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Hypothesis of path integral duality. 1. Corrections to quantum field theoretic results
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In the path integral expression for a Feynman propagator of a spinless particle ofnhgspath integral
amplitude for a path of proper Iengm(x,x’|gw) connecting events andx’ in a spacetime described by the
metric tensorg,,, is exp{—[m R(x,x’|gw)]}. In a recent paper, assuming the path integral amplitude to be
invariant under the duality transformatida—>(L§,/R), Padmanabhan has evaluated the modified Feynman
propagator in an arbitrary curved spacetime. He finds that the essential feature of this “principle of path
integral duality” is that the Euclidean proper distancexj? between two infinitesimally separated spacetime
events is replaced bj(Ax)2+ 4L,2:,]. In other words, under the duality principle the spacetime behaves as
though it has a “zero-point lengthLp, a feature that is expected to arise in a quantum theory of gravity. In
Schwinger’s proper time description of the Feynman propagator, the weightage factor for a path with a proper
time s is exp[—(m?s)]. Invoking Padmanabhan’s “principle of path integral duality” corresponds to modify-
ing the weightage factor exp-(nPs)] to exp{—[nPs+(L2/s)]}. In this paper, we use this modified weightage
factor in Schwinger’s proper time formalism to evaluate the quantum gravitational corrections to some of the
standard quantum field theoretic results in flat and curved spacetimes. In flat spacetime, we evaluate the
corrections td1) the Casimir effect(2) the effective potential for a self-interacting scalar field the@8y the
effective Lagrangian for a constant electromagnetic backgroundante thermal effects in Rindler coordi-
nates. In arbitrary curved spacetime, we evaluate the correctioii$) tthe effective Lagrangian for the
gravitational field and2) the trace anomaly. In all these cases, we first briefly present the conventional result
and then go on to evaluate the corrections with the modified weightage factor. We find that the extra factor
exp[f(Léls)] acts as a regulator at the Planck scale thereby “removing” the divergences that otherwise appear
in the theory. Finally, we discuss the wider implications of our analy§i6556-282(98)02016-5

PACS numbeps): 04.60.Gw, 11.25.Mj

[. INTRODUCTION factor of order unity. Therefore, in this paper, when we say
that the fundamental length is>, we actually mean that it is
This paper is a logical continuation of an earlier paper byof O(Lp).] He found that the duality principle modifies
Padmanabhafi]. Here, we shall utilize the results obtained the weightage given to a path of proper tinge from
in [1] to evaluate the quantum gravitational corrections toexp[—(nPs)] to exp{—[nPs+(L3/s)]}. The resulting Euclid-
some of the standard quantum field theoretic results in flaban Feynman propagator is then given by
and curved spacetimes. In this section, we shall very briefly
summarize the results that were presentedlihand then , * s (L2 .
proceed on to discuss the various applications. GE(X,X'],,) = fo ds e ™ e (P9 K(x,x;5]g,.,).
In Schwinger's proper time formalism, the Euclidean 2)
space Feynman propagator is described by the int¢gtal
The presence of a fundamental length scale is a feature that
is expected to arise in a quantum theory of grayiy4].
Hence, the modification of the weightage factor as men-
tioned above can be interpreted as being equivalent to intro-
WhereK(x,x’;s|g#,,) is the probability amplitude for a par- ducing quantum gravitational corrections into standard field
ticle to propagate fromx to x” in a proper time intervas in theory.
a given background spacetime described by the metric tensor The result given above will be utilized when required.
guv- The quantityK(x,x;s|gW) can usually be expressed as Further, we are interested in evaluating the one-loop effec-
a path integral. If1], Padmanabhan was able to introduce ative Lagrangian for various systems with the presence of a
fundamental length scale into the Feynman propagator aboviendamental length scale in the backgroufidt or curved
by invoking a “principle of path integral duality.” He had spacetime. The usual effective Lagrangian will be modified
assumed that the fundamental length scale was the Planelccordingly and this will determine the quantum gravita-
lengthLp =(G#/c®)*2 [Actually, it can so happen that the tional corrections to standard results. We derive now the for-
fundamental length scale is nbt but (7Lp), wherey isa  mula for the modified effective Lagrangian.
Consider aD-dimensional spacetime described by the
metric tensog,,, . Assume that a quantized scalar fididof

GF(x,x’|gMV)=f ds e ™S K(x,x";8|9,,), (1)
0
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where A is a differential operator in thé-dimensional Plates(see, e.g., Ref[5], pp. 138-141 To evaluate the
Spacetime_ Then’ in Lorentzian space, the effective Lagrané:aﬂmlr force in such a fashion we need to know the normal

ian corresponding to the operatdris given by the integral modes of t_he quantum field with and without the.pla_ltes.
[2] Therefore, if we are to evaluate the quantum gravitational

corrections to the Casimir effect by the method described
i (»ds ., above, then we need to know how metric fluctuations will
Leor=— EJ sen K(X,X;8]9,.,), (4 modify the modes of the quantum field. But, from the “prin-
0 ciple of path integral duality” we only know how the quan-
where tum gravitational corrections can modify the effective La-
grangian. Therefore, in this section, we shall first present a
K(x,x;slg,“,)E(x|e’“qs|x). (5) derivation of the Casimir effect from the effective Lagrang-
ian approach and then go on to evaluate the quantum gravi-
(If the quantum field interacts either with itself or with an tational corrections to this effect with the modified weight-
external classical field, thefi,,; will prove to be the correc- age factor. The system we shall consider here is a massless
tion to the Lagrangian describing the classical backgrgund.scalar field in flat spacetime. We shall evaluate the effective
The quantityK(x,x;s|gW) is the path integral kernéin the ~ Lagrangian for two casesi) with vanishing boundary con-
coincidence limit of a quantum mechanical system de-ditions on a pair of parallel plates ar@) with periodic
scribed by time evolution operatét. The integration vari- boundary con(_jmons on the_quantum f|eld..We shall describe
ables acts as the time parameter for the quantum mechanicde first case in detail and just state the final results for the
system. second.
We had mentioned earlier that invoking the “principle
of path integral duality” corresponds to modifying the
weightage factor exp—(n?s)] to exg—[nPs+(L3/9)]}. In Consider a pair of plates situatedzat 0 andz=a. Let us
Lorentzian space, this modified weightage factor is given byassume that the scalar fiefel vanishes on these plates. For

exp{—_[imzs—i(LE,/sf)]}. Therefore, invoking the “principle of such a case, the operatbr corresponds to that of a free
path integral duality” corresponds to modifying the effective particle with the condition that its eigenfunctions along the

A. Conventional result

Lagrangian given by Eq4) above to the following form:  z-direction vanish az=0 andz=a. Along the other D
i (=ds —1) perpendicular directions the operaﬁbrcorresponds to
Lo =—=| — e im’s giL3ls K(x,x;89,,), (6 that of a free particle without any boundary conditions. The
2)o s complete quantum mechanical kernel can then be written as
WhereK(x,x;s|gM) is still given by Eq.(5). In this paper, K(x,x";8)=K,(z,2';5) XK (X, ,X| ;8). 7)

we shall use this modified effective Lagrangian to evaluate

the quantum gravitational corrections to standard quanturbWe shall refer to the flat spacetime kerié(x,x’;s|7,,)

field theoretic results in flat and curved spacetimes. simply askK(x,x’;s).] In the limitx, — x| , K, (x, ,x] ;s) is
The layout of the rest of the paper is as follows. In Secsgiven by

