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The modelling of light-like signals in general relativity taking the form of impulsive gravitational waves and
light-like shells of matter is examined. Systematic deductions from the Bianchi identities are made. These are
based upon Penrose’s hierarchical classification of the geometry induced on the null hypersurface history of the
signal by its embedding in the space-times to the future and to the past of it. The signals are not confined to
propagate in a vacuum and thus their interaction with méétéurst of radiation propagating through a cosmic
fluid, for example is also studied. Results are accompanied by illustrative examples using cosmological
models, vacuum space-times, the de Sitter universe and Minkowskian spacEs586-282(98)06416-9

PACS numbe(s): 04.30.Nk, 04.20.Cv, 98.80.Hw

[. INTRODUCTION sion of the histories of the fluid lines is necessary. Our de-
ductions are presentdth Sec. IV below in the form of a
In his classic work on impulsive gravitational waves series of lemmas, each followed by illustrative examples in-
(gravitational waves having a Dirac delta function profile volving cosmological models, vacuum space-times, the de
Penrosd1] introduced a hierarchical classification of intrin- Sitter universe and Minkowskian space-time. .
sic geometries that the null hypersurface history of the wave The outline of the paper is as follows: In Sec. Il we give
front inherits from the space-times it is embedded in. Thisdn introduction to and brief summary of the Barraitsrael
classification is related to the physical characteristics of thé2] formalism, the basic equations needed to study the be-
light-like signal—a fact which emerges clearly from the havu_)r of a tlm_e-llke_ congruence intersecting the_h|story of
analysis of light-like shells of matter and impulsive gravita- the light-like signal in space-time and a description of the
tional waves carried out by Barrabeand Israe[2]. They  Penrose classification of induced geometries on the history
genera"ze the usual approa&ee[?)]) to the Study of non- of the Signal. In SeC'. I we SyStemaFlca”y' deduce the con-
null singular hypersurfaces, based on the extrinsic curvaturgéquences of the twice-contracted Bianchi identities and the
tensor of the hypersurface, to include the light-like case. Th&ianchi identities which become available as one works
light-like signal can be an impulsive gravitational wave or athrough the hierarchy of induced geometries. Section IV con-
light-like shell of matter or both. The latter situation could be tains the main conclusions of our work in the form of physi-
viewed as a model of a burst of gravitational radiation ac-cal and geometrical applications of the results of Secs. Il and
Companied by a burst of neutrinos from a Supernb‘]a'n . The paper concludes with a discussion in Sec. V.
[1] and[2] the properties of the signal which can be obtained
from the Bianchi identities are either implicit in the work or
are only partially explicitly derived. In this paper we take a
systematic approach to the deductions one can make from The history of a light-like shell or an impulsive gravita-
the Bianchi identities depending upon the type of inducedional wave corresponds in the space-time manifdidto a
geometry(in Penrose’s sengen the history of the signal. As singular null hypersurface across which the metric tensor
one moves through the hierarchy of geometries more inforg,,, is only C% i.e., it is continuous but its first derivatives
mation becomes available from the Bianchi identities. As ourare discontinuous across the hypersurface. This can be used
study is not confined to vacuum space-times we in additiodor example as a model for the emission of light-like matter
examine the interaction of a light-like signal with matter and gravitational radiation due to a sudden change in prop-
burst of radiation propagating through the cosmic fluile  erties such as the mass, the angular momentum and the muti-
therefore analyze in some detail the influence of the lightpole moments of a gravitating bodsn example of this is the
like signal on a congruence of time-like world lines—the production of bursts of neutrinos and gravitational radiation
histories of galaxies in a cosmological model, for examplefrom a supernova In this section we first make a brief re-
We show that for the signal to include a gravitational waveview of a general formalism adapted to the case of singular
the shear of the fluid lines must jump across the history ohull hypersurfaces which has been developed a few years
the signal in space-time. For the signal to be a light-like shellgo[2], and of its application to the splitting of the light-like
of matter then a jump in the acceleration, vorticity or expan-signal between a shell and a wavg. Then we analyze the
discontinuities in the kinematical quantitiégelocity, accel-
eration, expansion, shear and vortig¢igf a congruence of
*Email address: barrabes@celfi.phys.univ-tours.fr time-like lines crossing a singular null hypersurface. Finally
TEmail: phogan@ollamh.ucd.ie we present the Penrose classificatjdn of intrinsic geom-
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etries that a singular null hypersurface inherits from its em{2] that the jumpsy,, are independent of the choice of the
bedding inM and which will serve as a basis for the clas- transversaN and thus define a purely intrinsic property of
sification of the action of a null shell and/or a wave on athe hypersurface.
congruence of time-like lines. As the metric tensor is onl? at the hypersurface the
We consider a space-tim&! which is divided into two Riemann, Ricci and Weyl tensors in general each contain a
halves M ™ and M ~ separated by a null hypersurfadgé  singular Dirac &-term. The stress-energy tensor which ap-
and with a local coordinate systej'} in M ™ and{x*}in  pears on the matter side of the Einstein field equations also
M ™, Greek indices taking values 0,1,2,3, in terms of whichcontains a similar term which one interprets as the surface
the metric tensor components 3J§u andg,, respectively. stress-energy tensor of a shell whose history in space-time is
Let 2, Latin indices taking values 1,2,3, be local intrinsic the null hypersurfaceV. The existence of a surface stress-
coordinates onV. The parametric equations of the embed-€nergy tensor is an intrinsic property of the hypersurface and
dings of " have the formsc” =~ (£%). The corresponding it has intrinsic components®” which are given by2]
tangent basis vectors aeg,=d/d¢%, and their scalar prod-

