asymptotically flat in both the Jordan a
Einstein frames. That is, we want bothg̃mn andgmn to reduce
to the flat spacetime metric at spatial infinity. The implic
tion of this is that the value ofw`[w(`) must be such tha
a(w`)50. This is guaranteed since there is one more res
ing that has no analogue in GR. That is an invariance of
field equations if an arbitrary constant is added to the sca
tensor coupling. If we simultaneously do the rescaling

ecx→x, ecF→F, ecN→N, ecL→L ~2.29!

on the variables defined by Eq.~2.21! and let a(w)1c
→a(w), then the field equations remain unchanged.

For the BD coupling,Fc[F(0) and w` are the only
freely specified field values. The value ofN(0) is not speci-
fied freely, but rather is determined so thatF(`)50. The
value of w at the origin is not specified freely; it must b
determined in such a way that the solution forw goes tow`

at spatial infinity. We will use the freedom to add an ar
trary constant to the BD couplinga(w) so that all the solu-
tions we consider havew`50.

C. Evolution equations

We here assume that the gravitational scalar field is t
dependent,w5w(t,r ), and use the rescaled bosonic fieldC
asC5A4pG* F. Analogous to Eqs.~3.6!–~3.10! in @8#, we
introduce scalar field momentaPw andPC :

Pw5
g

N
] t~rw![

1

b
] t~rw!, ~2.30!

PC5
g

N
] t~rC![

1

b
] t~rC!, ~2.31!

where we setb5N/g. The field equations become

] t~rw!5bPw , ~2.32!
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] tPw5~] rb!] r~rw!1b] r] r~rw!2~] rb!~rw!
1

r

2Ngr2ae2aF1

2
¹sC¹sC†12e2aV~CC†!G ,

~2.33!

] t~rC!5bPC , ~2.34!

] tPC5~] rb!] r~rC!1b] r] r~rC!2~] rb!~rC!
1

r

22NgrFe2a
dV~CC†!

dC† 2a¹sC¹swG . ~2.35!

Note that C and PC are complex variables, and so Eq
~2.34! and ~2.35! have two components. The momentu
constraint and theGrr component of the Einstein equation
become

] tg5NFPw] rw1e2a
1

2
~PC

† ] rC1PC] rC
†!G ,

~2.36!

] rN5
N

2r
~g221!1

Nr

2 S ~] rw!21Pw
2 1

r 2

1e2aF ~] rC!~] rC
†!1PCPC

† 1

r 2

22g2e2aV~CC†!G D . ~2.37!

We use the above set of equations~2.32!–~2.37! for
evolving the system and use the Hamiltonian constra
equation

2
] rg

gr
1

g221

r 2 5
Pw

2

r 2 1~] rw!2

1e2aFPCPC
†

r 2 1~] rC!~] rC
†!

12g2e2aV~CC†!G ~2.38!

to check the accuracy of our simulation.

D. Numerical techniques

1. Equilibrium configurations

We use a fourth-order Runge-Kutta algorithm to solve
differential equations~2.23!–~2.26!. In order to find an equi-
librium configuration, our system requires a two parame
search to find a solution that satisfies the boundary co
tions for bothF` andw` . Operationally, we choose a cen
tral value of the scalar fieldFc first together with a guesse
central value of the gravitational scalar fieldw~0!, and inte-
6-4
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DYNAMICAL EVOLUTION OF BOSON STARS IN . . . PHYSICAL REVIEW D 58 044016
grate out to large radii for different values ofN(0). Wethen
check if the resultingw` is close to our expected bounda
value.

The falling off behavior for the gravitational scalar fieldw
is much slower than the matter scalar fieldF. Therefore, at
the numerical boundary, say,r 5r end, we set the expected
boundary value forw(r end) asw(r end)5w`1C/r end, where
a constantC is given byC52r end

2 dw(r )/drur 5r end
. If the

computedw(r end) is not the expected value, then we chan
w~0! and repeat the whole procedure. We set the toleran
to judge convergence inw(r end) as 531027. More details
are in @19#.

