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Lightlike signals in general relativity and cosmology
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The modelling of light-like signals in general relativity taking the form of impulsive gravitational waves and
light-like shells of matter is examined. Systematic deductions from the Bianchi identities are made. These are
based upon Penrose’s hierarchical classification of the geometry induced on the null hypersurface history of the
signal by its embedding in the space-times to the future and to the past of it. The signals are not confined to
propagate in a vacuum and thus their interaction with matter~a burst of radiation propagating through a cosmic
fluid, for example! is also studied. Results are accompanied by illustrative examples using cosmological
models, vacuum space-times, the de Sitter universe and Minkowskian space-time.@S0556-2821~98!06416-9#
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I. INTRODUCTION

In his classic work on impulsive gravitational wave
~gravitational waves having a Dirac delta function profi!
Penrose@1# introduced a hierarchical classification of intrin
sic geometries that the null hypersurface history of the w
front inherits from the space-times it is embedded in. T
classification is related to the physical characteristics of
light-like signal—a fact which emerges clearly from th
analysis of light-like shells of matter and impulsive gravit
tional waves carried out by Barrabe`s and Israel@2#. They
generalize the usual approach~see@3#! to the study of non-
null singular hypersurfaces, based on the extrinsic curva
tensor of the hypersurface, to include the light-like case. T
light-like signal can be an impulsive gravitational wave o
light-like shell of matter or both. The latter situation could
viewed as a model of a burst of gravitational radiation
companied by a burst of neutrinos from a supernova@4#. In
@1# and@2# the properties of the signal which can be obtain
from the Bianchi identities are either implicit in the work o
are only partially explicitly derived. In this paper we take
systematic approach to the deductions one can make
the Bianchi identities depending upon the type of induc
geometry~in Penrose’s sense! on the history of the signal. As
one moves through the hierarchy of geometries more in
mation becomes available from the Bianchi identities. As
study is not confined to vacuum space-times we in addi
examine the interaction of a light-like signal with matter~a
burst of radiation propagating through the cosmic fluid!. We
therefore analyze in some detail the influence of the lig
like signal on a congruence of time-like world lines—th
histories of galaxies in a cosmological model, for examp
We show that for the signal to include a gravitational wa
the shear of the fluid lines must jump across the history
the signal in space-time. For the signal to be a light-like sh
of matter then a jump in the acceleration, vorticity or expa
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sion of the histories of the fluid lines is necessary. Our
ductions are presented~in Sec. IV below! in the form of a
series of lemmas, each followed by illustrative examples
volving cosmological models, vacuum space-times, the
Sitter universe and Minkowskian space-time.

The outline of the paper is as follows: In Sec. II we giv
an introduction to and brief summary of the Barrabe`s-Israel
@2# formalism, the basic equations needed to study the
havior of a time-like congruence intersecting the history
the light-like signal in space-time and a description of t
Penrose classification of induced geometries on the his
of the signal. In Sec. III we systematically deduce the co
sequences of the twice-contracted Bianchi identities and
Bianchi identities which become available as one wo
through the hierarchy of induced geometries. Section IV c
tains the main conclusions of our work in the form of phy
cal and geometrical applications of the results of Secs. II
III. The paper concludes with a discussion in Sec. V.

II. GEOMETRICAL PRELIMINARIES

The history of a light-like shell or an impulsive gravita
tional wave corresponds in the space-time manifoldM to a
singular null hypersurface across which the metric ten
gmn is only C0: i.e., it is continuous but its first derivative
are discontinuous across the hypersurface. This can be
for example as a model for the emission of light-like mat
and gravitational radiation due to a sudden change in pr
erties such as the mass, the angular momentum and the m
pole moments of a gravitating body~an example of this is the
production of bursts of neutrinos and gravitational radiat
from a supernova!. In this section we first make a brief re
view of a general formalism adapted to the case of singu
null hypersurfaces which has been developed a few ye
ago@2#, and of its application to the splitting of the light-lik
signal between a shell and a wave@4#. Then we analyze the
discontinuities in the kinematical quantities~velocity, accel-
eration, expansion, shear and vorticity! of a congruence of
time-like lines crossing a singular null hypersurface. Fina
we present the Penrose classification@1# of intrinsic geom-
© 1998 The American Physical Society13-1
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C. BARRABÈS AND P. A. HOGAN PHYSICAL REVIEW D58 044013
etries that a singular null hypersurface inherits from its e
bedding inM and which will serve as a basis for the cla
sification of the action of a null shell and/or a wave on
congruence of time-like lines.

We consider a space-timeM which is divided into two
halvesM1 andM2 separated by a null hypersurfaceN
and with a local coordinate system$x1

m % inM1 and$x2
m % in

M2, Greek indices taking values 0,1,2,3, in terms of wh
the metric tensor components aregmn

1 andgmn
2 respectively.

Let ja, Latin indices taking values 1,2,3, be local intrins
coordinates onN. The parametric equations of the embe
dings ofN have the formsx6

m 5 f 6
m (ja). The corresponding

tangent basis vectors aree(a)5]/]ja, and their scalar prod
ucts define the induced metric onN:

gab5e~a!•e~b!5gmne~a!
m e~b!

n u6 , ~2.1!

assumed the same on both faces of the hypersurface.
dimensional scalar products are indicated by a centered
as in Eq.~2.1! and evaluation of a quantity on the plus
minus side ofN is indicated by a vertical stroke followed b
a plus or minus~or both if the quantity is the same on bo
sides ofN!.