II-V, we evaluate the corrections t{d) the Casimir effect,

(2) the effective potential for a self-interacting scalar field K, (X, X, 'S)= ' %)

theory, (3) the effective Lagrangian for a constant electro- LA (4is)P-1PR2)’

magnetic background and) the thermal effects in the Rin-

dler coordinates, in flat spacetime. In Secs. VI and VII, weThe quantum mechanical kernd{,(z,z';s) along the

evaluate the quantum gravitational corrections(1p the  z-direction corresponds to that of a particle in an infinite

gravitational Lagrangian an@) the trace anomaly in an ar- square well potential with walls &=0 andz=a. The ker-

bitrary curved spacetime. In all these sections, we shall firshel for such a case is given lfgee, e.g., Ref6], p. 46

briefly discuss the conventional result and then go on to

evaluate the corrections with the modified weightage factor. N

Finally, in Sec. VIII, we discuss the wider implications of Koz,2"5)= (4mis)Y?

our analysis.

_E_ {exp[i(z—2z' +2na)?/4s]

—exp[i(z+Z' +2na)?/4s]} ©)

Il. CORRECTIONS TO THE CASIMIR EFFECT which, in the coincidence limiti.e. whenz=z2'), reduces to

The presence of a pair of conducting plates alters the

vacuum structure of the quantum field and as a result there K,(2,2:5)= 1+22 elin?a®s)

arises a non-zero force of attraction between the two con- noe (4mis)*? n=1

ducting plates. This effect is called the Casimir effect. In the

conventional derivation of the Casimir effect, the difference i i(z+na)is

between the energy in the Minkowski vacuum and the Ca- =, e ' (10)

simir vacuum is evaluated and a derivative of this energy
difference gives the force of attraction between the CasimiiTherefore, the complete kern@h the coincidence limjtcor-
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responding to the operatdfl with the conditions that its __ a2 A ) 2
: : . _ e Loon= - 3—-2sirt(mz/a)].
eigenfunctions vanish &=0 andz=a is given by o™ | T a0 96 sin(mz/a) [ ( )]
| 17
K(x,x;s)= (4mis)PP Let us now consider the cag@=2. For such a case, from

Egs.(15) and(16), we obtain that

1+22 e in2a?/s) _ E ei(z+na)2/s]_ B -

n=1 n=-c Leonr= ( —2> [1—3 cosed(wz/a)]. (18)
(11) 24a
Note that there for both cas&=4 andD =2, there arises a

Substituting this k | in Eq4) and settingn=0, b- . :
ubstituting this kemel in Eq4) and settingm we o term that is dependent an[Compare these results with Egs.

tain that !
! (5.1) and(5.15 that appear in Ref9], p. 105]
1 = ds In the discussion above, we had assumed that the field
J—— - D/2>J Y vanishes az=0 andz=a. Let us now consider the case
2(4i) o 5P+ wherein we impose periodic boundary conditions on the field
w o along thez-direction; i.e., let us assume thdt(z)=®(z
in2a2 : 2 . . .
x11+2> gin%a?s_ glzrnaZst 4o +a). For such a case, the kernel h dimensions(in the
[ nz’l n;oo (12 coincidence limit is found to be
In flat spacetime, in the absence of any boundary condi- i 1) & din?2ea?
tions on the quantum scalar fiede, the quantum mechanical K(x,X;8) = WTT(D_W Y n;w e M msE
kernel for the operatoH corresponds to that of a free par- (19

ticle. The kernel for such a case is given by
The corresponding effective Lagrangian, after the flat space-

0 [ time contribution is subtracted out, is given by
K®(x,x;s)= —5 ] (13
(4is)
T I'(D/2) b_ I'(b/2) 5 00
That is, there exists a non-zefh,,, even for a free field in corr— (wa?)P2) i1 (mwa?)PP2 (D), (20
flat spacetime. Therefore, the flat spacetime contribution as
given by where{(D) is the Riemann zeta-functidisee, e.g., Ref7],
p. 334. Let us now consider the cafe=4. For such a case,
0 ( 1 ) foc A imt (g Wefind that
= e
corr :\D/2 (D/2)+1
2(4i) 0s - r(2) .- 2 ”
has to be subtracted from all,. o\ (wa2)? (4= 90a*/’ @D
Subtracting the quantit?,, [given by Eq.(14) above o
with m set to zerg from the expression foL.,, and then  For the cas® =2, L., iS given by
evaluating the resulting integral, we obtain that
= (1)
I'(D/2) Leor= (( 22) {(2)= o2 (22)
Leon= (Leon—™ ﬁcorr W
® ® B. Results with the modified weightage factor
[22 nfD—n:E_w [n+(2/a)]D}- (15 Let us now evaluate the effective Lagrangian with the
modified weightage factor. Substituting the keriigl) in
Now, consider the casB=4. The first series in the above EQ.(6) and settingn=0, we obtain that
expression forl.,, can be expressed in terms of the Rie- 1 . d o
mann zeta functiorisee, e.g., Ref7], p. 334 and the sec- rPo— f S eiL,%/s 1+22 gin?a?ls
. A . . corr .
ond series can be summed using the following relaficin 2(4mi)P"?) Jo sP2+1 n=1
Ref.[8], Vol. I, p. 652: -
R 2
~ W(_l)p_l dp_l _I"I:E—oo el(Z+na) /s] ) (23)
> (k—i—a)p:( ) [cot(ma)],
nSo (P—D! JdaP~?t . .
(16) Just as in the case df,,, there exists a non-zewf,, even
for a free field in flat spacetime. This flat spacetime contri-
with the result bution has to be subtracted from &f,,,. It is given by
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P — 1
O\ 2(4i)PR2

e ds ) .2
—im°s LiLg/s
fo S(D/2)+le e'-r's. (29

On subtracting this quantitgwith m set to zerp from the

expression forZ% ., we get

I'(D/2)
ZEorr: (Ecporr_ ‘ngrr = ( W

x[zE [n?+(L2/a?%)]~ PR
n=1

- > {[n+(z/a)]2+(|_§,/a2)}'3’2]. (25)

PHYSICAL REVIEW D 58 044009

The analogous results for the case of the periodic bound-
ary conditions are given below. The modified effective La-
grangian for such a case is given by

oo

n21(n2+4L§,/aZ)—D/2. (30)

=
corr

I'(D/2)
2)D/2

(ma

For the casd =4,

c L I th27Lp/a)
=1 — CO T a
corr 32m2Ld) |\ 32rald ?

