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We present a new method of extracting gravitational radiation from three-dimensional numerical relativity
codes and providing outer boundary conditions. Our approach matches the solution of a Cauchy evolution of
Einstein’s equations to a set of one-dimensional linear wave equations on a curved background. We illustrate
the mathematical properties of our approach and discuss a numerical module we have constructed for this
purpose. This module implements the perturbative matching approach in connection with a generic three-
dimensional numerical relativity simulation. Tests of its accuracy and second-order convergence are presented
with analytic linear wave dat4S0556-282(98)06814-3

PACS numbsgs): 04.25.Dm, 04.25.Nx, 04.30.Db, 04.70.Bw

[. INTRODUCTION gravitational waves generated by the simulation and evolve
them out to the distant wave zone where they assume their
An important goal of numerical relativity is to compute asymptotic form.
the gravitational waveforms generated by systems of com- While the problem of radiation extraction is important for
pact astrophysical objects such as binary black holes or beomputing observable waveforms from numerical simula-
nary neutron stars. With the prospect that gravitational wavéions, careful implementation of outer boundary conditions is
detectors such as the Laser Interferometric Gravitationahlso crucial for maintaining the integrity of the simulations
Wave Observatoril.IGO), VIRGO and GEO will be on-line themselves, as poorly implemented boundary conditions are
in the next few years, it is crucial to study numerical relativ-a likely source of numerical instabilities. These outer bound-
istic simulations of events which might be observable byary conditions are also decisive in framing the desired physi-
these detectors. Such calculations are important not only b&al context for the simulation, e.g., an isolated source in an
cause they could provide signal templates which would conasymptotically flat spacetime. For typical applications, we
siderably increase the probability of detection, but also beean summarize the requirements of a radiation-extraction and
cause the comparison of such templates with theouter-boundary module a&) providing accurate and nu-
observations may provide essential astrophysical informatiomerically convergent approximations to the gravitational
on the nature of the emitting sources. The purpose of tha&vaveforms that would be observed in the wave zone sur-
Binary Black Hole “Grand Challenge” Alliancgl], a multi-  rounding an isolated sourcé) incorporating effects of ra-
institutional collaboration in the United States, is to study thediation reflection off background curvature outside the nu-
inspiral coalescence of the most significant source of signalmerical boundary when appropriatior example when the
for interferometric gravity wave detectors: a binary blackouter boundary is in a strong field regjoric) minimizing
hole system. spurious(numerica) reflection of radiation at the boundary,
Central to the goal of determining waveforms generatedand(d) supporting stable evolution of Einstein’s equations.
by astrophysical systems is the need for accurate techniques In this paper we present a new method for extracting
which compute asymptotic waveforms from numerical rela-gravitational waveforms from a 3D numerical relativity code
tivity simulations on three-dimension&BD) spacelike hy- while simultaneouslyimposing outer boundary conditions.
persurfaces with finite extents. In general, the computationaDur approach is motivated by earlier investigations of gauge-
domain cannot be extended to the distant wave Z@)ge invariant extraction techniqué8], but promises to be more
where the geometric optics approximation is valid. Indeedgenerally applicable in cases where the background curva-
computational resource limitations require that the outeture is significant near the outer boundary of the computa-
boundary of such simulations lie rather close to the highlytional 3D grid. Our method matches a full 3D Cauchy solu-
dynamical and strong field region, where backscatter ofion of Einstein’s equations on spacelike hypersurfaces with
waves off curvature can be significant. As a result, it is im-a perturbative one-dimension@lD) solution in a region
perative to develop techniques which can “extract” thewhere the waveforms can be treated as linear perturbations
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on a spherically symmetric curved backgrodnd.

The plan of this paper is as follows: In Sec. Il, we de-
scribe the mathematical basis of our method and derive the .
linearized radial wave equations which account for the evo- .-
lution of the gravitational waves in the perturbative region of
the spacetime. In Sec. lll, we discuss the strategies for the.
numerical solution of the above equations and present a nu ™.
merical code we have constructed which represents a gener
module implementing our extraction and outer boundary
method in conjunction with a 3D numerical relativity simu-
lation. In this paper we focus on tests of the outer boundary
module as a self-contained unit using analytic solutions. In
companion papers we focus on tests of the module in the
practical context of a typical application. [5], we have .
presented tests of this outer boundary module in conjunctior .
with the 3D “interior code” of the Alliance which evolves '
Einstein equations in the standard +3” form (as pre-
sented iff6]). A more thorough discussion of these results is .
forthcoming[7].

