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Microfield dynamics of black holes

R. Casadio* and B. Harms
Department of Physics and Astronomy, The University of Alabama, Tuscaloosa, Alabama 35487-0324

~Received 12 December 1997; published 22 July 1998!

The microcanonical treatment of black holes as opposed to the canonical formulation is reviewed and some
major differences are displayed. We propose a microcanonical alternative to the thermodynamical expression
for the number density and discuss its characteristics. In particular the decay rates are compared in the two
different pictures and shown to predict significantly different fates for cosmological black holes.
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I. INTRODUCTION

In spite of its many mathematical and physical incons
tencies and drawbacks, the treatment of black holes as
modynamical systems has since its inception been the
scription preferred by most physicists investigating t
nature of black holes. Not least among the drawbacks is
fact that the laws of quantum mechanics are violated,
cause the number density function of the emitted radiation
calculated using a thermal vacuum is characteristic of mi
states, while the incoming radiation may have been in p
states. Since black holes can in principle radiate away c
pletely, the unitarity principle is violated.

In a series of papers@1–11# we have investigated an a
ternative description of black holes which is free of the pro
lems encountered in the thermodynamical approach. In
approach black holes are considered to be extended qua
objects (p-branes!. This point of view has recently been fu
ther supported by investigations in fundamental strings@12#,
where one finds that extended D-branes are a basic ing
ent of the theory@13# and lead to black-hole-type solution
for which the area of the horizon is proved to measure
quantum degeneracy@14#. In the present work we consider
gas of p-brane black holes and show that the equilibriu
configuration is decidedly non-thermal. We also define a n
vacuum, the microcanonical or fixed-energy vacuum, a
obtain within the context of mean field theory the wave fun
tions for the radiation associated with such objects. Using
number density function for our vacuum, we calculate
black hole decay rate and compare it with that obtained fr
the thermodynamical description~see also@15,16# for an al-
ternative derivation!.

In Sec. II we present a brief summary of the thermod
namical description of processes involving black holes a
discuss in detail the inconsistencies mentioned above. In
III we discuss our interpretation of the WKB approximatio
as the quantum tunneling probability and review our res
for the statistical mechanics of a gas of black holes. In S
IV we discuss the thermodynamical interpretation of bla
holes within the context of mean field theory and prove t
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the thermal vacuum is the false vacuum for a black h
system. We also present an alternative vacuum for suc
system and the microcanonical number density which co
sponds to this vacuum. In Sec. V we present the micro
nonical wave functions for the in and out states and in S
VI we derive the black hole decay rate.

We use units withc5G5\5kB51 unless differently
stated.

II. THERMODYNAMICAL INTERPRETATION
OF BLACK HOLES

Bekenstein’s original observation@17# that the area of a
black hole is in some way analogous to the thermodynam
concept of entropy was enlarged upon in Ref.@18# where the
four laws of black hole thermodynamics were hypothesiz
The mass difference of neighboring equilibrium states w
shown to be related to the change in the black hole areA
according to the relation~Smarr formula!

DM5kDA1ÃDJ1FDQ, ~2.1!

wherek is the surface gravity and is related to the tempe
ture by

T5bH
215

k

2p
. ~2.2!

J is the angular momentum of the black hole,Q its charge
andÃ, F play the role of potentials.

The partition function for the black hole is assumed to
determined as

Z~b!5Tr e2bH5e2SH. ~2.3!

The functionSH is the Hawking entropy which is given by

SH5SE2bHÃJ, ~2.4!

whereSE is the Euclidean action. The Hawking entropy
also related to the area of the black hole by

SH5
A

4
. ~2.5!

Finally, in thermodynamical equilibrium the statistical m
chanical density of states is given by
© 1998 The American Physical Society14-1
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V5Z21~b!5eSH, ~2.6!

and the specific heat is

CV5
]E

]T
52

b2

8p
. ~2.7!

The fact that the canonical specific heat, an intrinsically po
tive quantity, is negative in this interpretation is a clear s
nal that the thermodynamical analogy fails.

