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Hypothesis of path integral duality. II. Corrections to quantum field theoretic results

K. Srinivasan,* L. Sriramkumar,† and T. Padmanabhan‡

IUCAA, Post Bag 4, Ganeshkhind, Pune 411 007, India
~Received 21 October 1997; published 13 July 1998!

In the path integral expression for a Feynman propagator of a spinless particle of massm, the path integral
amplitude for a path of proper lengthR(x,x8ugmn) connecting eventsx andx8 in a spacetime described by the
metric tensorgmn is exp$2@mR(x,x8ugmn)#%. In a recent paper, assuming the path integral amplitude to be
invariant under the duality transformationR→(LP

2 /R), Padmanabhan has evaluated the modified Feynman
propagator in an arbitrary curved spacetime. He finds that the essential feature of this ‘‘principle of path
integral duality’’ is that the Euclidean proper distance (Dx)2 between two infinitesimally separated spacetime
events is replaced by@(Dx)214LP

2 #. In other words, under the duality principle the spacetime behaves as
though it has a ‘‘zero-point length’’LP , a feature that is expected to arise in a quantum theory of gravity. In
Schwinger’s proper time description of the Feynman propagator, the weightage factor for a path with a proper
time s is exp@2(m2s)#. Invoking Padmanabhan’s ‘‘principle of path integral duality’’ corresponds to modify-
ing the weightage factor exp@2(m2s)# to exp$2@m2s1(LP

2/s)#%. In this paper, we use this modified weightage
factor in Schwinger’s proper time formalism to evaluate the quantum gravitational corrections to some of the
standard quantum field theoretic results in flat and curved spacetimes. In flat spacetime, we evaluate the
corrections to~1! the Casimir effect,~2! the effective potential for a self-interacting scalar field theory,~3! the
effective Lagrangian for a constant electromagnetic background and~4! the thermal effects in Rindler coordi-
nates. In arbitrary curved spacetime, we evaluate the corrections to~1! the effective Lagrangian for the
gravitational field and~2! the trace anomaly. In all these cases, we first briefly present the conventional result
and then go on to evaluate the corrections with the modified weightage factor. We find that the extra factor
exp@2(LP

2/s)# acts as a regulator at the Planck scale thereby ‘‘removing’’ the divergences that otherwise appear
in the theory. Finally, we discuss the wider implications of our analysis.@S0556-2821~98!02016-5#

PACS number~s!: 04.60.Gw, 11.25.Mj
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I. INTRODUCTION

This paper is a logical continuation of an earlier paper
Padmanabhan@1#. Here, we shall utilize the results obtaine
in @1# to evaluate the quantum gravitational corrections
some of the standard quantum field theoretic results in
and curved spacetimes. In this section, we shall very bri
summarize the results that were presented in@1# and then
proceed on to discuss the various applications.

In Schwinger’s proper time formalism, the Euclidea
space Feynman propagator is described by the integral@2#

GF~x,x8ugmn!5E
0

`

ds e2m2s K~x,x8;sugmn!, ~1!

whereK(x,x8;sugmn) is the probability amplitude for a par
ticle to propagate fromx to x8 in a proper time intervals in
a given background spacetime described by the metric te
gmn . The quantityK(x,x;sugmn) can usually be expressed a
a path integral. In@1#, Padmanabhan was able to introduce
fundamental length scale into the Feynman propagator ab
by invoking a ‘‘principle of path integral duality.’’ He had
assumed that the fundamental length scale was the Pl
lengthLP [(G\/c3)1/2. @Actually, it can so happen that th
fundamental length scale is notLP but (hLP), whereh is a
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factor of order unity. Therefore, in this paper, when we s
that the fundamental length isLP , we actually mean that it is
of O(LP).# He found that the duality principle modifie
the weightage given to a path of proper times from
exp@2(m2s)# to exp$2@m2s1(LP

2/s)#%. The resulting Euclid-
ean Feynman propagator is then given by

GF
P~x,x8ugmn!5E

0

`

ds e2m2s e2~LP
2 /s! K~x,x8;sugmn!.

~2!

The presence of a fundamental length scale is a feature
is expected to arise in a quantum theory of gravity@3,4#.
Hence, the modification of the weightage factor as m
tioned above can be interpreted as being equivalent to in
ducing quantum gravitational corrections into standard fi
theory.

The result given above will be utilized when require
Further, we are interested in evaluating the one-loop eff
tive Lagrangian for various systems with the presence o
fundamental length scale in the background~flat or curved!
spacetime. The usual effective Lagrangian will be modifi
accordingly and this will determine the quantum gravi
tional corrections to standard results. We derive now the
mula for the modified effective Lagrangian.

Consider aD-dimensional spacetime described by t
metric tensorgmn . Assume that a quantized scalar fieldF of
massm satisfies the following equation of motion:

~Ĥ1m2!F50, ~3!
© 1998 The American Physical Society09-1



n

n

d

e-

ic

le
e

b

ve

at
tu

cs

ld
o
-
we

-
fir

t
to
f

th
e
o

th
ce
a

rg
m

al
s.

nal
ed
ill
-
-
a-
t a
g-
avi-
t-
less

tive
-

ibe
the

or
e
he

he
as

ite
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where Ĥ is a differential operator in theD-dimensional
spacetime. Then, in Lorentzian space, the effective Lagra
ian corresponding to the operatorĤ is given by the integral
@2#

Lcorr52
i

2E0

`ds

s
e2 im2s K~x,x;sugmn!, ~4!

where

K~x,x;sugmn![^xue2 iĤ sux&. ~5!

~If the quantum field interacts either with itself or with a
external classical field, thenLcorr will prove to be the correc-
tion to the Lagrangian describing the classical backgroun!
The quantityK(x,x;sugmn) is the path integral kernel~in the
coincidence limit! of a quantum mechanical system d
scribed by time evolution operatorĤ. The integration vari-
ables acts as the time parameter for the quantum mechan
system.

We had mentioned earlier that invoking the ‘‘princip
of path integral duality’’ corresponds to modifying th
weightage factor exp@2(m2s)# to exp$2@m2s1(LP

2/s)#%. In
Lorentzian space, this modified weightage factor is given
exp$2@im2s2i(LP

2/s)#%. Therefore, invoking the ‘‘principle of
path integral duality’’ corresponds to modifying the effecti
Lagrangian given by Eq.~4! above to the following form:

Lcorr
P 52

i

2E0

`ds

s
e2 im2s eiL P

2 /s K~x,x;sugmn!, ~6!

whereK(x,x;sugmn) is still given by Eq.~5!. In this paper,
we shall use this modified effective Lagrangian to evalu
the quantum gravitational corrections to standard quan
field theoretic results in flat and curved spacetimes.

The layout of the rest of the paper is as follows. In Se
II–V, we evaluate the corrections to~1! the Casimir effect,
~2! the effective potential for a self-interacting scalar fie
theory, ~3! the effective Lagrangian for a constant electr
magnetic background and~4! the thermal effects in the Rin
dler coordinates, in flat spacetime. In Secs. VI and VII,
evaluate the quantum gravitational corrections to~1! the
gravitational Lagrangian and~2! the trace anomaly in an ar
bitrary curved spacetime. In all these sections, we shall
briefly discuss the conventional result and then go on
evaluate the corrections with the modified weightage fac
Finally, in Sec. VIII, we discuss the wider implications o
our analysis.