II. CAUCHY-PERTURBATIVE MATCHING METHOD

Einstein’s equations are highly nonlinear, and when,_ FIG|: 1. Schematic of matching proced_urehfor two successive
spacetime is characterized by rapidly varying strong fieldst!rne S 'Ces(.one dimension is SUppressem IS the 3D computa-
P . . . tional domain. The dark shaded region shows the strong field highly
the full 3D nonlinear equations must be used. Outside of al

isolated . f this kind. h bati ,raynamical region ifN. The medium and light shaded annular region
ISO gte region o t IS KInd, however, a pertur atlve_ apprOX"represents the “perturbative regionP, where the linearized equa-
mation, in which gravitational data are treated as linear pergons are evolved on a 1D grid (not shown.

turbations of an exact solution to Einstein’s equations, may

be valid. In this perturbative region a linearized approxima-tiv imolification by matching the nonlinear solution ont
tion to Einstein’s equations could then be exploited to sim- nelsi P Icatli On {, Eli?ct in% € oti nea"nso #zod on 0
plify the evolution of gravitational data. analytic solutions o Stein's equations linearized on a

The idea behind a Cauchy-perturbative matching apMinkowski background. Further simplification was achieved
by decomposing perturbative data in a multipole expansion.

roach is to supplement the computationally expensive eva- . A
P bp P y exp %e extend this approach to cases where curvature is signifi-

lution of the full Einstein equations with the comparatively t by choosi ati i ati ¢ Ei

simpler evolution of the linearized equations in a perturba-cfr? , yc ootslng as ourgpﬁroxma#)lg % mEanza |§nlo n-
tive region. Figure 1 provides a schematic picture of theSrelN's equations on a schwarzschi ackground. in prin-
Cauchy-perturbative matching approach. The square regio ple one could gen_erallze further to a Kerr background, and
covered by the grid represents the 3D computational domaiwIS will b.e the SUbJeCt. of future work. We also _decompose
N (one dimension is suppressazh which Cauchy evolution perturbative data on this background with a multipole expan-

of the full Einstein equations is computed. The dark centraP o™ _reducmg the 3D !lnearlzed equa_ltlons to_a set of 1D
area inN includes the strong field highly dynamical region, equations for each multipole mode. This reduction allows us

where the nonlinear Einstein equations must be solved. Th%’ evolve data everywhere i on a one-dimensional grid.,

medium and light shaded annular ar®asepresents the per- is important to note that all of the three-dimensional tensor

turbative region. Anywhere in thenedium shadedntersec- data inP can be reconstructed_from the multipole amp!itudes
tion of N and P, we can place aextraction2-sphereE, of on L. Our method, therefore, is to match a computationally

radiusr _, where the gravitational field information is read expensive evolution Of. the full E'.nSte'n equatlons Qnto a con-
E s ) siderably less expensive evolution on a 1D grid in a region
out. This information is then evolveby means of the lin-

; ! . > _ where background curvature is still significant.
earized Einstein equationm P, which ranges fronk out to
a large distance(shown as a dotted cirglewhere the
asymptotic waveforms can be identified. Outer boundary A. Hyperbolic formulation
data forN can be constructed from perturbative data in the  Rather than characterize radiation asymptotically in terms
intersection ofN and P. _ _ of certain variables constructed from the mef8% we use a
Previous investigationg3] achieved the desired perturba- ey approach which characterizes radiation in terms of the
extrinsic curvature. This is made possible by a recently de-
veloped spatially gauge-covariant hyperbolic formulation of
'An alternative approach to the problem of wave extraction ancgeneral relativity. This system is constructed from first de-
outer boundary conditions has been developed to match the Caucliivatives of the spacetime Ricci teng8—10 and may there-
solution to solutions on characteristic hypersurfgegs fore appropriately be called the “Einstein-Ricci” system.
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The Einstein-Ricci equations are obtained from the “3 ¢y, (90K;), obtained fromgoﬂij+€i€jRoo [11-13. This
+1" form of the metric: system has a well-posed Cauchy problem and complete free-