Let n be normal toN with componentsn6
m viewed on the

plus and minus sides. Thus

n•nu650, n•e~a!u650. ~2.2!

AsN is a null hypersurface the normaln is tangent to it and
can be decomposed along the tangent basis vectors as

n5nae~a! . ~2.3!

Let us introduce a transversalN onN and require its projec-
tions onto the plus and minus sides ofN to be equal, i.e.

@N•N#5@N•e~a!#50, ~2.4!

where we use square brackets to denote the jump of
quantity F that is discontinuous across the hypersurfa
@F#5 1F22F. In order to make sure thatN is transverse to
the hypersurface we require that it have a non-vanishing
lar product with the normaln:

N•n5h21, ~2.5!

whereh is some non-zero constant usually taken to be21.
Note thatN is not uniquely defined by this equation as o
may make a tangential displacementN°N1za(jb)e(a) with
arbitrary functionsza for a prescribedh. Next we define the
transverse extrinsic curvatureKab of the null hypersurfaceN
as

Kab52N•¹e~b!
e~a! , ~2.6!

and its jump across the null hypersurface by

gab52@Kab#, ~2.7!

where¹ denotes covariant differentiation with respect to t
four-dimensional Levi-Civita` connection. It can be show
04401
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@2# that the jumpsgab are independent of the choice of th
transversalN and thus define a purely intrinsic property
the hypersurface.

As the metric tensor is onlyC0 at the hypersurface the
Riemann, Ricci and Weyl tensors in general each conta
singular Diracd-term. The stress-energy tensor which a
pears on the matter side of the Einstein field equations
contains a similar term which one interprets as the surf
stress-energy tensor of a shell whose history in space-tim
the null hypersurfaceN. The existence of a surface stres
energy tensor is an intrinsic property of the hypersurface
it has intrinsic componentsSab which are given by@2#

16ph21Sab5~g
*
acnbnd1g

*
bdnanc!gcd

2g
*
abg†2nanb~g

*
cdgcd!, ~2.8!

whereg†5gabn
anb. In this expression we have introduced

~non-unique! ‘‘pseudo’’-inverse metric@2# g
*
ab ~as N is a

null hypersurface the induced metric is degenerate and
no inverse! such that

g
*
abgbc5dc

a2hnaNc , ~2.9!

whereNc5N•e(c) . It is important to note that the expressio
~2.8! for the surface stress-energy tensor is independen
the choice of the ‘‘pseudo’’-inverse metric.

Another important point is that only four of the six com
ponents of the jumpgab appear inSab, and correspond to
nagab and g

*
abgab . This leaves two components which a

decoupled from matter and describe an impulsive grav
tional wave, as an analysis of the singulard-part of the Weyl
tensor reveals@4#. These two components are given by@4#

ĝab5gab2
1

2
g
*
cdgcdgab22hncgc(aNb)1h2gcdn

cndNaNb ,

~2.10!

and it is easy to see thatĝabn
b50 andg

*
abĝab50. The two

non-vanishing components ofĝab represent the two degree
of freedom of polarization of the wave.

A covariant counterpart to the above description exi
and we now summarize the main results. The intrinsic qu
tities gab and Sab can be extended to four-tensors on t
space-time manifold. In a local coordinate system$xm% cov-
ering both sides ofN ~for example it can be either$x1

m % or
$x2

m %! we define the tensorsgmn and Smn by the require-
ments.

gmne~a!
m e~b!

n 5gab , Sabe~a!
m e~b!

n 5Smn. ~2.11!

It is easy to see thatSmn satisfiesSmnnn50 and is thus tan-
gential to the hypersurface. It can also be shown thatgmn is
directly related to the jump in the first derivatives of th
metric tensor. One gets

@]agmn#5hnagmn , @Na]agmn#5gmn , ~2.12!

where we have used Eq.~2.5!, and for the jumps of the
Christoffel symbols,
3-2
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@Gab
m #5

h

2
~ga

mnb1gb
mna2nmgab!. ~2.13!

The covariant componentsSab of the surface stress-energ
tensor of the null shell are given by

16ph21Sab52g (anb)2gnanb2g†gab , ~2.14!

where

ga5gabnb, g5gabgab, ~2.15!

andg† is defined above and can be rewritten as

g†5gabnanb5gana. ~2.16!

We consider now a congruence of time-like curves w
unit tangent vectorua, u•u521, crossing the singular nul
hypersurfaceN ~as previously we are using a coordinate s
tem $xm% covering both sides ofN!. This congruence can b
arbitrarily chosen in each domainM6 and in the sequel we
shall only consider the case where the tangent vector is
tinuous acrossN. If u is tangent to matter world lines in
M6, then choosingu continuous acrossN forbidsN be-
coming the history of a shock wave propagating through
matter in the usual sense@5,6#. We chooseu to be continuous
acrossN for the following reasons:~a! this is the minimal
requirement consistent with a delta function appearing in
Weyl tensor~as can be seen by applying the Ricci identit
to u!, ~b! this allows finite jumps~and no delta function! to
appear in the kinematical quantities associated with the i
gral curves ofu ~the acceleration, vorticity, shear and expa
sion! and~c! the jumps in the kinematical quantities are th
simply related to the presence or otherwise of a light-l
shell and/or a gravitational wave in the signal with historyN
~see Sec. IV below where these general results and phy
examples are given!.

