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Critical collapse of collisionless matter: A numerical investigation
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In recent years the threshold of black hole formation in spherically symmetric gravitational collapse has been
studied for a variety of matter models. In this paper the corresponding issue is investigated for a matter model
significantly different from those considered so far in this context. We study the transition from dispersion to
black hole formation in the collapse of collisionless matter when the initial data is scaled. This is done by
means of a numerical code similar to those commonly used in plasma physics. The result is that, for the initial
data for which the solutions were computed, most of the matter falls into the black hole whenever a black hole
is formed. This results in a discontinuity in the mass of the black hole at the onset of black hole formation.
[S0556-282198)02616-3

PACS numbd(s): 04.20.Dw, 04.20.Ex, 04.25.Dm

I. INTRODUCTION pothesis are limited by the faff] that this behavior is un-
stable in the class of spherically symmetric initial data.

The gravitational collapse of a localized concentration of An important new element was brought into the study of
matter to a black hole is a central theme in general relativitythe Einstein-scalar field and gravitational collapse in general
Even in the simplest case of spherically symmetric collapséy the numerical work of Choptuik6]. He took a fixed
much remains to be learned. When no matter is present, i.@itial datum for the scalar fieldvhich due to spherical sym-
in the case of the vacuum Einstein equations, there is nmetry determines initial values for the gravitational fjeld
collapse in spherical symmetry, because of Birkhoff's theo-and scaled it by an arbitrary constant factor. This gives rise
rem. Thus it is necessary, in order to obtain informationto a family of initial data depending on a real parameter
about gravitational collapse by studying the spherically sym+or all initial data used in the computations the same picture
metric case, to choose a matter model. A simple choicégmerged. For values o corresponding to small data the
which has provided valuable insights, is that of a masslesge|g dispersed, in agreement with the rigorous results. For
(real, minimally coupletiscalar field. A deep mathematical |56 initial data a black hole was formed. Under these cir-
investigation of spherically symmetric solutions of the cumstances we can define a critical parametgras the

Einstein-scalar field system has been carried out b){ower limit of those values ofA for which a black hole is

s S o e S forme I the mas of e biack ol frmed i pote as
a function ofA it is found thatM (A) is continuous. In par-