The thermodynamical interpretation of black holes h
many such inconsistencies. A second problem can be
shown if we specialize the previous expressions, for insta
to the Schwarzschild black hole. It turns out that

SH5SE . ~2.8!

Further, since the radius of the horizon in this case is 2M ,
one has

SH54pM2 ~2.9!

and

bH58pM . ~2.10!

It then follows that the partition function as calculated fro
the microcanonical density of states,

Z~b!5E
0

`

dMV~M !e2bM5E
0

`

dMe4pM2
e2bM→`,

~2.11!

is infinite for all temperatures and hence the canonical
semble is not equivalent to the~more fundamental! microca-
nonical ensemble

Z~b!Þ
1

V
, ~2.12!

as is required for thermodynamical equilibrium@19# ~see also
Sec. IV A for a more general analysis!.

Furthermore, if quantum mechanical effects are taken
account, black holes can be shown to radiate@20,21#. In the
thermodynamical approach the future-evolvedin vacuum be-
comes temperature dependent~see Sec. V!, and the radiation
coming out of the black hole has a Planckian distribution

nbH
~v!5

1

ebHv21
. ~2.13!

Since black holes can in principle radiate away complete
this result implies that information can be lost, because p
states can come into the black hole but only mixed sta
come out. The breakdown of the unitarity principle is one
the most serious drawbacks of the thermodynamical inter
tation, since it requires the replacement of quantum mech
ics with some new~unspecified! physics.
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III. BLACK HOLES AS p-BRANES

The inconsistencies of the thermodynamical interpretat
are an indication that the interpretation ofe2SH as the ca-
nonical partition function is wrong. In the usual WKB ap
proximatione2SE is the tunneling probability per unit vol
ume for a particle to tunnel through a potential. In t
present case we hypothesize that the probability to tun
through the black hole’s horizon is given by

P.e2SH, ~3.1!

for any kind of black hole. The quantum degeneracy of sta
for the system is proportional toP21 and is then given by

s.ceA/4, ~3.2!

where the constantc is determined from quantum field theo
retic corrections and can contain non-local effects. Rece
an analogous and maybe deeper understanding of Eq.~3.2!
has been obtained in string theory, where black hole so
tions appear to be related to D-branes@12,13# and the rela-
tionship between area and entropy is recovered at least in
very special cases of tiny, extremal black holes@14# ~the
generalization to bigger, non-extremal black holes might j
be a technical problem@22# or it might be a more substantia
one @23#!.

Explicit expressions can be obtained for the above qu
tities for some geometries.

A. D-dimensional Schwarzschild black hole

As a first example we can consider the Schwarzsch
black hole, which inD dimensions has the Euclidean metr

ds25e2ldt21e22ldr21r 2dVD22
2 , ~3.3!

where

e2l512S r 1

r D D23

. ~3.4!

The area inD dimensions is

A

4
5

AD22

16p
bHr 1

D23, ~3.5!

with

M5
D22

16p
AD22r 1

D22, ~3.6!

whereAD22 is the area of a unitD22 sphere. Eliminating
the horizon radiusr 1 in favor of the mass, the area becom

A

4
5C~D !M ~D22!/~D23!, ~3.7!

whereC(D) is a mass-independent function:
4-2
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C~D !5
4~D21!/~D23!p~D22!/~D23!

~D23!~D22!~D22!/~D23!AD22
1/~D23! . ~3.8!

Substituting in forA/4 in the degeneracy of states express
we find

s~M !.ceC~D !M ~D22!/~D23!
. ~3.9!

Comparing this expression to those known for non-local fi
theories, we find that it corresponds to the degeneracy
states for an extended quantum object (p-brane! of dimen-
sion p5(D22)/(D24). As has been demonstrated by se
eral authors@25–27#, an exponentially rising density of state
is a clear signal of a non-local field theory.p-brane theories
are the only known non-local theories in theoretical phys
which can give rise to exponentially rising degeneracies.