Let us then consider a congruence of time-like curv
with continuous 4-velocityu but with discontinuous first de
rivatives, having jumps acrossN described by the vectorl
such that

@]mua#5hnmla or @Nm]mua#5la, ~2.17!

where we have used Eq.~2.5!. It follows that the jump in the
4-accelerationaa5um¹mua is given by

h21@aa#52sla2sUa2
1

2
~u•U !na, ~2.18!

where we have puts52u•n.0 and Ua5gabub. Using
u•a50 and the above equations one gets the following
lation:

u•U522u•l. ~2.19!

The expansionu, shearsab , and vorticityvab of the time-
like congruence are in general discontinuous acrossN and
have jumps given by
04401
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h21@u#52
1

2
sg1l•n, ~2.20!

h21@sab#52
s

2
gab1l (anb)2sU(aub)

2
1

2
~u•U !n(aub)2sl (aub)2

h21

3
@u#hab ,

~2.21!

h21@vab#5U [anb]1l [anb]2sU@aub]

2
1

2
~u•U !n@aub]2sl@aub] , ~2.22!

where the projection tensorhab5gab1uaub has been intro-
duced. We can alternatively express Eq.~2.22! in terms of
the vorticity vector

va5
1

2
habmnubvmn , ~2.23!

wherehabmn5(2g)21/2eabmn with g5det(gmn) and eabmn

is the four-dimensional Levi-Civita` permutation symbol. The
jump in the vorticity vector is given by

h21@va#5
1

2
habmnub~Um1lm!nn . ~2.24!

Finally we recall a classification introduced by Penro
@1# for the geometry that the null hypersurfaceN inherits
fromM1 andM2. As any null hypersurfaceN is gener-
ated by a uniquely defined two-parameter family of null ge
desics one can consider a hierarchy of three types of intri
geometry in order of increasing structure.
Type I: the induced metrics match@our basic assumption
~2.1!#.
Type II: type I with parallel transport of the normaln along
the null generators matching.
Type III: type II with parallel transport of any tangent vect
to N along the null generators matching.
A type I geometry onN is the most general of the three type
and is always assumed to be valid in our considerations
type II geometry requires thatnm¹m

1na5nm¹m
2na or using

Eq. ~2.13! that g†50. If one defines the acceleration param
eterk by

nm¹mna5kna, ~2.25!

one can show that@k#5hg†/2 so that a type II geometry
implies @k#50. In particular this is realized when the nu
generators are affinely parametrized on both sides ofN. A
type III geometry requires thatnm¹m

1va5nm¹m
2va for any

vector va such thatnava50, and using Eq.~2.13! this im-
plies thatga5Ana whereA is an arbitrary function onN.

A physical interpretation in terms of the surface stre
energy tensor of a null shell, if it exists having historyN, can
be given to the type II and III geometries above. As shown
@2# the surface pressurep52(h/16p)g† and so a type II
3-3
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C. BARRABÈS AND P. A. HOGAN PHYSICAL REVIEW D58 044013
induced geometry corresponds to a pressure-free null s
i.e. a shell only admitting a surface energy densityh f and
anisotropic surface stresses. For a type III geometry indu
on N the surface stress-energy tensor reduces from
~2.14! to 16ph21Sab5(2A2g)nanb , there are no surface
stresses and the surface energy density ish f 5h(2A
2g)/16p. If A5g/2, then there is no shell andN is the
history of an impulsive gravitational wave providedĝab
Þ0.

III. CONSEQUENCES OF THE BIANCHI IDENTITIES

On the null hypersurface history of the light-like sign
we have the normaln ~which is tangential toN sinceN is
null! and the time-like vector fieldu, for which u•n52s
,0. In a local coordinate system$xm% covering both sides o
N, it is helpful to define onN, but not tangent toN, the null
vector field

l m52
1

2s2 nm1
1

s
um, ~3.1!

with l •n521. Now n,l can be supplemented by a compl
null vector fieldm, with componentsmm, tangent toN and
also orthogonal tol , and satisfyingm•m̄511 ~the overbar
denoting complex conjugation!. The null tetrad$n,l ,m,m̄
defined onN will be useful for the purposes of displayin
formulas below. IfN has the equationF(xm)50 and nm
5a21F ,m for some functiona defined onN, then following
from the results of Sec. II, the components of the Einst
tensor of the space-timeM1øM2 have the form

Gmn5Ĝmnd~F!1Q~F!1Gmn1@12Q~F!#2Gmn,
~3.2!

whered is the Dirac delta function,Q is the Heaviside step
function with F.0 inM1, F,0 inM2 and

Q ,m5anmd~F!. ~3.3!

In Eq. ~3.3!, 6Gmn are the components of the Einste
tensors inM6 respectively and can be written as28p6Tmn

in terms of the respective energy-momentum-stress tens
Also

Ĝmn528paSmn, ~3.4!

with Smn given by Eq.~2.14!. Thus in particular

Ĝmnnn50. ~3.5!