the fields disperse to infinity at large times. A result for the” ) L
case of large data was proved|[@]. For any solution it is tcular lima_, M(A)=0 so that black holes of arbitrarily
possible to define a numb&t with the property that in the small mass can be formed within the given one-parameter
regionr>2M (wherer is the area radiysthe solution ap- family. Up to now it has not been possible to confirm this
proaches the Schwarzschild solution of madsat large  Pbehavior by rigorous mathematical arguments. Choptuik’s
times. The physical interpretation is that the system has cokesults contain much more detailed statements than the one
lapsed to form a black hole of masé. Of courseM =0 in just mentioned, but it is the one which will be important in
the case that the field disperses. The dichotomy between di§1€ sequel. . _
persion and black hole formation still leaves the unanswered The nature of the boundary between dispersion and black
question of which data result in which of these two out-hole formation in gravitational collapse is now a very active
comes, except for small data. [8] Christodoulou gave a research area. Mogbut not al) of the work has been con-
sufficient condition on initial data to ensure tHdt>0 for ~ cerned with spherical symmetry and varying matter models
the corresponding solution, although this criterion is not very@nd has relied essentially on numerical computations. For a
practical. recent review of the field sgé]. In a study of critical col-
For large data the above results only describe the structuf@Pse for the Einstein-Yang-Mills equations, Choptuik,
of the solution at a sufficiently large radius and the internalChmaj and Bizon[8] have found both cases where
structure is left open. If4] it was proved that there exist lIMa—a M(A)=0 and lim_, a~a M(A)>0. They call
data leading to the formation of a naked singularity. Thethese cases type Il and type | respectively, the terminology
negative implications of this for the cosmic censorship hy-being motivated by an analogy to phase transitions in statis-
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tical mechanics. They relate type | behavior in this system t@nalytic theory. This happens up to some valyeof A. For
the existence of the Bartnik-McKinnon solution$,10], A>A, the observed behavior indicates the formation of a
which are static(The models which had been consideredblack hole. The lapse function develops an abrupt step at a
previously, and which showed exclusively type Il behavior,certain radiug (A). This step remains at the same radius but
admit no regular static solutions. gets deeper and deeper. We interpret this as the signature of
Almost all the matter models which have been considered black hole with massl (A)=r(A)/2. If M(A) is plotted as
up to now in the context of critical collapse are field theoretica function ofA it is found that the limiting value oM (A) as
in nature rather than phenomenological. The one exception 8 approachesA, from above is strictly positive. Thus we
a perfect fluid with linear equation of state, which showsfind behavior of type | in the terminology ¢8]. We never
type 1l behavior. A phenomenological matter model whosefind any signs of singularity formation for any valuefdfnd
collapse is of interest is collisionless matter described by théhis is consistent with the standard picture where the only
Vlasov equation. As will be described next, the sphericalsingularities formed are those of black hole type and they are
collapse of collisionless matter has been studied both analytavoided by a Schwarzschild time coordinate.
cally and numerically but the known results for this type of As a check on the interpretation of the numerical solu-
matter say little about the nature of critical collapse. Thetions as describing collapse to a black hole, radial null geo-
purpose of this paper is to begin the numerical investigatiorslesics were computed. The results agreed well with the ex-
of critical collapse of collisionless matter. pected picture. Radial null geodesics starting at the center at
In [11] it was shown that for sufficiently small initial data early times escape to large values offhose starting after a
for collisionless matter the matter disperses to infinity atcertain timeT; remain within a finite radius. The limit of this
large times. Thus the analogue of Christodoulou’s small dataadius ag tends toT, from above is equal to(A) as com-
result holds for collisionless matter. The solutions are geoputed above. Thus we obtain a consistent picture with a
desically complete. Unfortunately, no analogue of his largeblack hole whose event horizon is generated by the null geo-
data result is known is this case. The only result in thatdesics starting at the center at tifig.
direction which has been proved is that there do exist initial To have a better picture of what is happening in the col-
data which develop singulariti¢42]. The proof proceeds by lapse of near critical initial data it is useful to consider how
demonstrating the existence of initial data which containthe massM(A) of the black hole formed depends on the
trapped surfaces and applying the Penrose singularity thedrnowitt-Deser-MisnerfADM) mass of the initial configu-
rem. A different kind of large data result, which is relevant toration. For parameter values well aboveA, these quanti-
the numerical calculations of this paper, is that if data giverties are almost equal. In other words, essentially all the mat-