—lcab__ ac.b,d bd.a.c
ucts define the induced metric ovi 167y "SP=(g, N°N"+ g, N°N%) yeq

ab_t anb/~Cd
v - —n°n , 2.8
Jab= e(a). e(b):gp«vef’da)e(b”i , (21) g* Y (g* 7Cd) ( )

wherey'= y,,n®nP. In this expression we have introduced a
assumed the same on both faces of the hypersurface. Fo Y = Yab P

I : “« " : ab ;
dimensional scalar products are indicated by a centered d(tj?on-umque pseudo -Inverse metr_|c[_2] g, (asNis a
as in Eq.(2.1) and evaluation of a quantity on the plus or null hypersurface the induced metric is degenerate and has

minus side of\is indicated by a vertical stroke followed by no inversg such that

a plus or minugor both if the quantity is the same on both aby  — s2_ ,naN 29

sides of ). Ox 9pbc=0oc— 7N"N¢, (2.9
Letn be .normgl ta\V with component®1% viewed on the whereN.=N- e, . It is important to note that the expression

plus and minus sides. Thus (2.8) for the surface stress-energy tensor is independent of

the choice of the “pseudo’-inverse metric.

Another important point is that only four of the six com-
ponents of the jumpy,, appear inS?®, and correspond to
n?y,, and gibyab. This leaves two components which are
decoupled from matter and describe an impulsive gravita-
n=ndeq). (2.3 tional wave, as an analysis of the singufgpart of the Weyl
tensor reveal$d]. These two components are given [ldy

n-nl.=0, n-egl+=0. (2.2

As Nis a null hypersurface the normalis tangent to it and
can be decomposed along the tangent basis vectors as

Let us introduce a transverdslon A and require its projec-
tions onto the plus and minus sidesfto be equal, i.e. -~ 1
P g Yab™= Yab™ 592 Yeaab— 27N YeaNpy + 7276 °N“NaNp,

[N-N]J=[N-€4]=0, (2.4 (2.10

where we use square brackets to denote the jump of any, 4 it is easy to see théztabnb=0 andgabfy ,=0. The two
quantity F that is discontinuous across the hypersurface: ishi s 6 * tath wo d
[F]= *F—"F. In order to make sure that is transverse to on-Vanisning components 9k represent the two degrees

the hypersurface we require that it have a non-vanishing sca?—f Zegg\?;?i;:]tpgéag:wztgyOgrtoighﬁgvi\llaec;ve descrintion exists
lar product with the normanh: p p

and we now summarize the main results. The intrinsic quan-
N-n=7"1, (2.5 tities y,, and S2° can be extended to four-tensors on the
space-time manifold. In a local coordinate systptti} cov-
where 77 is some non-zero constant usually taken to-be.  ering both sides of\’ (for example it can be eithgx“} or
Note thatN is not uniquely defined by this equation as one{x*}) we define the tensory,, and S*” by the require-
may make a tangential displaceméit>N+{3(£°)e, with  ments.
arbitrary functions/? for a prescribedy. Next we define the

transverse extrinsic curvatui&,, of the null hypersurface/ Y€€l = Yab,  S*Pely e, =S (2.1
as
It is easy to see theé#*” satisfiesS*#”n,=0 and is thus tan-
Kap=—N-Ve ea), (2.6)  gential to the hypersurface. It can also be shown #hatis
directly related to the jump in the first derivatives of the
and its jump across the null hypersurface by metric tensor. One gets
’yaDZZ[ICab], (27) [&agﬂv]:nna'}//.w! [Na(yagp,v]:’yl.wu (212

whereV denotes covariant differentiation with respect to thewhere we have used E@2.5), and for the jumps of the
four-dimensional Levi-Civitaconnection. It can be shown Christoffel symbols,
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Ui B 1
[Thpl= 5 (Vang+ vina—ty.0). (213 7 [0]=—5sy+A-n, (2:20
The covariant componenss,; of the surface stress-energy | s
tensor of the null shell are given by 7 10apl== 5 Vapt N aNp)~SU(alp)
1679 'Sup=2Y(uNp) = YNaNp— ¥ 0up, (214 1 7t
p h p p —E(u'U)n(auB)—sA(auﬁ)—T[H]haﬁ,
where
(2.21
— B — af
Ya= YQBn ’ Y= ’}’aﬂg ’ (215 -1 _
7 Lwap]=UraNg + N aNg—SUpalg
andy' is defined above and can be rewritten as 1
— 5 (U-U)npUg—Shlg,  (2.22