2. Evolutions

We use the same code that was used in@8# for evolutions
with modifications to incorporate BD theory. A polar-slicin
condition@26# for the lapse is hard wired into the code. Th
slicing is highly singularity avoiding, and in the event of th
formation of an apparent horizon, the lapse rapidly collap
and the radial metric blows up, crashing the code, indica
imminent black hole formation. The lapse equation~2.37! is
integrated once on every time slice using a sixth-order in
gration scheme. The Hamiltonian constraint equation~2.38!
is monitored as an indicator of the accuracy of the simulat
and is not solved during the evolution. A leapfrog evoluti
scheme is used as described in@10#.

For the boundary conditions regularity dictates that
radial metric be equal to 1 at the origin. The boson field a
the BD field are both specified at the origin. The boson fi
goes to zero at̀ and the BD field goes to a constant whic
is fixed during the evolution. This constant does not en
into any of the evolution equations as all the terms in the
of equations are derivatives in the BD field.

The inner boundary at the origin requires that the deri
tives of all the metrics and fields vanish at this point. This
implemented by extending the range ofr to include negative
values. The metric componentsg, N, the boson field, and the
BD field are required to be symmetric aboutr 50. The code
itself uses new field variables which are the original fie
timesr for both the boson fields as well as the BD field a
the momentum variablesP described in the previous sectio
Thus the code field variables as well asPw and PC are
antisymmetric aboutr 50. The bosonic and BD fields at th
origin during the evolution are determined from the first d
rivatives of the code fields there. For the radial metric
value at the boundary is determined from the Hamilton
constraint equation~2.38!.

In order to prevent reflections from the edge of the g
we use anoutgoing wavecondition at the outer edge of th
grid ~far away from the star! for the matter fieldC and the
BD field w.

For the BD fieldw, we impose the condition that the wav
behave as

w~r ,t !5w`1
1

r
FS t2

r

cD , ~2.39!

which is a natural outgoing wave condition in spherically fl
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spacetime, and which is the proper assumption for
asymptotic region. Differentiating, one gets

1

c

]w

]t
1

]w

]r
1

~w2w`!

r U
outer edge

50. ~2.40!

Note that this is the same technique used by Novak@25#,
who studied a stellar collapse in scalar-tensor theory.

For the boson fieldC, an asymptotic solution of the form
e2kreiVt/r to order 1/r is assumed. This gives an outgoin
boundary condition to this order of

b2k25V22N2m2e2a. ~2.41!

This dispersion relation is nontrivial for a massive sca
field. There is no perfect algorithm to implement it. At th
outermost grid point we require that

] t] tC̃52b] t] rC̃2
N2

2
C̃e2a, ~2.42!

whereC̃5rC. The second term on the right is a finite ma
correction to leading order.

In addition to removing second-order reflections we su
stituted a sponge for the matter field~it reduces the momen
tum of the boson field artificially, and is irrelevant for th
massless BD field! which is a potential term that is large fo
incoming waves~proportional tok1V! and small for outgo-
ing waves~proportional tok2V!. Therefore, we add an ad
ditional term in the evolution equation forPC , Eq. ~2.35!,

V~CC†!

eaN
~PC1] rC̃!, ~2.43!

for r end2D<r<r end, wherer end is ther value of the outer-
most grid point andD is an adjustable parameter represe
ing the width of the sponge.D is typically chosen to be a few
times the wavelength of the scalar radiation moving out.

The code is tested with equilibrium configuration da
~the zero-perturbation case!. We confirm that the evolutions
leave the metric and BD fields perfectly static for seve
thousand time steps. We also checked the code by taki
large number of BD parametersvBD which would converge
to the results in GR.

III. EQUILIBRIUM SEQUENCES

Before starting the dynamical study of boson stars,
describe briefly the equilibrium solutions in BD theory.

