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Critical collapse of collisionless matter: A numerical investigation
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In recent years the threshold of black hole formation in spherically symmetric gravitational collapse has been
studied for a variety of matter models. In this paper the corresponding issue is investigated for a matter model
significantly different from those considered so far in this context. We study the transition from dispersion to
black hole formation in the collapse of collisionless matter when the initial data is scaled. This is done by
means of a numerical code similar to those commonly used in plasma physics. The result is that, for the initial
data for which the solutions were computed, most of the matter falls into the black hole whenever a black hole
is formed. This results in a discontinuity in the mass of the black hole at the onset of black hole formation.
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I. INTRODUCTION

The gravitational collapse of a localized concentration
matter to a black hole is a central theme in general relativ
Even in the simplest case of spherically symmetric colla
much remains to be learned. When no matter is present
in the case of the vacuum Einstein equations, there is
collapse in spherical symmetry, because of Birkhoff’s the
rem. Thus it is necessary, in order to obtain informat
about gravitational collapse by studying the spherically sy
metric case, to choose a matter model. A simple cho
which has provided valuable insights, is that of a mass
~real, minimally coupled! scalar field. A deep mathematica
investigation of spherically symmetric solutions of th
Einstein-scalar field system has been carried out
Christodoulou. Some of his results will now be discussed

In @1# it was shown that for sufficiently small initial dat
the fields disperse to infinity at large times. A result for t
case of large data was proved in@2#. For any solution it is
possible to define a numberM with the property that in the
region r .2M ~where r is the area radius! the solution ap-
proaches the Schwarzschild solution of massM at large
times. The physical interpretation is that the system has
lapsed to form a black hole of massM . Of courseM50 in
the case that the field disperses. The dichotomy between
persion and black hole formation still leaves the unanswe
question of which data result in which of these two o
comes, except for small data. In@3# Christodoulou gave a
sufficient condition on initial data to ensure thatM.0 for
the corresponding solution, although this criterion is not v
practical.

For large data the above results only describe the struc
of the solution at a sufficiently large radius and the inter
structure is left open. In@4# it was proved that there exis
data leading to the formation of a naked singularity. T
negative implications of this for the cosmic censorship h
0556-2821/98/58~4!/044007~8!/$15.00 58 0440
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pothesis are limited by the fact@5# that this behavior is un-
stable in the class of spherically symmetric initial data.

An important new element was brought into the study
the Einstein-scalar field and gravitational collapse in gene
by the numerical work of Choptuik@6#. He took a fixed
initial datum for the scalar field~which due to spherical sym
metry determines initial values for the gravitational fiel!
and scaled it by an arbitrary constant factor. This gives r
to a family of initial data depending on a real parameterA.
For all initial data used in the computations the same pict
emerged. For values ofA corresponding to small data th
field dispersed, in agreement with the rigorous results.
large initial data a black hole was formed. Under these
cumstances we can define a critical parameterA* as the
lower limit of those values ofA for which a black hole is
formed. If the massM of the black hole formed is plotted a
a function ofA it is found thatM (A) is continuous. In par-
ticular limA→A

*
M (A)50 so that black holes of arbitrarily

small mass can be formed within the given one-param
family. Up to now it has not been possible to confirm th
behavior by rigorous mathematical arguments. Choptu
results contain much more detailed statements than the
just mentioned, but it is the one which will be important
the sequel.

The nature of the boundary between dispersion and b
hole formation in gravitational collapse is now a very acti
research area. Most~but not all! of the work has been con
cerned with spherical symmetry and varying matter mod
and has relied essentially on numerical computations. F
recent review of the field see@7#. In a study of critical col-
lapse for the Einstein-Yang-Mills equations, Choptu
Chmaj and Bizon´ @8# have found both cases wher
limA→A

*
M (A)50 and limA→A

*
,A.A

*
M (A).0. They call

these cases type II and type I respectively, the terminol
being motivated by an analogy to phase transitions in sta
© 1998 The American Physical Society07-1
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tical mechanics. They relate type I behavior in this system
the existence of the Bartnik-McKinnon solutions@9,10#,
which are static.~The models which had been consider
previously, and which showed exclusively type II behavi
admit no regular static solutions.!