'yszaBnan'BZ v,Ne. (2.19 2

hwhere the projection tensbr,;=g,5+ U,Uz has been intro-
duced. We can alternatively express E2.22 in terms of
_the vorticity vector

We consider now a congruence of time-like curves wit
unit tangent vectou®, u-u=—1, crossing the singular null
hypersurfaceV (as previously we are using a coordinate sys
tem{x*} covering both sides a#/). This congruence can be 1
arbitrarily chosen in each domaikt = and in the sequel we =5 7P, (2.23
shall only consider the case where the tangent vector is con- 2
tinuous acrossV. If u is tangent to matter world lines in
M=, then choosingu continuous acros$\ forbids A be-
coming the history of a shock wave propagating through th
matter in the usual sen§g,6]. We choosei to be continuous

where p*##'=(—g) Y%, 4, with g=det(@,,) and e,g,,,
is the four-dimensional Levi-Civitpermutation symbol. The
?ump in the vorticity vector is given by

across/\ for the following reasons(a) this is the minimal 1

requirement consistent with a delta function appearing in the 7 Hw]= > n“ﬁ””uﬁ(uuﬂxﬂ)n,,. (2.29
Weyl tensor(as can be seen by applying the Ricci identities

to u), (b) this allows finite jumpgand no delta functionto Finally we recall a classification introduced by Penrose

appear in the kinematical quantities associated with the inte[-l] for the geometry that the null hypersurfagé inherits
gral curves ol (the acceleration, vorticity, shear and expan-from A+ and M —. As any null hypersurfaca/ is gener-

sion) and(c) the jumps in the kinematical quantities are then 4iaq by a uniquely defined two-parameter family of null geo-

simply related to the presence or otherwise of a light-likegesics one can consider a hierarchy of three types of intrinsic
shell and/or a gravitational wave in the signal with histafy geometry in order of increasing structure.

(see Sec. IV below where these general results and physic%pe I: the induced metrics matdiour basic assumption
examples are given 27

. - (2.1].
_Let us then consider a congruence of time-like curvesryne | type | with parallel transport of the normalalong
with continuous 4-velocity but with discontinuous first de-  {he null generators matching.

rivatives, having jumps acrosy” described by the vectot  1yne 1)1 type 11 with parallel transport of any tangent vector
such that to A/ along the null generators matching.

A type | geometry onV'is the most general of the three types
and is always assumed to be valid in our considerations. A
type Il geometry requires thatf‘VZn“=n“V;n“ or using

Eq. (2.13 that y'=0. If one defines the acceleration param-
eter x by

[9,u“]=nn, % or [N*g,u“]=\%  (2.17)

where we have used E.5). It follows that the jump in the
4-acceleratiora®=u*V ,u® is given by

n‘l[a"]=—s>\"—sU"—%(uU)n", (2.18 eV ,.n®=xn®, (2.29
one can show thatx]=7vy'/2 so that a type Il geometry
where we have pus=—u-n>0 and Ua=7a,guﬂ- Using implies [ k]=0. In particular this is realized when the null
u-a=0 and the above equations one gets the following regenerators are affinely parametrized on both sides/oA
lation: type Il geometry requires that“VZv“zn“V;v“ for any
vectorv® such thatn,v*=0, and using Eq(2.13 this im-
u-U=-2u-\. (2.19 plies thaty,=An, whereA is an arbitrary function ou\.
A physical interpretation in terms of the surface stress-
The expansiord, shearo,z, and vorticityw,,z of the time-  energy tensor of a null shell, if it exists having histdvy can
like congruence are in general discontinuous acygsand  be given to the type Il and 11l geometries above. As shown in
have jumps given by [2] the surface pressune=—(7/167)y" and so a type I
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induced geometry corresponds to a pressure-free null shebf such different tangential derivatives available to us de-
i.e. a shell only admitting a surface energy densjfyand pends upon the type of the induced geometryAdnif the
anisotropic surface stresses. For a type Il geometry induceithduced geometry is type I, then we obtain one meaningful
on N the surface stress-energy tensor reduces from Edgquation from Eq(3.6), namely,

(2.149 to 167777*180[[;:(2A— y)n.ng, there are no surface 1 ‘

stresses and the surface energy density zis= 7(2A —8my T,n*n"]=py". 3.7
—)/16m. If A=1y/2, then there is no shell and is the

history of an impulsive gravitational wave providegh,
#0.

Here square brackets as always denote the jump in the en-
closed quantity acros# and p=m“m”V,n, is the expan-
sion of the null geodesic integral curvesrof[p]=0 sincep

is intrinsic to \V). If the induced geometry is type I, then
y"=0. Hence the acceleration parameténtroduced in Eq.