The existence of ground state boson stars in BD theor
reported in@17# for the case ofvBD56. The masses of the
boson stars become smaller than the corresponding con
rations in GR. They also show the effects of the interact
termL. In @19#, the existence of higher node~excited! states
is reported. They find that if the observational limit onvBD is
admitted, then the obtained configurations are very simila
GR. They also describe the stability of the ground state c
figurations using catastrophe theory. However, the wh
discussion on the stability including the excited states is
6-5
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JAYASHREE BALAKRISHNA AND HISA-AKI SHINKAI PHYSICAL REVIEW D 58 044016
confirmed up to now. Also the dynamical behavior of th
system is totally unknown.

In Fig. 1, we show the sequences of equilibrium config
rations of boson stars in BD theory both for ground sta
and excited states up to three nodes. These sequence
given by solving the set of equations described in Sec. I
and we applied the BD parametervBD5600 for plotting this
figure. The total mass of the boson star,M , and its particle
numberNp ~in units of m! versus the central boson densi
Fc profile is plotted. We see that, in the ground and exci
state sequences, the signature of the binding energyM
2mNp goes from negative to positive according to the va
of Fc . Configurations with positive binding energy are e
pected to be dispersive.

In the case of GR, we know the star ground state confi
rations to the left of the central maximum arestable. By
‘‘stable,’’ we mean that under perturbations they move
new configurations on the same branch~left of the maxi-
mum!. We naturally suspect that the branch to the left of
maximum in the BD profile is also stable. Therefore, in th
and all further sections of this paper, we will refer to grou
state boson star configurations to the left of the maxim
mass in Fig. 1 as theS-branch configurations and others
U-branch configurations. From the catastrophe discus
@19#, we also suspect that theU-branch configurations ar
unstable.

The boson star system exhibits anisotropies due to
presence of scalar fields. Here, ‘‘anisotropy’’ means the
ference of the radial pressure from the tangential pressur
these configurations@ uTr

r uÞuTu
uu, where Tm

n is the energy-
momentum tensor defined as the right-hand side of
~2.9!#. In the case of a scalar-tensor theory this anisotro
could change from GR due to the presence of the additio
gravitational scalar field. In the case of BD theory, we fi
the anisotropy slightly but not significantly lower as com
pared to GR. In Fig. 2, we show the fractional anisotropy

FIG. 1. Stable configurations of a boson star in Brans-Dic
theory. Masses of the ground state and excited state stars up to
nodes are shown as functions of the central matter fieldFc . The
solid lines and the dotted lines are the massM /(G* /m) and the
particle numberNp /(G* /m2), respectively.
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r2Tu

u!/Tr
r ~3.1!

for a ground state boson star withFc50.2 for GR and BD
theory withvBD5600 and 60. In Fig. 3, we show the frac
tional anisotropy for three nodes’~third excited! states of
boson stars in BD theory,vBD5600, with differentFc . At
the nodes where the boson field derivative vanishes, all th
fractional anisotropies are close to 2, which is the anal
cally expected number. This is because we can write
equilibrium fractional anisotropy as

2@~] rw!21e2a~] rF!2#

~] rw!21e2a@ ~] rF!21 ~g2/N2!F222g2e2aV~F!#
.

~3.2!

At the nodes,F50, and as a result,V(F) also vanishes.
The plots end at the radius of the boson star~we define the

radius to be the 95% mass radius of these systems!. Consis-

e
ree

FIG. 2. Fractional anisotropy~3.1! is plotted for ground state
configurations of central boson densityFc50.2 for GR and BD
theory (vBD5600 and 60!. The inset is the magnification of th
ranger 57.0– 7.4.

FIG. 3. Fractional anisotropy~3.1! is plotted for three-node
~third excited! states in BD theory (vBD5600) with different cen-
tral boson densitiesFc50.05, 0.1, and 0.2. The plots end at th
radius of each star~95% of the total mass!.
6-6
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DYNAMICAL EVOLUTION OF BOSON STARS IN . . . PHYSICAL REVIEW D 58 044016
tent with Gleiser’s results in the GR case@28#, we have seen
that the fractional anisotropy at the radius of the stars
almost the same number for all configurations. One of
consequences of these anisotropies is that we cannot a
the adiabatic perturbation method to discuss the stability
this system, as discussed by Kaup@1#.

