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Cauchy-perturbative matching and outer boundary conditions: Methods and tests
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We present a new method of extracting gravitational radiation from three-dimensional numerical relativity
codes and providing outer boundary conditions. Our approach matches the solution of a Cauchy evolution of
Einstein’s equations to a set of one-dimensional linear wave equations on a curved background. We illustrate
the mathematical properties of our approach and discuss a numerical module we have constructed for this
purpose. This module implements the perturbative matching approach in connection with a generic three-
dimensional numerical relativity simulation. Tests of its accuracy and second-order convergence are presented
with analytic linear wave data.@S0556-2821~98!06814-3#

PACS number~s!: 04.25.Dm, 04.25.Nx, 04.30.Db, 04.70.Bw
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I. INTRODUCTION

An important goal of numerical relativity is to compu
the gravitational waveforms generated by systems of c
pact astrophysical objects such as binary black holes or
nary neutron stars. With the prospect that gravitational w
detectors such as the Laser Interferometric Gravitatio
Wave Observatory~LIGO!, VIRGO and GEO will be on-line
in the next few years, it is crucial to study numerical relat
istic simulations of events which might be observable
these detectors. Such calculations are important not only
cause they could provide signal templates which would c
siderably increase the probability of detection, but also
cause the comparison of such templates with
observations may provide essential astrophysical informa
on the nature of the emitting sources. The purpose of
Binary Black Hole ‘‘Grand Challenge’’ Alliance@1#, a multi-
institutional collaboration in the United States, is to study
inspiral coalescence of the most significant source of sig
for interferometric gravity wave detectors: a binary bla
hole system.

Central to the goal of determining waveforms genera
by astrophysical systems is the need for accurate techni
which compute asymptotic waveforms from numerical re
tivity simulations on three-dimensional~3D! spacelike hy-
persurfaces with finite extents. In general, the computatio
domain cannot be extended to the distant wave zone@2#,
where the geometric optics approximation is valid. Inde
computational resource limitations require that the ou
boundary of such simulations lie rather close to the hig
dynamical and strong field region, where backscatter
waves off curvature can be significant. As a result, it is i
perative to develop techniques which can ‘‘extract’’ t
0556-2821/98/58~4!/044005~9!/$15.00 58 0440
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gravitational waves generated by the simulation and evo
them out to the distant wave zone where they assume t
asymptotic form.

While the problem of radiation extraction is important f
computing observable waveforms from numerical simu
tions, careful implementation of outer boundary conditions
also crucial for maintaining the integrity of the simulation
themselves, as poorly implemented boundary conditions
a likely source of numerical instabilities. These outer boun
ary conditions are also decisive in framing the desired ph
cal context for the simulation, e.g., an isolated source in
asymptotically flat spacetime. For typical applications,
can summarize the requirements of a radiation-extraction
outer-boundary module as~a! providing accurate and nu
merically convergent approximations to the gravitation
waveforms that would be observed in the wave zone s
rounding an isolated source,~b! incorporating effects of ra-
diation reflection off background curvature outside the n
merical boundary when appropriate~for example when the
outer boundary is in a strong field region!, ~c! minimizing
spurious~numerical! reflection of radiation at the boundary
and ~d! supporting stable evolution of Einstein’s equation

In this paper we present a new method for extract
gravitational waveforms from a 3D numerical relativity cod
while simultaneouslyimposing outer boundary conditions
Our approach is motivated by earlier investigations of gau
invariant extraction techniques@3#, but promises to be more
generally applicable in cases where the background cu
ture is significant near the outer boundary of the compu
tional 3D grid. Our method matches a full 3D Cauchy so
tion of Einstein’s equations on spacelike hypersurfaces w
a perturbative one-dimensional~1D! solution in a region
where the waveforms can be treated as linear perturbat
© 1998 The American Physical Society05-1
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on a spherically symmetric curved background.1

The plan of this paper is as follows: In Sec. II, we d
scribe the mathematical basis of our method and derive
linearized radial wave equations which account for the e
lution of the gravitational waves in the perturbative region
the spacetime. In Sec. III, we discuss the strategies for
numerical solution of the above equations and present a
merical code we have constructed which represents a ge
module implementing our extraction and outer bound
method in conjunction with a 3D numerical relativity sim
lation. In this paper we focus on tests of the outer bound
module as a self-contained unit using analytic solutions
companion papers we focus on tests of the module in
practical context of a typical application. In@5#, we have
presented tests of this outer boundary module in conjunc
with the 3D ‘‘interior code’’ of the Alliance which evolves
Einstein equations in the standard ‘‘311’’ form ~as pre-
sented in@6#!. A more thorough discussion of these results
forthcoming@7#.