On the null hypersurface history of the light-like signal (2.29 is continuous acros’. Now the meaningful equations
we have the normah (which is tangential to\ sinceNis ~ emerging from the twice contracted Bianchi identities are
null) and the time-like vector field:, for whichu-n=—s  Ed.(3.7) with y'=0 and also
<0. In a local coordinate systefw”} covering both sides of

Ill. CONSEQUENCES OF THE BIANCHI IDENTITIES

N, itis helpful to define onV, but not tangent tdV; the null —16mn [T ,,mn"]=y,m*+3py,m:+om*y, .
vector field (3.9
1 1 Here ?’L: n’v,y, ando=m*m"V, n, is the complex shear
|H=—g@ i+ S us (3.)  of the generators alV, which is intrinsic even for a type |

geometry. Finally if the induced geometry is type lll, then

with | -n=—1. Nown,| can be supplemented by a complex ¥.=An, for some functiorA defined onV. Now the right
null vector f|e|dm’ with Componentsnﬂ’ tangent tQ/\/ and hand SldeS Of Eq337) and (38) VanISh and n addltlon we
also orthogonal td, and satisfyingn-m= +1 (the overbar find that

denoting complex conjugationThe null tetrad{n,I,m,m n_l[TMV|MnV]:f’+(2p+K)f’ (3.9
defined onV will be useful for the purposes of displaying

formulas below. IfA has the equatio(x#)=0 andn where(as in Sec. | 87f=A—37y andf’=f n*

7

= a‘ld{# for some functionx defined onV, then following To obtain the Bianchi identities we use the tensor repre-
from the results of Sec. Il, the components of the Einsteirsenting the left and right duals of the Riemann curvature
tensor of the space-tim&1 * UM ~ have the form tensor[7]:
GH'=GH5(D)+ 0 (D) GH+[1—O(d)] GH, wo_ L uvap po
( ) ( [ ( )] (32) GHvP :Z 77/.1, Bnp )\yRaﬁ)\yi (310)
where § is the Dirac delta function® is the Heaviside step whereR, 4, are the components of the Riemann curvature
fUnCtion W|th (I)>0 in M +, cI)<0 in M - and tensor andr]aﬂyaz(_g)71/26aﬁ’y5. Then the Bianchi iden_
® ,=an,s(®). 33 tities read
vV ,GH*P7=0, 3.1)

In Eq. (3.3, “G*” are the components of the Einstein

tensors inM = respectively and can be written a8@~T*" g right hand side of Eq3.10 can be written in terms of
in terms of the respective energy-momentum-stress tensorg,e Riemann and Ricci tensors and the Ricei scalar as
Also

— GHVPT = RIVPT — gRPRYT — VI RMP

Gr’'=—8maS", (3.9
1
with S*¥ given by Eq.(2.14. Thus in particular +g*R+ "R+ 5 R(9#P9"7—g"7g").
G*"n,=0. (3.5 (312

We now apply the twice-contracted Bianchi identities It 1S t_hen useful to substitute in E¢3.12 the Riemann ten_-
V,G*’=0 to Eq.(3.2). On account of Eq(3.5) the term in sor+ in terms of the Weyl tensor. For 'gh_e space-time
V,G*” involving the derivative of the delta function van- "\ UM ™ the tensor3.10 has a decomposition similar to
ishes and we obtain that of the Einstein tensdB.2):

V,G*"+ a[G*"n,]=0. (3.6 GHP7=GHIPTS(®)+ 6 ()T GHPT

R +[1-0(d)] G+, 3.1
SinceG*” in Eq. (3.2 is definedon .V, it only makes sense [ (®)] @13

to calculate derivatives db*” tangential ta\V. The number  with
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n—la—lé,uvpo: _ 2n[,u,yv] [ppol — zg,u[O'Wp]V As a final preliminary we noteAthat if the coefficient of the
delta function in the Weyl tensat#"*? is calculated using
G*7ro given by Eq.(3.14 andS*” given by Eq.(2.14 and
then if its components are calculated in the Newman-Penrose
form ¥, (say for A=0,1,2,3,4, we obtain

4 ng[UWp]M_ yTgM[ng] v (3.19
wherew*”= y(#n” — L yn#n”. One readily sees that

GH7Pon, =0. (3.19 )
o P o— ¥.o— t
Thus when Eq(3.13 is applied to Eq(3.11) the term in- Vo=0, W;=0, Wp=- 677
volving the derivative of the delta function vanishes and we
obtain, from Eq.(3.11), A 1 L 1 o
\1,3: - E 7]7;¢va \P4: Y n’yMVmMmV' (323

v, G477+ a[ GH**7n,]=0. (3.16 2

Now G~ is defined on\V and so Eq(3.16 only makes This sh_ov_vs(cf. [1,2])) that the delta function in the Weyl
tensor is in general Petrov type Il. If the induced geometry

. t_ ~ .
This depends on the type of geometry induced\iby its O N'is type I, theny'=0 and ¥, Is Petrov type “Jrl’
embedding inM * and in M ~. If the geometry is type |, whereas if the induced geometry i is type lll, theny

then we conclude, from Eq3.16), =0 andy,m*=0 and¥ , is Petrov type l}l The signal with
history AV contains a gravitational wave W ,# 0.

sense when it involves derivatives Gf**“ tangential to\.