II. CORRECTIONS TO THE CASIMIR EFFECT

The presence of a pair of conducting plates alters
vacuum structure of the quantum field and as a result th
arises a non-zero force of attraction between the two c
ducting plates. This effect is called the Casimir effect. In
conventional derivation of the Casimir effect, the differen
between the energy in the Minkowski vacuum and the C
simir vacuum is evaluated and a derivative of this ene
difference gives the force of attraction between the Casi
04400
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plates ~see, e.g., Ref.@5#, pp. 138–141!. To evaluate the
Casimir force in such a fashion we need to know the norm
modes of the quantum field with and without the plate
Therefore, if we are to evaluate the quantum gravitatio
corrections to the Casimir effect by the method describ
above, then we need to know how metric fluctuations w
modify the modes of the quantum field. But, from the ‘‘prin
ciple of path integral duality’’ we only know how the quan
tum gravitational corrections can modify the effective L
grangian. Therefore, in this section, we shall first presen
derivation of the Casimir effect from the effective Lagran
ian approach and then go on to evaluate the quantum gr
tational corrections to this effect with the modified weigh
age factor. The system we shall consider here is a mass
scalar field in flat spacetime. We shall evaluate the effec
Lagrangian for two cases:~i! with vanishing boundary con
ditions on a pair of parallel plates and~ii ! with periodic
boundary conditions on the quantum field. We shall descr
the first case in detail and just state the final results for
second.

A. Conventional result

Consider a pair of plates situated atz50 andz5a. Let us
assume that the scalar fieldF vanishes on these plates. F
such a case, the operatorĤ corresponds to that of a fre
particle with the condition that its eigenfunctions along t
z-direction vanish atz50 and z5a. Along the other (D
21) perpendicular directions the operatorĤ corresponds to
that of a free particle without any boundary conditions. T
complete quantum mechanical kernel can then be written

K~x,x8;s!5Kz~z,z8;s!3K'~x' ,x'8 ;s!. ~7!

@We shall refer to the flat spacetime kernelK(x,x8;suhmn)
simply asK(x,x8;s).# In the limit x'→x'8 , K'(x' ,x'8 ;s) is
given by

K'~x' ,x' ;s!5S i

~4p is!~D21!/2D . ~8!

The quantum mechanical kernelKz(z,z8;s) along the
z-direction corresponds to that of a particle in an infin
square well potential with walls atz50 andz5a. The ker-
nel for such a case is given by~see, e.g., Ref.@6#, p. 46!

Kz~z,z8;s!5S 1

~4p is!1/2D (
n52`

`

$exp @ i ~z2z812na!2/4s#

2exp @ i ~z1z812na!2/4s#% ~9!

which, in the coincidence limit~i.e. whenz5z8), reduces to

Kz~z,z;s!5S 1

~4p is!1/2D H 112(
n51

`

e~ in2a2/s!

2 (
n52`

`

ei ~z1na!2/sJ . ~10!

Therefore, the complete kernel~in the coincidence limit! cor-
9-2
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responding to the operatorĤ with the conditions that its
eigenfunctions vanish atz50 andz5a is given by

K~x,x;s!5S i

~4p is!D/2D
3H 112(

n51

`

e~ in2a2/s!2 (
n52`

`

ei ~z1na!2/sJ .

~11!

Substituting this kernel in Eq.~4! and settingm50, we ob-
tain that

Lcorr5S 1

2~4p i !D/2D E0

` ds

s~D/2!11

3H 112(
n51

`

ein2a2/s2 (
n52`

`

ei ~z1na!2/sJ . ~12!

In flat spacetime, in the absence of any boundary con
tions on the quantum scalar fieldF, the quantum mechanica
kernel for the operatorĤ corresponds to that of a free pa
ticle. The kernel for such a case is given by

K0~x,x;s!5S i

~4p is!D/2D . ~13!

That is, there exists a non-zeroLcorr even for a free field in
flat spacetime. Therefore, the flat spacetime contribution
given by

Lcorr
0 5S 1

2~4p i !D/2D E0

` ds

s~D/2!11
e2 im2s ~14!

has to be subtracted from allLcorr.
Subtracting the quantityLcorr

0 @given by Eq.~14! above
with m set to zero# from the expression forLcorr and then
evaluating the resulting integral, we obtain that

L̄corr5~Lcorr2Lcorr
0 !5S G~D/2!

2~4pa2!D/2D
3H 2(

n51

`

n2D2 (
n52`

`

@n1~z/a!#2DJ . ~15!

Now, consider the caseD54. The first series in the abov
expression forL̄corr can be expressed in terms of the R
mann zeta function~see, e.g., Ref.@7#, p. 334! and the sec-
ond series can be summed using the following relation~cf.
Ref. @8#, Vol. I, p. 652!:

(
n52`

`

~k1a!2p5S p~21!p21

~p21!! D dp21

dap21
@cot~pa!#,

~16!

with the result
04400
i-

s

L̄corr5S p2

1440a4D 2S p2

96a4 sin4~pz/a!
D @322 sin2~pz/a!#.

~17!

Let us now consider the caseD52. For such a case, from
Eqs.~15! and ~16!, we obtain that

L̄corr5S p

24a2D @123 cosec2~pz/a!#. ~18!

Note that there for both casesD54 andD52, there arises a
term that is dependent onz. @Compare these results with Eq
~5.11! and ~5.15! that appear in Ref.@9#, p. 105.#

In the discussion above, we had assumed that the fi
vanishes atz50 and z5a. Let us now consider the cas
wherein we impose periodic boundary conditions on the fi
along thez-direction; i.e., let us assume thatF(z)5F(z
1a). For such a case, the kernel inD dimensions~in the
coincidence limit! is found to be

K~x,x;s!5S i

~4p is!~D21!/2D S 1

aD (
n52`

`

e24in2p2s/a2
.

~19!

The corresponding effective Lagrangian, after the flat spa
time contribution is subtracted out, is given by

L̄corr5S G~D/2!

~pa2!D/2D (
n51

`

n2D5S G~D/2!

~pa2!D/2D z~D !, ~20!

wherez(D) is the Riemann zeta-function~see, e.g., Ref.@7#,
p. 334!. Let us now consider the caseD54. For such a case
we find that

L̄corr5S G~2!

~pa2!2D z~4!5S p2

90a4D . ~21!

For the caseD52, L̄corr is given by

L̄corr5S G~1!

~pa2!
D z~2!5S p

6a2D . ~22!

B. Results with the modified weightage factor

Let us now evaluate the effective Lagrangian with t
modified weightage factor. Substituting the kernel~11! in
Eq. ~6! and settingm50, we obtain that

Lcorr
P 5S 1

2~4p i !D/2D E0

` ds

s~D/2!11
eiL P

2 /sH 112(
n51

`

ein2a2/s

2 (
n52`

`

ei ~z1na!2/sJ . ~23!

Just as in the case ofLcorr, there exists a non-zeroLcorr
P even

for a free field in flat spacetime. This flat spacetime con
bution has to be subtracted from allLcorr

P . It is given by
9-3
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Lcorr
P0 5S 1

2~4p i !D/2D E0

` ds

s~D/2!11
e2 im2s eiL P

2 /s. ~24!

On subtracting this quantity~with m set to zero! from the
expression forLcorr

P , we get

L̄corr
P 5~Lcorr

P 2Lcorr
P0 !5S G~D/2!

2~4pa2!D/2D
3H 2(

n51

`

@n21~LP
2 /a2!#2D/2

2 (
n52`

`

$@n1~z/a!#21~LP
2 /a2!%2D/2J . ~25!