We now apply the twice-contracted Bianchi identiti
¹nGmn[0 to Eq.~3.2!. On account of Eq.~3.5! the term in
¹nGmn involving the derivative of the delta function van
ishes and we obtain

¹nĜmn1a@Gmnnn#50. ~3.6!

SinceĜmn in Eq. ~3.2! is definedonN, it only makes sense
to calculate derivatives ofĜmn tangential toN. The number
04401
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of such different tangential derivatives available to us d
pends upon the type of the induced geometry onN. If the
induced geometry is type I, then we obtain one meaning
equation from Eq.~3.6!, namely,

28ph21@Tmnnmnn#5rg†. ~3.7!

Here square brackets as always denote the jump in the
closed quantity acrossN and r5mmm̄n¹nnm is the expan-
sion of the null geodesic integral curves ofn ~@r#50 sincer
is intrinsic toN!. If the induced geometry is type II, the
g†50. Hence the acceleration parameterk introduced in Eq.
~2.25! is continuous acrossN. Now the meaningful equation
emerging from the twice contracted Bianchi identities a
Eq. ~3.7! with g†50 and also

216ph21@Tmnmmnn#5gm8 mm13rgmmm1sm̄mgm .

~3.8!

Heregm8 5nn¹ngm ands5mmmn¹nnm is the complex shea
of the generators ofN, which is intrinsic even for a type I
geometry. Finally if the induced geometry is type III, the
gm5Anm for some functionA defined onN. Now the right
hand sides of Eqs.~3.7! and~3.8! vanish and in addition we
find that

h21@Tmnl mnn#5 f 81~2r1k! f , ~3.9!

where~as in Sec. II! 8p f 5A2 1
2 g and f 85 f ,mnm.

To obtain the Bianchi identities we use the tensor rep
senting the left and right duals of the Riemann curvat
tensor@7#:

Gmnrs5
1

4
hmnabhrslgRablg , ~3.10!

whereRablg are the components of the Riemann curvatu
tensor andhabgd5(2g)21/2eabgd . Then the Bianchi iden-
tities read

¹sGmnrs[0. ~3.11!

The right hand side of Eq.~3.10! can be written in terms of
the Riemann and Ricci tensors and the Ricci scalar as

2Gmnrs5Rmnrs2gmrRns2gnsRmr

1gmsRnr1gnrRms1
1

2
R~gmrgns2gmsgnr!.

~3.12!

It is then useful to substitute in Eq.~3.12! the Riemann ten-
sor in terms of the Weyl tensor. For the space-tim
M1øM2 the tensor~3.10! has a decomposition similar t
that of the Einstein tensor~3.2!:

Gmnrs5Ĝmnrsd~F!1Q~F!1Gmnrs

1@12Q~F!#2Gmnrs, ~3.13!

with
3-4
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h21a21Ĝmnrs522n[mgn] [ rns]22gm[swr]n

12gn[swr]m2g†gm[rgs]n, ~3.14!

wherewmn5g (mnn)2 1
2 gnmnn. One readily sees that

Ĝmnrsns50. ~3.15!

Thus when Eq.~3.13! is applied to Eq.~3.11! the term in-
volving the derivative of the delta function vanishes and
obtain, from Eq.~3.11!,

¹sĜmnrs1a@Gmnrsns#50. ~3.16!

Now Ĝmnrs is defined onN and so Eq.~3.16! only makes
sense when it involves derivatives ofĜmnrs tangential toN.
This depends on the type of geometry induced onN by its
embedding inM1 and inM2. If the geometry is type I,
then we conclude, from Eq.~3.16!,

28ph21@Tmnnmnn#5rg†, ~3.17!

2h21@C0#52sg†, ~3.18!

2h21@C1#28ph21@Tmnmmnn#5rmmgm2sm̄mgm .

~3.19!

Here Eq.~3.17! coincides with Eq.~3.7! obtained from the
twice-contracted Bianchi identities in the type I case.@C0#
and@C1# are the jumps in the Newman-Penrose compone
of the Weyl tensors ofM1 andM2 acrossN ~we use a
standard notation@8# for the components of the Weyl tenso
calculated on either side ofN, on the null tetrad$n,l ,m,m̄%!.
If the geometry induced onN is type II, then Eqs.~3.17!–
~3.19! hold, with zeros on the right hand sides of Eqs.~3.17!,
~3.18!, and we have, from Eq.~3.16!,

2h21@C1#18ph21@Tmnmmnn#

522sm̄mgm22rmmgm2mmgm8 . ~3.20!

We note that the difference between Eqs.~3.20! and ~3.19!
yields Eq.~3.8! obtained already from the twice-contracte
Bianchi identities in the type II case. Finally if the geomet
of N is type III, then Eqs.~3.17!–~3.20! hold with the right
hand sides all vanishing and in addition we have

h21@C2#2
2p

3
h21@T#52

1

2
sgmnm̄mm̄n

14p$ f 81~r1k! f %, ~3.21!

24ph21@Tmnm̄mm̄n#5
1

2
gmn8 m̄mm̄n

1
1

2
~r1k!gmnm̄mm̄n24p f s̄,

~3.22!

wheregmn8 5ns¹sgmn .
04401
e
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As a final preliminary we note that if the coefficient of th
delta function in the Weyl tensorĈmnrs is calculated using
Ĝmnrs given by Eq.~3.14! andSmn given by Eq.~2.14! and
then if its components are calculated in the Newman-Pen
form ĈA ~say! for A50,1,2,3,4, we obtain

Ĉ050, Ĉ150, Ĉ252
1

6
h g†,

Ĉ352
1

2
hgmm̄m, Ĉ452

1

2
hgmnm̄mm̄n. ~3.23!