IV. STABILITY OF GROUND STATE
EQUILIBRIUM STATES

In order to confirm whether the stars on theS branch of
the ground state in Fig. 1 are stable, we show our simula
of the perturbed configurations of theS-branch stars in this
section.

Our perturbations themselves simulate the annihilat
~creation! of particles by enhancing~reducing! the boson
field smoothly in some region of the star. A typical pertu
bation is put in for a region of the star fromr 1 to r 2 and is of
the form

Fperturbed~r !5Foriginal~r !H 11p sinnS p
r 22r

r 22r 1
D J ,

~4.1!

wherep is the perturbation size and is positive for partic
creation and negative for annihilation, andn is an integer
that can be varied.

This perturbation is put in at the initial time step and t
lapse equation and Hamiltonian equation are reintegrate
give new metrics for this scalar field and original BD fiel
The momentum associated with the BD field is set to bezero
on the initial time slice.

A. Small perturbation of bosonic scalar field

After we confirmed that our code retains its equilibriu
profile for long time evolutions, we start our evolutions of
S-branch equilibrium state with a tiny perturbation. He
‘‘tiny’’ means that the difference of the mass between t
original and new configuration is less than 0.1%. We fi
that the system begins oscillating with a specific fundame
frequency, called a quasinormal mode~QNM! frequency.
Figure 4 shows the oscillations of the metric and the BD fi
for a boson star of central boson field densityFc50.2 and
with vBD5600. We see the BD field, as well as the met
function, start oscillating at the same frequency. A Four
transform of the metric and BD field data shows the ove
frequency of the star to be (2/p)0.03 in nondimensiona
units. This is quite close to the case in GR.

In GR, a QNM frequency increases asFc become larger
~radius becomes smaller! up to a point before starting to
decrease rapidly to zero as it approaches the density c
sponding to maximum mass, signalling the onset of insta
ity @8#. We found the same feature in BD theory.

In addition, the system takes on the proper underly
frequency, which originates from the time dependence of
boson fieldC;eit . This frequency corresponds to a 2p pe-
riod in t in our units, and appears in the metric and BD fie
oscillation with ap period, from the structure of the equa
tions. To show this feature we have enhanced the BD fi
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oscillation ~Fig. 4! in Fig. 5. The time interval between th
ticks on the horizontal axis isp.

B. Large perturbation of the bosonic scalar field

Under large perturbations, a stable boson star in GR
pands and contracts, losing its mass at each expansion.
oscillations damp out in time and the system finally sett
down into a new configuration on theS branch. These fea
tures are now observed in BD theory.

We show the effects of a large perturbation on a sta
BD boson star described above. The example we prese
the case of initial data with Fc50.2, mass M
50.540G* /m after perturbation~about 13% lower in mass
compared to an unperturbed equilibrium configuration
M50.622G* /m).

The maximum radial metricgrr and the central BD field
as a function of time are shown in Figs. 6 and 7, respectiv
In both figures, we plotted the case ofvBD5600,60 as well
as GR. The increase of the maximumgrr indicates that the
star is contracting, reaching its maximum value at the end
the contraction in a cycle. Then, as the star expands,
maximumgrr decreases, reaching its minimum at the end
the expansion. These processes repeat themselves wit
oscillations damping out in time as the star settles to a n
stable configuration with the maximum radial metric of
smaller value than it started with~lower mass!. The lower

FIG. 4. Quasinormal mode oscillation of a stable boson s
The maximum value of the metricgrr and the central Brans-Dicke
field w(r 50) are plotted as functions of time. Both of them take
the QNM frequency of the star. The oscillation is virtually u
damped for a long period of time.
6-7
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JAYASHREE BALAKRISHNA AND HISA-AKI SHINKAI PHYSICAL REVIEW D 58 044016
value of the BD parameter shows a phase shift in compar
to GR which might be suggestive of a different rate of a
proach to the final configuration. We see the same dynam
behavior in the BD field~Fig. 7!. It has the same oscillation
frequency as that of the metric. The oscillations damp ou
time and the BD field settles to a value closer to zero tha
started at~lower final mass!.