The series in the above result cannot be written in clo
form for the caseD54. So let us consider the caseD52.
For such a case the series inL̄corr

P above can be expressed
a closed form. Making use of the two relations~cf. Ref. @8#,
Vol. I, p. 685!

(
n50

`

~n21a2!215S 1

2a2D 1S p

2a D coth~pa! ~26!

and

(
n52`

`

@~n1a!21b2#21

5S p

b D sinh~2pb!@cosh~2pb!2cos~2pa!#21, ~27!

we find thatL̄corr
P can be expressed as follows:

L̄corr
P 5H 2

1

8pLP
2

1S 1

8aLP
D coth~pLP /a!

1S 1

8aLP
D sinh~2pLP /a!@cos~2pz/a!

2cosh~2pLP /a!#21J . ~28!

In the limit of LP→0, we find that

L̄corr
P →H S p

24a2D @123csc2~pz/a!#

2LP
2 S p3

360a4D @1130csc2~pz/a!

245csc4~pz/a!#J . ~29!

That is, the lowest order quantum gravitational correctio
appear atO(LP

2 /a2).
04400
d

s

The analogous results for the case of the periodic bou
ary conditions are given below. The modified effective L
grangian for such a case is given by

L̄corr
P 5S G~D/2!

~pa2!D/2D (
n51

`

~n214LP
2 /a2!2D/2. ~30!

For the caseD54,

L̄corr
P 5H 2S 1

32p2LP
4 D 1S 1

32paLP
3 D coth~2pLP /a!

1S 1

16a2LP
2 D cosech2~2pLP /a!J ~31!

and, in the limitLP→0,

L̄corr
P →H S p2

90a4D 2LP
2 S 8p4

945a6D J . ~32!

For the caseD52, L̄corr
P is given by

L̄corr
P 5H 2S 1

8pLP
2 D 1S 1

4aLP
D coth~2pLP /a!J ~33!

and, in the limit ofLP→0, it reduces to

L̄corr
P →H S p

6a2D 2LP
2 S 2p3

45a4D J . ~34!

III. EFFECTIVE POTENTIAL OF A SELF-INTERACTING
SCALAR FIELD THEORY

In this section, we shall consider a massive, se
interacting scalar field~in 4 dimensions, i.e.D54) described
by the action

S@F#5E d4x L~F!5E d4xH 1

2
]mF]mF2V~F!J

5E d4xH 1

2
]mF]mF2

1

2
m2F22Vint~F!J , ~35!

where m is the mass andVint(F) represents the self
interaction of the scalar field. We are interested in study
the effects of small quantum fluctuations present in the s
tem around some classical solutionFc . The classical solu-
tion will be assumed to be a constant or varying adiabatic
so that its derivatives can be ignored. The effect of th
fluctuations will be studied by expanding the actionS@F#
about the classical solutionFc and integrating over thes
fluctuations to obtain an effective potential. This effecti
potential will contain corrections to the original potenti
V(Fc).

Carrying out the calculation as mentioned above~for in-
stance, see Ref.@10# for details!, we find that the kernel
K(x,x:s) for such a case is given by
9-4
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K~x,x;s!5S 1

16p2is2D exp2@ iVint9 ~Fc!s#, ~36!

where

V int9 ~Fc![S ]2Vint~F!

]F2 D
F5Fc

.

We shall now use this kernel to evaluate the effective pot
tial for the self-interacting scalar field. We shall first outlin
as to how the conventional result can be obtained and
go on to evaluate the quantum gravitational corrections w
the modified weightage factor.

A. Conventional result

Substituting the kernel~36! in Eq. ~4! we obtain that

Lcorr52S 1

32p2D E0

`ds

s3
e2 ias, ~37!

where

a5m21V int9 ~Fc!.

This integral is quadratically divergent nears50. In the con-
ventional approach, this integral is evaluated~after perform-
ing a Euclidean rotation! by initially setting the lower limit
to a small value, say,L and subsequently taking the lim
L→0. In this limit, we need to retain only the leading term
Performing partial integrations repeatedly, we find that

Lcorr5S 1

64p2D H F 1

L2 2
a

L
2a2 ln ~Lm!G

2a2 ln S a

m D2ga2J , ~38!

where m is an arbitrary but finite parameter~it has been
introduced to keep the argument of the logarithms dim
sionless! and g is the Euler-Mascheroni constant. The la
two terms within the curly brackets, viz.a2 ln(a/m) and
ga2, do not depend onL and hence are finite in the limi
L→0. The term inside the square brackets, however,
verges. There are linear, quadratic and logarithmically div
gent terms. The quadratically divergent term is independ
of a and being just an infinite constant it can be dropp
while the other two divergent terms depend ona and hence
cannot be ignored.

For an arbitraryVint , no sense can be made out of t
above expression forLcorr. Only thoseVint for which the
divergent quantities (L21a) and@a2 ln(Lm)# have the same
form as the originalV(F) can be considered. In such a cas
the divergent terms can be absorbed into the constants
determine the form ofV(F) and the theory can then be su
ably reinterpreted. Clearly, the above criteria will not be s
04400
-

en
h

.

-
t

i-
r-
nt
d

,
at

-

isfied for a non-polynomialV(F). In fact, only if V(F) is a
polynomial of quartic degree or less can the divergences
absorbed and the theory reinterpreted. As an example,
sider the case

Vint~F!5
1

4!
lF4. ~39!

For such a case, it can be easily shown that the resul
effective potential for the scalar field is given by~for details,
see Ref.@10#!

Veff5V~Fc!2Lcorr5
1

2
m2Fc

21
1

4!
lFc

42Lcorr

5
1

2
mcorr

2 Fc
21

1

4!
lcorrFc

41Vfinite , ~40!

where

mcorr
2 5m21

l

32p2S 1

2L
1m2 ln ~Lm! D ,

lcorr5l1
3l2

32p2
ln ~Lm! ~41!

and

Vfinite5
1

64p2S m21
l

2
Fc

2D 2H ln F 1

mS m21
l

2
Fc

2D G1gJ .

~42!

The original potentialV(F) had two constantsm and l,
which were the coefficients ofF2 andF4. In Veff(Fc), these
are replaced by two other constantsmcorr andlcorr which are
functions ofm, l and the parameterm. These constants als
contain divergent terms involvingL. It is possible to inter-
pret V(F) suitably using renormalization group technique
We shall not discuss these techniques here.

B. Results with the modified weightage factor

Let us now evaluateVeff with the modified weightage fac
tor. Substituting the kernel~36! in Eq. ~6!, we obtain that

Lcorr
P 52S 1

32p2D E0

`ds

s3
eiL P

2 /s e2 ias, ~43!

where

a5m21Vint9 ~Fc!.

This integral can be easily evaluated and the resultingLcorr
P

can be expressed in a closed form as follows~see, for in-
stance, Ref.@11#, p. 340!:
9-5
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Lcorr
P 5S a

16p2LP
2D K2~2LPAa!, ~44!

whereK2(2LPAa) is the modified Bessel function. Since

Lcorr
P0 52S 1

32p2D E0

`ds

s3
e2 im2s eiL P

2 /s

5S m2

16p2LP
2 D K2~2LPm!, ~45!

on subtracting this quantity fromLcorr
P , we obtain that

L̄corr
P 5~Lcorr

P 2Lcorr
P0 !

5S 1

16p2LP
2 D $a K2~2LPAa!2m2 K2~2LPm!%,

~46!

and therefore,
04400
Veff
P 5H S 1

2
m2Fc

21Vint~Fc! D
2S 1

16p2LP
2 D @a K2~2LPAa!2m2 K2~2LPm!#J .