+ ( ﬁ) cosecR(27Lp /a)] (31)

P

The series in the above result cannot be written in close@nd, in the limitLp—0,

form for the caseD=4. So let us consider the caBe=2.
For such a case the series4f,,, above can be expressed in

a closed form. Making use of the two relatioftd. Ref.[8],
Vol. I, p. 689

> (n2+012)1=(i2
n=0

%
- + %a cothma)  (26)

and
2 [(n+a)®+p7] "

= (%) sinh(27B)[cosh(27wB)—cod2ma)]™ L, (27

we find that£’, can be expressed as follows:

L= ' . th(mLp/

corr— 87TL,23 8al, cothi7Lp/a)
+ gal, sinh(2w7Lp/a)[cog2mz/a)
—cosP(ZWLP/a)]‘l]. (29

In the limit of L,—0, we find that

a
Egoﬁ{ (27&12) [1-3csé(mz/a)]

[1+30csé(wz/a)

3
_|_2 77_
P\ 360a*

—45csé(mzla)] ] . (29

w? 8t
ZEorr*){ (@) _L%(@)] . (32

For the cas® =2, LL, is given by

1
Lo=1— +
corr { (877Lé>

and, in the limit ofL,— 0, it reduces to

2 3
Az

Ill. EFFECTIVE POTENTIAL OF A SELF-INTERACTING
SCALAR FIELD THEORY

Zal, coth(27Lp /a)} (33

In this section, we shall consider a massive, self-
interacting scalar fieldn 4 dimensions, i.eD =4) described
by the action

3[q>]=f d4x c(qa)zf d4x[%&/‘<bau®—1}(®)]

— 4 1 M 1 282
—J d*x E(? (D(?MCI)—Em () _Vint(q)) ) (35)
where m is the mass andV,(®) represents the self-
interaction of the scalar field. We are interested in studying
the effects of small quantum fluctuations present in the sys-
tem around some classical solutidn.. The classical solu-
tion will be assumed to be a constant or varying adiabatically
so that its derivatives can be ignored. The effect of these
fluctuations will be studied by expanding the actiSpd ]
about the classical solutio®, and integrating over these
fluctuations to obtain an effective potential. This effective
potential will contain corrections to the original potential
V(D).

Carrying out the calculation as mentioned abdfo in-

That is, the lowest order quantum gravitational correctionstance, see Refl10] for detaily, we find that the kernel

appear aD(L32/a?).

K(x,x:s) for such a case is given by
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isfied for a non-polynomial(®). In fact, only if V(®) is a
Kx,x;8)=| ———| exp=[iV(®)s],  (36)  polynomial of quartic degree or less can the divergences be
6mis absorbed and the theory reinterpreted. As an example, con-

sider the case
where
1
PV D (@)= —AD%. 39
Vi(®o)= —'“‘(2 )) : Vi ®) =75 39
oD et

For such a case, it can be easily shown that the resulting
We shall now use this kernel to evaluate the effective poteneffective potential for the scalar field is given tpr details,
tial for the self-interacting scalar field. We shall first outline see Ref[10])
as to how the conventional result can be obtained and then
go on to evaluate the quantum gravitational corrections with

1 1
— _ — M2 4
the modified weightage factor. Verr=W(®Pe) = Leon oM Det 41 A~ Leor

1 1
= Emtz:orrq)§+ ﬂ)\corrq)é+ Viinite s (40)
A. Conventional result
_ . _ where
Substituting the kerngl36) in Eq. (4) we obtain that
N1
1 »ds 2 2 i 2
oo™ _( 2) f e (37 Meor™ M+ Sl 22 1M N AR,
327 0S
where 3\?2
Aeor= A+ 3972 In (Aw) (41)
a=m*+ V] (D).
This integral is quadratically divergent nes+ 0. In the con- and
ventional approach, this integral is evaluatefter perform- N 2 N
ing a Euclidean rotationby initially setting the .Iower Iin_1it_ Vinite= m2+ _q)§> [In = m2+—CI>§ + 7]_
to a small value, sayA and subsequently taking the limit 64 2 2

A—0. In this limit, we need to retain only the leading terms. (42
Performing partial integrations repeatedly, we find that

1 1 « )
Leor=\gam2)| | Az~ 7~ In(Ap)

The original potential(®) had two constantsn and A,

which were the coefficients @b? and®*. In V4(®.), these

are replaced by two other constantg,,, and\ ., which are

functions ofm, A and the parameteat. These constants also
contain divergent terms involving.. It is possible to inter-

—a?In|—|—ya? (39 ; : L .

m ' pret V(®) suitably using renormalization group techniques.
We shall not discuss these techniques here.

a

where w is an arbitrary but finite parametdit has been
introduced to keep the argument of the logarithms dimen-
sionles$ and vy is the Euler-Mascheroni constant. The last
two terms within the curly brackets, viz? In(a/x) and B. Results with the modified weightage factor
ya?, do not depend ok and hence are finite in the limit Let luatd... with th dified weidht f
A—0. The term inside the square brackets, however, di- © lés now evahuak effvé' the modttie Wet;g . aghe ac-
verges. There are linear, quadratic and logarithmically diveritor' Substituting the kerneBe) in Eq. (6), we obtain that
gent terms. The quadratically divergent term is independent 1 d
. . I . *°ds . 2 .

of @ and being just an infinite constant it can be dropped Lh.= _( )f — gllp/s gTias (43
while the other two divergent terms depend @mnd hence 327?) Jo &3
cannot be ignored.

For an arbitraryV,,;, no sense can be made out of the where
above expression foL.,,. Only thoseV,, for which the
divergent quantities ~ ') and[ ¢? In(Au)] have the same a=m?+ V(D).
form as the original(®) can be considered. In such a case,
the divergent terms can be absorbed into the constants th@ihis integral can be easily evaluated and the resulfifig,
determine the form of(®) and the theory can then be suit- can be expressed in a closed form as follosse, for in-
ably reinterpreted. Clearly, the above criteria will not be sat-stance, Ref{11], p. 340:
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1
&s(m Ky(2LpVa), (44 VE’ﬁ=[ (;mzﬂb%wim(@c))
P
whereK,(2Lp+a) is the modified Bessel function. Since
2(2Lerf) _<167TZL2 [ Kp(2Lpa)—m? Ky(2Lpm)] |
Lo — 1 Ocd_s e—imzs eiLE,/s P
corr 32:2] Jo 3 (47)
5 This expression for the effective potential is applicable for
_ K,(2L o) (45) arbitrary Vi . This is in contrast to the conventional ap-
B 167r2L§, 24 E=PT proach where the divergences appearingCip,, forced the
potential to be a polynomial of quartic degree or less. Fur-
on subtracting this quantity fromi2,, we obtain that ther, there is no need to introduce an arbitrary paramgeter
as was required in the conventional approach. The need for
Zfon:(ﬁcpon— CE(?") such a parameter arose because of the cutothat was

introduced by hand in order to isolate the divergent terms
appearing inC.,,. The introduction of a fundamental length
){a K2(2LP\/Z)— m? K,(2Lpm)}, Lp in the theory dispenses with such a need.
Let us now specialize to the case of the quartic interaction
(46) as given by Eq(39). For such a case, the corrections to the
parameters of the theory can be obtained frUEg as fol-