B. KND black hole

In four dimensions the largest generalization of t
Schwarzschild black hole is given by the Kerr-Newman fa
ily with the addition of a scalar field called the dilaton. Th
action of the Kerr-Newman dilaton~KND! black hole is
found as an effective action in compactified string theor
@24# and is given by

S5
1

16p E d4xAg FR2
1

2
~¹f!22e2afF2G1S,

~3.10!

where the first term on the right-hand side~RHS! is the vol-
ume contribution obtained by integrating on the whole
gion outside the outer horizon,R is the scalar curvature,f is
the dilaton field,a its coupling constant,F is the Maxwell
field andS contains all surface terms.

In Ref. @10# the field equations derived from the action
Eq. ~3.10! were expanded in the charge-to-mass ratio,Q/M ,
and a new perturbative static solution was found, which is
the form

ds252
D sin2 u

C
~dw!21C~dt2vdw!2

1r2F ~dr !2

D
1~du!2G . ~3.11!

The latter can be simplified upon substituting for the~bare!
parametersM , Q and J[aM , the Arnowitt-Deser-Misner
~ADM ! mass, charge and angular momentum of the h
and also by shifting the radial coordinate,r→r 2a2Q2/6M
~see Ref.@11# for the details!. One finally obtains that the
04401
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metric in Eq. ~3.11! coincides~at orderQ2/M2) with the
Kerr-Newman solution~e.g., see@28#!. This implies that the
background dilaton field

f52a
r

r2

Q2

M
1O~Q4! ~3.12!

does not affect the singularity structure at orderQ2/M2.
The surface term in Eq.~3.10! is given as

S5
bH

2
M , ~3.13!

where the complexified timei t has periodbH as given in Eq.
~2.2!. Also in this case there are two horizons:

r 65M6AM22a22Q2, ~3.14!

where a5J/M and the minimum value admitted for th
mass isM05Aa21Q2, corresponding to theextremalcase.
The Euclidean action of the KND instanton is

SE~M , J, Q; a!5
A

4
1bHÃJ, ~3.15!

and the area is given by

A54p~r 1
2 1a2!1O~Q4!. ~3.16!

To orderQ4 the Euclidean action is

SE~M , J, Q; a!5
bH

2 S M2
Q2r 1

r 1
2 1a2

1O~Q4!D .

~3.17!

The quantum degeneracy of states is then

sKND~M , J, Q; a!;eA/45ep~r 1
2

1a2!. ~3.18!

C. Statistical mechanics of KND black holes

Using the quantum degeneracy of states in Eq.~3.18! we
can analyze the statistical mechanical properties of a ga
such black holes. The microcanonical density is defined a
function in the space of all possible configurations ofn.0
black holes:

VKND~M , J, Q; a!5 (
n51

`

Vn~M , J, Q; a!, ~3.19!

whereVn is determined fromsKND through the relation
4-3
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Vn~M , J, Q; a!5F V

~2p!3Gn 1

n! )
i 51

n E
m0

`

dmiE
2mi

2

1mi
2

d j iE
2Ami

2
2a i

2

1Ami
2
2a i

2

dqisKND~mi , j i , qi ; a!E
2`

1`

d3pidS M2(
i 51

n

Ei D
3dS Q2(

i 51

n

qi D dS J2(
i 51

n

j i D d3S (
i 51

n

pW i D . ~3.20!
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Here M , J and Q are respectively the total mass, angu
momentum and charge of the gas:m0>0 is the minimum
allowed mass for each black hole in the gas. We are ass
ing in this relation that the black holes obey the particle-l
dispersion relation

Ei
25pi

21mi
2 . ~3.21!

The equilibrium configuration for such a gas is highly no
thermal. The most probable configuration turns out to be~see
Ref. @29# for details! one massive black hole with

mass5M2~n21!m0

charge5Q2~n21!A12g2m0

angular momentum5J2~n21!gm0
2 , 0<g<1.

~3.22!