~47!

This expression for the effective potential is applicable
arbitrary Vint . This is in contrast to the conventional ap
proach where the divergences appearing inLcorr forced the
potential to be a polynomial of quartic degree or less. F
ther, there is no need to introduce an arbitrary parametem
as was required in the conventional approach. The need
such a parameter arose because of the cutoffL that was
introduced by hand in order to isolate the divergent ter
appearing inLcorr. The introduction of a fundamental lengt
LP in the theory dispenses with such a need.

Let us now specialize to the case of the quartic interact
as given by Eq.~39!. For such a case, the corrections to t
parameters of the theory can be obtained fromVeff

P as fol-
lows:
t,
~mcorr
P !25S ]2Veff

P

]Fc
2 D

Fc50

5H m22S l

16p2LP
2 D K2~2LPm!2S ml

16p2LP
D K28~2LPm!J ~48!

and

lcorr
P 5S ]4Veff

P

]Fc
4 D

Fc50

5H l2S 9l2

32p2mLP
D K28~2LPm!2S 3l2

16p2D K29~2LPm!J , ~49!

where K28 and K29 denote first and second derivatives of the modified Bessel functionK2 with respect to the argumen
respectively. In the limitLP→0, we find that

~mcorr
P !25m21S l~2g21!

32p2 D m21S l

32p2D F 1

LP
2

1m2ln~LP
2m2!G1S lm4LP

2

128p2 D @ ln ~LP
2m2!1~4g13!#,

lcorr
P 5l1S 3g

16p2D l21S 3l2

32p2D ln~LP
2m2!1S 3l2m2LP

2

32p2 D @ ln~LP
2m2!12~g21!#,

V finite
P 5

1

2
m2F l

32p2
lnS 11

l

2m2
Fc

2D 2
l

64p2GFc
2

1
1

4!F 3l2

32p2
lnS 11

l

2m2
Fc

2D 2
9l2

64p2
2

11l2m2

192p2
LP

2 2
3l2m2

32p2
LP

2 ln~LP
2m2!GFc

41S m4

64p2D lnS 11
l

2m2
Fc

2D
1S LP

2

192p2D S m21
1

2
lFc

2D 3

lnS 11
l

2m2
Fc

2D 2S m6

192p2D LP
2 ln~LP

2m2!, ~50!
9-6
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where g is the Euler-Mascheroni constant. By compari
Eqs.~42! and~50!, it can be easily seen that the divergenc
in mcorr

P andlcorr
P are of the same form as inmcorr andlcorr.

Quadratic and logarithmic divergences arise in these exp
sions. The finite terms appearing in (mcorr

P )2 andlcorr
P which

are independent ofLP are different from those appearing
Vfinite

P in Eq. ~50!. This is because the form of the cutoff use
is different. It is also clear from the above expression that
mÞ0, V finite

P is finite in the limit LP→0.

IV. CORRECTIONS TO THE EFFECTIVE LAGRANGIAN
FOR ELECTROMAGNETIC FIELD

The system we shall consider in this section consists
complex scalar fieldF interacting with the electromagneti
field represented by the vector potentialAm. It is described
by the following action~see, e.g., Ref.@12#, p. 98!:

S@F,Am#5E d4x L~F,Am!

5E d4x H ~]mF1 iqAmF!~]mF* 2 iqAmF* !

2m2FF* 2
1

4
FmnFmnJ , ~51!

whereq andm are the charge and the mass associated wi
single quantum of the complex scalar field, the asterisk
notes complex conjugation and

Fmn5]mAn2]nAm . ~52!

We shall assume that the electromagnetic field behaves
sically; henceAm is just ac-number, while we shall assum
the complex scalar field to be a quantum field so thatF is an
operator valued distribution. Varying the action~51! with
respect to the complex scalar fieldF, we obtain the follow-
ing Klein-Gordon equation:

~Ĥ1m2!F[@~]m1 iqAm!~]m1 iqAm!1m2#F50.
~53!

A. Conventional result

In what follows, we shall evaluate the effective Lagran
ian for a constant electromagnetic background. A cons
electromagnetic background can be described by the ve
potential Am5(2Ez,2By,0,0), whereE and B are con-
stants. The electric and the magnetic fields that this ve
potential gives rise to are given byE5Eẑ andB5Bẑ, where
ẑ is the unit vector along the positivex-axis. The operatorĤ
corresponding to the vector potential above is then given

Ĥ[~] t
22“

222iqEz] t22iqBy]x2q2E21q2B2!.
~54!

The kernelK(x,x;s) corresponding to such an operator
given by ~see, e.g., Ref.@10#!
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K~x,x;s!5H S 1

16p2is2D S qEs

sinh~qEs! D S qBs

sin~qBs! D J .

~55!

Substituting this kernel in the expression forLcorr in Eq. ~4!,
we get

Lcorr52S 1

16p2D E0

`ds

s3
e2 i ~m22 i e!sS qas

sinh~qas! D
3S qbs

sin~qbs! D , ~56!

wherea andb are related to the electric and magnetic fiel
E and B by the relations (a22b2)5(E22B2) and (ab)
5(E•B).

We can now interpret the real part ofLcorr as the correc-
tion to the Lagrangian describing the classical electrom
netic background given by

Lem52
1

4
FmnFmn5

1

2
~E22B2!5

1

2
~a22b2!. ~57!

The real part ofLcorr can be regularized by subtracting th
flat space contribution which is obtained by setting botha
and b to zero. Such a regularization then leads us to
following result:

Re L̄corr52S 1

16p2D E0

`ds

s3
cos~m2s!

3 H S qas

sinh~qas! D S qbs

sin~qbs! D21J . ~58!

Nears50, the expression in the curly brackets above goe

@2q2s2(a22b2)/6#. Hence, ReL̄corr is still logarithmically
divergent nears50. But this divergence is proportional t
the original LagrangianLem, and because of this feature, w
can absorb this divergence by redefining the field streng
and charge. Or, in other words, we can renormalize the fi
strengths and charge by absorbing the logarithmic div
gence into them in the following fashion. We write

Leff5~Lem1Re L̄corr!5~Lem1Ldiv!1~Re L̄corr2Ldiv!,
~59!

where we have definedLdiv as follows:

Ldiv52S 1

16p2D E0

`ds

s3 cos~m2s!H 2
1

6
q2s2~a22b2!J

5S Z

2D ~a22b2!5S Z

2D ~E22B2!5Z Lem, ~60!

whereZ is a logarithmically divergent quantity described b
the integral
9-7
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Z5S q2

48p2D E0

`ds

s
cos~m2s!. ~61!

Therefore, we can write

Leff5~Lem1Ldiv!1~Re L̄corr2Ldiv!5~11Z! Lem1Lfinite ,

~62!

whereLfinite5(Re L̄corr2Ldiv) is a finite quantity described
by the integral

Lfinite52S 1

16p2D E0

`ds

s3
cos~m2s!H S qas

sinh~qas! D
3S qbs

sin~qbs! D211
1

6
q2s2~a22b2!J . ~63!

All the divergences now appear inZ. Redefining the field
strengths and charges as

Ephy5~11Z!1/2 E, Bphy5~11Z!1/2 B,

qphy5~11Z!21/2 q, ~64!

we find that such a scaling leavesqphyEphy5qE invariant.
Thus it is possible to redefine~renormalize! the variables in
the theory, thereby taking care of the divergences.

