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Microfield dynamics of black holes
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The microcanonical treatment of black holes as opposed to the canonical formulation is reviewed and some
major differences are displayed. We propose a microcanonical alternative to the thermodynamical expression
for the number density and discuss its characteristics. In particular the decay rates are compared in the two
different pictures and shown to predict significantly different fates for cosmological black holes.
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[. INTRODUCTION the thermal vacuum is the false vacuum for a black hole
system. We also present an alternative vacuum for such a

In spite of its many mathematical and physical inconsis-System and the microcanonical number density which corre-
tencies and drawbacks, the treatment of black holes as thegponds to this vacuum. In Sec. V we present the microca-
modynamical systems has since its inception been the dé@onical wave functions for the in and out states and in Sec.
scription preferred by most physicists investigating theVl we derive the black hole decay rate.
nature of black holes. Not least among the drawbacks is the We use units withc=G=#=Kkg=1 unless differently
fact that the laws of quantum mechanics are violated, bestated.
cause the number density function of the emitted radiation as
calculated using a thermal vacuum is characteristic of mixed Il. THERMODYNAMICAL INTERPRETATION
states, while the incoming radiation may have been in pure OF BLACK HOLES
states. Since black holes can in principle radiate away com-

pletely, the unitarity principle is violated. Bekenstein's original observatidi 7] that the area of a

In a series of paperl—11] we have investigated an al- black hole is in some way analogous to_the thermodynamical
ternative description of black holes which is free of the prob-Concept of entropy was enlarged upon In ReB| where th?
lems encountered in the thermodynamical approach. In olpur laws of plack hole thermodynamlcs were hypothesized.
approach black holes are considered to be extended quantuﬁ?e mass difference of neighboring equilibrium states was
objects p-branes. This point of view has recently been fur- S1OWn to be related to the change in the black hole &rea
ther supported by investigations in fundamental stririgs, according to the relatiofSmarr formula
where one finds that extended D-branes are a basic ingredi- _
ent of the theory[13] and lead to black-hole-type solutions AM=rAA+wAI+FAQ, .1
for which the area of the horizon is proved to measure thevhere« is the surface gravity and is related to the tempera-
quantum degenerad#4]. In the present work we consider a ture by
gas of p-brane black holes and show that the equilibrium
configuration is decidedly non-thermal. We also define a new 4 K
vacuum, the microcanonical or fixed-energy vacuum, and T=Bu “on (2.2)
obtain within the context of mean field theory the wave func-
tions for the radiation associated with such objects. Using thd is the angular momentum of the black hof@,its charge
number density function for our vacuum, we calculate theandw, ® play the role of potentials.
black hole decay rate and compare it with that obtained from The partition function for the black hole is assumed to be
the thermodynamical descriptideee alsd15,16| for an al-  determined as
ternative derivation _BH_ -8

In Sec. Il we present a brief summary of the thermody- Z(B)=Tre "=e ™. 23
namical description of processes involving black holes an . . . S
discuss in detail the inconsistencies mentioned above. In Se .he functionS, is the Hawking entropy which is given by
Il we discuss our interpretation of.the WKB a}pproximation Sy=Sc— By, (2.4)
as the quantum tunneling probability and review our results
for the statistical mechanics of a gas of black holes. In Seayhere S; is the Euclidean action. The Hawking entropy is
IV we discuss the thermodynamical interpretation of blackalso related to the area of the black hole by
holes within the context of mean field theory and prove that

A
SH:Z' (2.5
*Permanent address: Dipartimento di Fisica dell’Univeritao-
logna and LN.F.N., Sezione di Bologna, via Irnerio 46, I- Finally, in thermodynamical equilibrium the statistical me-
40126 Bologna, Italy. chanical density of states is given by

0556-2821/98/5@1)/04401410)/$15.00 58 044014-1 © 1998 The American Physical Society