The system loses mass through radiation during its ev
tion. A comparison of the mass as a function of time for t
BD case (vBD5600 and 60! as well as GR shows little dif-
ference, indicating that the radiation is mostly scalar fi
radiation and not scalar gravitational radiation. This is d
spite the BD field oscillating in the BD case and being ze
in the GR case.

The amount of mass radiated progressively decrease
can be seen in the luminosity profile (2dM/dt versus time!
shown in Fig. 8. Here again a comparison between GR

FIG. 5. The magnification of the second figure of Fig. 4. T
time interval between the ticks on the horizontal axis isp. We see
that the Brans-Dicke field has the underlyingp oscillation that it
takes on.

FIG. 6. Finite perturbation of anS-branch boson star. The max
mum metricgrr is plotted. The metric is damped in time as the s
settles to a new configuration.
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the two BD parameters is shown. Again we see the ph
shift for the lower BD parameter~further from GR!. The
system finally settles to a new state of smaller mass.

We have also conducted tests with perturbations that
hance the mass. For stable branch stars as in the case o
@8# the star loses mass and settles to a new configuratio
the same branch.

V. EVOLUTION OF U-BRANCH STARS
AND EXCITED STARS

Boson stars on theU branch and excited states are inhe
ently unstable in GR@10#. Under perturbations that reduc
the mass, boson stars on theU branch can migrate to the
stable branch. In this section, we will see these feature
BD theory too. They can be perturbed in a way so as
decrease their mass enough that they migrate to new con
rations on theS branch. On the other hand, in GR, if they d
not lose mass and migrate, then the boson stars of con
rations with M,Npm collapse to black holes. Stars wit

r

FIG. 7. The same model as Fig. 6. The central Brans-Dicke fi
w(r 50) is plotted. We see that the oscillations damp out as the
settles, indicating again a transition to a new stable boson star
figuration.

FIG. 8. The same model as the previous figures. The ‘‘lumin
ity’’ L52dM/dt is plotted versus time. Clearly the radiation
decreasing in time.
6-8
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DYNAMICAL EVOLUTION OF BOSON STARS IN . . . PHYSICAL REVIEW D 58 044016
M.Npm are dispersive and radiate out to infinity. We w
see also these features in BD theory.

A. Migration to a stable configuration

Our first dynamical example fromU-branch boson stars i
a migration process. As in GR, we have also seen migrat
of these stars to the stable branch when we remove eno
scalar field smoothly from some region of the star so as
decrease the mass by about 10%. In particular, we show
migration of a star of the central boson fieldFc50.35 with
unperturbed mass 0.625G* /m. After perturbation, its mass
is reduced to 0.558G* /m. In Fig. 9, we show the maximum
value of metricgrr and central value of the BD fieldw(r
50) versus time. The initial sharp drops in both lines occ
as the star rapidly expands and moves to the stable bra
After that it oscillates and finds a new configuration to se
into. The damping of oscillations as it settles is clearly se
in the figure. We see also the BD field oscillations damp
out as the star gets closer and closer to its final state.

The ratio of mass at timet to the initial mass for BD
theory with parametervBD560, 600 and the GR case
shown in Fig. 10. The flattening of the curve at later time
indicative of the star settling down to a new configuratio
Although convergence towards GR with increasingvBD is
clearly indicated, there is no significant difference betwe
the three cases. The amount of the total mass extraction
the system is slightly suppressed if we evolve in BD theo
By the time of 7500 shown in the plot, we see that the m
of the star is about 0.045G* /m, which corresponds to an
equilibrium configuration withFc50.06, while our central
densityFc is about 0.061, meaning that the star is quite clo
to its final configuration.