II. CAUCHY-PERTURBATIVE MATCHING METHOD

Einstein’s equations are highly nonlinear, and wh
spacetime is characterized by rapidly varying strong fie
the full 3D nonlinear equations must be used. Outside of
isolated region of this kind, however, a perturbative appro
mation, in which gravitational data are treated as linear p
turbations of an exact solution to Einstein’s equations, m
be valid. In this perturbative region a linearized approxim
tion to Einstein’s equations could then be exploited to s
plify the evolution of gravitational data.

The idea behind a Cauchy-perturbative matching
proach is to supplement the computationally expensive e
lution of the full Einstein equations with the comparative
simpler evolution of the linearized equations in a pertur
tive region. Figure 1 provides a schematic picture of
Cauchy-perturbative matching approach. The square re
covered by the grid represents the 3D computational dom
N ~one dimension is suppressed! on which Cauchy evolution
of the full Einstein equations is computed. The dark cen
area inN includes the strong field highly dynamical regio
where the nonlinear Einstein equations must be solved.
medium and light shaded annular area,P, represents the per
turbative region. Anywhere in the~medium shaded! intersec-
tion of N andP, we can place anextraction2-sphereE, of
radius r

E
, where the gravitational field information is rea

out. This information is then evolved~by means of the lin-
earized Einstein equations! in P, which ranges fromE out to
a large distance~shown as a dotted circle! where the
asymptotic waveforms can be identified. Outer bound
data forN can be constructed from perturbative data in
intersection ofN andP.

Previous investigations@3# achieved the desired perturb

1An alternative approach to the problem of wave extraction a
outer boundary conditions has been developed to match the Ca
solution to solutions on characteristic hypersurfaces@4#.
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tive simplification by matching the nonlinear solution on
analytic solutions of Einstein’s equations linearized on
Minkowski background. Further simplification was achiev
by decomposing perturbative data in a multipole expans
We extend this approach to cases where curvature is sig
cant by choosing as our approximation a linearization of E
stein’s equations on a Schwarzschild background. In p
ciple one could generalize further to a Kerr background, a
this will be the subject of future work. We also decompo
perturbative data on this background with a multipole exp
sion, reducing the 3D linearized equations to a set of
equations for each multipole mode. This reduction allows
to evolve data everywhere inP on a one-dimensional grid,L.
It is important to note that all of the three-dimensional ten
data inP can be reconstructed from the multipole amplitud
on L. Our method, therefore, is to match a computationa
expensive evolution of the full Einstein equations onto a c
siderably less expensive evolution on a 1D grid in a reg
where background curvature is still significant.

A. Hyperbolic formulation

Rather than characterize radiation asymptotically in ter
of certain variables constructed from the metric@3#, we use a
new approach which characterizes radiation in terms of
extrinsic curvature. This is made possible by a recently
veloped spatially gauge-covariant hyperbolic formulation
general relativity. This system is constructed from first d
rivatives of the spacetime Ricci tensor@8–10# and may there-
fore appropriately be called the ‘‘Einstein-Ricci’’ system.

d
hy

FIG. 1. Schematic of matching procedure for two success
time slices~one dimension is suppressed!. N is the 3D computa-
tional domain. The dark shaded region shows the strong field hig
dynamical region inN. The medium and light shaded annular regi
represents the ‘‘perturbative region,’’P, where the linearized equa
tions are evolved on a 1D gridL ~not shown!.
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The Einstein-Ricci equations are obtained from the
11’’ form of the metric:

ds252N2dt21gi j ~dxi1b idt!~dxj1b jdt!, ~1!

whereN is the lapse function,b i is the shift vector, andgi j
is the spatial metric in the sliceS. An appropriate time de-
rivative operator that evolves spatial quantities along the n
mal to the sliceS is

]̂05] t2Lb , ~2!

whereLb is the Lie derivative along the shift vector inS.
The extrinsic curvatureKi j of S can be defined by

]̂0gi j 522NKi j , ~3!

which serves also as the evolution equation for the spa
metric. By working out the expressionV i j []̂0Ri j

22¹̄ ( iRj )0 in 311 form, whereRi j andRj 0 are components

of the spacetime Ricci tensor and¹̄ i denotes the spatial co
variant derivative, we find a wave-like equation which go
erns the evolution ofKi j :

2NĥKi j 5Ji j 1Si j 2V i j , ~4!

where the physical wave operator for arbitrary shift isĥ[

2N21]̂0N21]̂01¹̄k¹̄
k. Equation~4! is an identity until we

substitute the Einstein equationsRab58p(Tab2 1
2 Tl

lgab)
into V i j (G5c51).