Almost all the matter models which have been conside
up to now in the context of critical collapse are field theore
in nature rather than phenomenological. The one exceptio
a perfect fluid with linear equation of state, which sho
type II behavior. A phenomenological matter model who
collapse is of interest is collisionless matter described by
Vlasov equation. As will be described next, the spheri
collapse of collisionless matter has been studied both ana
cally and numerically but the known results for this type
matter say little about the nature of critical collapse. T
purpose of this paper is to begin the numerical investiga
of critical collapse of collisionless matter.

In @11# it was shown that for sufficiently small initial dat
for collisionless matter the matter disperses to infinity
large times. Thus the analogue of Christodoulou’s small d
result holds for collisionless matter. The solutions are g
desically complete. Unfortunately, no analogue of his la
data result is known is this case. The only result in t
direction which has been proved is that there do exist ini
data which develop singularities@12#. The proof proceeds by
demonstrating the existence of initial data which cont
trapped surfaces and applying the Penrose singularity t
rem. A different kind of large data result, which is relevant
the numerical calculations of this paper, is that if data giv
on a hypersurface of constant Schwarzschild time gives
to a solution which develops a singularity after a fin
amount of Schwarzschild time, then the first singularity o
curs at the center of symmetry@13#. An analogous resul
where Schwarzschild time is replaced by maximal slic
has also been proved@14#.

It seems plausible that in those solutions which deve
singularities black holes are usually formed. However th
are no mathematical results on this and the convincing
dence for the formation of black holes is purely numeric
This is part of a large body of work due to Shapiro, Teuk
sky and collaborators which goes far beyond the spheric
symmetric case. Here only those results will be discus
which are directly relevant to this paper. In particular on
results for spherical symmetry are covered. In@15–17# the
collapse of various configurations of collisionless matter t
black hole has been computed numerically. The relative m
its for this problem of different choices of time coordina
~polar or maximal! and radial coordinate~area or isotropic!
are discussed in@18,19#.

In this paper we carry out an experiment analogous to
of Choptuik for spherically symmetric collapse of collisio
less matter. We use Schwarzschild coordinates~i.e. polar
slicing and area radius!. Starting with a suitable smoot
function f 0 of compact support as initial datum for the di
tribution function we consider the scaled dataA f0, whereA
is a positive constant and compute the corresponding t
evolution numerically. For all data for which we tried th
experiment, the results were qualitatively similar. WhenA is
sufficiently small the matter disperses, in agreement with
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analytic theory. This happens up to some valueA* of A. For
A.A* the observed behavior indicates the formation o
black hole. The lapse function develops an abrupt step
certain radiusr (A). This step remains at the same radius b
gets deeper and deeper. We interpret this as the signatu
a black hole with massM (A)5r (A)/2. If M (A) is plotted as
a function ofA it is found that the limiting value ofM (A) as
A approachesA* from above is strictly positive. Thus we
find behavior of type I in the terminology of@8#. We never
find any signs of singularity formation for any value ofA and
this is consistent with the standard picture where the o
singularities formed are those of black hole type and they
avoided by a Schwarzschild time coordinate.

As a check on the interpretation of the numerical so
tions as describing collapse to a black hole, radial null g
desics were computed. The results agreed well with the
pected picture. Radial null geodesics starting at the cente
early times escape to large values ofr . Those starting after a
certain timeT1 remain within a finite radius. The limit of this
radius ast tends toT1 from above is equal tor (A) as com-
puted above. Thus we obtain a consistent picture with
black hole whose event horizon is generated by the null g
desics starting at the center at timeT1.