B. Transition to black hole

Contrary to the previous example, if we add a small m
to U-branch stars, we can see the formation of a black h
in its evolution. In Fig. 11, we plotted an example of su
evolution, which indicates the formation of a black hole. T

FIG. 9. Migration of an unstable boson star to a stable confi
ration; the central Brans-Dicke fieldw(r 50) and maximum ofgrr

are plotted. There is a sharp initial drop in the radial metric as
star moves to the stable branch. The oscillations damp out in
as the star settles.
04401
ns
gh
o
he

r
ch.
e
n
g

.

n
m
.
s

e

s
le

initial datum of this plot is the boson star of the central bos
field Fc50.35, which is the same value as the previous m
gration case with an unperturbed mass of 0.625G* /m. The
system is perturbed very slightly so that the perturbed ini
mass is 0.628G* /m, which is less than 0.5% greater than
initial mass. This is less than the maximum mass of a bo
star of 0.632G* /m in the sequence ofvBD5600. The sud-
den collapse of the lapse function is indicative of the imm
nent formation of an apparent horizon due to the pol
slicing condition in our code@26#. In addition to this the
radial metric starts to blow up and the code is no long
capable of dealing with the sharp gradients and crashes
an indicator of the suddenness of the process, we see th
the configuration shown the lapse has fallen to a value
about 0.003 by a time of 60 after being at 0.230 at a time
55 and 0.5 at a time of 50~the latter two points are no

-

e
e FIG. 10. Comparisons of the total mass of the systemM res-
caled by its initial massM init during a migration process from
U-branch star. Three lines are plotted. Although the mass los
similar in the three cases, the higher Brans-Dicke case clear
closer to GR as it should be.

FIG. 11. Dynamical transition from aU-branch star to a black
hole. The metricg00 is plotted. The collapse of the lapse function
indicative of imminent black hole formation.
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JAYASHREE BALAKRISHNA AND HISA-AKI SHINKAI PHYSICAL REVIEW D 58 044016
shown in the plot!. The lapse value at the edge of the grid
greater than 1 because it has been scaled by the under
frequency of the systemV.

There is almost no loss in mass in this system and
time of collapse is quite similar to GR. In the GR case,
confirmed the formation of a black hole@29# very shortly
after this point ('3M whereM is the mass of the system! by
switching this data into a three-dimensional code and ev
ing the system. Therefore we expect almost the same be
ior in the BD case.

Note that we have seen this behavior for denser bo
stars with lower masses and the same order of perturba
This is true as long as they haveM,Nm.

Black hole formation in BD theory is investigated b
Scheel, Shapiro, and Teukolsky for the dust collapse c
@23#. They found that the dynamical behavior of horizo
~both event horizon and apparent horizon! is quite different
in the physical Brans-Dicke frame, but the same as GR in
Einstein frame. Their results therefore also support our
cussion of the formation of black hole in BD theory.

We cannot show the emitted scalar waveform because
are using the polar-slicing condition and cannot proceed w
the evolution after the collapse of the lapse. We are plann
to evolve this system after the formation of a black hole i
three-dimensional code. The results will be reported in
future.

C. Transition to the ground state from the excited state

Excited states of boson stars in general are not stabl
the GR case. They form black holes if they cannot lo
enough mass to go to the ground state. We confirm the s
features for the BD case. In Fig. 12, we plot the metricgrr of
the dynamical transition from an excited state with thr
nodes to a ground state boson star configuration. This
had an unperturbed mass of 3.249G* /m, corresponding to a
central densityFc50.01. After perturbation its mass wa
reduced to 0.919G* /m. The initial configuration has fou
metric maxima and the final has one showing the transit
After it goes to the ground state, it oscillates and compa
fies to form a new configuration. We show the oscillations

FIG. 12. Dynamical transition from an excited state to a grou
state boson star configuration. The metricgrr is plotted. The initial
four peaks indicative of a three-node star cascades to the gr
state after a long time evolution.
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the star from a time of 27 300 to 28 400 in Fig. 13. The 95
mass radius at this stage is about 100 and the star has s
continue its evolution for a while longer. The amount
mass loss in this process is quite similar to the migration c
~cf. Fig. 10!. We also found that the difference of the theo
is little.