N2At2 4y (A 1 i+ ] dom in choosing both3' and N: it has no analogue of a
ds’=—N°dt*+g;(dx'+ g'dt)(dx' + gld), @ slicing term likeS;; . This fourth-order form is used to de-

whereN is the lapse functiong' is the shift vector, ang; ~ Velop fully gauge-invariant perturbation theory it

is the spatial metric in the slicE. An appropriate time de-

rivative operator that evolves spatial quantities along the nor- B. Perturbative expansion

mal to the sliceX. is The first step in obtaining radial wave equations is to
- linearize the hyperbolic Einstein-Ricci equations around a
do=d—Lpg, 2 static Schwarzschild background. We separate the gravita-

tional quantities of interest into backgrouridenoted by a
tilde) and perturbed parts: the 3-metrig; = g,J+h,], the
extrinsic curvatureK;; =Rij+xij , the lapseN=N+ «, and

d00ij = — 2NK;; , (3)  the shift vectorg' =B +v'. In Schwarzschild coordinates

. ] ] ) ﬁt,r,e, ¢), the background quantities are given by
which serves also as the evolution equation for the spatia

where L is the Lie derivative along the shift vector k.
The extrinsic curvaturé;; of 2 can be defined by

metric. By working out the expression(;=doR;; N (1_ 2M vz 63
—2V (iR} in 3+1 form, whereRiJ—_andeo are components r ’
of the spacetime Ricci tensor aiVg denotes the spatial co- i N2 e 21 2( 02 i 2
variant derivative, we find a wave-like equation which gov- gijdXdx'=N""dr"+r*(do +sin’od ¢ ),(Gb)
erns the evolution oKj; :
R i

_NDKij:‘]ij+Sij_Qijl (4) ’8_0’ (GC)

where the physical wave operator for arbitrary shiffis= Kij=0, (6d)

—N"19oN" 9o+ V, V¥, Equation(4) is an identity until we  while the perturbed quantities have arbitrary angular depen-
substitute the Einstein equatiom,;=8(T,s~3T\d.s)  dence. The background quantities satisfy the dynamical

into (;; (G=c=1). equations?g;; =0, &N=0, and thus remain constant for all

The detailed form of the right hand side of Eé) can be  ime The perturbed quantities, on the other hand, obey the
found in [9,10]; the present conventions are those[1)]. following evolution equations:

Here we simply point out thaf);; has become a matter
source that is zero herd;; is the nonlinear self-interaction h = — 2Nk + 2V (79)
term in 3+1 form, andS;; is a slicing-dependent term that . e
must involve fewer than second derivativeskgf to render

iv N2
Eq. (4) a true (hyperbolig wave equation. A simple way to ~ /t@=0 'ViN K (70)
satisfy the restriction of;; is to invoke the harmonic slicing _ 1 o
condition N~ ¢ kij — NV Vi
doN+N?H=0, (5 = — 4V (5, Vi R+ N1 VT N+ 3VERT
w%ereH is the trace ofK;;, and from which followsS;; +Kiﬁkekﬂ—ZKFﬁjﬁkN—ZN_lK'((ﬁj)NekN
For an appropriate choice of initial dafi,10], Egs.(3), +2xV,V;N+44d k9, N+2N"1cV,NV,N
(4), and(5) represent the dynamical part of Einstein’s equa- s o
tions. Combining them we obtain a quasi-diagonal hyper- —ZNRk<iKkj)_2NRkijkam, (70

bolic equation forg;;, with principal (highest-order part

D&o Hence Eqgs(3), (4), and (5) may be said to give the wherek= K and the tilde denotes a spatial quantity defined

“third-order” form of the Einstein-Ricci system. in terms of the background metng|J Note that the wave
We note that the third-order Einstein-Ricci system canequation forx;; involves only the background lapse and cur-

also be cast into a first-order symmetric hyperbolic formvature.