_( 16m2L2

and therefore, lows:
|
AVE A mA
P \2_ eff _ 2 '
m = ={m-— Ky(2Lpm)—| ————| K5(2Lpm 48)
=0
and
AP Ve x( N’ K.(2L pm) 3 K4(2L pm) (49)
= ——- =iAN—| — m-|—— m);,
o\ el ) 2mmLp) 2 1672 2°F
=

where K5 and K denote first and second derivatives of the modified Bessel funétiomvith respect to the argument,
respectively. In the limiLp— 0, we find that

4L2
— )[In (LEm?)+ (4+3)],

—+

AN2y—1 A
(2y ))m2+
3272 3272

P
( mCOI‘I')2 = m2 + (

1
2 +mAIn(L2m?)
)

3y 3\? 2m?L3
A =N+ A2+ In(L2m?) + In(L2m?)+2(y—1)],
corr 1672 277_2) (Lpm?) > [In(Lpm%)+2(y—1)]
) )
P _ 2 2| _ 2
Vine=3 M 352 ln(“ ome | " oam2| e
1| 3\? oLl N Anm? L, 3m? L, [ m? N,
322 N 2P Team? Tozm? P ager P MERM) [ Pet| Gy ) | 15 o
L2 ( 1 )3 A m® )
+ m?+ =A®2| In| 1+ —®2| —| ——| L3 In(LZm?), (50)
(192772) 277 om? °) \19272) F 7P
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where y is the Euler-Mascheroni constant. By comparing 1 qEs qBs
Egs.(42) and(50), it can be easily seen that the divergences  K(x,x;s)= - ( . )( - ) .
in mE,,, and\’, are of the same form as m,,, and\ oy, 167%is?/ | SINM(QES) /| sin(qBS)
Quadratic and logarithmic divergences arise in these expres-

sions. The finite terms appearing im{,,)2 and\ ", which
are independent df, are different from those appearing in

Vh e in Eq. (50). This is because the form of the cutoff used

(59

Substituting this kernel in the expression 0y, in Eq. (4),
we get

is different. It is also clear from the above expression that for 1 ds as
m#0, VP .. is finite in the limitLp—0. roo— as e—i<m2—ie>s(_q_
corr 1672/ Jo <3 sinh(gas)
IV. CORRECTIONS TO THE EFFECTIVE LAGRANGIAN qbs
FOR ELECTROMAGNETIC FIELD X| ———, (56)
sm(qu)>

The system we shall consider in this section consists of a
complex scalar fieldb interacting with the electromagnetic wherea andb are related to the electric and magnetic fields
field represented by the vector potentigt. It is described E and B by the relations §°—b?)=(E?>—B?) and (ab)
by the following action(see, e.g., Ref12], p. 998: =(E-B).

We can now interpret the real part 6¢,,, as the correc-
tion to the Lagrangian describing the classical electromag-

_ 4
S[q)’AM]_J' d*x L(D.A%) netic background given by

— 4 H * _ * 1 1 1
—j d Xr(aﬂq)‘f'lqAMq))((?’uq) |qAM(I) ) Eem:_ZFMvFMVZE(EZ_BZ):E(aZ_bZ). (57)
1
—mPhP* — ZF’“’FW], (51))  The real part ofZ.,, can be regularized by subtracting the

flat space contribution which is obtained by setting bath

whereq andm are the charge and the mass associated with nd b_to ZEr0. _SUCh a regularization then leads us to the
ollowing result:

single quantum of the complex scalar field, the asterisk de-

notes complex conjugation and 1 q
_ ~ds
Re Leor=— — cogm?s
Fo=d,A,—d,A,. (52 eon ( 16772) 0s? e
We shall assume that the electromagnetic field behaves clas- gas qbs 1 58
sically; henceA* is just ac-number, while we shall assume sinhgas)| \sin(gbs)] | (58)

the complex scalar field to be a quantum field so thas an

operator valued distribution. Varying the acti¢hl) with  Nears=0, the expression in the curly brackets above goes as
respect to the complex scalar field, we obtain the follow- [—g2s%(a®—b?)/6]. Hence, Rezcon is still logarithmically

ing Klein-Gordon equation: divergent neais=0. But this divergence is proportional to
- ) _ ) 5 the original LagrangiarL,,,, and because of this feature, we
(H+m9)D=[(d,+iqA,) (s +iqgA*)+m7]®=0. can absorb this divergence by redefining the field strengths
(53 and charge. Or, in other words, we can renormalize the field
strengths and charge by absorbing the logarithmic diver-
A. Conventional result gence into them in the following fashion. We write

In what follows, we shall evaluate the effective Lagrang- — —
ian for a constant electromagnetic background. A constant Lef= (Lem™ Re Leor) = (LemT Laiv) + (R€ Leor— Laiv),
electromagnetic background can be described by the vector (59
potential A*=(—Ez —By,0,0), whereE and B are con- .
stants. The electric and the magnetic fields that this vectof/"€ré we have defined,y as follows:

potential gives rise to are given I=Ez andB=BZ, where

A . e . ~ 1 il 1
z is the unit vector along the positiveaxis. The operator Lay=— ( _) d_j cog mZS)[ — —qg’s%(a?— bz)}
corresponding to the vector potential above is then given by 1672/ Jo S 6

N o2 2_ i ; 2E2, 42R2 z Z

H=(d;—V-—2iqEzd,— 2iqByd,—q°E“+ q“B~). 50 =3 (a%—b?)= E)(EZ—BZ)=Z Lom, (60)

The kernelK(x,X;s) corresponding to such an operator is whereZ is a logarithmically divergent quantity described by
given by (see, e.g., Ref.10]) the integral
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We can now express the effective Lagrangian exactly as we

2 »ds
Z= a — cogm?s). (61)  had done earlier. We can write
487%) Jo S
Therefore, we can write Let=(Lemt R Loo) = (Lamt L) T (Re Leor— L),
(68)
L= (Lemt Law) +(RE Loor™ Law) =(112) Lemt Eﬁr:éezl) where weLf,, can now be defined as follows:
where Linie= (Re Leor— Lay) is a finite quantity described p_ [ 1 =ds 2 12
by the integral = 1602 Jo 3 cogms—(Lp/s)]
1 =ds qas 1., 5, 5 ]
R - 2 - X{—=0g°s7(a*—b
L:flnlte (1677'2) 0 83 cos(m S)[ (sinf(qas) 6q ( )
gbs 1 z° 2_p2 z° 2_R2 P
1 T 202(02 2 =—(a*—b)=— (E°—B*)=Z" L. (69
x(sin(qbs)) 1+ 6q s(a“—h )}. (63 2 2 em
All the divergences now appear @. Redefining the field Z° is now a finite quantity described by the integral
strengths and charges as
1/2 172 ZP= ¢’ °°d_s 25— 12 _q_z Ka(2mL
Epny=(1+2)*2E, Byn,=(1+2)'?B, “\282) Jo cogms—Lp/s)= g— Ko(2mLp),
(70