R. CASADIO AND B. HARMS PHYSICAL REVIEW D58 044014

0=7Y(p)=e™, 2.6 ll. BLACK HOLES AS p-BRANES

The inconsistencies of the thermodynamical interpretation
are an indication that the interpretation @f >+ as the ca-
nonical partition function is wrong. In the usual WKB ap-
Cy=—==———. (2.7) proximatione*SE. is the tunneling probability per .unit vol-

al 8w ume for a particle to tunnel through a potential. In the

present case we hypothesize that the probability to tunnel
The fact that the canonical specific heat, an intrinsically IOOSithrough the black hole’s horizon is given by

tive quantity, is negative in this interpretation is a clear sig-
nal that the thermodynamical analogy fails. P=~g S, (3.2
The thermodynamical interpretation of black holes has
many such inconsistencies. A second problem can be befdr any kind of black hole. The quantum degeneracy of states

shown if we specialize the previous expressions, for instancéor the system is proportional 8~ and is then given by
to the Schwarzschild black hole. It turns out that

and the specific heat is

o=ceM, (3.2
Su=S¢. (2.9
where the constartt is determined from quantum field theo-
Further, since the radius of the horizon in this caseNk 2 retic corrections and can contain non-local effects. Recently

one has an analogous and maybe deeper understanding of3E&2).
has been obtained in string theory, where black hole solu-
Sy=4nM? (2.9 tions appear to be related to D-brarjé2,13 and the rela-
tionship between area and entropy is recovered at least in the
and very special cases of tiny, extremal black ho[dg] (the
generalization to bigger, non-extremal black holes might just
Bu=8mM. (210 pe a technical probleri22] or it might be a more substantial
. . one[23]).
It then follows that the partition function as calculated from  Explicit expressions can be obtained for the above quan-
the microcanonical density of states, tities for some geometries.
Z(ﬁ)=f dMQ(M)e_BM:f dMe*™M%e=BM_, o A. D-dimensional Schwarzschild black hole
° ° (2.11) As a first example we can consider the Schwarzschild

black hole, which inD dimensions has the Euclidean metric

is infinite for all temperatures and hence the canonical en-
semble is not equivalent to tenore fundamentalmicroca-
nonical ensemble

d?=e?d7?+e M dr2+r2dQ3 _,, (3.3

where

Z(f;);&i (2.12 ry|°7°
Q’ ' e2A=1—( ) : (3.9

as is required for thermodynamical equilibrifir®] (see also

Sec. IV A for a more general analysis

Furthermore, if guantum mechanical effects are taken into

account, black holes can be shown to radj2@21]. In the é: Ap-2

thermodynamical approach the future-evoliregacuum be- 4 16m "M

comes temperature dependésee Sec. Y, and the radiation

coming out of the black hole has a Planckian distribution with

The area inD dimensions is

23, 3.5

1 _ D-2 b2 36
”BH(“’):eﬁ—- (2.13 M=—e—Apory % (3.6

HO— 1

Since black holes can in principle radiate away completelyWh€r€Ao—» is the area of a unib —2 sphere. Eliminating
this result implies that information can be lost, because purfahe horizon radius .. in favor of the mass, the area becomes

states can come into the black hole but only mixed states

come out. The breakdown of the unitarity principle is one of ﬁ _ (D-2)/(D-3)
. e C(D)M , 3.7
the most serious drawbacks of the thermodynamical interpre- 4
tation, since it requires the replacement of quantum mechan-
ics with some newunspecifieg physics. whereC(D) is a mass-independent function:
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4(D-1)/(D=3) _(D~2)/(D~3) metric in Eq.(3.11) coincides(at orderQ%/M?) with the

C(D)= (D—3)(D—2)0 DIO-IATO=3 (3.8 Kerr-Newman solutiorie.g., sed28]). This implies that the
D-2 background dilaton field

Substituting in forA/4 in the degeneracy of states expression

we find r 02
—Q—a__ 4
#=—a ;4 +OQ) (3.12
M - C(D)M(D*Z)/(D*S) 3 9 X . 2
a(M)=ce : (3.9  does not affect the singularity structure at or@E/M?.

The surface term in EJ3.10 is given as

Comparing this expression to those known for non-local field

theories, we find that it corresponds to the degeneracy of s @M (3.13
states for an extended quantum objegthfang of dimen- 2 |
sionp=(D—2)/(D—4). As has been demonstrated by sev-

eral author$25—27), an exponentially rising density of states

is a clear signal of a non-local field theogy-brane theories Where the complexified time has period3 as given in Eq.
are the only known non-local theories in theoretical physicg2.2). Also in this case there are two horizons:

which can give rise to exponentially rising degeneracies.