[9-11).2 It also possesses a higher order foftime “fourth-

order Einstein-Ricci systen), essentially a wave equation C. Angular decomposition

We can further simplify the evolution equatidiic) by
- separating out the angular dependence, thus reducing it to a
%n [10], the equation ford,I'}, was inadvertently omitted. See set of 1D equations. We accomplish this by expanding the
[9,11]. extrinsic curvature in Regge-Wheeler tensor spherical har-
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monics[15] and substituting this expansion inféc). Using  radial constraint equations which relate the dependent ampli-
the notation of Moncrief16] we express the expansion as tudes 0),., (b)) , (cy) and d.) to the three inde-

Kij=ax (t,1) ()i + by (t,r)(82);; +N~2a, (t,r)(F);; pendent amplitudesat)y,, (&) (M

o o A 1 ~ ~
+rbo () (Fo)i+ree () (fa);+r2d, (tr)(fa);, (byx), =— m[(1+3N2)+2N2rar](aX)lm,
tS) (109
where @), - . .,(f4);; are the Regge-Wheeler harmonics, 1
which are functions of §,¢) and have suppressed angular ~ (P+), = Il Jr1)[(3+f¢9r)(a+),m—(1+rﬂr)(h)lm],
indices (,m) for each mode. The odd-parity multipoles.( (10b)

andb,) and the even-parity multipolesa( , b,, c,, and
d,) also have suppressed indices for each angular mode and

there is an implicit sum over all modes in E@). The six (€)= 2012(0-1) +2)(|_1){2(1—I—IZ)(a+)|m—2(h)|m
multipole amplitudes correspond to the six components of
«ij . However, using the linearized momentum constraints +1(1 +1)[(1+5N2)+2N2f(9r](b+), + (109
V(xl— 8 x)=0, 9 1
(de), =7 0 +1)[(<’=1+) +2(cy), —(h) 1,

we reduce the number of independent componentsg;;ofo 10
3. An important relation is also obtained through the wave (100
equation forx, whose multipole expansion is simply given for each (,m) mode.

by «=h(t,r)Y whereY (6,¢) is the standard scalar  sypstituting Eq(8) into Eq.(7¢) and using the constraint
spherical harmomc and agam there is an implicit sum oveequations(10), we obtain a set of linearized radial wave
suppressed indices,). Using this expansion, in conjunc- equations for each independent amplitude. For edgam)(
tion with the momentum constrain{8), we derive a set of mode we have one odd-parity equation

4o 2, 2M[_ 3M| _ |I(I+1) 6M .
(9 -N 19 ——N or _r_ 1—? +N 2 _r_3 (ax)lm—o (11
and two coupled even-parity equations
4 6, I(I+1) 6 14M  3M? 4, 3M 2 M 3M? B
— N7 — —N*7, +N = —r—2+ R (ay), +| N 1-— ar+r—2 1_7_r_2 (h),_=0, (12
~ 2. - ||+1) 2M  7M?2 2™ 7™
92— N4 ——N2g,+ N2 ( ———|(h) 3—-—/|(ay), =0.
r r2 r3 r r3 r Im

(13

These equations are related to the standard Regge-Wheefald region. The evolution equations foy, Eq.(7a), ande,

and Zerilli equation$15,17], which can be derived in a more Eqg. (7b), can also be integrated using the dataHKgr com-

complete analysis of gauge-invariant hyperbolic formula-puted in this region. Note that becauBg and « evolve

tions[14]. along the coordinate time axis, these equations need only be
The radial wave equatior{¢1)—(13) for each (,m) mode integrated in the region in which their values are desired, not

of the independent multipole amp"'fUdeﬂxOlm, (a+)|m, over the whole gridL (these quantities have characteristic

(h)Im form the basis for our approach. In the perturbatives'p(:"ed zerp

region, they replace the nonlinear Einstein equations and de-
termine the evolution oK;;. They can be used to evolve,

with minimal computational cost, gravitational wave data to  This section is a general guide for the numerical imple-
arbitrarily large distances from the highly dynamical strongmentation of the Cauchy-perturbative matching method for