To have a better picture of what is happening in the c
lapse of near critical initial data it is useful to consider ho
the massM (A) of the black hole formed depends on th
Arnowitt-Deser-Misner~ADM ! mass of the initial configu-
ration. For parameter valuesA well aboveA* these quanti-
ties are almost equal. In other words, essentially all the m
ter falls into the black hole. As the critical parameter value
approached from above some of the matter does not fall
the black hole and in some of the cases which were co
puted escapes to infinity. However, in all the cases wh
were computed the mass of the black hole is more than 9
of the total ADM mass of the configuration. Thus whenev
a black hole is formed almost all the matter falls into it a
the mass gap is a reflection of this. The picture in the o
other case of a phenomenological matter model in wh
critical collapse has been studied up to now, namely a per
fluid with linear equation of state, is very different. In th
case of a radiation fluid@equation of statep5(1/3)r# the
slightly supercritical collapse can be described as follo
@20#. The matter divides almost completely into two par
separated by a near vacuum region. The outer part of
matter, which contains almost all the mass, escapes to in
ity. The inner part, which contains only a very small amou
of mass, collapses to form a~small! black hole. As the criti-
cal parameter is approached this situation becomes more
more extreme and the black hole mass tends to zero.

The numerical code used is based on a numerical sch
for the corresponding Newtonian problem described in@21#.
It incorporates less refined features than the codes of Sha
and Teukolsky but seems to be quite sufficient for t
present task. It does have the advantage that an analo
Newtonian code has been proved to be convergent@21# and
it seems reasonable to hope that this proof could be exten
so as to obtain results on the convergence of the method
in this paper in the future.

These results add collisionless matter to the class of m
7-2
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CRITICAL COLLAPSE OF COLLISIONLESS MATTER: . . . PHYSICAL REVIEW D58 044007
ter models for which something is known about critical c
lapse. Clearly it is desirable to examine other types of ini
data so as to discover the prevalence of the type of beha
found here or of others which have not yet been seen.
our hope that these numerical investigations can also he
further the mathematical study of collisionless matter in g
eral relativity by providing pictures of what is happenin
which can suggest which theorems one should try to pr
and by what means. Mathematical investigations of par
differential equations often proceed by estimating the gro
rates of certain quantities and it is useful to have an idea
the expected growth rates on the basis of numerical com
tations. The fact that we observe no singularities in the
merical computations can be seen as evidence that the w
cosmic censorship conjecture is true for collisionless mat
Indeed it may even be true in a stronger version than in
case of the massless scalar field. There may be no n
singularities formed for any regular initial data rather th
just for generic initial data. This speculation is based on
fact that the naked singularities which occur in scalar fi
collapse appear to be associated with the existence of ty
critical collapse.

The paper proceeds as follows: In the next section
formulate the Vlasov-Einstein system, first in general co
dinates, and then in coordinates adapted to the spheric
symmetric, asymptotically flat situation that we want
study. In Sec. III we describe the code we are using and
it on a steady state. In Sec. IV we present the results of
numerical simulations.

II. FORMULATION OF THE SPHERICALLY SYMMETRIC
VLASOV-EINSTEIN SYSTEM

In the present paper the matter model is a collisionless
as described by the Vlasov or Liouville equation. Coupli
this equation self-consistently to the Einstein field equati
results in the Vlasov-Einstein system, which we first wr
down in general coordinates on the tangent bundleTM of the
spacetime manifoldM :

pa]xa f 2Gbg
a pbpg]pa f 50,

Gab58pTab,

Tab5E papb f ugu1/2
d4p

m
.

Here f is the number density of the particles on phase-spa
Gbg

a andGab denote the Christoffel symbols and the Einste
tensor obtained from the spacetime metricgab , ugu denotes
its determinant,Tab is the energy-momentum tensor gene
ated byf , xa are coordinates onM , (xa,pb) the correspond-
ing coordinates on the tangent bundleTM, Greek indices run
from 0 to 3, and

m5ugabpapbu1/2
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is the rest mass of a particle at the corresponding phase-s
point. We assume that all particles have rest mass 1
move forward in time so that the distribution functionf lives
on the mass shell:

PM5$gabpapb521, p0.0%.