The remaining (n21) black holes have
n
s

w

04401
r

m-

-

mass5m0

charge5qi5A12g2m0

angular momentum5 j i5gm0
2 . ~3.23!

A numerical computation was carried out for the special c
n52, a50 ~two Reissner-Nordstro¨m black holes!. As
shown in Fig. 1~see also Fig. 2!, the equipartition state is a
saddle point, and the maxima correspond to one or the o
of the black holes possessing~nearly! all of the mass and al
of the charge. This suggests that

g;0. ~3.24!

Our picture of the gas is thus one in which one massive bl
hole carries all the charge and angular momentum, an
surrounded byn21 lighter, Schwarzschild black holes. The
the density of states can be approximated by
V~M ,J,Q;a!;F cV

~2p!3GN 1

N!
e~N21!AKND~m0 ,gm0

2,A12g2m0
2 ;a!/4eAKND„M2~N21!m0 ,J2~N21!m0

2g,Q2A12g~N21!m0 ;a…/4.

~3.25!
ck
.
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This is the statistical mechanical model of a black hole~the
most massive one in the system! and its associated radiatio
~whose quanta are represented by the lighter black hole
the gas!.

The most probable numberN of black holes in the gas is
found from the extremum conditiondVn /dnun5N50. The
corresponding contribution to the sum in Eq.~3.19! can be
used to approximate the full microcanonical density:

V~M , J, Q; V, a!.VN ~M , J, Q; V, a!. ~3.26!

The numberN is given byC(N11). ln@cV/(2p)3#, where
C is the psi function@1#.

We can now check whether the gas of black holes
have been describing satisfies the bootstrap condition@30#

lim
M→`

V~M , Q, J; V, a!

sKND~M , Q, J; a!
51, ~3.27!
in

e

where sKND is the quantum degeneracy of a single bla
hole as given in Eq.~3.18!. For the general case in Eq
~3.26!, one obtains that Eq.~3.27! is satisfied ifm050 and

@eC~N11!#N
1

N!
5c. ~3.28!

As in the case of a gas of Schwarzschild black holes@1#, this
equation gives a relation between the constantc and the
volumeV. Correspondingly, one obtains the inverse mic
canonical temperature

b5
d ln V

dE
.

d ln VN

dM
5bH~M , J, Q; a!. ~3.29!

In the limit a50 one recovers the Kerr-Newman expressi
bH54pr 1 .

Our results show that the most probable state for a ga
Kerr-Newman dilaton black holes is very far from therm
equilibrium. Not only does one black hole acquire all of t
mass as in the Schwarzschild case, but it also acquires a
4-4
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MICROFIELD DYNAMICS OF BLACK HOLES PHYSICAL REVIEW D58 044014
the charge and all of the angular momentum of the wh
gas. This is the reason the bootstrap condition is satisfied
the Kerr-Newman dilaton black holes at high energy.

IV. MEAN FIELD THEORY

To study particle production and propagation in bla
hole geometries we now turn to a second semiclassical
proximation. In the mean field approximation fields a
quantized on a classical black hole background. Black ho
have non-trivial topologies which causally separate two
gions of space. For this reason the number of degree
freedom is doubled, and two Fock spaces are require
describe quantum processes occurring in the vicinity o
black hole. Calculations of quantities associated with s
processes can be carried out in ways analogous to calc
tions in thermofield dynamics~TFD! @31#, but with an over-
all fixed energy@microfield dynamics~MFD! @32##.

A. Canonical formulation

In the context of mean field theory the thermal vacuu
for quantum fields scattered off of black holes~that is the
initial vacuum u0in ;t50& propagated to large later times!
can be written as

u0in ;t→1`&5
1

Z1/2~bH!
(
n50

`

e2bHnv/2un& ^ uñ&[uout&,

~4.1!