—8my YT,,n"n"]=py", (3.17
20 [ Wol= — oy (318 IV. PHYSICAL AND GEOMETRICAL APPLICATIONS

. We now draw physical and geometrical conclusions from
2p [¥i]-8my YT, mn"]=pm*y,—omty,. the results outlined in Secs. Il and Ill, in the form of a series
(3.19 of lemmas with illustrative examples.
o ) ) Combining the jumpg2.18), (2.20—(2.22 across/, in
Here Eq.(3.17) coincides with Eq(3.7) obtained from the ¢ kinematical quantities associated with a time-like congru-
twice-contracted Bianchi identities in the type | cab®o]  ence intersectingV, with the Newman-Penrose components

and[V, ] are the jumps in the Newman-Penrose componenty, ., by £q(3.23] of the coefficients of thé-function

n _
of the Weyl te_n sors of\ ™ and M~ acrossV (we use a in the Weyl tensor, we obtain the following, with straightfor-
standard notatiof8] for the components of the Weyl tensor, ward algebra:

calculated on either side of, on the null tetradn,|,m,m}). Lemma 1:
If the geometry induced oW is type Il, then Eqs(3.17)— . - .
(3.19 hold, with zeros on the right hand sides of E(&17), (@) Lo, m*m*]# 0¥, #0;

(3.18, and we have, from Eq3.16), (2) if [07,,]=0, then¥,=0 and
. . (@ [a*m,]#0<W3#0,
2y W]+ 8wy [T,,mn’] (b) [w*]# 0¥ 5#0;
— _Za.a,u,y’u_zpm,u,y’u_ m,u,y/ ) (32@ (3) [f [O’MV]:O and [a'“]=0, then ‘I’3:\I’4:0 and[ﬁ]
. +0e¥,%0.

We note that the difference between E¢%20 and(3.19 We note from Egs. (218 and (2.24 that
yields Eq.(3.8) obtained already from the twice-contracted [a*]=0=[w*]=0. The converse is not true because again
Bianchi identities in the type Il case. Finally if the geometry from Egs.(2.18 and (2.24 we find that if[w*]=0, then
of Ais type Ill, then Eqs(3.19—(3.20 hold with the right [a*]=s"2n,[a*](n*—su*) and we can only conclude from
hand sides all vanishing and in addition we have this that in generam,[a*]=0. This explains the appearance
of all components of w*] in part (2b) of the lemma and of
only one complex component ¢&a*] in part (2a of the
lemma.

We are particularly interested in lemma 1 when the time-
like congruence of integral curves ofare the world lines of
1 the cosmic fluid in a cosmological model. The first part of
— 4wy Y T,,mm*]== . mm” the I_em_ma says that if the signal with hlstoMm_cludgs a

a 2 '# gravitational wave, then its effect on the cosmic fluid is to

-1 2m 1 iy

+a47{t'+(p+x)f}, (3.2)

1 cause a jump acros¥ in a complex component of the shear
+ = (ptKr)y Vﬁuﬁv_mﬂcz of the congruence and, if the passage of the signal through
2 . the fluid does not result in a jump in the fluid shear, then the
(3.22  signal cannot contain a gravitational wave. In this latter case
the signal is a light-like shell of matter with a Petrov type I
wherey,, ,=nV y,,. delta function in the Weyl tensor if the vorticity of the fluid
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jumps acrossV or if a complex component of the fluid 4- in the minus coordinates. As intrinsic coordinates.grwe
acceleration jumps acros¥. If only the expansion of the can uset?=(r,¢,z). The induced line elements ox from

fluid jumps acrossV, then part(3) of the lemma shows that
the delta function in the Weyl tensor is Petrov type Il

There is an interesting analogy between lemma 1 and the
usual decomposition of perturbations of cosmological mod-

els into scalar, vector and tensor parts with the tensor pertu
bations describing propagating gravitational waves and th
other perturbations describing inhomogeneity in the matte
distribution (see[9] and[10], for example. In lemma 1 the
analogue of the tensor perturbations is the jump in the she
of the time-like congruence which by pait) is necessary
for the signal with historyV to include a gravitational im-
pulse wave. The analogues of the vector and scalar perturb

tions are the jumps in the 4-acceleration and vorticity on the*0°"
one hand and in the expansion on the other hand, leading, B§PP!

parts (2) and (3), to the possibility of the signal being a
light-like shell of matter.

M ™ and M~ match[as required by Eq2.1)] if

63 (3/3_2) (3B+2)/(68—4)
L=t =) | T e | ’
r_
e 38+2
r += GB——4 y Ly =127, (46)

%e must first check that the 4-velocities of the fluid particles

with histories inM ™ and M ~ are continuous acrosy’.
Jhis has to be done with care as we now have two local
oordinate systemisf } and{x*} on either side ofV, over-
ng onA according to Eqs(4.6). Let *v#=(1,0,0,0)
and ~u#=(1,0,0,0). Then *v#, “u* are the fluid 4-
velocities in M * and M ~ respectively. Let*u* be the

To illustrate lemma 1 with an example of a signal consist-S8Me vector as u* but calculated on the plus side .of We

ing of a gravitational impulsive wave and a light-like shell
propagating through the Einstein—de Sitter univéssg) we

then comparéon N) *v# with "u# and, if they are equal,
then the fluid 4-velocity is continuous acrasé To do this

must choose a cosmological model left behind by the signave Uutilize the tangent basis vectoeg, =d/£* [with &