We consider this system in the asymptotically flat a
spherically symmetric case and use Schwarzschild coo
nates to coordinatize the spacetime manifold. The me
takes the form

ds252e2m~ t,r !dt21e2l~ t,r !dr21r 2~du21sin2udf2!,

wheretPR, r>0, uP@0,p#, fP@0,2p#. Asymptotic flat-
ness is then expressed as the boundary condition

lim
r→`

l~ t,r !5 lim
r→`

m~ t,r !50.

We also require a regular center, which is guaranteed by
boundary condition

l~ t,0!50.

To write the Vlasov equation we use the corresponding C
tesian coordinates

x5~r sin u cosf,r sin u sin f,r cosu!

as spatial and

va5pa1~el21!
x•p

r

xa

r
, a51,2,3

as momentum coordinates. The Vlasov-Einstein system t
takes the form

] t f 1em2l
v

A11uvu2
•]xf

2S l̇
x•v

r
1em2lm8A11uvu2D x

r
•]v f 50, ~2.1!

e22l~2rl821!1158pr 2r, ~2.2!

e22l~2rm811!2158pr 2p, ~2.3!

r~ t,r !5r~ t,x!5E A11uvu2f ~ t,x,v ! dv, ~2.4!

p~ t,r !5p~ t,x!5E S x•v
r D 2

f ~ t,x,v !
dv

A11uvu2
.

~2.5!

Herex,vPR3, r 5uxu, • denotes the Euclidean dot product
R3, and l̇5]l/]t and m85]m/]r . f is assumed to be
spherically symmetric in the sense that

f ~ t,x,v !5 f ~ t,Ax,Av !, APSO~3!.
7-3
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GERHARD REIN, ALAN D. RENDALL, AND JACK SCHAEFFER PHYSICAL REVIEW D58 044007
Equations~2.2! and ~2.3! are the 00- and 11-components
the field equations; it can be shown that for a solution of
above system also the remaining nontrivial components
the field equations hold. We state the 01-component exp
itly, since it is used in our numerical scheme:

l̇524prel1m j , ~2.6!

where

j ~ t,r !5 j ~ t,x!5E x•v
r

f ~ t,x,v !dv. ~2.7!

This form of the spherically symmetric Vlasov-Einstein sy
tem is convenient for analytical work and has been used
@11,13#. For numerical work one wishes to use the symme
explicitly in the Vlasov equation in order to reduce the la
ter’s dimension. One set of independent variables to use

r 5uxu, u5uvu, a5cos21
x•v
ru

.

However, an equivalent and more convenient set of varia
is

r 5uxu, w5
x•v

r
, L5uxu2uvu22~x•v !25ux3vu2,

~2.8!

particularly becauseL is constant along the characteristics
~2.1!; note that

u25w21
L

r 2
.

In these variables the Vlasov equation forf 5 f (t,r ,w,L) be-
comes

] t f 1em2l
w

A11u2
] r f 2S l̇w1em2lm8A11u2

2em2l
L

r 3A11u2D ]wf 50. ~2.9!

The field equations remain unaffected, and the source te
~2.4!, ~2.5!, ~2.7! can be rewritten in terms of (r ,u,a) or
(r ,w,L).

We now mention some results that have been establis
for the spherically symmetric Vlasov-Einstein syste
Throughout we consider as initial condition a spherica

symmetric, nonnegative functionf° which as a function ofx
and v is continuously differentiable, has compact supp
and satisfies the inequality

E
uxu<r

E A11v2f°~x,v ! dv dx,
r

2
, r .0, ~2.10!

which means that the initial hypersurface does not conta
trapped surface. In@11# it was shown that for such an initia
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condition there exists a unique, continuously differentia

solution f with f (0)5 f°, which exists with respect to
Schwarzschild time on some right maximal interval@0,T@ . If
the solution blows up in finite time, i.e., ifT,` then r(t)
becomes unbounded ast→T2. Actually, as shown in@13#,
r in this case has to become unbounded at the centerr 50,
i.e., if any singularity evolves, the first one must be at t
center. This rules out singularities of shell crossing ty
which can be a nuisance in other matter models, e.g., dus
the initial datum is uniformly small the resulting solution
global in the sense that the spacetime is geodesically c
plete and the components of the energy momentum tenso
well as metric quantities decay with certain algebraic rate
t.