on a hypersurface of constant Schwarzschild time gives rister falls into the black hole. As the critical parameter value is
to a solution which develops a singularity after a finite approached from above some of the matter does not fall into
amount of Schwarzschild time, then the first singularity oc-the black hole and in some of the cases which were com-
curs at the center of symmetfi13]. An analogous result puted escapes to infinity. However, in all the cases which
where Schwarzschild time is replaced by maximal slicingwere computed the mass of the black hole is more than 90%
has also been provdd4]. of the total ADM mass of the configuration. Thus whenever
It seems plausible that in those solutions which develom black hole is formed almost all the matter falls into it and
singularities black holes are usually formed. However theréhe mass gap is a reflection of this. The picture in the only
are no mathematical results on this and the convincing eviether case of a phenomenological matter model in which
dence for the formation of black holes is purely numerical.critical collapse has been studied up to now, namely a perfect
This is part of a large body of work due to Shapiro, Teukol-fluid with linear equation of state, is very different. In the
sky and collaborators which goes far beyond the sphericallgase of a radiation fluiflequation of statgp=(1/3)p] the
symmetric case. Here only those results will be discussedlightly supercritical collapse can be described as follows
which are directly relevant to this paper. In particular only[20]. The matter divides almost completely into two parts,
results for spherical symmetry are covered[15—-17 the separated by a near vacuum region. The outer part of the
collapse of various configurations of collisionless matter to anatter, which contains almost all the mass, escapes to infin-
black hole has been computed numerically. The relative meiity. The inner part, which contains only a very small amount
its for this problem of different choices of time coordinate of mass, collapses to form(amal) black hole. As the criti-
(polar or maximal and radial coordinatéarea or isotropic  cal parameter is approached this situation becomes more and
are discussed ifil8,19. more extreme and the black hole mass tends to zero.
In this paper we carry out an experiment analogous to that The numerical code used is based on a numerical scheme
of Choptuik for spherically symmetric collapse of collision- for the corresponding Newtonian problem describeflity.
less matter. We use Schwarzschild coordingies polar It incorporates less refined features than the codes of Shapiro
slicing and area radius Starting with a suitable smooth and Teukolsky but seems to be quite sufficient for the
function fy of compact support as initial datum for the dis- present task. It does have the advantage that an analogous
tribution function we consider the scaled dédt§,, whereA Newtonian code has been proved to be converfghtand
is a positive constant and compute the corresponding timié seems reasonable to hope that this proof could be extended
evolution numerically. For all data for which we tried the so as to obtain results on the convergence of the method used
experiment, the results were qualitatively similar. Wiers in this paper in the future.
sufficiently small the matter disperses, in agreement with the These results add collisionless matter to the class of mat-
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ter models for which something is known about critical col- is the rest mass of a particle at the corresponding phase-space
lapse. Clearly it is desirable to examine other types of initialpoint. We assume that all particles have rest mass 1 and
data so as to discover the prevalence of the type of behavionove forward in time so that the distribution functibtives
found here or of others which have not yet been seen. It isn the mass shell:
our hope that these numerical investigations can also help to
further the mathematical study of collisionless matter in gen- PM={g.zp“p?=—-1, p°>0}.
eral relativity by providing pictures of what is happening . . . .
which can suggest which theorems one should try to provéNe c_on5|der this system in the asymptot|cally.ﬂat and_
and by what means. Mathematical investigations of partiafPherically symmetric case and use Schwarzschild coordi-
differential equations often proceed by estimating the growt{!&€S to coordinatize the spacetime manifold. The metric
rates of certain quantities and it is useful to have an idea ofakes the form
the_ expected growth rates on the basig of nur_n_eric_al compu- A= — 2102+ @MU r2 4 12(d g2+ sinkod b?),
tations. The fact that we observe no singularities in the nu-
mericgl computat.ions can be seen as evidenqe that the We?s}ﬁeret eR, r=0, 0c[0,7], ¢e[0,2]. Asymptotic flat-
cosmic _censorshlp conjecture is true for coII|S|_0nIess matter,ass is then expressed as the boundary condition
Indeed it may even be true in a stronger version than in the
case of the massless scalar field. There may be no naked lim \(t,r)= lim u(t,r)=0.
singularities formed for any regular initial data rather than r—o r—e
just for generic initial data. This speculation is based on the
fact that the naked singularities which occur in scalar fieldWe also require a regular center, which is guaranteed by the
collapse appear to be associated with the existence of type poundary condition
critical collapse.