(the space-timeM * to the future of the null hypersurface
N) which has the propertiega) its fluid 4-velocity joins
continuously to that of the Einstein—de Sitter universe\én
and (b) its fluid 4-velocity has shear. Thus the line element
of M ™ is that of the Einstein—de Sitter universe which, in
coordinatex* = (t,r, ¢,z), reads

ds?=—dt?+t¥¥(dr?+r2d¢?+d2), (4.2
whereg is a constant. Here thelines are the world lines of
the particles of a perfect fluid with isotropic pressyreand
proper densityu satisfying the equation of statp=(8
—1)u. A simple example of a space-timet* satisfying
the requirement&a) and(b) above is the anisotropic Bianchi
type | space-timg¢11] with line element, in coordinates
=(t+ vr+ 1¢+ !Z+)!

ds? =—dt2 +A2(dr2 +r2d¢?)+B2dZ2, (4.2

where

A, =t3F2088 B =123 4.3
Thet, lines are the world lines of a perfect fluid with iso-
tropic pressurep, and proper densityu, satisfying p.
=u, . As a boundary betweem ~ and M * take the null
hypersurfaceV to be given by

dat, 1
ro=T,.(t,), E:A\_‘F, (4.4
in the plus coordinates and by
T
r=T(t), —-=t"%% (4.5

dt

=(r,¢,z) in this caséintroduced at the beginning of Sec. II.
Then "u* is the same vector asu* if
[u-u]=[u-e4]=0. 4.7
These are the same conditioi@s4) that a transversal on A/
has to satisfy and indeed can be used as a transversal if
desired. The four condition&.7) determine *u* uniquely
and for the example we are considering we obtdin*
=(1,0,0,0). Hence"u#="*p* and the fluid 4-velocity is
continuous across/. Now using the theory outlined in Sec.
Il above we find thaty,,=0 except for[quoting the non-
vanishing components of,,, in the coordinate systefx”}

(say]

Vllz(ﬁ’; 2 t(2-A)I28, 722:—9£’8(,8;)22) (9872008,
(4.8
With  n#=(t("3F266 ~GF+2)/86 00y  and m*
=2"Y2-2%(0,0jr ~1,1) we find that
-2
Vu= V0" =% (B=2) 1(2-38)138, 4.9
yomi=— B2 o (41

2B

where in Eq(4.11) we have writterr in terms oft following
from Egs. (4.5. Comparison now with Eqs3.23 shows
thatW,=0 but¥,+#0 and¥,#0. In addition we find that
the vector field\ on A introduced in Eqs(2.17) vanishes, as
doesU = yarg*uﬁ. We see from Eqsi4.9—(4.1]) that the
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geometry induced oW is a type | geometry and that'is  and thus iff ¥,]=0 and ¥ ,#0, then
the history of both an impulsive gravitational wave and a(1) =0 and p#0=f=0,
light-like shell. (2) =0 and p=0=f+#0 is possible

In the general case of a type | induced geometry\bwe (3) 0#0=p#0 and 0,
notice that the equations following from the Bianchi identi- yhere the surface stress-energy tensor of the light-like shell
ties (3.19—(3.19 are all algebraic relations between somengy has the form S,= 7fn n,.
components ofy,, and some of the jumps in the energy-  \ve first note that partl) of lemma 3 explains the
momentum-stress tensors and the Weyl tensotdfof and  “mjracle” whereby the Penrose spherical impulsive wave
M~ acrossN. The further consequences of the Bianchipropagating through flat space-tifig] automaticallysatis-
identities when the induced geometry is type Il or[gs.  fies the vacuum field equations. The histavof the signal
(3.8), (3.9, (3.20—(3.22] can all be viewed as propagation in this case is a future null cone which is a shear-free (
equations for components of,, along the generators df  — ) expanding p+0) null hypersurface. The induced ge-
(derivatives along the generators being indicated by a prime gmetry is type Ill and thus by lemma3B the surface stress-
This is consistent because the type | geometry by itself &Xenergy tensoB, ; must vanish {=0). An example of part
cludes the possibility of a unique parameter being assigneg) of lemma 3 in whichAM = are not flat is provided by
to the geodesic generators &fon both the plus and minus taking M * to be two Petrov type Il Robinson-Trautman

sides and hence unique propagation equations along thege;] yvacuum space-times with line elements of the form
generators of quantities defined dficannot exist.