=M=+ \/ﬁ _

B. KND black hole F=M=yM"=a’=Q (314
In four dimensions the largest generalization of the

Schwarzschild black hole is given by the Kerr-Newman fam-where «=J/M and the minimum value admitted for the

ily with the addition of a scalar field called the dilaton. The mass isMy= Ja?+Q?, corresponding to thextremalcase.

action of the Kerr-Newman dilatodKND) black hole is The Euclidean action of the KND instanton is

found as an effective action in compactified string theories

[24] and is given by

A
Se(M, J, Q; a):z+,8HmJ, (3.19
1 1
S=Efd4x@ R—E(Vd))z—ea?/’Fz}JrE,
(3.10  and the area is given by
A=4m(r? +a?)+O(Q%). (3.16

where the first term on the right-hand sideHS) is the vol-
ume cont.rlbutlon obtalneq by '|ntegrat|ng on the wholle re-—ro orderQ? the Euclidean action is
gion outside the outer horizoR is the scalar curvature is

the dilaton field,a its coupling constant- is the Maxwell B Q2
field andX, contains all surface terms. Se(M, J, Q; a)= PRI M= - + +0O(Q% |.
In Ref.[10] the field equations derived from the action in 2 rs+a?
Eq. (3.10 were expanded in the charge-to-mass rafitiyl, (3.17)
and a new perturbative static solution was found, which is otl_ .
he quantum degeneracy of states is then
the form
oknp(M, J, Q; a)~eA’4=e”(r2++“2). (3.18
A sir? 0 5 5
ds?=— T (de)“+¥(dt—wdo) C. Statistical mechanics of KND black holes
s Using the quantum degeneracy of states in Bdl8 we
+p2 (dr) +(d6)2}. (3.11) can analyze the statistical mechanical properties of a gas of
A such black holes. The microcanonical density is defined as a

function in the space of all possible configurationsnof 0
black holes:
The latter can be simplified upon substituting for thare -
parametergM, Q and J=aM, the Arnowitt-Deser-Misner Ay .
(ADM) mass, charge and angular momentum of the hole, Qino(M, 3, Q; a)—n§=:l Q.(M, J, Q; a), (3.19
and also by shifting the radial coordinaterr —a2Q?/6M
(see Ref[11] for the details. One finally obtains that the where(}, is determined fronukyp through the relation
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n 1 o +m2 ) ?_a? - +oo n
Q,(M, J, Q; a)= @ miﬂl fm dmif mzld]ij+J%in0'KND(miinvqi;a)f dspi5(M_i21 Ei
= o -m VM T e - =
n n n
X8 Q-2 qi)a(a—gji)§(§1 pi). (320
|
Here M, J and Q are respectively the total mass, angular mass=m;
momentum and charge of the gasy=0 is the minimum
allowed mass for each black hole in the gas. We are assum- charge=q; = 1= ¥2m,
ing in this relation that the black holes obey the particle-like '
dispersion relation angular momentum j; = ym3. (3.23
E’=p?+m?. (3.2

A numerical computation was carried out for the special case

The equilibrium configuration for such a gas is highly non-N=2, @=0 (two Reissner-Nordstro black holes As

thermal. The most probable configuration turns out tésee ~ Shown in Fig. 1(see also Fig. 2 the equipartition state is a
Ref.[29] for detaily one massive black hole with saddle point, and the maxima correspond to one or the other

of the black holes possessifearly all of the mass and all

mass=M—(n—1)my of the charge. This suggests that
charge=Q—(n—1)y1—y°mq y~0. (3.29

angular momentumJ—(n—1)ym, 0<y<1. Our picture of the gas is thus one in which one massive black
(3.22 hole carries all the charge and angular momentum, and is
surrounded byn— 1 lighter, Schwarzschild black holes. Then
The remaining §—1) black holes have the density of states can be approximated by

v N1
2m3 N ¢

2 [ 2 2 2 —
(N=1)Agnp(Mg, ymg, V1— yzmo;a)/4eAKND(M ~(N=1)mg 3~ (N=1)mgy,Q— VI~ ¥(N—1)mg;a)/4

(3.29

Q(M,J,Q;a)~

This is the statistical mechanical model of a black hitkee ~ where oxyp is the quantum degeneracy of a single black
most massive one in the systgand its associated radiation hole as given in Eq(3.18. For the general case in Eq.
(whose quanta are represented by the lighter black holes i(8.26), one obtains that Eq3.27) is satisfied ifmy=0 and

the gas.