The paper proceeds as follows: In the next section we A(t,0)=0.
formulate the Vlasov-Einstein system, first in general coor-
dinates, and then in coordinates adapted to the sphericall
symmetric, asymptotically flat situation that we want to
study. In Sec. Il we describe the code we are using and test
it on a steady state. In Sec. IV we present the results of the
numerical simulations. as spatial and

write the Vlasov equation we use the corresponding Car-
esian coordinates

X=(r sin # cos ¢,r sin 6 sin ¢,r cos )

a
Il. FORMULATION OF THE SPHERICALLY SYMMETRIC v3=pi+(er—1) xp X_, a=1,23
VLASOV-EINSTEIN SYSTEM rr

In the present paper the matter model is a collisionless gaas momentum coordinates. The Vlasov-Einstein system then

as described by the Vlasov or Liouville equation. Couplingtakes the form

this equation self-consistently to the Einstein field equations

results in the Vlasov-Einstein system, which we first write v

down in general coordinates on the tangent buiidieof the oif +er \/THZ - Oxf

spacetime manifold/: v

. X0
—()\T+e#)\/j,'\/1+|v|2

X
--0,f=0, (2.1
p¥dyaf =5, pPP7dpaf=0, rov @D

e 2M2r\'—1)+1=8mr?p, 2.2
GaBZSﬂ_Taﬁ, ( ) mrep ( )
e 2M2ru'+1)—1=8mr?p, 2.3
d*p
Tw:f pepPf |g|1’2?. 3 3 5
p(t.r)=p(t,x)= | V1+[v[*f(t,x,v) dv, (2.4
Heref is the number density of the particles on phase-space, x-v\2 do
Fg,/ andG*# denote the Christoffel symbols and the Einstein p(t,r)=p(t,x)= f (T) f(t,x,v) —.
tensor obtained from the spacetime metig;, |g| denotes 1+l
its determinantT*# is the energy-momentum tensor gener- 2.9

ated byf, x* are coordinates oW, (x*,p®) the correspond-
ing coordinates on the tangent bundi®, Greek indices run
from 0 to 3, and

Herex,v € R3, r=|x|, - denotes the Euclidean dot product in

R3, and A=aN/dt and u' =duldr. f is assumed to be
spherically symmetric in the sense that

m=|g,zp*p?|*"? f(t,x,v)=f(t,Ax,Av), AeSQ3).
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Equations(2.2) and (2.3 are the 00- and 11-components of condition there exists a unique, continuously differentiable
the field equations; it can be shown that for a solution of theyq | tion £ with f(0)=(f, which exists with respect to
above system also the remaining nontrivial components o&.pvarzschild time on some right maximal intery@JT[. If

the field equations hold. We state the 01-component explicfhe solution blows up in finite time, i.e., << then p(t)

iy, since it is used in our numerical scheme: becomes unbounded &s-T—. Actually, as shown if13],
p in this case has to become unbounded at the certér,

N=—dmretth, (2.6 i.e., if any singularity evolves, the first one must be at the
where center. This rules out singularities of shell crossing type,
which can be a nuisance in other matter models, e.g., dust. If
) ) X-v the initial datum is uniformly small the resulting solution is
jan=jtx= J - f(txp)do. (2.7)  global in the sense that the spacetime is geodesically com-

plete and the components of the energy momentum tensor as
This form of the spherically symmetric Vlasov-Einstein sys-We” as metric quantities decay with certain algebraic rates in
tem is convenient for analytical work and has been used ift.
[11,13. For numerical work one wishes to use the symmetry Let us denote
explicitly in the Vlasov equation in order to reduce the lat-

ter's dimension. One set of independent variables to use is m(t,r)=4 frszp(t s) ds. (2.1
0
B B X
r=[x, u=lv|, a=cos - Thenm(t,») is a conserved quantity, the ADM mass of the

system. Usingn(t,r) the field equation§2.2) and(2.3) yield
However, an equivalent and more convenient set of variables

X-v
=[x, w=— L=[xP*v]*~(x-v)*=[xxv]?, metr)
2.9 M’(t,r)=e2““”( 5 +4wrp(t,r)), (213
r
particularly becausk is constant along the characteristics of |
(2.1); note that also
1
e L N (t,r)= E[ezx(Swrzp(t,r)—l)—l]
5"
r
m(t,r)
In these variables the Vlasov equation fer f(t,r,w,L) be- =e2”< - 2 +47rrp(t,r)) ; (2.19
comes

w note that the right hand side of ER.12 is positive att
O.f + kA a.f—| Aw+er M 1+ u? =0 by the assumptiori2.10. A further quantity which is
‘ Ji+u? conserved by the system is the total number of particles
L
—et N ——14,f=0. 2.9 f Je*f(t,x,v) dv dx. (2.19
rsm) " 29

The field equations remain unaffected, and the source terms |II. DESCRIPTION AND TESTING OF THE CODE

(2.4), (2.5, (2.7) can be rewritten in terms ofr(u,«a) or .