We emphasize the algebraic nature of the Bianchi identi- ds? = —2r2p;2d¢.d. +2dudr. + K. du?,

ties in the case of a type | geometry by stating the following: - T (4.17
Lemma 2: _ _

If the geometry induced oV is type I, then with p.=p({+,{~) and

(a) if p#0 andlor c#0, ¥, satisfies K.=A. logp., A.K.=0 418

oW, = 4_7T[T#Vnﬂnv], (4.12 yvhere Ai=2p?:(92/c7§iéfft . These two s_pace—times are
3 joined together on the shear-free, expanding null hypersur-
face N with the equatioru=0, with Eq.(2.1) satisfied if

.1 o
o¥o=3[Wol; (4.13 £o=h({) and r.=F({.{)r., (419
L o2 2 C where h is an analytic function of{_ and F({_ Z_)
(b) if p*#[a]"#0, 5 Is given by =p,/(|h'|p). In coordinates labelled  x*
[V,]-4a[T, mn"]=—-P3p+ V30 (414 =({_.{-.r_,u) we find thaty,,=0 except fory;; and
R Y22= 11 With

and its complex conjugate (herB? is the complex conju- 'y
gate of¥3). S Y= —2r & - log(F'p2), (4.20

We note again thap,o are intrinsic toA ([p]=0=[c]) ¢

for a type | geom_etry. For the cosmological example giver\NhereF’=0F/a§, . Thus the induced geometry is type llI,
above the expansignand sheaur of the generators of/ are there is no surface stress-energy tensobdand, since@u

given by =1y.r_%p?2+0, Nis the history of an impulsive gravita-
1/38+2 1 tional wave.
p=r 35-2 and o= —, (4.15 Part(2) of lemma 3 shows that il is a null hypeplane

(with generators having vanishing shear and expansiod

. ) ] i if the matching ofM * and M ~ on NV satisfying Eq(2.) is
while [T,,n*n*]=sTu+p], with s defined after Eq. gych that the induced geometry is type Il théfcan be the
(2.18, and since onV the continuous 4-velocityl is or-  history of a plane impulsive gravitational wave and/or a
thogonal to the complex null vectom tangent toN,  plane light-like shell of matter. For example také * to be

[T.,m*n"]=0 and one can readily verify that the algebraic 3 pp-wave space-time with line element
equations in lemma 2 are satisfied.

The richest induced geometry is of course type Ill and in ds? =dx2 +dy? +2dudv . +H(x, ,y, ,u)du?,
this case we can, with additional assumptions, deduce from (4.2

the B|an_ch| !dentmes sor_ne.mterestlng conclusions which W& ih Hy, , +H — 0 (subscripts here denoting partial de-
summarize in the following: IR A

Lemma 3: rivatives. Take M ~ to be flat space-time with line element
If the g-eometry oV is type lll and if M~ are vacuum ds? =dx2+dy?+ 2dudy. 4.22
space-times, thepW,]=[¥,]=0,
A Now matchM ™ to M ~ on the null hyperplangy/ (u=0)
[V,]=0V,— 47 ypf, (416  with [1]
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Xy =X, Yyi=Yy, vi=v+h(xy), (4.23 Lemma 4:
If the geometry onVis type Ill and if M = are perfect fluid
to ensure that Eq2.1) is satisfied. Using the theory of Secs. space-times with u continuous acraoss then[¥]=[V,]

Il and Il above withx” = (£2,u) with £&=(x,y,v) we find =[u+p]=0 and

that y,,=0 and otherwisey,,=—h . Thus with n%

= 05 we havey, = vy,3=0 and so the geometry induced on [W,]— 4_77[#]:0@4_47.,,]”’ (4.31)
Nis type Ill. We also find that 3

1 and thus if[¥,]=(47/3)[x] and ¥,#0, then the deduc-
8mf=— 2 y=hucthyy (424 tions are the same as @{3) of lemma 3.

The special case of the de Sitter universe is obtained by
and putting —8mwp=8mu=A, where A is the cosmological
constant. We will confine our observations on lemma 4 to the
de Sitter case, leaving further applications of lemma 4 to
another occasion.

To illustrate Eq(4.31) of lemma 4 we letM * both be de
This shows explicitly that a light-like shell and a plane im- Sitter universegwith different cosmological constants..)

. 1 _
W= 5 (N hyy) Fihyy. (4.29

pulsive wave can co-exist, each with histoky having line elements
A simple example of part3) of lemma 3 is a cylindrical .
fronted light-like signal with historyV in flat space-time. 2v2d¢.dZ.+2du.do.
Thus M = have line elements dsf=— (4.32

1 2
1+_A+U+U+)
ds® =(u+v.)?d¢% +dZ +2dudv..  (4.26 ( 6~ -

Now A (u=0) is a null hypersurface generated by shearingiere N (u,=u_=0) is a future null cone generated by
null geodesics ¢#0). We match the induced metrics oi ~ expanding (#0) shear-free ¢=0) null geodesics. We

with match M * on NV with a Penrosé¢1] warp
= = = ! 07
é.=q(¢), z.=z, v,=vlq, (4.27) Z.=h(¢), v+—m, (4.33
with g’ =dg/d¢. In coordinates” = (¢,z,v,u) we find that
Yur=0 except for where h is an analytic function off_ and h’=dh/d{_ .
Va2 Now the induced geometry ol is type IlI. In general¥,
yllzzv(q_,__(q_, +q/2_l]_ (428) :_)(/21)7&0 with
q  2\q
hm 3 hn 2
Thus withn* = 5 we see thaty,=0 and the induced ge- X0 "o (4.39
ometry on\is type Ill. The sheat and expansiop of the
null geodesic generators of satisfy and
1 1
p=0=5", (4.29 87Tpf:§[A]. (4.39
while This is the form taken by Eq4.31) for this example since

now *W,=0 for A=0,1,2,3,4, 8[u]=[A], »=+1 and
(4.30 o=0. Thus, iffA]=0, then sincep=1/v # 0 we must have
f=0 and soN is the history of an impulsive gravitational
wave[13].
Thus in generaf#0 and a shell and impulsive wave co-  Finally as an illustration of conclusia®) of lemma 4 we
exist. We see that no signal exists with histdvif and only  considerM * to be a Schwarzschild space-time with line
if y1,=0. Itis interesting to note that if no signal existsd  element in Kruskal form
and the isometric transformations preserving this state form a
group then they are given by Eq$4.27) with q(¢)=¢