The most probable numb&t of black holes in the gas is
found from the extremum conditiodQ},,/dn|,—y=0. The
corresponding contribution to the sum in .19 can be
used to approximate the full microcanonical density: As in the case of a gas of Schwarzschild black hfidsthis

equation gives a relation between the constarand the

volumeV. Correspondingly, one obtains the inverse micro-
QM, 3, Q; V, a)=Qy(M, J,Q; V,a). (328  canonical temperature

1
[e‘”N*l)]Nm:c. (3.29

dinQ dInQy
The numbem is given by ¥ (N+1)=In[cV/(27)%], where B=—GE = am__PB+M,J, Qi a). (3.29
V¥ is the psi functiof 1].

We can now _check W_he_ther the gas of black holes W8 the limit a=0 one recovers the Kerr-Newman expression
have been describing satisfies the bootstrap condi86h Bu=4r .

Our results show that the most probable state for a gas of
QM, Q, J: V, a) Kerr_-_Ne;wman dilaton black holes is very far fr_om thermal
lim SLRAERL IS (3.27) equilibrium. Not only does one black hole acquire all of the
M_= Oknp(M, Q, J; a) mass as in the Schwarzschild case, but it also acquires all of
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FIG. 1. The total Bekenstein-Hawking entroBy, for a system
of two Reissner-Nordsiro black holes with total massl =4 and
total chargeQ=1 as a function oim; andq;.

FIG. 2. When the lower limit for the mass of each black hole is
my=0.1, the actiorS,, in Fig. 1 has a maximum fom;=4-—m,
and g;=1-—mg, meaning that the second black hole is extremal

the charge and all of the angular momentum of the wholg ™~ %2~ Mo)-

gas. This is the reason the bootstrap condition is satisfied f%h th tition functiod :
the Kerr-Newman dilaton black holes at high energy. ere the partition functio(g) is

IV. MEAN FIELD THEORY Z= EO e~ pne (4.2
“

To study particle production and propagation in black
hole geometries we now turn to a second semiclassical amnd the statefn) are a complete orthonormal basis for the
proximation. In the mean field approximation fields areregion of space causally disconnected from an external ob-
quantized on a classical black hole background. Black holeserver. Operators corresponding to physically measurable
have non-trivial topologies which causally separate two requantities are defined on the basis jset for states outside
gions of space. For this reason the number of degrees afie horizon. The ensemble avera@xpectation valueof a
freedom is doubled, and two Fock spaces are required tgnysjcal observabl® in the out region is
describe quantum processes occurring in the vicinity of a
black hole. Calculations of quantities associated with such R 1 .
processes can be carried out in ways analogous to calcula- (oufOlout= 0] > e "(n|O|n). 4.3
tions in thermofield dynamic6€TFD) [31], but with an over- "

all fixed energymicrofield dynamicMFD) [32]]. As usual the temperature is determined by the surface gravity

according to Eq(2.2).

A. Canonical formulation For example if the operatdd is the number operator

In the context of mean field theory the thermal vacuum

for quantum fields scattered off of black holéhkat is the O=a'a, (4.9
initial vacuum |0;, ;t=0) propagated to large later times
can be written as for particles of rest mass), the ensemble average given in

Eq. (4.3 is the particle number density
|0 t— +o0) = = >, e Pi"n)g[n)=|out),

1
Y. 1
YA By) n=0 @ ng, (MK)=—— . (4.5

eﬁHwk(m) -1
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This expression can be immediately used for Schwarzschild %

black holes. Its generalization to particldsack hole$ with j Q(E)e” PErdE

spin and charge is straightforward and amounts to summing 0

also overJ andQ (which we avoid writing explicitly in this vV too o

section to keep the notation simpler =e p( - f delﬁj dma(m)
To describe particle interactions one needs the particle (2mP~t )= 0

propagator, which can be determined from E4.3) by
means of the time-ordered prodycut T ¢(x;) ¢(X,)|out). XIn[1— e~ Breoxm7 | 4.11)
The Fourier transform of this expression is