Qphy:(1+z)_l/2 d. (64)

where Ky(2mLp) is the modified Bessel function of order

we find that such a scaling leav =gE invariant. .
9 €fBnyEpny=d zero. Therefore, we can write

Thus it is possible to redefingenormalize the variables in

the theory, thereby taking care of the divergences. o o — o
Leg= (Lemt L) +(Re Logp— Leiy)

B. Results with the modified weightage factor :(1+ZP) Lot ‘Cﬁniter (72)

With the modified weightage factor, we find that the
quantity £F,,, for the constant electromagnetic background isyhere ch.=(Re LY —Lq,) is given by
described by the following integral: ¢ °

1 *ds 5, .2 gas
P _ _ - L/
Leor™ (1 2) J e 'Mmsgltp S(

1 >ds
L o= — ( ) — cogm?’s—L§/s)

0 33 Sinl"(qas) 16’7T2 0s
qbs x[ | gas .qbs )
X Snqbs) " (65 sinh(gas) /| sin(gbs)
1
The real part ofc",, is then given by -1+ ngsz(az—bz)}. (72)
Re gcporr:_( ! )fxd_s cos[m?s—(L2/s)] We can now redefine the field strengths and the charge
1672) Jo s® just as we had done earlier wiltf instead ofZ. ZP is a finite
b quantity for a non-zerd.p, but diverges logarithmically
x( _ qas _ qbs ) (66) whenLp is set to zero. Even in the limit,— 0, the quantity
sinh(qas)/ | sin(qbs) L Stays finite and the divergence appears only in the ex-

. . _ _ pression forz".
Regularizing this quantity by subtracting the flat space con- | the limit Lp—0, we can make a rough estimate of the

tﬂbmiém (viz. the quantity obtained by settimg=b=0in 4146 of P as follows. The quantity exp{(ms—L2/s) is a

the above expressiginwe get sharply peaked function about the valge(Lp/m)<<1.
q Therefore, we may, without appreciable error, expand the

Re 7P — ( 1 ) _35 cogm?s— (L2/s)] term in the curly brackets in the above expressionZgy.

Eeor 1672) Jo s in a Taylor series about the poist=0, retaining only the
first non-zero term. Keeping the limits of integration from 0
x{( gas gbs )_ ] 67) to « (and performing a Euclidean rotation in order to evalu-
sinh(gas)

sin(gbs) ate the integra) we obtain
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1
Y S ——
finite (16772

2 .4 A. Conventional result
2Lpq

360m?

2_12)2 21,2

)[7(a —b)“+4ab“1K,(2mLp), 1. Effective Lagrangian

(73 The transformations that relate the Minkowski coordi-
nates in flat spacetime to those of an observer who is accel-
erating uniformly along the-direction are given by the fol-

where K, is the modified Bessel function of order 2. Ex- . )
IJowmg relations[14]:

pandingK, in a series and retaining the terms of least orde
in Lp, we obtain _ .
i t=g"*(1+g¢) sinh(g7),

4 x=g Y1+9gé) coshgr), y=y, z=z, (77

1
Efﬁ’nite”(—z)( : 4)[7(612—b2)2+4azb2](1—Lﬁmz)- . .
167/ \ 360m whereg is a constant. The new coordinates §,y,z) are
(74 called the Rindler coordinates. In terms of the Rindler coor-
dinates the flat spacetime line element is then given by

V. CORRECTIONS TO THE THERMAL EFFECTS d?=(1+g¢)? d2—de2—dy’—d 2. (79)
IN THE RINDLER FRAME

In flat spacetime, the Minkowski vacuum state is invariantTherefore, in the Rindler coordinates, the operafoas de-
only under the Poincargroup, which is basically a set of fined in Eq.(76) is given by
linear coordinate transformations. Under a non-linear coordi-
nate transformation the particle concept, in general, provesto . 1 ’ >
be coordinate dependent. For example, the quantizations in H= 207~ + I (1+9&)de]—dy— a5,

. . ; ) . ) (1+gé) (1+9é)

the Minkowski and the Rindler coordinates are inequivalent
[13]. In fact the expectation value of the Rindler number (79
operator in the Minkowski vacuum state proves to be a therynere 5 = (/0x). This operator is invariant under transla-
mal spectrum. This result is normally obtained in the litera-;, o along they- and z-directions. Or, in other words, the

ture by quantizing the field in the two coordinate systems,q el corresponds to that of a free particle along these two

and then evaluating the expectation value of the Rindle qciions. Exploiting this feature, we can write the quantum
number operator in the Minkowski vacuum state. If we are t0,achanical kernel as

evaluate the quantum gravitational corrections to the Rindler
thermal spectrum in such a fashion, then we need to know
how the metric fluctuations modify the normal modes of the K(ny,i3|g,w):(
guantum field. But as we have mentioned earlier, we only
know how quantum gravitational corrections can be intro-
duced in the effective Lagrangian. Therefore, in this sectionWhere
we shall first evaluate the effective Lagrangian in the Rindler
coordinates and then go on to evaluate the corrections to this
effective Lagrangian. The derivation of the Hawking radia-
tion in a black hole spacetime runs along similar lines as the
derivation ?f th[ﬁ.Rmdlﬁr thﬁrmal spectrulm. HenC(ta t?ﬁ re?fultg)n rotating the time coordinate to the negative imaginary
e o Mo mpone © 1€ €eckis o on setingr— i 7o) and changing variables
The system we shall consider in this section is a masslesg[g (1+g¢)], we find that
scalar field(in 4 dimensionsdescribed by the action

1

4wis)<r,§leiﬁ’5|r,§>, (80

A=

1, 1

fr=

1,1
- WaTE_ Gau[uau] : (82
8[d>]=f d*x=g L(®)
If we identify u as a radial variable angrz as an angular
B 4 1 , variable, thenA’ is similar in form to the Hamiltonian op-
_f d X\/__Q{E Gpy 9 P9 CD]- (79 erator of a free particle in polar coordinatéis 2 dimen-
siong. Then, for a constar, the kernel corresponding to the

. N _ _ _ operatorH’ can be written a§15,16
Varying this action, we obtain the equation of motion for

to be

o

i
> exn[—E(Hgé)z

n=-—o

A 1
(.84 5= e

47s

. 1
Hb= —— \ v d=0. 76
\/_—gé'u( 99“"d,) (76 X (17— T’+2Wing_1)2]. (83
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Therefore, the complete quantum mechanical kernel corG(x,x’)=Gg(A7)
responding to the operatdi (in the coincidence limjtis

given by _ 1 wdS . o,
) = (1&72) Z exp—[i(A7+iBn)2/4s)
1
K(x,x;SIQ,w)=( - 2) > expip®n?as) i\ e
16m2is?/n== —( )2 (A7+2ming™H) 72, (89)
- 4% n==w
I 1+2, i B2n?/4
| 16252 tezs, exp(i B°n/4s) (, where A7=(7—17'). Also, since we have seg=0,

B=(2m/g). [Compare this result with Eq3.66 in Ref.
(84)  [17].] Fourier transforming this propagator with respect to