FIG. 1. The total Bekenstein-Hawking entropySrn for a system
of two Reissner-Nordstro¨m black holes with total massM54 and
total chargeQ51 as a function ofm1 andq1 .
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where the partition functionZ(b) is

Z5 (
n50

`

e2bnv ~4.2!

and the statesuñ& are a complete orthonormal basis for th
region of space causally disconnected from an external
server. Operators corresponding to physically measura
quantities are defined on the basis setun& for states outside
the horizon. The ensemble average~expectation value! of a
physical observableÔ in the out region is

^outuÔuout&5
1

Z~b! (
n

e2nbv^nuÔun&. ~4.3!

As usual the temperature is determined by the surface gra
according to Eq.~2.2!.

For example if the operatorÔ is the number operator

Ô5a†a, ~4.4!

for particles of rest massm, the ensemble average given
Eq. ~4.3! is the particle number density

nbH
~m,k!5

1

ebHvk~m!21
. ~4.5!

FIG. 2. When the lower limit for the mass of each black hole
m050.1, the actionSrn in Fig. 1 has a maximum form1542m0

and q1512m0 , meaning that the second black hole is extrem
(m25q25m0).
4-5
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This expression can be immediately used for Schwarzsc
black holes. Its generalization to particles~black holes! with
spin and charge is straightforward and amounts to summ
also overJ andQ ~which we avoid writing explicitly in this
section to keep the notation simpler!.

To describe particle interactions one needs the part
propagator, which can be determined from Eq.~4.3! by
means of the time-ordered product^outuTf(x1)f(x2)uout&.
The Fourier transform of this expression is

Db5
1

k22m21 i e
22p id~k22m2!nb~m,k!, ~4.6!

with nb given by Eq.~4.5!. These expressions are valid
black holes are described by a local field theory. However
discussed in Sec. II, the particle number distribution given
Eq. ~4.5! implies loss of coherence. The in state is a pu
state

u0in ; t50&5u0& ^ u0̃&, ~4.7!

but the number density obtained from the outgoing states
thermal distribution.

In the microcanonical approach black holes are quan
excitations ofp-branes, and hence non-local effects must
taken into account. This is accomplished by summing o
all possible masses~angular momenta and charges!:

nbH
~k!5E

0

`

dms~m!nbH
~m,k!. ~4.8!

Inclusion of non-local effects changes the thermal vacuum

uout&5
1

Z1/2~bH! F)m,k
(

nk,m50

` G
3)

m,k
e2bHnk,mvk,m/2unk,m& ^ uñk,m&, ~4.9!

in which them andk labels are shown explicitly to empha
size the dependence of the states on the mass and mo
tum. The quantity in square brackets represents the pro
of the sums over the discrete values of the momentum
mass. The canonical partition function extracted from t
expression is

Z~bH!5expS 2
V

~2p!D21 E2`

1`

dD21kWE
0

`

dms~m!

3 ln@12e2bHvk~m!# D , ~4.10!

where the discrete mass and momentum indices have
changed to continuous values. A system in thermodynam
equilibrium must satisfy the condition
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0

`

V~E!e2bEHdE

5expS 2
V

~2p!D21 E2`

1`

dD21kWE
0

`

dms~m!

3 ln@12e2bHvk~m!# D . ~4.11!

This is Hagedorn’s self-consistency condition@30#. It is well
known that only strings (p51) satisfy this condition,

s~m!;ebm ~m→`!, ~4.12!

for bH.b5 Hagedorn’s inverse temperature. But bla
holes are not strings, as has been inferred from the quan
mechanical density of states for Schwarzschild black hole
Sec. III A,

s~M !;eCM~D22!/~D23!
. ~4.13!

Therefore black holes do not satisfy Hagedorn’s condit
@(D22)/(D23).1 for D.3]. The black hole system is
not in thermal equilibrium because it does not fulfill the se
consistency condition required for thermal equilibrium. W
are thus led to the conclusion that the thermal vacuum is
false vacuum for a black hole.

B. Microcanonical formulation

The true vacuum for a black hole can be obtained by fi
writing the thermal vacuum in terms of the density matrixr̂
for a system in thermal equilibrium:

u0~b!&5 r̂~b;H!uI &, ~4.14!

where

r̂~b,H!5
r~b,H!