This is Hagedorn's self-consistency conditi@9]. It is well
Ag=—- —27i §(K2=m?)ng(m,k), (4.6) known that only stringsgf=1) satisfy this condition,
Pre-mitie s
a(m)~e’™  (m—ow), (4.12

with ng given by Eq..(4.5). These ex.pressions are valid if for B,>b= Hagedorn's inverse temperature. But black
black holes are described by a local field theory. However, 3Roles are not strings, as has been inferred from the quantum

discusseq in _Sec. Il, the particle number di_stributior_1 given Mechanical density of states for Schwarzschild black holes in
Eqg. (4.5 implies loss of coherence. The in state is a PUregac 11 A

State

a(M)~eCMP 273 (4.13

[0 t=0)=[0)[0), 4.7 _ N
Therefore black holes do not satisfy Hagedorn'’s condition
but the number density obtained from the outgoing states is P —2)/(D—3)>1 for D>3]. The black hole system is
thermal distribution. not in thermal equilibrium because it does not fulfill the self-
In the microcanonical approach black holes are quanturfonsistency condition required for thermal equilibrium. We
excitations ofp-branes, and hence non-local effects must beé?'® thus led to the conclusion that the thermal vacuum is the
taken into account. This is accomplished by summing ovefasé vacuum for a black hole.

all possible masse@ngular momenta and charges
B. Microcanonical formulation

The true vacuum for a black hole can be obtained by first

writing the thermal vacuum in terms of the density mafrix
for a system in thermal equilibrium:

Inclusion of non-local effects changes the thermal vacuum to

nBH(k)zf:dmo(m)nBH(m,k). (4.9

10(B))=p(B;H)|.7), (4.14
. ;
out= g | TS|
- p(aH)= )
ka e Aok n V@ [Ny ), (4.9 , (Zle(B. M)
" p(B;H)=eAH

in which them andk labels are shown explicitly to empha-
size the dependence of the states on the mass and momen-
tum. The quantity in square brackets represents the product
of the sums over the discrete values of the momentum angij
mass. The canonical partition function extracted from this

7)=

H }Ir[n |nk,m>®|ﬁk,m>- (4-15)

k,m ny m

he trace of an observable operator is given by
expression is

Tr 0=(7/0|.7). (4.16
\% oo ([ For example the free field propagator can be determined
Z(By)=exp — ——— f dP 1kf dmo(m) from
(2’7T)D_l L 0
AP=—i(7IT () (x)pl7). (417
XIn[1— e~ Prexm] | (4.10
The superscripts orp refer to the member of the thermal
doublet[31],
where the discrete mass and momentum indices have been
changed to continuous values. A system in thermodynamical P ~¢ 4.19
equilibrium must satisfy the condition o) '

044014-6



MICROFIELD DYNAMICS OF BLACK HOLES PHYSICAL REVIEW D58 044014

being considered. The Fourier transformmzl(xl,xz) (the Y (6, ) e iev
physical componeits equal toA 5 given in Eq.(4.6). Yin=——— v=t+r,, (5.0
If instead of treating black holes as objects in thermal 87w

equilibrium at fixed temperaturel and corresponding h is th ledortoi dinate. A toi
vacuum|By) we treat the black holes as having fixed energyW erer, Is the so-calledortoise coordinate. An outgoing

E, we can formally define the microcanonical vacuum as wave has the form

1 E - , ’ :Y|m(9,¢) e 't
|E>=WLQ(E—E L el BIdE, (419 W

u=t-r,. (5.2

whereL ! is the inverse Laplace transform. Our analysis oflf we now consider waves propagating on a black hole back-

the WKB approximation for black holes in Secs. Il and Iil ground, e.g. a Schwarzschild black hole, and do not take into

shows that the assumption that black holes are at fixed eficcount back-reactions, then the incoming wave becomes
ee for exampl¢33))

ergy is physically more reasonable than assuming that the
are at fixed temperature. Using this basis physical correlation ol )n(vg—)
functions are expressed as Yim(6,¢) € 0 v<Dg

Yin=1 V8w r ’ " (5.3

0, V>Vg.

GEMN(L2,. . N)=(TIT(D), ... ™MN)E).