Let us denote

m~ t,r !54 p E
0

r

s2r~ t,s! ds. ~2.11!

Thenm(t,`) is a conserved quantity, the ADM mass of th
system. Usingm(t,r ) the field equations~2.2! and~2.3! yield

e22l~ t,r !512
2m~ t,r !

r
, ~2.12!

m8~ t,r !5e2l~ t,r !S m~ t,r !

r 2
14prp~ t,r !D , ~2.13!

also

l8~ t,r !5
1

2r
@e2l

„8pr 2r~ t,r !21…21#

5e2lS 2
m~ t,r !

r 2
14prr~ t,r !D ; ~2.14!

note that the right hand side of Eq.~2.12! is positive att
50 by the assumption~2.10!. A further quantity which is
conserved by the system is the total number of particles

E E el f ~ t,x,v ! dv dx. ~2.15!

III. DESCRIPTION AND TESTING OF THE CODE

Let us consider an initial condition,f°(x,v), which is
spherically symmetric, satisfies the condition~2.10!, and
vanishes outside the set (r ,u,a)P@R0 ,R1#3@U0 ,U1#
3@a0 ,a1#. We will approximate the solution using a pa
ticle method. For a thorough treatment of particle methods
the context of plasma physics see@22#. To generate the par
ticles we take integersNr ,Nu ,Na and define

Dr 5
R12R0

Nr
, Du5

U12U0

Nu
, Da5

a12a0

Na
,

r i5R01S i 2
1

2DDr , uj5U01S j 2
1

2DDu,
7-4
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ak5a01S k2
1

2DDa,

f i jk
0 5 f°~r i ,uj ,ak!4pr i

2Dr2puj
2Du sin akDa,

r i jk
0 5r i , wi jk

0 5uj cosak , Li jk5~r iuj sin ak!
2.

From these, approximations are made of the quanti
r, p, j , andm defined in Eqs.~2.4!, ~2.5!, ~2.7!, and~2.11!
at the grid pointsnDr . The equation

m85
1

12
2m

r

S m

r 2
14prp D , ~3.1!

which is obtained from Eqs.~2.12! and~2.13!, together with
m→0 asr→` is used to computem on this grid. Note that
for r outside the support,p[0 andm[ constant and this
equation is explicitly integrable.l is computed using Eq
~2.12!, and similarlyl̇ andl8 are computed using Eqs.~2.6!
and ~2.14!. Letting D denote differentiation along a chara
teristic of the Vlasov equation~2.9! we have

Dr 5em2l
w

A11u2
,

Dw52wl̇2em2lA11u2m81
em2lL

r 3A11u2

DL50;

recall that

u25w21
L

r 2
.

We interpolater, j , p, m, l, etc. to particle locations an
use these equations to definer i jk

1 and wi jk
1 using a simple

Euler time stepping method. Herer i jk
1 denotes an approxima

tion of the radius of the characteristic at timeDt with r
5r i , u5uj , a5ak at time 0.

We also have the equation

~Dt !21~ f i jk
1 2 f i jk

0 !52 f i jk
0
„l̇1wl8em2l~11u2!21/2

…

which represents the time evolution of a volume elem
along a characteristic. One time step is now complete.