Any configuration of an excited state star with a mass l
than the maximum mass of a ground state star is expecte
go to the ground state. However, since higher excited s
S-branch configurations have progressively greater ma
for the same central density (mass ofn nodes.n21.¯

.1.ground state boson stars), the configurations w
masses less than the maximum ground state mass get
and more dilute. We have seen the tendency of these sta
migrate to the ground state in our tests. In@10#, such cases
have been described for the GR case. Since these dilute
figurations correspond to large stars with low oscillation f
quencies, to evolve them until they go to the ground stat
numerically very costly as they take a very long time to
so. Configurations with slightly larger masses may also
able to lose enough mass during their evolution and trans
the ground state. An exact parameter search though woul
very time consuming. We have rather chosen to just exe
plify the possibility of transitions with our example. We hav
taken a denser configuration to reduce the time scale of e
lutions and then perturbed it so much to ensure that no b
hole forms. In fact we can just think of the system as
perturbed distribution of bosonic fields that has three no
and which transits to the ground state rather than comp
the perturbed system to the original unperturbed one.

VI. FORMATION OF BOSON STARS
IN BRANS-DICKE THEORY

In the previous sections, we analyzed boson stars in
theory, starting with those equilibrium or perturbed equili
rium configurations. However, we have not discuss
whether or how such an equilibrium configuration actua
forms in BD theory. In this section, we answer this quest

d

nd

FIG. 13. Dynamical transition from an excited state to a grou
state boson star configuration. The metricgrr is plotted at later
times to show its oscillations after the star reaches a ground st
6-10
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DYNAMICAL EVOLUTION OF BOSON STARS IN . . . PHYSICAL REVIEW D 58 044016
by demonstrating the formation of boson stars in BD theo
The formation of boson stars in GR has been discussed
Seidel and Suen@30#.

We start our evolution with the initial data that have
Gaussian packet in the bosonic fieldF, which represents a
local accumulation of the matter field:

F5a exp~2bx2!, ~6.1!

wherea andb are free parameters. We set the BD fieldw to
be flat at the initial stage, so as to see if local inhomogen
of the matter will form a boson star in BD theory. We int
grate the lapse equation~2.36! and Hamiltonian constrain
equation ~2.38! to provide metric functions on the initia
slice. We then evolve the set of dynamical equations~2.32!–
~2.35!.

We find that, with the particular parametersa andb, this
system actually forms a stable, equilibrium configuratio
which might be recognized as the formation of a boson s
As a demonstration, we show here an evolution with para
etersa50.1 andb50.025. The BD parametervBD is taken
to be 600. In Fig. 14, we show the BD fieldw as a function
of radial coordinates at various earlier times of evolutio
We see that the BD field becomes negative quickly and
gins oscillating around a particular value. Actually the rea
will find that the BD fieldw is jumping aroundr 540– 50 at
t550. The long time evolution of the BD field is shown
Fig. 15, in which we show the BD scalar fieldwBD at the
center for earlier times, middle times, and later times. W
can see the field settling down to a periodic oscillation in
final phase, like in the migration and transition cases in
previous section. The initial mass of this configuration
units of G* is 0.39 and the final~at the end of our simula
tion! about 0.384. At this stage the magnitude of the cen
boson field is oscillating between 0.032 and 0.048. The
field oscillates between20.00126 and20.00166. This
range of boson oscillations corresponds to masses betw
0.342 and 0.410, respectively, while the BD field oscillatio
give a mass between 0.355 and 0.405, respectively. G

FIG. 14. An example of the formation of a boson star in Bra
Dicke theory. Snapshots ofwBD(r ) are plotted for the initial stage
of evolution.
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that the mass at this stage is 0.384~consistent with the
above! we expect that the final mass will be between 0.3
and 0.384.