Ill. NUMERICAL IMPLEMENTATION
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radiation extraction and outer boundary conditions described _ 1

so far. £s=ast1Ps= 7 (15b)
Consider a 3D numerical relativity code which solves the N

Cauchy problem of Einstein’s equations in either the stan-

dard 3+1 form [18] or a hyperbolic forn{19]. During each Wherel/\lzgr;dj derp}ote_th(; northern égaf 71|-/2)Aand SOUtTt' ¢

time step the procedure followed by our module for extract— (m/2< §= ) hemispheres, respectively. As a result o

ing radiation and imposing outer boundary conditions can bc%g'j) transforman;)r:j, the |ntt§gralts over thﬁ. 2—spthire n iqsr']
summarized in three successive steds:extractionof the are computed over the stéreographic patches, whic

independent multipole amplitudes & (2) evolutionof the ngturally avoid polar singplaritieésee[ZO] for a complete
radial wave equationé1)—(13) onL out to the distant wave dlscus_smn of _the properties and adva_mtages of the stereo-
zone, and(3) reconstructionof K; and &,K; at specified graphic coordinatés In our tests, the integrals over each

. : . . patch are computed using a second-order stereographic
gg?ai?zlgttj\ 2& ';22 S%u;?é pZoundary of We now discuss in quadrature routine developed within the Alliar{@8].

A. Extraction B. Evolution

As mentioned in Sec. ll, the extraction 2-sph&racts as (.)nfze the mult!pole amplitudesi() ., .(a+)lm'.(h)lm .and
the joining surface between the evolution of the highly dy-their time derivatives are computed &nin the time slicet
namical, strong field regiofdark shaded area of Fig) and ~ = o, they are imposed as inner boundary conditions on the
the perturbative regionfight shaded areasAt each time 1D grid. .Usmg a second-order integration schefme have
step,K;; and 4,K;; are computed o as a solution to Ein- tested with both leapfrog and qu—Wendroff methcﬁﬁi]),
stein’s equations. In the test cases presented Memeses —OUr module then evolves the radial wave equatidis—(13)
topologically Cartesian coordinates, although there are nér €ach (,m) mode forward to the next time slice &t t.
restrictions on the choice of the coordinate system. The Carlhe outer boundary of the 1D grid is always placed at a
tesian components of these tensors are then transformed infiéstance large enough that background field and near-zone
their equivalents in a spherical coordinate basis and thef¢ffécts are unimportant, and a radial Sommerfeld condition
traces are computed using the inverse background metric, i.r the wave equationgl1)—(13) can be imposed there. Of
HZEJ”K” , OH :’éijﬁtKij . From the spherical components course, the initial data obh must be consistent with the ini-

of Kj; and g,Kj; , the independent multipole amplitudes for tial dat_a onN. This can either be |mp(_)sed analytlc_ally or
determined by applying the aforementioned extraction pro-

each (,m) mode are then derived by an integration over the d to the initial dat { at h aridpointLofn th
2-sphere: cedure to the initial data set at each gridpointlofn the
region of overlap withN. In the latter case, initial data out-
side the overlap region can be set by considering the
1 1 . asymptotic falloff of each variable. It should be noted that in
(ax)m:mf ?ng[quﬁf?H_ Ky 0&¢,]Y|mdﬂ, the Cauchy-characteristic matching approach initial data also
(149  Mmust be set in the characteristic hypersurfaces and, for real-
istic sources like binary black holes, will necessarily be ap-
proximate.
(a+)lm:J NZKy YindQ, (140 C. Reconstruction and matching
From the perturbative data evolved to tintg outer
boundary values foN can now be computed. The procedure
— f HY},dQ. (149  for doing this depends on the formulation of Einstein’s equa-
tions used by the 3D “interior code.” For a hyperbolic code
o o o (cf. [19]), it is necessary to provide boundary data Koy
Their time derivatives are computed similarly. Rather thangng dK;; . For a standard 81 code(cf. [18]), on the other
performing the integration€l4a—(140 using spherical po-  hand, outer boundary data only f&; are necessary, since
coordinate “patches.” These are uniformly spaced two-jntegrating in time the boundary values féf; . In either
dimensional(2D) grids onto which the values of;; and  case, if outer boundary values for the lapseare needed
;K;; are interpolated using either a three-linear or a threefe g. for integrating harmonic slicing conditicf®)], these
cubic polynomial interpolation scheme. Each point on thecan be computed by the perturbative module or by integra-
2-sphere, denoted by spherical coordinate valdeg), cor-  tjon of H at the boundary.
responds to a pointg(p) on a stereographic grid whose |n order to computeK;; at an outer boundary point
coordinates can be combined into a single complex numbegr any other point in the overlap betwelrand P [7]), it is
& necessary to reconstrukt; from the multipole amplitudes
and tensor spherical harmonics. The Schwarzschild coordi-
dé (153 nate valuest(, 8, ¢) of the relevant grid point are first deter-
' mined. Next, ("X)m' (a+)|m, and (nlm) for each (,m) mode