To test the code a steady state solution was genera
Following @23# we take

f ~x,v !5f~E!

where

E5emA11uvu2

is the particle energy. For simplicity
04400
s

t

d.

f~E!5H 1, E,E0

0, E>E0

with E0.0 was taken. Then from@23#,

r~r !5gf„m~r !…

and

p~r !5hf„m~r !…

where

gf~u!54pE
1

`

f~eeu!e2Ae221 de

and

hf~u!5
4p

3 E
1

`

f~eeu!~e221!3/2de.

Substituting into Eq.~3.1!, m must satisfy

m8~r !5
1

12
8p

r E
0

r

s2gf„m~s!… ds

3S 4p

r 2 E0

r

s2gf„m~s!… ds14prhf„m~r !…D
~3.2!

and m→0 as r→`. This was solved using a shootin
method. Note that form> lnE0 ~3.2! reduces to

m8~r !5
r 22m~`!

122r 21m~`!
,

FIG. 1. Enclosed massm(r ) for subcritical amplitudeA.
7-5
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GERHARD REIN, ALAN D. RENDALL, AND JACK SCHAEFFER PHYSICAL REVIEW D58 044007
which is explicitly integrable. Thus, it was only necessary
solve ~3.2! on a bounded domain.E050.9 proved to be a
convenient choice. The resulting steady state has mass
31022 and support contained in 0<r<0.36. The radial
component ofv ranges from20.64 to 0.64. The maxima
values ofm andl are 0.296 and 0.132 withr a decreasing
function of r .

It was found that takingNr540, Nu510, andNa510
produced good results. This resulted in 2550 particles~less
than 40310310 since the support off is not rectangular!.
At time zero the maximal errors inm andm ~maximum over
r ) were 1.6331024 and 2.8431023 respectively. Dividing
by the maximal values ofm and m ~that is, by 3.3631022

and 2.9631021) we find the maximal errors inm andm are
0.49% and 0.96% att50.

The errors inm andm were computed at timet510 using
different time steps. Percentage errors were computed a
scribed above with the results:

Dt error in m error in m

1
4000 6.2% 5.9%

1
8000 3.4% 2.9%

1
16000 2.1% 1.3%

Thus the particle code tracks the steady state reason
well, although a rather small time step seems to be nee
We attribute this, at least in part, to numerical difficulties
tracking the motion of particles nearr 50. Note that for this
steady state the density is largest atr 50. For other solutions
with zero density nearr 50, the time step was taken large
without significant change in the results.

IV. RESULTS OF SIMULATION

In this section we consider initial data

f°~x,v !5A f0~x,v !

with f 0 fixed and varyA. As a first example we take

f 0~x,v !5@50,000~2.22r !~r 22!~10.22u!

3~u210!~3.12a!~a22.9!#2

for 2,r ,2.2, 10,u,10.2, 2.9,a,3.1 and f 0(x,v)50
otherwise. Thus the mass is initially concentrated betw
r 52 and 2.2 and is moving inward rapidly. In most of th
following simulations the support off 0 is divided into 40 by
20 by 20 cells~40 in r ) resulting in 16000 particles and th
time step is 0.005. The cases where this is not so will
pointed out.

In Figs. 1 and 2,A is 0.69. In Fig. 1 the enclosed mas
m(t,r ) defined in Eq.~2.11! is plotted at timest50, 2, 4,
and 8. Figure 2 showsm at the same times. The solid curv
is t58 in both. At time 8 every particle is moving outwar
with momentum greater than 3.37 and has positionr .1.48.
In Fig. 1 we see that the mass has fallen inward and reve
04400
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bly
d.

n

e

ed

direction, almost returning to its starting position at time
Comparing Figs. 1 and 2 we see that att54 the mass is nea
r 50 and that umu attains relatively large values. Byt
58 m has dropped to near its starting values. Ast grows the
particles continue outward and disperse, consistent with
small data result@11#.