(r,w,L). Let us consider an initial conditionf(x,v), which is
We now mention some results that have been establishexpherically symmetric, satisfies the conditi¢®.10, and

for the spherically symmetric Vlasov-Einstein system.vanishes outside the setr,(,a)e[Rgy,R1]X[Uq,Uq]

Throughout we consider as initial condition a spherically X[ aq,a;]. We will approximate the solution using a par-

symmetric, nonnegative functiochwhich as a function ok ticle method. For a thorough treatment of particle methods in

and v is continuously differentiable, has compact supportth® context of plasma physics sk&2]. To generate the par-
and satisfies the inequality ticles we take integersl, ,N,,N, and define

o r Arle_Ro Au= Ui—Ug Aa= a;— Qg
Lx|srf \/l+vzf(x,v) dv dX<§, r>0, (2.10 N, N, ' N,
which means that the initial hypersurface does not contain a Rt E)A —Unt|i— E)A
trapped surface. IfiL1] it was shown that for such an initial i=Rom {175 )AL U=HoT| ] 73/
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1

a=agt| k= E)Aa,

fﬂkz?(ri U a4 PAr2rufAu sin eqA e,

0 _ 0 _ _ H 2
rijk—ri, Wijk_uj COS ay , Lijk—(rin Sin ak) .

From these, approximations are made of the quantities

p, P, j, andm defined in Eqgs(2.4), (2.5, (2.7), and(2.1))
at the grid pointnAr. The equation

1
2m
o

m

r2

!

= 3.9

+4wrp),
1

which is obtained from Eq€2.12 and(2.13, together with
u—0 asr—o is used to comput@ on this grid. Note that
for r outside the supporp=0 andm= constant and this
equation is explicitly integrablex is computed using Eq.
(2.12), and similarlyx and\’ are computed using EqE.6)
and(2.14). Letting D denote differentiation along a charac-
teristic of the Vlasov equatiof2.9) we have

w
Dr=et M —,
1+u

. et ML
Dw=—-wA—e* M1+ u’u'+ 5

r3J1+u?

DL

0;
recall that

L
ul=w+ —.
r.2

We interpolatep, j, p, u, A, etc.to particle locations and
use these equations to definﬂﬂ( and Wiljk using a simple
Euler time stepping method. Hen%k denotes an approxima-
tion of the radius of the characteristic at tindg with r
=rj, u=u;, a=a attime 0.

We also have the equation

(A X (fh — 1]

f)=—fh A +wr"er MN1+u?) "1

which represents the time evolution of a volume element

along a characteristic. One time step is now complete.

To test the code a steady state solution was generated.

Following [23] we take
f(x,v)=¢(E)
where
E=e*\1+[o[?

is the particle energy. For simplicity

PHYSICAL REVIEW [38 044007

0.11 e =0
0.10

o | L[]
0.08 I
0.07
0.06
0.05
0.04
0.03

0.02 |
0.01 —-— !
0.00 ——— ]

r

0.00 1.00 2.00 3.00 4.00

FIG. 1. Enclosed mass(r) for subcritical amplitudeA.

1, E<E,

¢(E)= 0, E=E

with E;>0 was taken. Then frof23],

p(r)=g4(u(r))

and
p(r)=hg(u(r))
where
g¢(U)=4wF¢(ee“)eZ\/ez— 1 de
1
and

hg(u)= %J:(ﬁ(ee“)(ez— 1)%de.