We show the luminosityL(52dM/dt) versus timet
curve in Fig. 16 within the same periods as in Fig. 15. In t
early stage, we see that one pulse is emitted from the sys
This is related to the outgoing pulse from our initial bos
field setting. After this initial pulse the system slowly tak
on the characteristicp oscillation of uCu2 of the star as the
star begins forming. After that, we see thatL begins damped
oscillations versust. ~We cut out the initial large amplitude
luminosity aroundt5200.! The system’s evolution is fol-
lowed for a long time: however, the accuracy of the calcu
tion is quite good with the Hamiltonian constraint satisfied
order 1027 or better.

We also note that certain parametersa andb ~mentioned
at the beginning of this section! will result in the formation

-

FIG. 15. An example of the formation of a boson star in Bran
Dicke theory. The dynamical behavior of the Brans-Dicke sca
field wBD(x50) is plotted for three evolution regions: earlier tim
middle time, and later time. We can see the field settling down to
equilibrium configuration~periodic oscillation!.

FIG. 16. Similar to Fig. 15, the emitted luminosityL5
2dM/dt is plotted. In the first evolution stage, the luminosity da
take on the underlying boson field square oscillation, after hav
emitted one scalar pulse, related to the initial field configurati
Gaussian pulse. The amount of mass loss decreases in time a
formed star settles.
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but others will not. If we choose a large amplitudea and
small b, then the initial configuration has too large a ma
and is not dispersive enough, resulting in black hole form
tion during evolution. In the opposite limit, if we have a ve
narrow localized wave packet, it has a tendency to be dis
sive, since it has more momentum from the classical a
logue of the uncertainty principle. So, ifb is too large, no
boson star forms. Intermediate between these two are
figurations that form stable stars. For example, ifa50.1, b
50.01, a black hole is formed;b50.025 results in boson
star formation as we have shown, andb50.035 becomes fla
space at the end of the evolution. On the other hand, fob
50.01 anda50.05 a boson star forms.

VII. CONCLUDING REMARKS

We studied the dynamical features of boson stars in
Jordan-Brans-Dicke~BD! theory of gravity. By evolving the
system numerically, we discussed the stability of tho
ground stateS-branch equilibrium configurations, black ho
formation, and migration from aU-branch solution, and tran
sition processes from excited state to ground state, toge
with those scalar wave emissions~mass loss from the sys
tem!.

We showed that the basic features are the same as
general relativity~GR! cases@10#. Since we choose the BD
parametervBD5600 for most simulations, as we are inte
ested in those observationable differences with GR, the
natures of boson stars such as the oscillation frequency o
final S-branch configurations and the emitted waves’ lum
nosity are quite identical with GR. The scalar wave em
sions are slightly suppressed than in GR. These results
et
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cate to us that the scalar modes of gravity in the boson
system are already dominated by the boson scalar field;
an additional gravitational scalar field does not change
dynamical behavior in the BD theory of gravity.

We also demonstrated the formation of a boson star fr
a Gaussian packet of a bosonic field and flat BD field. T
success suggests to us that the boson star is a realizabl
ject even in BD theory, and opens windows to study them
astrophysical roles including similar nontopological soliton
objects.

By showing that theU branch of ground state equilibrium
is unstable, we have confirmed the stability discussions
Comer and Shinkai@19# for the BD ground state using ca
tastrophe theory. Our next problem is to check their pred
tion in scalar-tensor theory, especially the Damo
Nordtvedt attractor model@20#, with which they predict that
boson stars in the early universe will not be formed. We
also now studying the existence of ‘‘oscillations’’@31#, self-
gravitating solitonic objects made from a real scalar field,
scalar-tensor theory. These results will be reported e
where.
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