This shows~cf. @1,2#! that the delta function in the Wey
tensor is in general Petrov type II. If the induced geome
on N is type II, then g†50 and ĈA is Petrov type III,
whereas if the induced geometry onN is type III, theng†

50 andgmm̄m50 andĈA is Petrov type N. The signal with
historyN contains a gravitational wave ifĈ4Þ0.

IV. PHYSICAL AND GEOMETRICAL APPLICATIONS

We now draw physical and geometrical conclusions fro
the results outlined in Secs. II and III, in the form of a ser
of lemmas with illustrative examples.

Combining the jumps~2.18!, ~2.20!–~2.22! acrossN, in
the kinematical quantities associated with a time-like cong
ence intersectingN, with the Newman-Penrose componen
ĈA @given by Eq.~3.23!# of the coefficients of thed-function
in the Weyl tensor, we obtain the following, with straightfo
ward algebra:

Lemma 1:
~1! @smnmmmn#Þ0⇔Ĉ4Þ0;
~2! if @smn#50, thenĈ450 and

~a! @ammm#Þ0⇔Ĉ3Þ0,
~b! @vm#Þ0⇔Ĉ3Þ0;

~3! if @smn#50 and @am#50, then Ĉ35Ĉ450 and @u#

Þ0⇔Ĉ2Þ0.
We note from Eqs. ~2.18! and ~2.24! that
@am#50⇒@vm#50. The converse is not true because ag
from Eqs. ~2.18! and ~2.24! we find that if @vm#50, then
@am#5s22nl@al#(nm2sum) and we can only conclude from
this that in generalmm@am#50. This explains the appearanc
of all components of@vm# in part ~2b! of the lemma and of
only one complex component of@am# in part ~2a! of the
lemma.

We are particularly interested in lemma 1 when the tim
like congruence of integral curves ofu are the world lines of
the cosmic fluid in a cosmological model. The first part
the lemma says that if the signal with historyN includes a
gravitational wave, then its effect on the cosmic fluid is
cause a jump acrossN in a complex component of the she
of the congruence and, if the passage of the signal thro
the fluid does not result in a jump in the fluid shear, then
signal cannot contain a gravitational wave. In this latter c
the signal is a light-like shell of matter with a Petrov type
delta function in the Weyl tensor if the vorticity of the flui
3-5
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C. BARRABÈS AND P. A. HOGAN PHYSICAL REVIEW D58 044013
jumps acrossN or if a complex component of the fluid 4
acceleration jumps acrossN. If only the expansion of the
fluid jumps acrossN, then part~3! of the lemma shows tha
the delta function in the Weyl tensor is Petrov type III.

There is an interesting analogy between lemma 1 and
usual decomposition of perturbations of cosmological m
els into scalar, vector and tensor parts with the tensor pe
bations describing propagating gravitational waves and
other perturbations describing inhomogeneity in the ma
distribution ~see@9# and @10#, for example!. In lemma 1 the
analogue of the tensor perturbations is the jump in the sh
of the time-like congruence which by part~1! is necessary
for the signal with historyN to include a gravitational im-
pulse wave. The analogues of the vector and scalar pertu
tions are the jumps in the 4-acceleration and vorticity on
one hand and in the expansion on the other hand, leading
parts ~2! and ~3!, to the possibility of the signal being
light-like shell of matter.

To illustrate lemma 1 with an example of a signal cons
ing of a gravitational impulsive wave and a light-like she
propagating through the Einstein–de Sitter universe~say! we
must choose a cosmological model left behind by the sig
~the space-timeM1 to the future of the null hypersurfac
N! which has the properties:~a! its fluid 4-velocity joins
continuously to that of the Einstein–de Sitter universe onN
and ~b! its fluid 4-velocity has shear. Thus the line eleme
of M2 is that of the Einstein–de Sitter universe which,
coordinatesx2

m 5(t,r ,f,z), reads

ds252dt21t4/3b~dr21r 2df21dz2!, ~4.1!

whereb is a constant. Here thet lines are the world lines o
the particles of a perfect fluid with isotropic pressurep and
proper densitym satisfying the equation of statep5(b
21)m. A simple example of a space-timeM1 satisfying
the requirements~a! and~b! above is the anisotropic Bianch
type I space-time@11# with line element, in coordinatesx1

m

5(t1 ,r 1 ,f1 ,z1),

ds1
2 52dt1

2 1A1
2 ~dr1

2 1r 1
2 df1

2 !1B1
2 dz1

2 , ~4.2!

where

A15t1
~3b22!/6b , B15t1

2/3b . ~4.3!

The t1 lines are the world lines of a perfect fluid with iso
tropic pressurep1 and proper densitym1 satisfying p1

5m1 . As a boundary betweenM2 andM1 take the null
hypersurfaceN to be given by

r 15T1~ t1!,
dT1

dt1
5

1

A1
, ~4.4!

in the plus coordinates and by

r 5T~ t !,
dT

dt
5t22/3b, ~4.5!
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in the minus coordinates. As intrinsic coordinates onN we
can useja5(r ,f,z). The induced line elements onN from
M1 andM2 match@as required by Eq.~2.1!# if

t15t, r 15
6b

~3b12! F ~3b22!