47Tf:\1’\,4: - EZ Y11-

3

64m

‘¢, andc=const. There also exist other disconnected iso- 95 =1(d6*+si? 9d¢?) - r et rZMdudy,
metric transformations of\, of the form (4.27), when no (4.36
signal exists onV, but these transformations do not form a
group. with r=r(UV) given by

A corresponding lemma to lemma 3 which has applica-
tions to light-like signals propagating through a cosmic fluid (L _ 1) er2m=1)_ o yy/ (4.37)
is the following: 2m ' ’
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and we takeM ~ to be de Sitter space-tim@ith A>0) with
line element

1+\r)?
ds®=r?(d 6>+ sir? 0d¢2)—2% dudy,
(4.38
wherex?=A/3 andr=r(UV) is given by
N v 4.3
1+Nr (4.39

These matcHcf. [2]) on the horizonV (U=0) if 2mr=1.
We have rescaled one of the null coordinates in E4<6)

PHYSICAL REVIEW D 58 044013

[T n*n#]L[T,,mn*][T, I“1#] tell how the fluid lines
and fluid propertiegenergy density, pressyrare modified
by the presence of the light-like signal. For instance Bd)

can be written as

V., (aS*")=—a[T*"n,], (5.9

and represents an equation of conservation for energy and
momentum[2]. For a pure impulsive gravitational wave it
reduces td T#"n,]=0, which also holds for a shock wave
[5,6].

Finally a couple of technical points which have arisen
above merit discussion. At the beginning of Sec. Ill we note
that in a local coordinate systefr*} covering both sides of

and(4.37) to make the metric tensors given via the line ele- the equation of\'is ®(x*) =0 (say and so as normal we

ments(4.36) and (4.38 continuous acrossV. The horizon
U=0 is a null hyperplane generated by shear-free=0Q),

can taken,=a '® , wherea is some function defined on
N. In the passage from type | geometry to type |l geometry

expansion-free /= 0) null geodesics. In the continuous co- the acceleration parameterbecomes continuous across

ordinates U,V,6,¢) above we find using Eqg2.12 that
Y, =0 except yx= 1y Silf 6=—3Vsir? 6/4m* and f
=3V/32rm?+0. If the situation above is reversed and *
is de Sitter space-timéwith A>0) and M ~ is Schwarzs-
child space-time, theny,,=0 except for y,=y1; sir? 0
=3V sir? g/4m? and f = —3V/327m?. In either case the in-
duced geometry is type Ill. The equatidnV,|=(4m/

In this case we are entitled to pat=1 and so mak& vanish
on N. However, situations can arise in applications with a
type Il or type Ill induced geometry af in which the most
natural parameter to use along the generator @g not an
affine parameter. Then, althougk]=0, we havex+#0 and
for this reason we have retainedin Egs.(3.9), (3.21) and
(3.22 [k does not appear in E¢3.8) or (3.20 even when

3)[ 1] becomes 1/?=\2. There is no gravitational wave non-zerg.

present @4=0) and\ is the history of a light-like shell.

V. DISCUSSION

In introducing a time-like congruence crossing the history
N of the light-like signal in Sec. Il we chose to examine the
case in which the unit time-like tangent vector field is
continuous acrosd/ but may have a jump in its derivative

The lemmas that we have established above fall into twalescribed via a vector field” introduced in Eqs(2.17). As
different categories. Lemma 1 concerns the interaction bewe pointed out in Sec. Il this assumption forbifbeing the
tween a null shell and/or a wave and any time-like congruistory of a shock wave in the usual sertaeshock wave in
ence with a continuous tangent vector at the intersection witl gas with macroscopic 4-velocity*, for example[5,6]). In
N. It shows the close relationship existing between the presgthis latter case the tangent to the congruence would itself
ence of a wave,+0) and the shear of the time-like con- JUMP acrossV. This complicates the study of the interaction
gruence [o,,m*m"]#0). There is a complementary result of the time-like congruence with the light-like signal by in-
due to Penrosgl] to the effect that for a null geodesic con- troducing delta functiongsingular on\) into the kinemati-
gruence crossing\ with continuous tangent, a jump in the cal variables associated with the congruence and is a topic

complex shear is necessary fof to be the history of an

for further study.

impulsive gravitational wave. On the other hand lemmas 2-4

relate the properties of the null hypersurfaebodied in

p,a, ¥ ,) to the outside mediurfdescribed by" T#*) and the
outside geometrydescribed by* ¥ ,). The different jumps
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