The detailed form of the right hand side of Eq.~4! can be
found in @9,10#; the present conventions are those in@10#.
Here we simply point out thatV i j has become a matte
source that is zero here,Ji j is the nonlinear self-interaction
term in 311 form, andSi j is a slicing-dependent term tha
must involve fewer than second derivatives ofKi j to render
Eq. ~4! a true~hyperbolic! wave equation. A simple way to
satisfy the restriction onSi j is to invoke the harmonic slicing
condition

]̂0N1N2H50, ~5!

where H is the trace ofKi j , and from which followsSi j
50.

For an appropriate choice of initial data@9,10#, Eqs.~3!,
~4!, and~5! represent the dynamical part of Einstein’s equ
tions. Combining them we obtain a quasi-diagonal hyp
bolic equation forgi j , with principal ~highest-order! part
ĥ ]̂0. Hence Eqs.~3!, ~4!, and ~5! may be said to give the
‘‘third-order’’ form of the Einstein-Ricci system.

We note that the third-order Einstein-Ricci system c
also be cast into a first-order symmetric hyperbolic fo
@9–11#.2 It also possesses a higher order form~the ‘‘fourth-
order Einstein-Ricci system’’!, essentially a wave equatio

2In @10#, the equation for]̂0Ḡ jk
i was inadvertently omitted. Se

@9,11#.
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for ( ]̂0Ki j ), obtained from]̂0V i j 1¹̄ i¹̄ jR00 @11–13#. This
system has a well-posed Cauchy problem and complete f
dom in choosing bothb i and N: it has no analogue of a
slicing term likeSi j . This fourth-order form is used to de
velop fully gauge-invariant perturbation theory in@14#.

B. Perturbative expansion

The first step in obtaining radial wave equations is
linearize the hyperbolic Einstein-Ricci equations around
static Schwarzschild background. We separate the grav
tional quantities of interest into background~denoted by a
tilde! and perturbed parts: the 3-metricgi j 5g̃i j 1hi j , the
extrinsic curvatureKi j 5K̃ i j 1k i j , the lapseN5Ñ1a, and
the shift vectorb i5b̃ i1v i . In Schwarzschild coordinate
(t,r ,u,f), the background quantities are given by

Ñ5S 12
2M

r D 1/2

, ~6a!

g̃i j dxidxj5Ñ22dr21r 2~du21sin2udf2!,
~6b!

b̃ i50, ~6c!

K̃ i j 50, ~6d!

while the perturbed quantities have arbitrary angular dep
dence. The background quantities satisfy the dynam
equations] tg̃i j 50, ] tÑ50, and thus remain constant for a
time. The perturbed quantities, on the other hand, obey
following evolution equations:

] thi j 522Ñk i j 12¹̃~ iv j ) , ~7a!

] ta5v i¹̃ i Ñ2Ñ2k, ~7b!

Ñ21] t
2k i j 2Ñ¹̃k¹̃kk i j

524¹̃~ ik j )
k ¹̃kÑ1Ñ21k i j ¹̃

kÑ¹̃kÑ13¹̃kÑ¹̃kk i j

1k i j ¹̃
k¹̃kÑ22k~ i

k ¹̃ j )¹̃kÑ22Ñ21k~ i
k ¹̃ j )Ñ¹̃kÑ

12k¹̃ i¹̃ j Ñ14]~ ik] j )Ñ12Ñ21k¹̃ i Ñ¹̃ j Ñ

22ÑR̃k~ ik j )
k 22ÑR̃ki jmkkm, ~7c!

wherek[k i
i and the tilde denotes a spatial quantity defin

in terms of the background metric,g̃i j . Note that the wave
equation fork i j involves only the background lapse and cu
vature.