3b
r G ~3b12!/~6b24!

,

f15S 3b12

6b24Df, z15z. ~4.6!

We must first check that the 4-velocities of the fluid partic
with histories inM1 andM2 are continuous acrossN.
This has to be done with care as we now have two lo
coordinate systems$x1

m % and$x2
m % on either side ofN, over-

lapping onN according to Eqs.~4.6!. Let 1vm5(1,0,0,0)
and 2um5(1,0,0,0). Then 1vm, 2um are the fluid 4-
velocities inM1 andM2 respectively. Let1um be the
same vector as2um but calculated on the plus side ofN. We
then compare~onN! 1vm with 1um and, if they are equal
then the fluid 4-velocity is continuous acrossN. To do this
we utilize the tangent basis vectorse(a)5]/ja @with ja

5(r ,f,z) in this case# introduced at the beginning of Sec. I
Then 1um is the same vector as2um if

@u•u#5@u•e~a!#50. ~4.7!

These are the same conditions~2.4! that a transversalN onN
has to satisfy and indeedu can be used as a transversal
desired. The four conditions~4.7! determine1um uniquely
and for the example we are considering we obtain1um

5(1,0,0,0). Hence1um51vm and the fluid 4-velocity is
continuous acrossN. Now using the theory outlined in Sec
II above we find thatgmn50 except for@quoting the non-
vanishing components ofgmn in the coordinate system$x2

m %
~say!#

g115
~b22!

b
t ~22b!/2b, g225

9b ~b22!

~3b22!2 t ~9b22!/6b.

~4.8!

With n2
m 5(t (23b12)/6b,t2(3b12)/6b,0,0) and m2

m

5221/2t22/3b(0,0,ir 21,1) we find that

gm5gmnn2
n 5dm

1 ~b22!

b
t ~223b!/3b, ~4.9!

g†5gmn2
m 5

~b22!

b
t ~229b!/6b, ~4.10!

gmnm̄mm̄n52
~b22!

2b
t2~3b12!/6b, ~4.11!

where in Eq.~4.11! we have writtenr in terms oft following
from Eqs. ~4.5!. Comparison now with Eqs.~3.23! shows
that Ĉ350 but Ĉ2Þ0 andĈ4Þ0. In addition we find that
the vector fieldl onN introduced in Eqs.~2.17! vanishes, as
doesUa5gab

2ub. We see from Eqs.~4.9!–~4.11! that the
3-6
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geometry induced onN is a type I geometry and thatN is
the history of both an impulsive gravitational wave and
light-like shell.

In the general case of a type I induced geometry onN we
notice that the equations following from the Bianchi iden
ties ~3.17!–~3.19! are all algebraic relations between som
components ofgmn and some of the jumps in the energ
momentum-stress tensors and the Weyl tensors ofM1 and
M2 acrossN. The further consequences of the Bianc
identities when the induced geometry is type II or III@Eqs.
~3.8!, ~3.9!, ~3.20!–~3.22!# can all be viewed as propagatio
equations for components ofgmn along the generators ofN
~derivatives along the generators being indicated by a prim!.
This is consistent because the type I geometry by itself
cludes the possibility of a unique parameter being assig
to the geodesic generators ofN on both the plus and minu
sides and hence unique propagation equations along t
generators of quantities defined onN cannot exist.

We emphasize the algebraic nature of the Bianchi ide
ties in the case of a type I geometry by stating the followin
Lemma 2:
If the geometry induced onN is type I, then

(a) if rÞ0 and/or sÞ0, Ĉ2 satisfies

rĈ25
4p

3
@Tmnnmnn#, ~4.12!

sĈ25
1

3
@C0#; ~4.13!

(b) if r2Þusu2Þ0, Ĉ3 is given by

@C1#24p@Tmnmmnn#52Ĉ3* r1Ĉ3s ~4.14!

and its complex conjugate (hereĈ3* is the complex conju-

gate ofĈ3).
We note again thatr,s are intrinsic toN (@r#505@s#)

for a type I geometry. For the cosmological example giv
above the expansionr and shears of the generators ofN are
given by

r5
1

r S 3b12

3b22D and s5
1

&r
, ~4.15!

while @Tmnnmnm#5s2@m1p#, with s defined after Eq.
~2.18!, and since onN the continuous 4-velocityu is or-
thogonal to the complex null vectorm tangent toN,
@Tmnmmnn#50 and one can readily verify that the algebra
equations in lemma 2 are satisfied.

The richest induced geometry is of course type III and
this case we can, with additional assumptions, deduce f
the Bianchi identities some interesting conclusions which
summarize in the following:
Lemma 3:
If the geometry onN is type III and ifM6 are vacuum
space-times, then@C0#5@C1#50,

@C2#5sĈ424phr f , ~4.16!
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and thus if@C2#50 and Ĉ4Þ0, then
(1) s50 and rÞ0⇒ f 50,
(2) s50 and r50⇒ f Þ0 is possible,
(3) sÞ0⇒rÞ0 and fÞ0,
where the surface stress-energy tensor of the light-like s
now has the form Sab5h f nanb .