B. Results with the modified weightage factor

With the modified weightage factor, we find that th
quantityLcorr

P for the constant electromagnetic background
described by the following integral:

Lcorr
P 52S 1

16p2D E0

`ds

s3
e2 im2s eiL P

2 /sS qas

sinh~qas! D
3S qbs

sin~qbs! D . ~65!

The real part ofLcorr
P is then given by

Re Lcorr
P 52S 1

16p2D E0

`ds

s3
cos @m2s2~LP

2 /s!#

3S qas

sinh~qas! D S qbs

sin~qbs! D . ~66!

Regularizing this quantity by subtracting the flat space c
tribution ~viz. the quantity obtained by settinga5b50 in
the above expression!, we get

Re L̄corr
P 52S 1

16p2D E0

`ds

s3
cos@m2s2~LP

2 /s!#

3H S qas

sinh~qas! D S qbs

sin~qbs! D21J . ~67!
04400
s
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We can now express the effective Lagrangian exactly as
had done earlier. We can write

Leff
P 5~Lem1Re L̄corr

P !5~Lem1Ldiv
P !1~Re L̄corr

P 2Ldiv
P !,

~68!

where weLdiv
P can now be defined as follows:

Ldiv
P 52S 1

16p2D E0

`ds

s3
cos@m2s2~LP

2 /s!#

3H 2
1

6
q2s2~a22b2!J

5
ZP

2
~a22b2!5

ZP

2
~E22B2!5ZP Lem. ~69!

ZP is now a finite quantity described by the integral

ZP5S q2

48p2D E0

`ds

s3
cos~m2s2LP

2 /s!5
q2

6p
K0~2mLP!,

~70!

whereK0(2mLP) is the modified Bessel function of orde
zero. Therefore, we can write

Leff
P 5~Lem1Ldiv

P !1~Re L̄corr
P 2Ldiv

P !

5~11ZP! Lem1Lfinite
P , ~71!

whereLfinite
P 5(Re L̄corr

P 2Ldiv) is given by

Lfinite
P 52S 1

16p2D E0

`ds

s3
cos~m2s2LP

2 /s!

3H S qas

sinh~qas! D S qbs

sin~qbs! D
211

1

6
q2s2~a22b2!J . ~72!

We can now redefine the field strengths and the cha
just as we had done earlier withZP instead ofZ. ZP is a finite
quantity for a non-zeroLP , but diverges logarithmically
whenLP is set to zero. Even in the limitLP→0, the quantity
Lfinite

P stays finite and the divergence appears only in the
pression forZP.

In the limit LP→0, we can make a rough estimate of th
value ofLfinite

P as follows. The quantity exp (2m2s2LP
2/s) is a

sharply peaked function about the values5(LP /m)!1.
Therefore, we may, without appreciable error, expand
term in the curly brackets in the above expression forLfinite

P

in a Taylor series about the points50, retaining only the
first non-zero term. Keeping the limits of integration from
to ` ~and performing a Euclidean rotation in order to eva
ate the integral!, we obtain
9-8
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Lfinite
P 'S 1

16p2D S 2LP
2q4

360m2D @7~a22b2!214a2b2#K2~2mLP!,

~73!

where K2 is the modified Bessel function of order 2. E
pandingK2 in a series and retaining the terms of least or
in LP , we obtain

Lfinite
P 'S 1

16p2D S q4

360m4D @7~a22b2!214a2b2#~12LP
2m2!.

~74!

V. CORRECTIONS TO THE THERMAL EFFECTS
IN THE RINDLER FRAME

In flat spacetime, the Minkowski vacuum state is invaria
only under the Poincare´ group, which is basically a set o
linear coordinate transformations. Under a non-linear coo
nate transformation the particle concept, in general, prove
be coordinate dependent. For example, the quantization
the Minkowski and the Rindler coordinates are inequival
@13#. In fact the expectation value of the Rindler numb
operator in the Minkowski vacuum state proves to be a th
mal spectrum. This result is normally obtained in the lite
ture by quantizing the field in the two coordinate syste
and then evaluating the expectation value of the Rind
number operator in the Minkowski vacuum state. If we are
evaluate the quantum gravitational corrections to the Rin
thermal spectrum in such a fashion, then we need to kn
how the metric fluctuations modify the normal modes of t
quantum field. But as we have mentioned earlier, we o
know how quantum gravitational corrections can be int
duced in the effective Lagrangian. Therefore, in this secti
we shall first evaluate the effective Lagrangian in the Rind
coordinates and then go on to evaluate the corrections to
effective Lagrangian. The derivation of the Hawking rad
tion in a black hole spacetime runs along similar lines as
derivation of the Rindler thermal spectrum. Hence the res
we present in this section have some relevance to the ef
of metric fluctuations on Hawking radiation.

The system we shall consider in this section is a mass
scalar field~in 4 dimensions! described by the action

S@F#5E d4xA2g L~F!

5E d4xA2gH 1

2
gmn ]m F]nFJ . ~75!

Varying this action, we obtain the equation of motion forF
to be

ĤF[
1

A2g
]m~A2ggmn]n!F50. ~76!
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A. Conventional result

1. Effective Lagrangian

The transformations that relate the Minkowski coord
nates in flat spacetime to those of an observer who is ac
erating uniformly along thex-direction are given by the fol-
lowing relations@14#:

t5g21~11gj! sinh~gt!,

x5g21~11gj! cosh~gt!, y5y, z5z, ~77!

where g is a constant. The new coordinates (t,j,y,z) are
called the Rindler coordinates. In terms of the Rindler co
dinates the flat spacetime line element is then given by

ds25~11gj!2 dt22dj22dy22dz2. ~78!

Therefore, in the Rindler coordinates, the operatorĤ as de-
fined in Eq.~76! is given by

Ĥ[H 1

~11gj!2
]t

22
1

~11gj!
]j@~11gj!]j#2]y

22]z
2J ,

~79!

where]x[(]/]x). This operator is invariant under transla
tions along they- and z-directions. Or, in other words, the
kernel corresponds to that of a free particle along these
directions. Exploiting this feature, we can write the quantu
mechanical kernel as

K~x,x,;sugmn!5S 1

4p isD ^t,jue2 iĤ 8sut,j&, ~80!

where

Ĥ8[S 1

~11gj!2
]t

22
1

~11gj!
]j@~11gj!]j# D . ~81!

On rotating the time coordinatet to the negative imaginary
axis ~i.e. on settingt52 i tE) and changing variables tou
5@g21(11gj)#, we find that

Ĥ8[S 2
1

g2u2
]tE

2 2
1

u
]u@u]u# D . ~82!

If we identify u as a radial variable andgtE as an angular
variable, thenĤ8 is similar in form to the Hamiltonian op-
erator of a free particle in polar coordinates~in 2 dimen-
sions!. Then, for a constantj, the kernel corresponding to th
operatorĤ8 can be written as@15,16#

^t8,jue2 iĤ 8sut8,j&5S 1

4psD (
n52`

`

exp H 2
i

4s
~11gj!2

3~t2t812p ing21!2J . ~83!
9-9
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Therefore, the complete quantum mechanical kernel c
responding to the operatorĤ ~in the coincidence limit! is
given by

K~x,x;sugmn!5S 1

16p2is2D (
n52`

`

exp~ ib2n2/4s!

5S 1

16p2is2D H 112(
n51

`

exp~ ib2n2/4s!J ,

~84!

whereb5@2pg21(11gj)#. Substituting this kernel in ex
pression~4! and settingm50, we find that

Lcorr52S 1

32p2D E0

`ds

s3 H 112(
n51

`

exp~ ib2n2/4s!J .