A7, we find that
—i T 1 Q
P(Q) U dA7 e 47 Gr(AT)| = ( ( S0 1)
1+22 expi B n2/4s)J (90)

(85 i.e., the resulting power spectrum is a thermal spectrum with
a temperaturg ™.

where B=[2mg~(1+g¢)]. Substituting this kernel in ex-
pression(4) and settingn=0, we find that

1 »ds
Leon=— 3072 f 3

On regularization, i.e. on subtracting the quantify,, [given
by Eq.(14) with m=0] from the above expression, we ob- B. Results with the modified weightage factor
tain that

1. The modified effective Lagrangian

— 0 Let us now evaluate the effective Lagrangian in the Rin-
Leon=(Leon™ Leor) = ~ ( 16772) f — OXHi g7n?/4s). dler frame with the modified weightage factor. Substituting
(86)  the kernel(84) in the expressiori6) for LE,; and settingm
=0, we obtain that
The integral overs can be expressed in terms of Gamma
functions(see, e.g., Ref.11], p. 939, so that

1 =ds
Esof—( 2” elt ’S{1+22 exp (i B2n%/4s) | .
327 0

o s®
— ) B I'(2) w2
ﬁcorr:<ﬂ_2—'84) nzl n 4:(772 ﬂ4 {(4)= 90,84 ) (91
87y On regularization, i.e. on subtracting the quantif, (with
m=0) from £L ., we find that
where we have made use of the fact thigt)= (7#/90) (cf.
Ref.[7], p. 334. corr (L:corr_ ’Cf:)c?rr
Two points need to be noted regarding the above result.
First, L., corresponds to the total energy radiated by a __ 1 f ds el /sz exp(i B2n%/4s)
blackbody at a temperatur@ . Second, there arises no 1672/ Jo 8
imaginary part to the effective Lagrangian which clearly im-
plies that the thermal effects in the Rindler frame arise due to - 5
vacuum polarization and not due to particle production. “| 2 gl (B°n“+4Lp)
2. Power spectrum from the propagator
The Feynman propagatdin Lorentzian spadecorre- ( 2B4> 2 [n?+(4L3 P82 (92

sponding to an operatdi is given by[cf. Eq. (1)]
Using the relationcf. Ref.[8], Vol. I, p. 687

o

G,:(x,x’)z—iJ:ds K(x,X";8[9,,,), (89
—4 +nzl (n2+a2)_2

> (n?+a?) 2=
n=0

whereK(x,x’;s|g,,) is given by Eq.(5). (Note that since
we are considering a massless scalar field, we havenset
=0.) For the Rindler coordinates we are considering here,
the propagator is obtained by substituting the kefBd) in

the expression for the propagator as given by (B§). If we
seté=¢'=0,y=y’' andz=2', we find that the propagator is +
given by

PP coth ma)
a

cscH(ma), (93

044009-10
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we can expres£r . in a closed form as follows:

. 1 1
Leor=1 — +
cor [ ( 32772L‘,!,) ( 327BLE

+(; csci(2mLp/B) (94)

coth2wLp/B)

Making use of the series expansiae$. Ref.[11], p. 36

coth 7x) = (771) ( )E(x2+n -1 (95)

1 2\ | x2—n?
T x2> +<?) ,,21 ‘(x2+ nz)z}’ 98

2

and

csch(mx)= (

we find that, ad. p—0

2 4
- ™\ 2 8
‘Ccorr [ ( 90,84) LP( 945[36) J . 97

2. Power spectrum from the modified propagator

The propagator with the modified weightage factor is

given by
GE(x,x’)z—if ds dLels K(x,x";s[g,,). (98
0

In the Rindler coordinates, we find that, if we get ¢’ =0,
y=y' andz=z2', the modified propagator reduces to

1 =ds
1672) Jo 2

GRAﬂ=—<

”i” ! o, L
><n=7infty exp —i 4—S(Ar+|,8n) e

:(4i ) > [(Ar+2ming ™)) 2-4L2] %,

(99

where, as beforeAr=(7—7"). Fourier transforming this

modified propagator with respect tor, we obtain that

PP(Q)EJ_ dAT e 19047 GE(AT)’

[sin (2QLp)| Q
27T ZQLP eﬁﬂ_l

) . (100

PHYSICAL REVIEW D58 044009

VI. CORRECTIONS TO THE GRAVITATIONAL
LAGRANGIAN

The system we shall consider in this section consists of a
scalar field® interacting with a classical gravitational field
described by the metric tensgr,,. It is described by the
action

A, @1= [ PxV=G £(g,.. )
dexJ_[m —5 (R— 2A)

! “re, 09,0 ! 2Pp2 ! Rd2
+59"9,29, =m0 =S¢ :
(101

whereR is the scalar curvature of the spacetime,s the
cosmological constant an@ is the gravitational constant.
Setting the parametef=0 or £=(1/6) corresponds to a
minimal or conformal coupling of the scalar field to the
gravitational background respectively. We are interested in
finding quantum corrections to the purely gravitational part
of the total Lagrangian. This will be done as usual in the
framework of the semiclassical theory by considering the
one-loop effective action formalism. In the conventional
derivation, divergences arise in the expression fQg,.
There are three divergent terms, two of which are absorbed
into the cosmological constark and the gravitational con-
stantG, and thus Einstein’s theory is reinterpreted suitably.
The third divergent term cannot be so absorbed. Extra terms
will have to be introduced into the gravitational Lagrangian
in order to absorb this divergend&7]. When the duality
principle is used, however, no divergences occur. The cos-
mological constant and the the gravitational constant are
modified by the addition of finite terms which are seen to
diverge in the limitt ,— 0, thus recovering the standard re-
sult.

A. Conventional result

In what follows, we shall first briefly outline the conven-
tional approach for calculating.,,, and then use the modi-
fied weightage factor to compute the corrections to the gravi-
tational Lagrangian.

Varying the above action with respect @, we obtain
that

0. (102

1
——3,(y—9g*"d,) + m?+ (R | D=
(J—_g WIS

Comparing this equation of motion with E@), it is easy to
identify that

This modified spectrum shows an appreciable deviation from

the Planckian form only whef=t . But wheng=L, the

semiclassical approximation we are working with will any-

way cease to be valid.