(4.20
This wave obeys the wave equation in a background with

Interaction effects can be taken into account by means of thg, tace gravityi. The in states for the two vacua are related
microcanonical propagator by the Bogoliubov transformation

All(k):;_zﬂ.i S(k2—m?)ng(m,k) aww'}_ 1 ”Od (w,)llze“'ia)'vei(a)/K)m[(vo—U)/C]
E k2—m2+ie E e wa’ _27T - v w '
(4.21 (5.9
whereng(m,k) is the microcanonical number density, where c is a constant. The two coefficients and 8 are
related by the Wronskian condition
mi=3, LEIM) pe i) w22
ng(m,k) = ——————0(E—lwy), .
y Q) “ 2 ltpw >~ |Buw|1=1. (5.5

which is our candidate alternative to Ed.5) for the distri-

bution of particles emitted by a black hole. In Eq. (5.5 the variablew’ has been rendered a discrete

variable by box normalization of the wave functions. Also
backscattering of the fields from the spacetime curvature has
V. WAVE FUNCTIONS been ignored. The integrals in E¢6.4) can be evaluated

The analysis carried out so far is global in nature. In fact€XPlicitly, and one finds that
although we were able to show consistent equilibrium con-
figurations for gases of black holes and number densities for
the emitted radiation in such configurations, the geometry o
spacetime never appears explicitly in the final expression
Of course, one is also interested in the local properties o
spacetime, and this is most intriguing in the present case 1
becayse the abovg _results mclude_ implicitly any back- nﬁH(w)ZE |,3ww,|2= e (5.7
reactions of the radiation on the metric. o' e 1

Thus we need a probe to test the spacetime which corre-
sponds to the microcanonical vacuum described in the pre- B. Microcanonical vacuum
vious section. We then turn to the study of the propagation of ) . ) .
waves and show that the wave functions in the microcanoni- ' Ne relationship betweea and 8 in Eq. (5.6) arises be-

cal vacuum can be obtained by making a formal replacemerfi@use the logarithmic term in E¢5.4) introduces a branch
in the wave functions obtained for the thermal vacuum. cut, and the integration around this branch cut causes the
factor multiplying this term(times 2r) to appear in the ex-

ponential multiplyingB. Thus if we simply make the formal
replacement

In flat 4-dimensional spacetime with spherical coordinates
t,r,6,¢ an incoming spherical wave collapsing on a point is 27T—w—>|n[1+n*1(w)] (5.9
given in null coordinates asymptotically by E ' '

|aww’|2:ezwle|wa’|2' (56)

gubstituting this relation into Eq(5.5 one obtains the
lanckian distribution

A. Thermal vacuum
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where ng(w) is the microcanonical number density as ex-7—0 limit is equivalent to takingV/M ,— at fixed w and
pressed in Eq(4.22), the relevant waves are of the form  neglecting thdpositive andO(#)] w? term in the exponent
_ with respect to thénegative and)(%°)] o term. In this case
Yim(0,¢) e ! we recover the thermal number densi§y7).
Out:m ro (5.9 The above approximation works only féro<Mc?/I,
which shows that high frequency Hawking photdmsth o
and ~Mc?/%) are responsible for the failure of the canonical
description and that corrections to the thermal spectrum be-
Yim(0,b) gli2min[1+ng !()]in(vo—v) come effective when the total energy emitted in a given
o 5.2 r , U<Uo, mode (~1%w) is of the same order of the mass of the black
Yin mw hole (Mc?). Therefore one expects that the microcanonical
0, vV>vg. description begins to depart appreciably from the thermal
(5.10  description for relatively small black holes, that is for black
holes which have already emitted a large fraction of their
mass, and fails completely for black holes of Planck mass or
less. This is consistent with the naive idea that, when the
amount of energy emitted by a black hole becomes compa-
rable toM, the (vacuun) geometry assumed to describe the
initial space-time becomes a less reliable approximation.
Further, thew? term in Eq.(6.2) is a reflection of the fact
2 | Buw|?=ne(@). (5.12  that black holes have negative microcanonical specific heat.
¢ To see this let us set=G=#A=1 again and rewrite Eq.