Substituting into Eq(3.1), x must satisfy
1

8 (r 5
1—7fos g4(u(s)) ds

p'(r)=

X 4—7TJrszg (1(s)) ds+4arh 4 (u(r))
r2)o” 79 ¢
3.2

and u—0 asr—o. This was solved using a shooting
method. Note that fo=InE, (3.2) reduces to

. r7%m(o)
“ (r)_—1—2r‘1m(oo)’
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which is explicitly integrable. Thus, it was only necessary to 0.00
solve (3.2) on a bounded domairg,=0.9 proved to be a 0.0 oo ey N =
convenient choice. The resulting steady state has mass 3.36 || T4
X102 and support contained in<0r<0.36. The radial 020
component ofv ranges from—0.64 to 0.64. The maximal -0.30
values ofu and\ are 0.296 and 0.132 with a decreasing 0.40
function ofr. ’
It was found that takingN,=40, N,=10, andN,=10 -0.50
produced good results. This resulted in 2550 parti¢less -0.60
than 40< 10X 10 since the support df is not rectangular 070
At time zero the maximal errors im and x (maximum over :
r) were 1.6 10 % and 2.84<10 3 respectively. Dividing -0.80
by the maximal values ofn and x (that is, by 3.36K 1072 0.90
and 2.96<10 1) we find the maximal errors im and u are
0.49% and 0.96% at=0. -1.00—
The errors irm and . were computed at time=10 using -1.10 — r
different time steps. Percentage errors were computed as de- 0.00 1.00 2.00 3.00 4.00

scribed above with the results: - .
FIG. 2. u(r) for subcritical amplitudeA.

At error inm errorinu  direction, almost returning to its starting position at time 8.
1 0 o Comparing Figs. 1 and 2 we see thatat4 the mass is near
o 6.2% 5.9% ; :
r=0 and that|u| attains relatively large values. By
5056 3.4% 2.9% =8 u has dropped to near its starting values.tAgows the
.l particles continue outward and disperse, consistent with the
16000 2.1% 1.3% small data resulf11].

In Figs. 3 and 4A is 0.75. Againm and x are plotted at
Thus the particle code tracks the steady state reasonablinest=0, 2, 4, and 8 with the solid curve representing
well, although a rather small time step seems to be needet=8. For times 0, 2, and 4 Fig. 3 resembles Fig. 1, but for
We attribute this, at least in part, to numerical difficulties int=8 we see in Fig. 3 that the mass has not moved back out.
tracking the motion of particles near=0. Note that for this Rather it is centered near 0.21, and from Fig. #as formed
steady state the density is largest at0. For other solutions an abrupt transition near 0.235. At time 8 the maximal out-
with zero density near=0, the time step was taken larger ward momentum is about 9 while the maximal inward mo-

without significant change in the results. mentum is 189 and the positions satisfy G:13<0.24. Ex-
amination ofj(t,r) defined in Eq(2.7) reveals that the mass
V. RESULTS OF SIMULATION flux is almost entirely inward. The abrupt transition jin
] ) ) o occurs atr =0.235 and\ has a maximum at this same \
In this section we consider initial data forms a cusp at its maximum. At time 16 these features have

o not moved although the maximal value |@f| has grown.
f(X,U):Afo(X,U)

with f, fixed and varyA. As a first example we take 0.12 : , =g
0.11 : el
fo(x,0)=[50,00¢2.2—r)(r —2)(10.2—u) : =4
0.10 P
X (u—10)(3.1- a)(a—2.91% 0.09 -
0.08

for 2<r<2.2, 10<u<10.2, 2.%<a<3.1 andfy(x,v)=0

otherwise. Thus the mass is initially concentrated between 907
r=2 and 2.2 and is moving inward rapidly. In most of the 0.06
following simulations the support df, is divided into 40 by 0.05
20 by 20 cells(40 inr) resulting in 16000 particles and the 0.04
time step is 0.005. The cases where this is not so will be

pointed out. 0.03
In Figs. 1 and 2A is 0.69. In Fig. 1 the enclosed mass 0.02 —
m(t,r) defined in Eq.2.1)) is plotted at timegs=0, 2, 4, 0.01

and 8. Figure 2 showga at the same times. The solid curve 0.00
is t=8 in both. At time 8 every patrticle is moving outward

with momentum greater than 3.37 and has positiorl.48.