(h)

Im

. 0
gNEqNJrle:tar(E
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are interpolated to the radial coordinate value of that point. [T T T T T T T
(a)

5x10-8 Analytic

The dependent multipole amplituddsx()lm, (b+)|m, (c+)|m,
and (d+)|m are then computed using the constraint equations
(10). Finally, the Regge-Wheeler tensor spherical harmonics® o I

o

(e1)ij—(f4)i; are computed for the angular coordinatésf) =
for each (,m) mode and the sum in Eq8) is performed. ™~
This leads to the reconstructed componenkgf(and there-
foreKj;); a completely analogous algorithm is used to recon-

+

—5%10-%

struct9,Kj; . i 5
It is important to emphasize that this procedure allows 4zxiof (0 64°R(120%)
one to computd;; at any point ofN which is covered by the 5 .

. ! . 9 ]
perturbative region. As a result, the numerical module can [ . { \ o 16°R(65°) ]

reconstruct the values df;; and ¢;K;; on a 2-surface of ob
arbitrary shape, or any collection of points outsideEof a

Numerical implementation of this method is rather [  \ / XY 7777 #TREE)

straightforward. Very few modifications to a standard 3D _4'2“0_73_ RO
numerical relativity code are necessary in order to allow for ]
the simultaneous evolution of the highly dynamical region 3 -2 1 0 1 2 3 4 5
and of the perturbative one. Because of the use of a numeri- t-r

cally inexpensive integration of 1D wave equations, imple-
mentation of this module provides gravitational wave extrac

tion and stable outer boundary conditions with only minimal The amplitude is scaled y? to compensate for the radial falloff.

addl_tlonal (_:omputatlonal cost. . . (b) Residuals of the leading order error term for different grid reso-
Flnally,. it ,S,hOUId be noted th,at' In practlge, we may Ot tions differing by a factor of 2. The residuals are multiplied by 4,
know a priori if the Schwarzschild-perturbative approxima- 16 ang 64 in order to make the errors comparable. If no higher-
tion is valid near the outer boundary of a given numericalyrger terms were present, all of the curves would coincide.
relativity simulation. Through experimentation, however, it
is possible to test the validity of the approximation. This cangoing and outgoing parts. The 3D grid is vertex-centered
be done, for instance, by extracting data at different radii andvith extents &,y,z) e[ —4,4] and resolutions ranging from
comparing the waveforms computed at the outer sphere witti7)® to (129} points [corresponding to (16)and (128§
those evolved from the inner sphere. This makes it possibleones, respectively The resolution of the stereographic co-
to determine if the neglected terms in the approximationordinate patches corresponds to the resolutiod afd there-
have a significant effect. At any point in the overlap regionfore ranges from (16)to (128 zones on each hemisphere.
betweenN and P, it is possible to reconstruct gravitational For the specific tests presented hetds located at a radius
wave data and compare these values with those computed |D¥=3 and similar results have been obtained also n‘Eor

FIG. 2. (a) Time series of the multipole ampli’[udea()20 ex-
‘tracted at a 2-sphere of radim§=3 for various grid resolutions.

the full nonlinear evolution. =0.5,1.0,1.5,2,2.5,3.5. In fact, on a flat background space-
time and for weak waves on Schwarzschild-like back-
IV. NUMERICAL TESTS grounds, the perturbative approximation is valid throughout

e 3D domain and the position & is thus arbitrary.