^I ur~b,H!uI &

r~b;H!5e2bH

uI &5F)
k,m

(
nk,m

G)
k,m

unk,m& ^ uñk,m&. ~4.15!

The trace of an observable operator is given by

Tr Ô5^I uÔuI &. ~4.16!

For example the free field propagator can be determi
from

Db
ab52 i ^I uTfa~x1!fb~x2!r̂uI &. ~4.17!

The superscripts onf refer to the member of the therma
doublet@31#,

fa5S f

f̃†D , ~4.18!
4-6
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MICROFIELD DYNAMICS OF BLACK HOLES PHYSICAL REVIEW D58 044014
being considered. The Fourier transform ofDb
11(x1 ,x2) ~the

physical component! is equal toDb given in Eq.~4.6!.
If instead of treating black holes as objects in therm

equilibrium at fixed temperatureT and corresponding
vacuumubH& we treat the black holes as having fixed ener
E, we can formally define the microcanonical vacuum as

uE&5
1

V~E!
E

0

E

V~E2E8!LE2E8
21

@ ubH&]dE8, ~4.19!

whereL21 is the inverse Laplace transform. Our analysis
the WKB approximation for black holes in Secs. II and
shows that the assumption that black holes are at fixed
ergy is physically more reasonable than assuming that
are at fixed temperature. Using this basis physical correla
functions are expressed as

GE
a1 , . . . ,aN~1,2,. . . ,N!5^I uTfa1~1!, . . . ,faN~N!uE&.

~4.20!

Interaction effects can be taken into account by means of
microcanonical propagator

DE
11~k!5

1

k22m21 i e
22p id~k22m2!nE~m,k!,

~4.21!

wherenE(m,k) is the microcanonical number density,

nE~m,k!5(
l 51

`
V„E2 lvk~m!…

V~E!
u~E2 lvk!, ~4.22!

which is our candidate alternative to Eq.~4.5! for the distri-
bution of particles emitted by a black hole.

V. WAVE FUNCTIONS

The analysis carried out so far is global in nature. In fa
although we were able to show consistent equilibrium c
figurations for gases of black holes and number densities
the emitted radiation in such configurations, the geometry
spacetime never appears explicitly in the final expressio
Of course, one is also interested in the local properties
spacetime, and this is most intriguing in the present c
because the above results include implicitly any ba
reactions of the radiation on the metric.

Thus we need a probe to test the spacetime which co
sponds to the microcanonical vacuum described in the
vious section. We then turn to the study of the propagation
waves and show that the wave functions in the microcan
cal vacuum can be obtained by making a formal replacem
in the wave functions obtained for the thermal vacuum.

A. Thermal vacuum

In flat 4-dimensional spacetime with spherical coordina
t,r ,u,f an incoming spherical wave collapsing on a point
given in null coordinates asymptotically by
04401
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c in5
Ylm~u,f!

A8p2v

e2 ivv

r
v5t1r * , ~5.1!

where r * is the so-calledtortoise coordinate. An outgoing
wave has the form

cout5
Ylm~u,f!

A8p2v

e2 ivu

r
u5t2r * . ~5.2!

If we now consider waves propagating on a black hole ba
ground, e.g. a Schwarzschild black hole, and do not take
account back-reactions, then the incoming wave beco
~see for example@33#!

c in5H Ylm~u,f!

A8p2v

ei ~v/k!ln~v02v !

r
, v,v0 ,

0, v.v0.

~5.3!

This wave obeys the wave equation in a background w
surface gravityk. The in states for the two vacua are relat
by the Bogoliubov transformation

avv8
bvv8

J 5
1

2p E
2`

v0
dvS v8

v D 1/2

e6 iv8vei ~v/k!ln@~v02v !/c#,

~5.4!

where c is a constant. The two coefficientsa and b are
related by the Wronskian condition

(
v8

@ uavv8u
22ubvv8u

2#51. ~5.5!