In Fig. 1 we see that the mass has fallen inward and reversed FIG. 3. Enclosed mas®(r) for supercritical amplitude.

r

0.00 1.00 2.00 3.00 4.00
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0.00 .t =0
=3 0.80
-1.00 T
=4 0.75
-2.00 t=8
0.70
-3.00
0.65
-4.00
0.60
-5.00
0.55
-6.00
0.50
7,00
045
-8.00 0.40 — B
-9.00 —
| 0.35
-10.00 r 030 A
000 100 200 300 400 -

N . 1.60 1.70 1.80 1.90
FIG. 4. u(r) for supercritical amplitudd.

FIG. 6. Critical radius versus amplitude; second example.
Recall that the quantities o
ary abrupt transition irx, but a small amount of mass es-

N caped. Thus it seems that the critical valuefoffor this
f f e'fdv dx choice off, is A, ~0.70.
For A=0.70 the radius of the maximum of and the
and radius of the abrupt transition ia are nearly the same. Thus
we have computed the radiuA) where the maximal value

f j I oPfdo dx (overr andt) of

1 2m

are both conserved by the exact time evolution. In the above . 5'”( 1- T)
runs neither quantity varied by more than 1.7% of its initial
value. A run was made with 8040x 40 particles, At occurred. So this is the value pfwhere the conditiori2.10
=0.0025, A=0.75, and final time 8. The resulting graphs of is most nearly violated. FOA=0.70 the maximum\ was
m and x with the finer resolution are qualitatively very simi- attained at the largest time, fér<0.69 it was attained ear-
lar to Figs. 3 and 4, except that the transitions are slighthjier. The results are graphed in Fig. 5. Since the ADM mass
more abrupt and the maximal value [gi| is increased by of the configuration depends linearly énand forA=0.70
about 7%. nearly all the mass is captured in the black hole, the mass of

WhenA was taken larger than 0.75 the results are similarthe black holeM(A) =r(A)/2, depends nearly linearly ok
For 0.76<A<0.74 a similar structure formed with a station- for A=0.70. The values oA<0.70 are plotted as a dotted

curve. We note that

3sSyr—
0.305 1" / 2.80
0295 —— 2.60
0.285 2.40
0.275 / 2.20
0.265
/ 2.00 -
0.255
1.80
0.245
0.235 / 1.60
0.225 1.40
0.215 A 1.20 A
0.60 0.70 0.80 0.90 1.00 0.70 0.80 0.90 1.00 1.10
FIG. 5. Critical radius versus amplitude; first example. FIG. 7. Critical radius versus amplitude; third example.
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— _ 2 _ 2 _ 2 _112\2
lim M(A)=% lim r(A)~0.11, folX,)=0.13=1)"(2=N*(1-N"(1-u%)

AmAt AmAst for 1<r<3 andu<1 andfq(x,v)=0 otherwise. Figure 7

which indicates type | behavior as explained in the introducP!0ts radius versué as Figs. 5 and 6 did. Fok=0.76 the
tion. SinceAr=0.005, the discontinuity itM(A) at A, is  maximum of\ occurred at the largest time. FA<0.75 the
significant. maximum occurred at times near zero, hence the nearly con-
Next we consider stant values of for A<0.75.
In Figs. 5, 6 and 7 the final time was taken large enough
fo(X,0)=0.11-r?)?(1—u?)? that increasing it produced only minor changes. In each case
we see that the radius at whighis largest and the step in the

for r<1 andu<1 andfy(x,v) =0 otherwise. Similar to Fig. lapse functiore?* forms remains bounded away from zero.
5, Fig. 6 shows the radius where the maximal valuex of

occurs as a function oA. For A=1.6 the maximum was ACKNOWLEDGMENT
attained at the largest time. For this initial condition a
smaller time step of 0.00125 was used. One of the authoréA.D.R.) thanks Carsten Gundlach for
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