We first note that part~1! of lemma 3 explains the
‘‘miracle’’ whereby the Penrose spherical impulsive wa
propagating through flat space-time@1# automaticallysatis-
fies the vacuum field equations. The historyN of the signal
in this case is a future null cone which is a shear-frees
50) expanding (rÞ0) null hypersurface. The induced ge
ometry is type III and thus by lemma 3~1! the surface stress
energy tensorSab must vanish (f 50). An example of part
~1! of lemma 3 in whichM6 are not flat is provided by
takingM6 to be two Petrov type III Robinson-Trautma
@12# vacuum space-times with line elements of the form

ds6
2 522r 6

2 p6
22dz6dz̄612dudr61K6du2,

~4.17!

with p65p6(z6 ,z̄6) and

K65D6 log p6 , D6K650, ~4.18!

where D652p6
2 ]2/]z6]z̄6 . These two space-times ar

joined together on the shear-free, expanding null hypers
faceN with the equationu50, with Eq. ~2.1! satisfied if

z15h~z2! and r 15F~z2 ,z̄2!r 2 , ~4.19!

where h is an analytic function ofz2 and F(z2 ,z̄2)
5p1 /(uh8up2). In coordinates labelled x2

m

5(z2 ,z̄2 ,r 2 ,u) we find thatgmn50 except forg11 and
g225ḡ11 with

g11522r
F8

F

]

]z
log~F8p2

2 !, ~4.20!

whereF85]F/]z2 . Thus the induced geometry is type II
there is no surface stress-energy tensor onN and, sinceĈ4

5 1
2 g11r 2

22p2
2 Þ0, N is the history of an impulsive gravita

tional wave.
Part ~2! of lemma 3 shows that ifN is a null hyperplane

~with generators having vanishing shear and expansion! and
if the matching ofM1 andM2 onN satisfying Eq.~2.1! is
such that the induced geometry is type III, thenN can be the
history of a plane impulsive gravitational wave and/or
plane light-like shell of matter. For example takeM1 to be
a pp-wave space-time with line element

ds1
2 5dx1

2 1dy1
2 12dudv11H~x1 ,y1 ,u!du2,

~4.21!

with Hx1x1
1Hy1y1

50 ~subscripts here denoting partial d

rivatives!. TakeM2 to be flat space-time with line elemen

ds2
2 5dx21dy212dudv. ~4.22!

Now matchM1 toM2 on the null hyperplaneN (u50)
with @1#
3-7
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x15x, y15y, v15v1h~x,y!, ~4.23!

to ensure that Eq.~2.1! is satisfied. Using the theory of Sec
II and III above withx2

m 5(ja,u) with ja5(x,y,v) we find
that gm450 and otherwisegab52h,ab . Thus with n2

m

5d3
m we havegm5gm350 and so the geometry induced o

N is type III. We also find that

8p f 52
1

2
g5hxx1hyy ~4.24!

and

Ĉ452
1

2
~hxx2hyy!1 ihxy . ~4.25!

This shows explicitly that a light-like shell and a plane im
pulsive wave can co-exist, each with historyN.

A simple example of part~3! of lemma 3 is a cylindrical
fronted light-like signal with historyN in flat space-time.
ThusM6 have line elements

ds6
2 5~u1v6!2df6

2 1dz6
2 12dudv6 . ~4.26!

Now N (u50) is a null hypersurface generated by shear
null geodesics (sÞ0). We match the induced metrics onN
with

f15q~f!, z15z, v15v/q8, ~4.27!

with q85dq/df. In coordinatesx2
m 5(f,z,v,u) we find that

gmn50 except for

g1152vH q9

q8
2

3

2 S q9

q8D
2

1q8221J . ~4.28!

Thus with n2
m 5d3

m we see thatgm50 and the induced ge
ometry onN is type III. The shears and expansionr of the
null geodesic generators ofN satisfy

r5s5
1

2v
, ~4.29!

while

4p f 5Ĉ452
1

4v2 g11. ~4.30!

Thus in generalf Þ0 and a shell and impulsive wave co
exist. We see that no signal exists with historyN if and only
if g1150. It is interesting to note that if no signal exists onN
and the isometric transformations preserving this state for
group, then they are given by Eqs.~4.27! with q(f)5f
1c, andc5const. There also exist other disconnected i
metric transformations ofN, of the form ~4.27!, when no
signal exists onN, but these transformations do not form
group.

A corresponding lemma to lemma 3 which has appli
tions to light-like signals propagating through a cosmic flu
is the following:
04401
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Lemma 4:
If the geometry onN is type III and ifM6 are perfect fluid
space-times with u continuous acrossN, then @C0#5@C1#
5@m1p#50 and

@C2#2
4p

3
@m#5sĈ424phr f , ~4.31!

and thus if@C2#5(4p/3)@m# and Ĉ4Þ0, then the deduc-
tions are the same as (1)–(3) of lemma 3.
The special case of the de Sitter universe is obtained
putting 28pp58pm5L, where L is the cosmological
constant. We will confine our observations on lemma 4 to
de Sitter case, leaving further applications of lemma 4
another occasion.