In Eq. ~5.5! the variablev8 has been rendered a discre
variable by box normalization of the wave functions. Als
backscattering of the fields from the spacetime curvature
been ignored. The integrals in Eq.~5.4! can be evaluated
explicitly, and one finds that

uavv8u
25e2pv/kubvv8u

2. ~5.6!

Substituting this relation into Eq.~5.5! one obtains the
Planckian distribution

nbH
~v!5(

v8
ubvv8u

25
1

ebHv21
. ~5.7!

B. Microcanonical vacuum

The relationship betweena andb in Eq. ~5.6! arises be-
cause the logarithmic term in Eq.~5.4! introduces a branch
cut, and the integration around this branch cut causes
factor multiplying this term~times 2p! to appear in the ex-
ponential multiplyingb. Thus if we simply make the forma
replacement

2pv

k
→ ln@11nE

21~v!#, ~5.8!
4-7
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where nE(v) is the microcanonical number density as e
pressed in Eq.~4.22!, the relevant waves are of the form

cout5
Ylm~u,f!

A8p2v

e2 ivu

r
, ~5.9!

and

c in5H Ylm~u,f!

A8p2v

e~ i /2p!ln@11nE
21

~v!# ln~v02v !

r
, v,v0 ,

0, v.v0 .
~5.10!

The relation betweena andb now becomes

uavv8u
25eln@11nE

21
~v!#ubvv8u

2, ~5.11!

which gives, for the sum overv8,

(
v8

ubvv8u
25nE~v!. ~5.12!

Of course the wave in Eq.~5.10! does not satisfy the sam
wave equation as the wave in Eq.~5.3!, but it will satisfy a
wave equation in a background whose metric includes ba
reaction and non-local effects.

VI. BLACK HOLE DECAY RATES

The rate of decay of any kind of black hole can be cal
lated from the number densityn(v) representing the avail
able states which can be fed into by the Hawking radiati
Thus the number density~5.7! obtained from the thermody
namical picture should apply also to black holes with ve
small mass. But for black holes with mass of the order of
Planck mass or less we will show that the thermodynam
picture is no longer a good approximation of the true mic
canonical description and one expects the two approache
lead to significantly different predictions for the survival
cosmological black holes~with small mass! in the present
universe.

For simplicity we consider only 4-dimensional Schwarz
child black holes. In this case the microcanonical density
given by ~we restore the fundamental constants!

V~M !5e4pM2/M p
2
, ~6.1!

with the massM of the black hole timesc2 being the fixed
energyE andM p5A\c/G the Planck mass. Substituting th
expression forV into Eq. ~4.22!, we find, for the number
density,

nM~v!5 (
l 51

Mc2/\v

e~2 8p lM /M p
2c2!\v1~4p l 2/M p

2c4!\2v2
.

~6.2!

Then we notice that in the classical limit\→0 ~at fixed c
andG) the Planck mass vanishes and the sum overl runs up
to ` for fixed M and v. Therefore one recognizes that th
04401
-

k-

-

.

e
al
-
to

-
is

\→0 limit is equivalent to takingM /M p→` at fixedv and
neglecting the@positive andO(\)] v2 term in the exponent
with respect to the@negative andO(\0)] v term. In this case
we recover the thermal number density~5.7!.

The above approximation works only for\v!Mc2/ l ,
which shows that high frequency Hawking photons~with v
;Mc2/\) are responsible for the failure of the canonic
description and that corrections to the thermal spectrum
come effective when the total energy emitted in a giv
mode (; l\v) is of the same order of the mass of the bla
hole (Mc2). Therefore one expects that the microcanoni
description begins to depart appreciably from the therm
description for relatively small black holes, that is for bla
holes which have already emitted a large fraction of th
mass, and fails completely for black holes of Planck mass
less. This is consistent with the naive idea that, when
amount of energy emitted by a black hole becomes com
rable toM , the ~vacuum! geometry assumed to describe t
initial space-time becomes a less reliable approximation.