~85!

On regularization, i.e. on subtracting the quantityLcorr
0 @given

by Eq. ~14! with m50# from the above expression, we ob
tain that

L̄corr5~Lcorr2Lcorr
0 !52S 1

16p2D (
n51

` E
0

`ds

s3
exp~ ib2n2/4s!.

~86!

The integral overs can be expressed in terms of Gamm
functions~see, e.g., Ref.@11#, p. 934!, so that

L̄corr5S G~2!

p2 b4D (
n51

`

n245S G~2!

p2 b4D z~4!5S p2

90b4D ,

~87!

where we have made use of the fact thatz(4)5(p4/90) ~cf.
Ref. @7#, p. 334!.

Two points need to be noted regarding the above res
First, L̄corr corresponds to the total energy radiated by
blackbody at a temperatureb21. Second, there arises n
imaginary part to the effective Lagrangian which clearly im
plies that the thermal effects in the Rindler frame arise du
vacuum polarization and not due to particle production.

2. Power spectrum from the propagator

The Feynman propagator~in Lorentzian space! corre-
sponding to an operatorĤ is given by@cf. Eq. ~1!#

GF~x,x8!52 i E
0

`

ds K~x,x8;sugmn!, ~88!

whereK(x,x8;sugmn) is given by Eq.~5!. ~Note that since
we are considering a massless scalar field, we have sm
50.! For the Rindler coordinates we are considering he
the propagator is obtained by substituting the kernel~84! in
the expression for the propagator as given by Eq.~88!. If we
setj5j850, y5y8 andz5z8, we find that the propagator i
given by
04400
r-

lt.
a

to

,

GF~x,x8![GF~Dt!

52S 1

16p2D E0

`ds

s2 (
n52`

n5`

exp2@ i ~Dt1 ibn!2/4s#

5S i

4p2D (
n52`

n5`

~Dt12p ing21!22, ~89!

where Dt5(t2t8). Also, since we have setj50,
b5(2p/g). @Compare this result with Eq.~3.66! in Ref.
@17#.# Fourier transforming this propagator with respect
Dt, we find that

P~V![U E
2`

`

dDt e2 iVDt GF~Dt!U5S 1

2 p D S V

ebV21
D ;

~90!

i.e., the resulting power spectrum is a thermal spectrum w
a temperatureb21.

B. Results with the modified weightage factor

1. The modified effective Lagrangian

Let us now evaluate the effective Lagrangian in the R
dler frame with the modified weightage factor. Substituti
the kernel~84! in the expression~6! for Lcorr

P and settingm
50, we obtain that

Lcorr
P 52S 1

32p2D E0

`ds

s3
eiL P

2 /sH 112(
n51

`

exp ~ ib2n2/4s!J .

~91!

On regularization, i.e. on subtracting the quantityLcorr
P0 ~with

m50) from Lcorr
P , we find that

L̄corr
P 5~Lcorr

P 2Lcorr
P0 !

52S 1

16p2D E0

`ds

s3
eiL P

2 /s(
n51

`

exp~ ib2n2/4s!

5S 1

p2D (
n51

`

~b2n214LP
2 !22

5S 1

p2b4D (
n51

`

@n21~4LP
2 /b2!#22. ~92!

Using the relation~cf. Ref. @8#, Vol. I, p. 687!

(
n50

`

~n21a2!225S 1

a4D 1 (
n51

`

~n21a2!22

5S 1

2a4D 1S p

4a3D coth~pa!

1S p2

4a2D csch2~pa!, ~93!
9-10
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we can expressL̄corr
P in a closed form as follows:

L̄corr
P 5H 2S 1

32p2LP
4 D 1S 1

32pbLP
3 D coth~2pLP /b!

1S 1

16b2LP
2 D csch2~2pLP /b!J . ~94!

Making use of the series expansions~cf. Ref. @11#, p. 36!

coth~px!5S 1

pxD1S 2x

p D (
n51

`

~x21n2!21 ~95!

and

csch2~px!5S 1

p2x2D 1S 2

p2D (
n21

` H x22n2

~x21n2!2J , ~96!

we find that, asLP→0

L̄corr
P →H S p2

90b4D 2LP
2 S 8p4

945b6D J . ~97!

2. Power spectrum from the modified propagator

The propagator with the modified weightage factor
given by

GF
P~x,x8!52 i E

0

`

ds eiL P
2 /s K~x,x8;sugmn!. ~98!

In the Rindler coordinates, we find that, if we setj5j850,
y5y8 andz5z8, the modified propagator reduces to

GF
P~Dt!52S 1

16p2D E0

`ds

s2

3 (
n52 in f ty

n5`

expH 2 i F 1

4s
~Dt1 ibn!22

LP
2

s G J
5S i

4p2D (
n52`

n5`

@~Dt12p ing21!2224LP
2 #21,

~99!

where, as before,Dt5(t2t8). Fourier transforming this
modified propagator with respect toDt, we obtain that

P P~V![U E
2`

`

dDt e2 iVDt GF
P~Dt!U

5S 1

2 p D S usin ~2VLP!u
2VLP

D S V

ebV21
D . ~100!

This modified spectrum shows an appreciable deviation fr
the Planckian form only whenb.ŁP . But whenb.LP , the
semiclassical approximation we are working with will an
way cease to be valid.
04400
m

VI. CORRECTIONS TO THE GRAVITATIONAL
LAGRANGIAN

The system we shall consider in this section consists o
scalar fieldF interacting with a classical gravitational fiel
described by the metric tensorgmn . It is described by the
action

S@gmn ,F#5E dDxA2g L~gm,n ,F!

5E dDxA2g H 1

16pG
~R22L!

1
1

2
gmn]mF]nF2

1

2
m2F22

1

2
jRF2J ,

~101!

whereR is the scalar curvature of the spacetime,L is the
cosmological constant andG is the gravitational constant
Setting the parameterj50 or j5(1/6) corresponds to a
minimal or conformal coupling of the scalar field to th
gravitational background respectively. We are interested
finding quantum corrections to the purely gravitational p
of the total Lagrangian. This will be done as usual in t
framework of the semiclassical theory by considering
one-loop effective action formalism. In the convention
derivation, divergences arise in the expression forLcorr.
There are three divergent terms, two of which are absor
into the cosmological constantL and the gravitational con
stantG, and thus Einstein’s theory is reinterpreted suitab
The third divergent term cannot be so absorbed. Extra te
will have to be introduced into the gravitational Lagrangi
in order to absorb this divergence@17#. When the duality
principle is used, however, no divergences occur. The c
mological constant and the the gravitational constant
modified by the addition of finite terms which are seen
diverge in the limitŁP→0, thus recovering the standard r
sult.

A. Conventional result

In what follows, we shall first briefly outline the conven
tional approach for calculatingLcorr and then use the modi
fied weightage factor to compute the corrections to the gra
tational Lagrangian.

Varying the above action with respect toF, we obtain
that

S 1

A2g
]m~A2ggmn]n!1m21jRD F50. ~102!

Comparing this equation of motion with Eq.~3!, it is easy to
identify that

Ĥ[S 1

A2g
]m~A2ggmn]n!1m21jRD . ~103!
9-11
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In D dimensions, the quantum mechanical kern
K(x,x8;sugmn) @cf. Eq. ~5!#, corresponding to the operatorĤ
above, can be written as@17,18#

K~x,x8;sugmn!