To illustrate Eq.~4.31! of lemma 4 we letM6 both be de
Sitter universes~with different cosmological constantsL6!
having line elements

ds6
2 5

2v6
2 dz6dz̄612du6dv6

S 11
1

6
L6u6v6D 2 . ~4.32!

Here N (u15u250) is a future null cone generated b
expanding (rÞ0) shear-free (s50) null geodesics. We
matchM6 onN with a Penrose@1# warp

z15h~z2!, v15
v2

uh8u
, ~4.33!

where h is an analytic function ofz2 and h85dh/dz2 .
Now the induced geometry onN is type III. In generalĈ4
52x/2vÞ0 with

x5
h-
h8

2
3

2 S h9

h8D
2

~4.34!

and

8pr f 5
1

3
@L#. ~4.35!

This is the form taken by Eq.~4.31! for this example since
now 6CA50 for A50,1,2,3,4, 8p@m#5@L#, h511 and
s50. Thus, if @L#50, then sincer51/vÞ0 we must have
f 50 and soN is the history of an impulsive gravitationa
wave @13#.

Finally as an illustration of conclusion~2! of lemma 4 we
considerM1 to be a Schwarzschild space-time with lin
element in Kruskal form

ds25r 2~du21sin2 udf2!2
64m3

r
e~12r /2m!dUdV,

~4.36!

with r 5r (UV) given by

S r

2m
21De~r /2m21!52UV, ~4.37!
3-8
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and we takeM2 to be de Sitter space-time~with L.0! with
line element

ds25r 2~du21sin2 udf2!22
~11lr !2

l2 dUdV,

~4.38!

wherel25L/3 andr 5r (UV) is given by

12lr

11lr
52UV. ~4.39!

These match~cf. @2#! on the horizonN (U50) if 2ml51.
We have rescaled one of the null coordinates in Eqs.~4.36!
and~4.37! to make the metric tensors given via the line e
ments~4.36! and ~4.38! continuous acrossN. The horizon
U50 is a null hyperplane generated by shear-free (s50),
expansion-free (r50) null geodesics. In the continuous c
ordinates (U,V,u,f) above we find using Eqs.~2.12! that
gmn50 except g225g11 sin2 u523V sin2 u/4m2 and f
53V/32pm2Þ0. If the situation above is reversed andM1

is de Sitter space-time~with L.0! andM2 is Schwarzs-
child space-time, thengmn50 except for g225g11 sin2 u
53V sin2 u/4m2 and f 523V/32pm2. In either case the in-
duced geometry is type III. The equation@C2#5(4p/
3)@m# becomes 1/4m25l2. There is no gravitational wave
present (Ĉ450) andN is the history of a light-like shell.

V. DISCUSSION

The lemmas that we have established above fall into
different categories. Lemma 1 concerns the interaction
tween a null shell and/or a wave and any time-like cong
ence with a continuous tangent vector at the intersection w
N. It shows the close relationship existing between the p
ence of a wave (Ĉ4Þ0) and the shear of the time-like con
gruence (@smnmmmn#Þ0). There is a complementary resu
due to Penrose@1# to the effect that for a null geodesic con
gruence crossingN with continuous tangent, a jump in th
complex shear is necessary forN to be the history of an
impulsive gravitational wave. On the other hand lemmas 2
relate the properties of the null hypersurface~embodied in
r,s,ĈA! to the outside medium~described by6Tmn! and the
outside geometry~described by6CA!. The different jumps
.
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@Tmnnmnm#,@Tmnmmnm#,@Tmnl ml m# tell how the fluid lines
and fluid properties~energy density, pressure! are modified
by the presence of the light-like signal. For instance Eq.~3.6!
can be written as

¹n~aSmn!52a@Tmnnn#, ~5.1!

and represents an equation of conservation for energy
momentum@2#. For a pure impulsive gravitational wave
reduces to@Tmnnn#50, which also holds for a shock wav
@5,6#.

Finally a couple of technical points which have aris
above merit discussion. At the beginning of Sec. III we no
that in a local coordinate system$xm% covering both sides of
N the equation ofN is F(xm)50 ~say! and so as normal we
can takenm5a21F ,m wherea is some function defined on
N. In the passage from type I geometry to type II geome
the acceleration parameterk becomes continuous acrossN.
In this case we are entitled to puta51 and so makek vanish
on N. However, situations can arise in applications with
type II or type III induced geometry onN in which the most
natural parameter to use along the generators ofN is not an
affine parameter. Then, although@k#50, we havekÞ0 and
for this reason we have retainedk in Eqs. ~3.9!, ~3.21! and
~3.22! @k does not appear in Eq.~3.8! or ~3.20! even when
non-zero#.

In introducing a time-like congruence crossing the histo
N of the light-like signal in Sec. II we chose to examine t
case in which the unit time-like tangent vector fieldum is
continuous acrossN but may have a jump in its derivativ
described via a vector fieldlm introduced in Eqs.~2.17!. As
we pointed out in Sec. II this assumption forbidsN being the
history of a shock wave in the usual sense~a shock wave in
a gas with macroscopic 4-velocityum, for example@5,6#!. In
this latter case the tangent to the congruence would it
jump acrossN. This complicates the study of the interactio
of the time-like congruence with the light-like signal by in
troducing delta functions~singular onN! into the kinemati-
cal variables associated with the congruence and is a t
for further study.
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