. h
In order to establish the accuracy and convergence prop- - . .
y g P 6 Since these waves are traceless and even-parity, with pure

erties of our code we have studied the propagation of Iinea]r:2 ~0 lar d d h | i ind i
waves on a Minkowski background/(=0) . This is a natu- » M=% anguiar dependence, the on'ly non-zero indepen
ral first test since we can compare each stage of the numer(?-(_em multipole gmplltude we expect to find Btis (a.),.
cal procedure described in Sec. Ill against a known analyti®iagram(a) of Fig. 2 shows plots ofd.)  extracted at_
solution[22,23. =3 as a function ot—r for various resolutions oN. The
In these tests we assign analytic values to each grid poirdmplitude is scaled by® to compensate for the radial falloff.
of N at every time step. This allows us to study the accuracy The curves in diagrane) clearly show that the extracted
and convergence properties of the module independently afaveform approaches the analytic valgenoted by a solid
any errors which may develop in a 3D numerical evolutionline) as the resolution is increased. However, in order to
of linear waves. Elsewhergr], we will present results of establish the exact rate at which the computed solution ap-
tests of this module running with a full 3D evolution code proaches the analytic one, we have also performed conver-
(i.e. the interior code of the Allianddl8]), with emphasis on  gence tests. These tests are designed to check that no coding
the issues of stability of the outer boundary and accuracy oérror has been made and that the numerical scheme em-
extracted waveforms. ployed in the solution is providing results at the expected
We have considered analytic data for2, m=0 even-  accuracy. While there are a number of different ways to per-
parity linear waves, initially modulated by a Gaussian enveform these tests, we have exploited the knowledge of an
lope with amplitudeA=10"° and width parameteb=1.  analytic solution and computed the residuBldetween the
These waves are time-symmetrictatO and thus have in- computed solutiorF; and the analytic oné, as a function

044005-6



CAUCHY-PERTURBATIVE MATCHING AND OUTER ... PHYSICAL REVIEW D58 044005

-8

5x10°% |- -

—-12

log(a,),,.
|
>

(a+)2,0 r3

|
@
=T

log(ax)l’m

—-5x10-%

—20 _— ------------- (@dery ——=- (8)as ——— - (Bdeee — F 1

0 1 2 3 4 5 6 7 8
t

FIG. 4. Time series ofa(+)20 evolved tor =8 for various grid
resolutions. Here, also, the amplitude is scaledbio compensate
for the radial falloff.

FIG. 3. Time series of the analytically vanishing evenIlm
and odd (51X)Im parity multipole amplitudes. The extraction is made
at a 2-sphere of radiusE=3 andN has (65§ points.

less, very small m)lm modes are extracted at the 2-sphere.

These modes, which we will not show here, are of the order
of the round-off errorapproximately 1022 for these tests
and may be considered as effectively zero.
Next, we consider the accuracy of the evolution in the
3 5 perturbative region of the extracted amplitudes. The time in-
RIN®)=Fc = Fa=0(h%), (16 tegration of Eqs(11)—(13) onL is performed using a leap-
frog integration scheme with a spatial resolution adjusted so
where O(h?) contains the second and higher order error
terms anch=L/(N—1) is the grid resolution, witlh. being R L L L L
the spatial dimension of the grid. If the numerical computa- Analytic (a)
tion is second-order accurate and a number of simulations B 10-6
with different grid resolutions, each differing by a factor 2,
are performed, we should expect the residual to fall quadrati- 2
cally to zero. Diagrangb) of Fig. 2 shows this is indeed the N3
©

of the resolution(or, equivalently, of the number of grid
pointy. For a second-order accurate numerical schéase

the one used her®n a uniform cubical grid, we expect the
residuals to follow the simple law

case; there, we have multiplied the residuals obtained with
different resolutions by the coefficients that make the leading  .f
order error terms comparable. The good overlapping of the
different curves is an indication that a second-order conver-
gence has been achieved. 6x1078
The accuracy of this extraction procedure can also be
tested by examining the waveforms for the other multipole
amplitudes computed which analytically vanish. Figure 3
shows plots of several even-pariypper diagramand odd-
parity (lower diagram amplitudes computed at the extraction
2-sphere for an resolution i of (65)° points. As a result of L. 4*R(33°) i
a numerical truncation error introduced in the extraction pro- W