5S i

~4p is!D/2D eis~x,x8!/2sD1/2~x,x8! F~x,x8;s!, ~104!

where

s~x,x8!5
1

2E0

s

ds8H gmn

dxm

ds8

dxn

ds8
J 1/2

~105!

is the proper arc length along the geodesic fromx8 to x and
D1/2(x,x8) is the Van Vleck determinant given by

D1/2~x,x8!5~2@2g~x!#21/2 det @]m]ns~x,x8!#

3@2g~x8!#21/2!. ~106!

The function F(x,x8;s) can be written down in an
asymptotic expansion

F~x,x8;s!5 (
n50

`

an ~ is!n

5a01a1~x,x8! ~ is!1a2~x,x8! ~ is!21 . . . ,

~107!

where the leading terma0 is unity sinceF must reduce to
unity in flat spacetime.

Substituting the quantum mechanical kernel above in
expression forLcorr given by Eq.~4!, we obtain that

Lcorr52 lim
x→x8

S D1/2~x,x8!

32p2 D E
0

`ds

s3
e2 im2seis~x,x8!/2s

3$11a1~x,x8! ~ is!1a2~x,x8! ~ is!21 . . . %.

~108!

In the coincidence limit,s(x,x8) vanishes and one can easi
see that the integrals over the first three terms in the sq
brackets diverge. The integrals over the remaining terms
volving a3, a4 and so on are finite in this limit. Therefore
the divergent part ofLcorr is given by
04400
l

e

re
n-

Lcorr
div 52S 1

32p2D E0

`ds

s3
e2 im2s $11a1~x,x! ~ is!

1a2~x,x! ~ is!2%, ~109!

where the coefficientsa1 and a2 are given by the relations
@17#

a1~x,x!5S 1

6
2j DR ~110!

and

a2~x,x!5
1

6 S 1

5
2j DgmnR;m;n1

1

2 S 1

6
2j D 2

R2

1
1

180
RmnlrRmnlr2

1

180
RmnRmn. ~111!

Sincea1 and a2 depend only onRmnlr and its contrac-
tions, they are purely geometrical in nature. The divergen
arise because of the ultraviolet behavior of the field mod
These short wavelengths probe only the local geometry
the neighborhood ofx and are not sensitive to the glob
features of the spacetime and are independent of the qua
state of the fieldF. Since the divergent part of the effectiv
Lagrangian is purely geometrical, it can be regarded as
correction to the gravitational part of the Lagrangian. T
divergence corresponding to the first term in the squ
brackets can be added to the cosmological constant,
regularizing it, while the divergence due to the second te
can be absorbed into the gravitational constant, giving ris
the renormalized gravitational constant which is finite. T
third term which involvesa2 contains derivatives of the met
ric tensor of order 4 and this term represents a correctio
Einstein’s theory which contains derivatives of order 2 on
Therefore one needs to introduce extra terms into the gr
tational Lagrangian so that these divergences can be
sorbed into suitable constants@17#.

B. Results with the modified weightage factor

Let us now evaluate the corrections to the gravitatio
Lagrangian with the modified weightage factor. Substituti
the kernel~104! into Eq. ~6!, we obtain
for the
Lcorr
P 52S 1

32p2D E0

`ds

s3
e2 im2s eiL P

2 /s$11a1~x,x! ~ is!1a2~x,x! ~ is!21 . . . %

5S m4

32p
D 2H S 2

LP
2 m2D K2~2LPm!1S 2

LP m3D K1~2LPm!a1~x,x!1S 2

m4D K0~2LPm!a2~x,x!1 . . . J , ~112!

whereK0, K1 andK2 are the modified Bessel functions of orders 0, 1 and 2, respectively. The effective Lagrangian
classical gravitational background is therefore given by
9-12
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Leff
P 5~Lgrav1Lcorr

P !5
1

16pGcorr
R2

1

8pG
Lcorr1

1

16p2
K0~2LPm!a2~x,x!1 . . . , ~113!

where

Lcorr5L2S m2G

2pLP
2 D K2~2LPm! and

1

Gcorr
5

1

G
1S m

pLP
D S 1

6
2j DK1~2LPm!. ~114!
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Invoking the principle of path duality corresponds to mu
tiplying the kernelK(x,x;sugmn) by the factor exp (iLP

2/s),
where LP

2 is the square of the Planck length. But as me
tioned in the Introduction, it can so happen that the fun
mental length is (hLP) where h is a numerical factor of
order unity. Therefore, if we replaceLP in the above equa
tions by (hLP) and sinceLP

2[G by definition, the formula
for Gcorr can equivalently be written as

1

Gcorr
5

1

G F11
mAG

hp S 1

6
2j DK1~2hAGm!G . ~115!

In the limit (hm)→0, using the power series expansio
for the functionsK2(2hAGm) and K1(2hAGm), we can
write the corrections toG andL as follows:

Lcorr5L2
m2

2ph2S 1

2h2Gm2
2

1

2D 5L1
m2

4ph2
2

1

4ph4G
~116!

and

1

Gcorr
5

1

GF11
1

2ph2S 1

6
2j D G . ~117!

For the case when the scalar field is assumed to
coupled minimally to the gravitational background~i.e. when
j50) the correction toG reduces to

1

Gcorr
5

1

GF11
1

12ph2G , ~118!

whereas in the conformally coupled case~i.e. whenj51/6)
the correction toG vanishes identically.

VII. CORRECTIONS TO THE TRACE ANOMALY

The problem concerning the renormalization of the exp
tation value of the energy-momentum tensor in curv
spacetime is considerably more involved than the co
sponding problem in Minkowski spacetime. This conce
the role of the energy-momentum tensorTmn in gravity. In
flat spacetime only energy differences are meaningful
therefore infinite constants like the energy of the vacuum
be subtracted out without any problem. In curved spaceti
however, energy is a source of gravity. Therefore, one is
free to rescale the zero point of the energy scale in an a
04400
-
-

e

-
d
-

s

d
n
e,
ot
i-

trary manner. In the semi-classical theory of gravity, one c
carry out the renormalization of^Tmn& in a unique way using
different methods like thez-function renormalization tech
nique, dimensional regularization and other methods. Si
^Tmn& can be obtained from the effective action by functio
ally differentiating with respect to the metric tensor, th
renormalization procedure is therefore connected with
renormalization of the effective action which was describ
in the previous section. Upon specializing to theories wh
the classical action is invariant under conformal transform
tions, it can be shown that the trace of theclassicalenergy-
momentum tensor is zero. But when the renormalized exp
tation value of the trace is calculated, however, it is found
be non-zero. This is the conformal or trace anomaly. It
sentially arises because of the divergent terms present in
effective action. When the principle of path integral dual
is applied, no divergences appear and hence one would
pect the trace anomaly to vanish. But because a fixed len
scale appears in the problem, the trace anomaly is still n
zero.

A. Conventional result

In this section we derive the formula relating the trace
the energy momentum tensor and the effective action.
then apply the duality principle and derive an explicit fo
mula for the trace anomaly. In the limit ofLP→0, it is
shown that the usual divergences appear which when re
malized using dimensional regularization and zeta funct
regularization techniques yield the usual formula for t
trace anomaly.