Of course the wave in Eq5.10 does not satisfy the same (4.22 as
wave equation as the wave in E®.3), but it will satisfy a
wave equation in a background whose metric includes back- QM —lw,(m))

i - Ny = —— (M —|
reaction and non-local effects. M lZl QM) ( )

The relation betweew and 8 now becomes
-1
|| 2= e B, |2, (5.11)

which gives, for the sum oven’,

[

VI. BLACK HOLE DECAY RATES M/w
:Zl exd Se(M —lw)—Se(M)]. (6.3

The rate of decay of any kind of black hole can be calcu-
lated from the number density(w) representing the avail-
able states which can be fed into by the Hawking radiationTaylor-expanding the last expression we find
Thus the number densit{p.7) obtained from the thermody-
namical picture should apply also to black holes with very S  12w? 4°S
small mass. But for black holes with mass of the order of the Ny =exp( —lo—+———+...|. (6.9
Planck mass or less we will show that the thermodynamical IM 2 M2
picture is no longer a good approximation of the true micro-
canonical description and one expects the two approaches The first term in the exponential is proportionalgg while
lead to significantly different predictions for the survival of the second term is proportional mﬁ/cv_ We recall here
cosmological black holeswith small masp in the present that our results rely on the use of the microcanonical en-
universe. semble as the only self-consistent approach for systems with

For simplicity we consider only 4-dimensional Schwarzs-degeneracies given by expressions of the form in (B),
child black holes. In this case the microcanonical density isyhich, in turn, are expected to apply mbranes[1,2,25—

given by (we restore the fundamental constants 27]. The same expressior6.3 and (6.4) have been ob-
a2 tained recently in Ref[15] and further generalized ifl6]
Q(M)=et™M My, (6.1)  starting from an effective D-string model for black hole mi-
. ) 0 . i crostates in the microcanonical ensemble.
with the masaM of the black hole timeg~ being the fixed Using the expressions fmﬁH in Eq. (5.7 andn,, in Eq.

energyE andM = \#c/G the Planck mass. Substituting the

expression fort) into Eq. (4.22, we find, for the number (6.2, we can calculate the decay rates for radiating black

holes predicted by the two theories. The luminosity is given

density, by
McZ/fiw , ,
_ (— 87IM/IM2c?)h 0+ (4m12IM2cHh2w? 1 ®
(@) ;1 € P P : L=Ef doo’l(o)n(w), i=8, M. (6.5
0

(6.2

Then we notice that in the classical linfit—0 (at fixedc  The factorI' takes into account backscattering from the
andG) the Planck mass vanishes and the sum bvans up  spacetime curvature and in this capacity would replace the 1
to « for fixed M and w. Therefore one recognizes that the on the right hand side of E@5.5). Carrying out the integra-
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tion for the thermal number density with~1 and multiply-  Eg. (6.7) which, on the other hand, predicts that primordial,
ing by the horizon area to get the rate at which mass is lostnicroscopic black holes could still be around today. In fact

we find the corresponding decay rate goes to zero as a powst of
and forM~M,,
dM‘ hct 6.6
Q| = . . M
dt|, G2m2 M~ (6.9
(1+3aMgt)1?®

For M~M, we approximate the sum in the microcanonical
number density(6.2) by retaining only the dominarit=1  Wherea=cG/#?, or even slower foM <M.
term and the integration ovep in Eq. (6.5 can then be

carried out explicitly. In this approximation we obtain VII. CONCLUSION

For black hole masses near the Planck mass the microca-
~_ f 4 (6.7) nonical approach is clearly preferable to the thermodynami-
M h? cal approach in the semiclassical quantization processes de-

scribed above. It is free of the inconsistencies present in the

This rate is in agreement with what one would expect from ahermodynamical approach, and its predictions seem to be
model of quantum black holes as extended objectgnore physically reasonable, e.g. a finite black hole decay
(p-branes. The more massive the black hole is, i.e. therate throughout the life of the black hole.
higher the excited state of thg-brane, the more rapid the  The use of a fixed energy basis for the Hilbert space of the
decay. The constant in front of thé“ term is very large, so theory instead of the usual thermal state implies that black
that the decay rate is very high until masses much less thafoles are particle states. In our interpretation of black holes
the Planck mass are reached. In this region of mas$Ef).  as quantum objects the associated quantum degeneracy of
is no longer adequate because the luminokiiy Eq. (6.5  states obtained from the inverse of the tunneling probability
would have to be obtained using the full sum in &82). points to the identification of black holes with the excitation

The thermodynamical theory predicts that the decay ratgnodes ofp-branes. The self-consistent treatment of black
blows up asM — 0 and that it takes a finite time for the black holes as quantum extended objects implies that black holes
hole to completely evaporate, are elementary particles.

dm
dt
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