A

(103

1
——d,(V—9g*"d,) + m?+ £R|.
"
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In D dimensions, the quantum mechanical kernel _ 1
K(x,x";s|g,,) [cf. Eq.(5)], corresponding to the operatdr L=~

=ds
f —im S{1+al X,X) (is)

2 =3¢
above, can be written 447,18 3277/ o s
, +a,(x,x) (is)?}, 109
K(X,X ;S|g,u,v) 2( ) ( ) } ( )
i where the coefficienta, anda, are given by the relations
=| ————| eloX2AVZy 7y F(x,x';S), (10 [17]
(4mis)OP (x,x") F( ), (104
1
where al(x,x)z(g—g)R (110
(cx)=5 [ 0] g, 0 Y 405 and
o(x,x")= Y an
2 durys ds’
i . 1/1 1 1 \2
s the proper arc length along the geodesic froimto x and a(XX)= = |2 —&|gM" Rt 5 | 2 — & R?
AY(x,x") is the Van Vleck determinant given by 5 216

AYAx,x")=(=[—g(x)] "* det[d,d,0(x,x")]
X[—g(x")]~ ). (106)

1
+ — MVNp _ .
180 RI“,M,R 180 RM,,R (111

Sincea; anda, depend only orR,,,, and its contrac-
tions, they are purely geometrical in nature. The divergences
arise because of the ultraviolet behavior of the field modes.

o These short wavelengths probe only the local geometry in
(x,x";8)= Z . (is)" the neighborhood ok and are not sensitive to the global
n= features of the spacetime and are independent of the quantum
=ag+a,(x,x") (is)+a,(x,x") (is)%+ ..., state of the fieldb. Since the divergent part of the effective

Lagrangian is purely geometrical, it can be regarded as the

(107 correction to the gravitational part of the Lagrangian. The

divergence corresponding to the first term in the square
brackets can be added to the cosmological constant, thus
regularizing it, while the divergence due to the second term
%an be absorbed into the gravitational constant, giving rise to

the renormalized gravitational constant which is finite. The

The function F(x,x’;s) can be written down in an
asymptotic expansion

where the leading term, is unity sinceF must reduce to
unity in flat spacetime.

Substituting the quantum mechanical kernel above in the
expression fol.,,, given by Eq.(4), we obtain that

AYAxx")\ (=ds third term which involves, contains derivatives of the met-
Leon=— lim <—2) - g im?sgio(xx)/2s ric tensor of order 4 and this term represents a correction to
wox!\ 327 0s Einstein’s theory which contains derivatives of order 2 only.

1 I N2 Therefore one needs to introduce extra terms into the gravi-
X{1+ay(x,x') (is)+a(x,x") (is)™+ ...}. tational Lagrangian so that these divergences can be ab-
(108 sorbed into suitable constarjtk7].

In the coincidence limitg(x,x") vanishes and one can easily

see that the integrals over the first three terms in the square
brackets diverge. The integrals over the remaining terms in- Let us now evaluate the corrections to the gravitational
volving a3, a4 and so on are finite in this limit. Therefore, Lagrangian with the modified weightage factor. Substituting

B. Results with the modified weightage factor

the divergent part of.,, is given by the kernel(104) into Eq. (6), we obtain
P 1 “ds _ L2/
Lior=—| — — e im*s ¢l PIS{1+a,(x,x) (is)+ay(x,x) (is)?+ ...}
327%)Jo s®

Ko(2Lpm)ay(X,x)+ ..., (112

m* \? 2
:(327T) {(L% m2) Ko(2Lpm) +

whereK,, K; andK, are the modified Bessel functions of orders 0, 1 and 2, respectively. The effective Lagrangian for the
classical gravitational background is therefore given by

2 2
3) K1(2me)a1(x,x)+(—4
p M m
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1 1 1
P _ P \_
‘Ceff_(‘cgrav_" ‘CCOFI‘)_ 16'JTGCO”R_ 87TG ACOI’F+ @KO(Zme)aZ(X,X)-F feey (113)
where
Acorr=A szK2L d 1_1+(m ! K.(2L 11
corr— 27TL|23 2( Pm) an Gcorr_a 7T_Lp g f 1( Pm)- ( 4)

Invoking the principle of path duality corresponds to mul- trary manner. In the semi-classical theory of gravity, one can
tiplying the kernelK(x,x;s|g,,) by the factor expil3/s),  carry out the renormalization ¢ ,,) in a unique way using
where '—;2: is the square of the Planck length. But as men_d!fferent.methpds like the;-_fung:tion renormalization tech.-
tioned in the Introduction, it can so happen that the fundallique, dimensional regularization and other methods. Since
mental length is Lp) where » is a numerical factor of T,.) can be obtained from the effective action by function-

order unity. Therefore, if we replades in the above equa- ally differentiating with respect to the metric tensor, the
tions by (7}L ) and sin’cel_2=G by definition, the formula renormalization procedure is therefore connected with the
P P— '

. . renormalization of the effective action which was described

for Georr can equivalently be written as in the previous section. Upon specializing to theories where

myVG/1 the cIa_ssicaI action is invariant under conformal transforma-

T _(__ 5) . (115 tions, it can be shown that the trace of itlassicalenergy-

nw momentum tensor is zero. But when the renormalized expec-

o ) ] _tation value of the trace is calculated, however, it is found to

In the limit (»m)—0, using the power series expansion pe non-zero. This is the conformal or trace anomaly. It es-
for the functionsK,(27y/Gm) and K,(27/Gm), we can  sentially arises because of the divergent terms present in the

1 1

Ky(27JGm)

GCOIT G

write the corrections t& and A as follows: effective action. When the principle of path integral duality
5 5 is applied, no divergences appear and hence one would ex-
A —A— m 1 _ E — AL m- 1 pect the trace anomaly to vanish. But because a fixed length
cor 2m92\ 272Gme 2 dmn?  Amy'G scale appears in the problem, the trace anomaly is still non-
(116)  zero.
and A. Conventional result

In this section we derive the formula relating the trace of
(117) the energy momentum tensor and the effective action. We
then apply the duality principle and derive an explicit for-
mula for the trace anomaly. In the limit df,—0, it is
For the case when the scalar field is assumed to bghown that the usual divergences appear which when renor-
coupled minimally to the gravitational backgroutig:. when  malized using dimensional regularization and zeta function
£=0) the correction td5 reduces to regularization techniques yield the usual formula for the
trace anomaly.

GCOI’T G

1 1 Consider a scalar field that is coupled to a classical gravi-
Gcorr: G 1+127T772 ' 118 tational background as described by the actifl). The
energy-momentum of such a scalar field can be obtained by
whereas in the conformally coupled cage. whené=1/6)  varying the action with respect to the metric tenggy, as
the correction tdG vanishes identically. follows [19]:
VIl. CORRECTIONS TO THE TRACE ANOMALY THY= i 5§
=g/ 7%

The problem concerning the renormalization of the expec-
tation value of the energy-momentum tensor in curved 1
spacetime is considerably more involved than the corre- :5“‘1)(9”@—59“”’9“%@—59”””‘2@2
sponding problem in Minkowski spacetime. This concerns

the role of the energy-momentum tensoy, in gravity. In 1
flat spacetime only energy differences are meaningful and +& 9””\/—3a(v—ggaﬁﬁﬁ)¢2
therefore infinite constants like the energy of the vacuum can -9

be subtracted out without any problem. In curved spacetime,
however, energy is a source of gravity. Therefore, one is not —(D2)Hr+ GHrP2
free to rescale the zero point of the energy scale in an arbi-

: (119
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where G#”=(R*"—(1/2)g**R). Using the field equations i . =ds .o
(102), the trace ofT*” is Scorl 9pv]=— EJ d XV_QL ?<x|e SFx). (126)
M — — M _ 2 _ 24 2
Tﬂ (66=1)3"®, 0+ (66— 1)RO+ (65— 2)m D", It can be shown that under a conformal transformation