8x10-¢

—6x10-6 |- — —— R(17%) i
cedure, these modes are not exactly zero. However, even th
largest amplitude mode is over three orders of magnitude g e e b e
smaller than the only analytically non-vanishing independent t

amplitude . Moreover, all of these amplitudes are ) i
P @+)20 P FIG. 5. (a) Time series of the reconstructed valuesKgr, at the

Second'ord_er_ Converge”t t'o zero as the resolution is ingrid point (4,0,0) for various grid resolutiong) Residuals of the
creased. Similar considerations apply also for the (mul- eading order error term for different grid resolutions differing by a
tipole amplitudes: although the data are analytically tracefactor of 2(cf. Fig. 2.
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that the time steps ilN andL are identical. This imposes a  #*107° ERAARRARRS ERRARRARE

relation involving the grid spacing & and the ratio of Cou- | 64*R(1299) |
rant factors folN andL. Such a choice ensures a correspon- | |
dence between resolutions Wfand P. Figure 4 shows plots I 16*R(65°%) ,

of (a+)20 evolved to a radius=8 from the extracted signal i sx10-¢ |-
atr=r_=3. Different curves correspond to different resolu- Fo---- 4TRE)

tions and show the convergence to the analytic solution. The
outer boundary ofL is located atr =33, where outgoing i
wave Sommerfeld conditions are imposed. For radial scalal  jg-e |-
wave equations, this represents a very good approximatiot
which has been shown to be both accurate and stable.
Finally, we consider the accuracy in the reconstruction of
the outer boundary data. Since we are using analytic data it
N, we can only compare the outer boundary data with the
analytic ones. In a forthcoming papgr], where we will
make use of a numerical solution of Einstein’s equations, we
will also discuss the issues of stability related to the use of a |
Cauchy-perturbative matching method. For conciseness wi ok
consider here reconstructed outer boundary data only fo e e e e e
. . -1 0 1 2 3 4 5 6 7 8
Kij; the reconstruction ob;K;; follows analogously. Dia- ¢
gram(a) of Fig. 5 shows the time series of the reconstructed
value ofK,, computed at the pointxc 4, y=0, z=0) for FIG. 6. Plot ofL, norms _of thg error irK_ZZ computed over th(_e
various resolutions and its comparison with the analytic soduter _boundary_for successive grid resolutions. The norms at differ-
lution. Also in this case, diagrafiv) of Fig. 5 gives proof of ent grid resolutions are scaled so that they overlap if truly second-
the second-order convergence of the numerical module evefjder convergent.
if, in this case, higher order error terms become apparerjeneral numerical 3D simulation. This code correctly ex-
with the very coarse resolution simulatidin®. in the case of  tracts waveforms from analytic linear wave data and recom-
(17)° gridpointd. The small peak observedatr~1isthe putes that data at the outer boundary of the 3D grid. A more
result of a slight difference between the analytic initial dataextensive discussion of the stability properties of this ap-
on L and the extracted signal at=0. This error rapidly proach will be discussed in a forthcoming pafe}; as well
disappears as the resolution is increased. as practical issues arising from application to a real evolution
A more global measure of the accuracy and of the concode environment.
vergence properties of the boundary data is obtained by com- Qur Cauchy-perturbative matching method can be ex-
puting thel, norm of the error irK;; as measured over the tended to more general circumstances, e.g. perturbations on
whole 3D outer boundary. In Fig. 6 we plot thg norms of axially symmetric backgrounds or other slicings of
K, at successive resolutions, normalizing these differenceschwarzschild black holes. Similar analyses using other hy-
by the factor which would make the plots overlap if the perbolic formulation§13,24 may also provide important in-
convergence to analytic data were exactly second-ordesight into the physical understanding of radiation extraction
Here we again see that the desired convergence rate ihd lead to modules which work with simulations based on
achieved over the whole boundary, particularly at finer gridthese formulations.
resolutions.

I R(179)

5x1077 -
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