Consider a scalar field that is coupled to a classical gra
tational background as described by the action~101!. The
energy-momentum of such a scalar field can be obtained
varying the action with respect to the metric tensorgmn as
follows @19#:

Tmn[S 2

A2g
D S d
S
d

gmnD
5]mF]nF2

1

2
gmn]a]aF2

1

2
gmnm2F2

1jH gmn
1

A2g
]a~A2ggab]b!F2

2~F2! ;m;n1GmnF2J , ~119!
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where Gmn5(Rmn2(1/2)gmnR). Using the field equations
~102!, the trace ofTmn is

Tm
m5~6j21!]mF]mF1j~6j21!RF21~6j22!m2F2.

~120!

For the conformally invariant case, i.e. whenj51/6 andm
50, the trace vanishes. Thus, if the action is invariant un
conformal transformations of the metric, the classi
energy-momentum tensor is traceless. Since conformal tr
formations are essentially a rescaling of lengths at e
spacetime pointx, the presence of a mass and therefore
existence of a fixed length scale in the theory will break
conformal invariance. On the other hand, the trace of
renormalized expectation value of the energy momen
tensor does not vanish in the conformal limit. In the sem
classical domain, the expectation value ofTmn is given by

^Tmn&5
2

A2g~x!

dScorr

dgmn
, ~121!

where

Scorr5E d4xA2gLcorr.

Consider the change inScorr under an infinitesimal con
formal transformation

gmn→g̃mn5V2~x!gmn , ~122!

with

V2~x!511e~x! and dgmn5e~x!gmn .

RegardingScorr as a functional ofV2(x), with gmn being a
given function, we obtain

Scorr@~11e!gmn#

5Scorr@gmn#1E d4x
dScorr@V2~x!gmn#

dV2~x!
U

V2~x!51

e~x!.

~123!

Thus

dScorr@gmn#

dgmn
gmn5

dScorr@V2~x!gmn#

dV2~x!
U

V2~x!51

. ~124!

Therefore

^T m
m &5

2

A2g

dScorr@gmn#

dgmn
gmn

5
2

A2g

dScorr@V2~x!gmn#

dV2~x!
U

V2~x!51

. ~125!

Now, Scorr is given by the formula
04400
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Scorr@gmn#52
i

2E d4xA2gE
0

`ds

s
^xue2 isĤux&. ~126!

It can be shown that under a conformal transformat
@17#,

H~x!→H̃~x!5V23~x!H~x!V~x!, ~127!

whereH(x) is given by Eq.~103! in the conformal limit with
j51/6 andm50. The corresponding relation satisfied by t
operatorĤ under a conformal transformation is

Ĥ̃5V21ĤV21 ~128!

while the trace operator ‘‘Tr’’ defined by the relation

Tr ~Ĥ !5E d4xA2g^xuĤux& ~129!

remains invariant@18#.
Using the above results it is easy to show that

Tr ~e2 isĤ̃!5Tr ~e2 isV21ĤV21
!5Tr ~e2 isV22Ĥ!.

~130!

Using the above formula forScorr, and the above results, w
find that, under the infinitesimal transformation~122!,

Scorr@V2gmn#52
i

2E d4xA2gE
0

`ds

s
^xue2 isV22Ĥux&.

~131!

The above expression forScorr is clearly divergent nears
50 as shown in the previous section. Making a change
variables→s85sV22, it appears that

Scorr@V2gmn#52
i

2E d4xA2gE
0

`ds8

s8
^xue2 is8Ĥux&

[Scorr@gmn#. ~132!

But such a change of variable is not valid since the integra
divergent. To make sense of such an integral, we can re
to various techniques to determine the trace anomaly. F
lowing Refs.@17,18#, using thez function approach, it can be
shown that the trace of the energy-momentum tensor is e
to @a2(x,x)/(4p)22#.

B. Results with the modified weightage factor

The expression forScorr@V2gmn# with the modified
weightage factor is given by

Scorr@V2gmn#52
i

2E d4xA2gE
0

`ds

s
eiL P

2 /s^xue2 isV22Ĥux&.

~133!

This expression has no divergences. Changing the vari
s→s85sV22 ~which is valid now! we obtain
9-14
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Scorr@V2gmn#52
i

2E d4xA2gE
0

`ds8

s8
e~ iL P

2 /V2s8!

3^xue2 is8Ĥux&. ~134!

Using the formula for the trace of the energy moment
tensor~125!, we find that

^T m
m &52LP

2E
0

`ds

s2 eiL P
2 /s^xue2 isĤux&. ~135!

Using the formula for the propagator given in Eq.~104! in 4
dimensions and carrying out the integral overs, we get

^T m
m &5

2LP
2

~4p!2(
n50

`

anS LP

m D n23

K ~n23!~2LPm! ~136!

whereKn is the usual modified Bessel function of ordern. In
the limit LP→0, the expression above reduces to

lim
LP→0

^T m
m &5 lim

LP→0

2

~4p!2F 1

LP
4 1

a12m2

2LP
2 G

1
1

2~4p!2 ~2a222m2a11m4!. ~137!

The terms present in the square brackets represent the d
gences that are present in the evaluation of the ene
momentum tensor without using the duality principle. The
divergences need to be regularized by other methods like
z function approach mentioned earlier. The finite part t
remains is the last term that, in the conformal limit, reduc
to @a2(x,x)/(4p)22#. Thus, we recover the standard res
in the limit of LP→0.

VIII. DISCUSSION

In this paper, we evaluated the quantum gravitational c
rections to some of the standard quantum field theoretic
sults using the ‘‘principle of path integral duality.’’ We fin
that the main feature of this duality principle is that it is ab
provide an ultra-violet cutoff at the Planck energy scal
thereby rendering the theory finite. Another key feature
this approach is that the prescription is completely Lore
invariant. Hence we were able to obtain finite but Loren
invariant results for otherwise divergent expressions.

The obvious drawbacks of the approach are the followi
04400
er-
y-
e
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t
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t
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,
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z
z

:

~i! The prescription of path integral duality is essentia
an ad hoc prescription. It is not backed by a theoretic
framework which is capable of replacing the convention
quantum field theory at the present juncture. Hence, the
scription only tells us as to how we can modify the kern
and the associated Green’s functions. To obtain any re
with the prescription of path integral duality we have to fir
relate the result to the kernel or Green’s function, modify t
kernel and thereby obtain the final result.

In spite of this constraint we have been able to show
this paper that concrete computations can be done and
cific results can be obtained. As regards thead hocnessof the
prescription, it should be viewed as a first step in the
proach to quantum gravity based on a general physical p
ciple. Its relation to zero-point length and the emergence
analogous duality principles in string theories, for examp
makes one hopeful that it can be eventually put on a firm
foundation.

~ii ! The modified kernel~based on the principle of pat
integral duality! may not be obtainable from the standa
framework of field theory based on unitarity, microscop
causality and locality.~We have no rigorous proof that this i
the case; however, it is quite possible since standard fi
theories based on the above principles are usually diverge!

It is not clear to us whether such principles will be r
spected in the fully quantum gravitational regime. It is ve
likely that the continuum field theory which we are accu
tomed to will be drastically modified at Planck scales. If th
is the case, it is quite conceivable that the quantum grav
tional corrections also leave a trace of the breakdown
continuum field theory even when expressed in such a fa
iar language. As an example, consider an attempt to st
and interpret quantum mechanics in terms of classical tra
tories. Any formulation will lead to some contradictions lik
for example, the breakdown of differentiability for the pat
This arises because we are attempting to interpret phys
principles using an inadequate formalism.

The next logical step will be to attempt to derive the pa
integral duality from a deeper physical principle using app
priate mathematical methods. This should throw more li
on, for example, the connection between path integral dua
and zero-point length which at the moment remains a m
tery. We hope to address it in a future publication.
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