429 g,

For the conformally invariant case, i.e. whérs 1/6 andm ~ s
=0, the trace vanishes. Thus, if the action is invariant under H(X)—H(X)=Q"*(X)H(x)Q(x), (127

conformal transformations of the metric, the classical o . Lo
energy-momentum tensor is traceless. Since conformal trangthereH (x) is given by Eq(103) in the conformal limit with

formations are essentially a rescaling of lengths at eac=1/6 andm=0. The corresponding relation satisfied by the
spacetime poink, the presence of a mass and therefore theperatorH under a conformal transformation is

existence of a fixed length scale in the theory will break the R

conformal invariance. On the other hand, the trace of the H=Q 'HO ! (128
renormalized expectation value of the energy momentum

tensor does not vanish in the conformal limit. In the semi-while the trace operator “Tr” defined by the relation
classical domain, the expectation valueTaf is given by

> sS Tr(ﬂ)zfd4x\/—g(x|l:||x> (129
(Tr)= o (120)
—9(x) Yur remains invarianf18].
where Using the above results it is easy to show that
Tr (e—isﬁ)z-l-r (e7isQ MO Th) _qp (gmise 2y
Scorr= j d*x V=9Lcor- (130
Consider the change i, under an infinitesimal con- Using the above formula faf, and the above results, we
formal transformation find that, under the infinitesimal transformati¢t2),
_>~ —02 i =ds e =20
g;w Quv Q (X)g;l,va (122) Scorr[ng,uV]: _ Ef d?x /_gfo ?(x|e isQ H|X>.
with (131)
0%(x)=1+€(x) and 8g,,=€(X)g,,, - The above expression fa,,,, is clearly divergent neas

) ) 5 , ) =0 as shown in the previous section. Making a change of
RegardingS,,r as a functional of2(x), with g,, being a variables—s' =sQ 2, it appears that
given function, we obtain

i =ds’ s
Scorl (1+ e)g,w] Scon[ng;w]:_ EJ d4x\/__gJ’0 S_/<X|e_ls H|X>

8Seorl 2%(X)9,.,]
8502(x)

E(X)' ESCOI’Y[gMV]‘ (132)
02(x)=1

:Scorr[g,uv] + f d*x

(123 B_ut such a change of variable is not val_id since the integral is
divergent. To make sense of such an integral, we can resort
Thus to various technigues to determine the trace anomaly. Fol-
lowing Refs.[17,18), using theZ function approach, it can be

0Scor 9y ] 8Seorl 2%(X)9,.,] shown that the trace of the energy-momentum tensor is equal

Ouv (129  to[ay(x,x)/(4m) 2].
80500 Jgas i
Therefore B. Results with the modified weightage factor
The expression forS.,[Q2g uv»] With the modified
(T yo 2 8Scorl 9,0l . weightage factor is given by
ml J-g 99 my i
g nv I =ds 020
Seod 070,,1=— 5 | =g [ ZetPaxie s )
_ 2 88od ©°(X)9,,] 125 ° (133
N9 3Q%(x) 02(x)=1
This expression has no divergences. Changing the variable
Now, S.or is given by the formula s—s’=s0 "2 (which is valid now we obtain
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i »ds ,
Smiﬂ%#ﬂ:_ifd&V_gf = gliLp0?s)
o s’

x(x|e7*"Hx), (134

Using the formula for the trace of the energy momentu

tensor(125), we find that

(135

=ds . .
(TH M>:_L%f g2_elLE,/s<X|e—|sH|X>_
0

Using the formula for the propagator given in Efj04) in 4
dimensions and carrying out the integral ogemwe get

; 2|—,2: * Lp n—-3
(T )= Gm2 2 @l | Kinos(2lem) (136

whereK, is the usual modified Bessel function of orderin
the limit Lp,— 0, the expression above reduces to

a;—m?

lim —+
Lp—>0(47T)2|;Lé’ 2L|23

lim (T# M>=
Lp—0

1
_om2 4
+ 2(47_r)2(2a2 2mea;+m*). (137

The terms present in the square brackets represent the div
gences that are present in the evaluation of the energ
momentum tensor without using the duality principle. These
divergences need to be regularized by other methods like thé
¢ function approach mentioned earlier. The finite part tha
remains is the last term that, in the conformal limit, reduce
to [a,(x,x)/(47) ~2]. Thus, we recover the standard resul

in the limit of Lp,— 0.

VIIl. DISCUSSION

m

t

PHYSICAL REVIEW D58 044009

(i) The prescription of path integral duality is essentially
an ad hoc prescription. It is not backed by a theoretical
framework which is capable of replacing the conventional
quantum field theory at the present juncture. Hence, the pre-
scription only tells us as to how we can modify the kernels
and the associated Green’s functions. To obtain any result
with the prescription of path integral duality we have to first
relate the result to the kernel or Green’s function, modify the
kernel and thereby obtain the final result.

In spite of this constraint we have been able to show in
this paper that concrete computations can be done and spe-
cific results can be obtained. As regardsalkdehocnessf the
prescription, it should be viewed as a first step in the ap-
proach to quantum gravity based on a general physical prin-
ciple. Its relation to zero-point length and the emergence of
analogous duality principles in string theories, for example,
makes one hopeful that it can be eventually put on a firmer
foundation.

(i) The modified kernelbased on the principle of path
integral duality may not be obtainable from the standard
framework of field theory based on unitarity, microscopic
causality and locality(We have no rigorous proof that this is
the case; however, it is quite possible since standard field
theories based on the above principles are usually divejgent.

It is not clear to us whether such principles will be re-
spected in the fully quantum gravitational regime. It is very
likely that the continuum field theory which we are accus-
tomed to will be drastically modified at Planck scales. If that

er

is the case, it is quite conceivable that the quantum gravita-

Xi'onal corrections also leave a trace of the breakdown of

continuum field theory even when expressed in such a famil-
lar language. As an example, consider an attempt to study
and interpret quantum mechanics in terms of classical trajec-

Yories. Any formulation will lead to some contradictions like,

for example, the breakdown of differentiability for the path.
This arises because we are attempting to interpret physical
principles using an inadequate formalism.

The next logical step will be to attempt to derive the path

In this paper, we evaluated the quantum gravitational corintégral duality from a deeper physical principle using appro-

rections to some of the standard quantum field theoretic rePriate mathematical methods. This should throw more light
sults using the “principle of path integral duality.” We find ©" for examlple, the conngctlon between path mtegral duality
that the main feature of this duality principle is that it is able@nd zero-point length which at the moment remains a mys-
provide an ultra-violet cutoff at the Planck energy scalestery- We hope to address it in a future publication.

thereby rendering the theory finite. Another key feature of
this approach is that the prescription is completely Lorentz
invariant. Hence we were able to obtain finite but Lorentz
invariant results for otherwise divergent expressions. K.S. is supported by the Council of Scientific and Indus-

The obvious drawbacks of the approach are the followingtrial Research, India.
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