Further, thev2 term in Eq.~6.2! is a reflection of the fact
that black holes have negative microcanonical specific h
To see this let us setc5G5\51 again and rewrite Eq
~4.22! as

nM5(
l 51

`
V„M2 lvk~m!…

V~M !
u~M2 lvk!

5 (
l 51

M /v

exp@SE~M2 lv!2SE~M !#. ~6.3!

Taylor-expanding the last expression we find

nM5expS 2 lv
]S

]M
1

l 2v2

2

]2S

]M2
1 . . . D . ~6.4!

The first term in the exponential is proportional tobH while
the second term is proportional tobH

2 /CV . We recall here
that our results rely on the use of the microcanonical
semble as the only self-consistent approach for systems
degeneracies given by expressions of the form in Eq.~3.2!,
which, in turn, are expected to apply top-branes@1,2,25–
27#. The same expressions~6.3! and ~6.4! have been ob-
tained recently in Ref.@15# and further generalized in@16#
starting from an effective D-string model for black hole m
crostates in the microcanonical ensemble.

Using the expressions fornbH
in Eq. ~5.7! andnM in Eq.

~6.2!, we can calculate the decay rates for radiating bla
holes predicted by the two theories. The luminosity is giv
by

L5
1

2p E
0

`

dvv3G~v!ni~v!, i 5b, M . ~6.5!

The factor G takes into account backscattering from t
spacetime curvature and in this capacity would replace th
on the right hand side of Eq.~5.5!. Carrying out the integra-
4-8
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tion for the thermal number density withG;1 and multiply-
ing by the horizon area to get the rate at which mass is l
we find

dM

dt U
b

.2
\c4

G2M2
. ~6.6!

For M;M p we approximate the sum in the microcanonic
number density~6.2! by retaining only the dominantl 51
term and the integration overv in Eq. ~6.5! can then be
carried out explicitly. In this approximation we obtain

dM

dt U
M

.2
cG

\2
M4. ~6.7!

This rate is in agreement with what one would expect from
model of quantum black holes as extended obje
(p-branes!. The more massive the black hole is, i.e. t
higher the excited state of thep-brane, the more rapid th
decay. The constant in front of theM4 term is very large, so
that the decay rate is very high until masses much less
the Planck mass are reached. In this region of mass Eq.~6.7!
is no longer adequate because the luminosityL in Eq. ~6.5!
would have to be obtained using the full sum in Eq.~6.2!.

The thermodynamical theory predicts that the decay
blows up asM→0 and that it takes a finite time for the blac
hole to completely evaporate,

M;~M0
323dt !1/3, ~6.8!

whered5\c4/G2. Thus one does not expect to find primo
dial black holes in the present universe. However, as we h
explained above, for late stages of the evaporation pro
the decay rate is better approximated by the expressio
/
a

-

n

l
er

ev

04401
t,

l

a
ts

an

te

ve
ss
in

Eq. ~6.7! which, on the other hand, predicts that primordi
microscopic black holes could still be around today. In fa
the corresponding decay rate goes to zero as a power oM
and forM;M p ,

M;
M0

~113aM0
3t !1/3

, ~6.9!

wherea5cG/\2, or even slower forM!M p .

VII. CONCLUSION

For black hole masses near the Planck mass the micr
nonical approach is clearly preferable to the thermodyna
cal approach in the semiclassical quantization processes
scribed above. It is free of the inconsistencies present in
thermodynamical approach, and its predictions seem to
more physically reasonable, e.g. a finite black hole de
rate throughout the life of the black hole.

The use of a fixed energy basis for the Hilbert space of
theory instead of the usual thermal state implies that bl
holes are particle states. In our interpretation of black ho
as quantum objects the associated quantum degenera
states obtained from the inverse of the tunneling probab
points to the identification of black holes with the excitatio
modes ofp-branes. The self-consistent treatment of bla
holes as quantum extended objects implies that black h
are elementary particles.
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