In Figs. 3 and 4,A is 0.75. Againm andm are plotted at
times t50, 2, 4, and 8 with the solid curve representin
t58. For times 0, 2, and 4 Fig. 3 resembles Fig. 1, but
t58 we see in Fig. 3 that the mass has not moved back
Rather it is centered near 0.21, and from Fig. 4m has formed
an abrupt transition near 0.235. At time 8 the maximal o
ward momentum is about 9 while the maximal inward m
mentum is 189 and the positions satisfy 0.13,r ,0.24. Ex-
amination ofj (t,r ) defined in Eq.~2.7! reveals that the mas
flux is almost entirely inward. The abrupt transition inm
occurs atr 50.235 andl has a maximum at this samer . l
forms a cusp at its maximum. At time 16 these features h
not moved although the maximal value ofumu has grown.

FIG. 2. m(r ) for subcritical amplitudeA.

FIG. 3. Enclosed massm(r ) for supercritical amplitudeA.
7-6
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Recall that the quantities

E E el f dv dx

and

E E A11uvu2f dv dx

are both conserved by the exact time evolution. In the ab
runs neither quantity varied by more than 1.7% of its init
value. A run was made with 80340340 particles, Dt
50.0025, A50.75, and final time 8. The resulting graphs
m andm with the finer resolution are qualitatively very sim
lar to Figs. 3 and 4, except that the transitions are sligh
more abrupt and the maximal value ofumu is increased by
about 7%.

WhenA was taken larger than 0.75 the results are simi
For 0.70<A<0.74 a similar structure formed with a statio

FIG. 4. m(r ) for supercritical amplitudeA.

FIG. 5. Critical radius versus amplitude; first example.
04400
e
l

y

r.

ary abrupt transition inm, but a small amount of mass es
caped. Thus it seems that the critical value ofA for this
choice of f 0 is A* '0.70.

For A>0.70 the radius of the maximum ofl and the
radius of the abrupt transition inm are nearly the same. Thu
we have computed the radiusr (A) where the maximal value
~over r and t) of

l52
1

2
lnS 12

2m

r D
occurred. So this is the value ofr where the condition~2.10!
is most nearly violated. ForA>0.70 the maximuml was
attained at the largest time, forA<0.69 it was attained ear
lier. The results are graphed in Fig. 5. Since the ADM ma
of the configuration depends linearly onA and forA>0.70
nearly all the mass is captured in the black hole, the mas
the black hole,M (A)5r (A)/2, depends nearly linearly onA
for A>0.70. The values ofA,0.70 are plotted as a dotte
curve. We note that

FIG. 6. Critical radius versus amplitude; second example

FIG. 7. Critical radius versus amplitude; third example.
7-7



uc

f

a

on-

gh
ase
e
o.

r

GERHARD REIN, ALAN D. RENDALL, AND JACK SCHAEFFER PHYSICAL REVIEW D58 044007
lim
A→A

*
1

M ~A!5
1

2
lim

A→A
*

1

r ~A!'0.11,

which indicates type I behavior as explained in the introd
tion. SinceDr 50.005, the discontinuity inM (A) at A* is
significant.

Next we consider

f 0~x,v !50.1~12r 2!2~12u2!2

for r ,1 andu,1 andf 0(x,v)50 otherwise. Similar to Fig.
5, Fig. 6 shows the radius where the maximal value ol
occurs as a function ofA. For A>1.6 the maximum was
attained at the largest time. For this initial condition
smaller time step of 0.00125 was used.

Similarly we consider
e

,’’

od

th

04400
-

f 0~x,v !50.1~32r !2~22r !2~12r !2~12u2!2

for 1,r ,3 andu,1 and f 0(x,v)50 otherwise. Figure 7
plots radius versusA as Figs. 5 and 6 did. ForA>0.76 the
maximum ofl occurred at the largest time. ForA<0.75 the
maximum occurred at times near zero, hence the nearly c
stant values ofr for A<0.75.

In Figs. 5, 6 and 7 the final time was taken large enou
that increasing it produced only minor changes. In each c
we see that the radius at whichl is largest and the step in th
lapse functione2m forms remains bounded away from zer
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