C. Angular decomposition

We can further simplify the evolution equation~7c! by
separating out the angular dependence, thus reducing it
set of 1D equations. We accomplish this by expanding
extrinsic curvature in Regge-Wheeler tensor spherical h
5-3
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monics@15# and substituting this expansion into~7c!. Using
the notation of Moncrief@16# we express the expansion as

k i j 5a3~ t,r !~ ê1! i j 1rb3~ t,r !~ ê2! i j 1Ñ22a1~ t,r !~ f̂ 2! i j

1rb1~ t,r !~ f̂ 1! i j 1r 2c1~ t,r !~ f̂ 3! i j 1r 2d1~ t,r !~ f̂ 4! i j ,

~8!

where (ê1) i j , . . . ,(f̂ 4) i j are the Regge-Wheeler harmonic
which are functions of (u,f) and have suppressed angu
indices (l ,m) for each mode. The odd-parity multipoles (a3

andb3) and the even-parity multipoles (a1 , b1 , c1 , and
d1) also have suppressed indices for each angular mode
there is an implicit sum over all modes in Eq.~8!. The six
multipole amplitudes correspond to the six components
k i j . However, using the linearized momentum constraint

¹̃ j~k i
j 2d i

j k!50, ~9!

we reduce the number of independent components ofk i j to
3. An important relation is also obtained through the wa
equation fork, whose multipole expansion is simply give
by k5h(t,r )Y

lm
where Y

lm
(u,f) is the standard scala

spherical harmonic and again there is an implicit sum o
suppressed indices (l ,m). Using this expansion, in conjunc
tion with the momentum constraints~9!, we derive a set of
ee
e
la

ive

d
,
to
ng
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radial constraint equations which relate the dependent am
tudes (b3)

lm
, (b1)

lm
, (c1)

lm
and (d1)

lm
to the three inde-

pendent amplitudes (a3)
lm

, (a1)
lm

, (h)
lm

:

~b3!
lm

52
1

~ l 12!~ l 21!
@~113Ñ2!12Ñ2r ] r #~a3!

lm
,

~10a!

~b1!
lm

5
1

l ~ l 11!
@~31r ] r !~a1!

lm
2~11r ] r !~h!

lm
#,

~10b!

~c1!
lm

5
1

2~ l 12!~ l 21!
$2~12 l 2 l 2!~a1!

lm
22~h!

lm

1 l ~ l 11!@~115Ñ2!12Ñ2r ] r #~b1!
lm

%, ~10c!

~d1!
lm

5
1

l ~ l 11!
@~a1!

lm
12~c1!

lm
2~h!

lm
#,

~10d!

for each (l ,m) mode.
Substituting Eq.~8! into Eq. ~7c! and using the constrain

equations~10!, we obtain a set of linearized radial wav
equations for each independent amplitude. For each (l ,m)
mode we have one odd-parity equation
H ] t
22Ñ4] r

22
2

r
Ñ2] r2

2M

r 3 S 12
3M

2r D1Ñ2F l ~ l 11!

r 2
2

6M

r 3 G J ~a3!
lm

50 ~11!

and two coupled even-parity equations

F ] t
22Ñ4] r

22
6

r
Ñ4] r1Ñ2

l ~ l 11!

r 2
2

6

r 2
1

14M

r 3
2

3M2

r 4 G ~a1!
lm

1F4

r
Ñ2S 12

3M

r D ] r1
2

r 2S 12
M

r
2

3M2

r 2 D G ~h!
lm

50, ~12!

F ] t
22Ñ4] r

22
2

r
Ñ2] r1Ñ2

l ~ l 11!

r 2
1

2M

r 3
2

7M2

r 4 G ~h!
lm

2
2M

r 3 S 32
7M

r D ~a1!
lm

50.

~13!
y be
not
tic

le-
for
These equations are related to the standard Regge-Wh
and Zerilli equations@15,17#, which can be derived in a mor
complete analysis of gauge-invariant hyperbolic formu
tions @14#.

The radial wave equations~11!–~13! for each (l ,m) mode
of the independent multipole amplitudes (a3)

lm
, (a1)

lm
,

(h)
lm

form the basis for our approach. In the perturbat

region, they replace the nonlinear Einstein equations and
termine the evolution ofKi j . They can be used to evolve
with minimal computational cost, gravitational wave data
arbitrarily large distances from the highly dynamical stro
ler

-

e-

field region. The evolution equations forhi j , Eq.~7a!, anda,
Eq. ~7b!, can also be integrated using the data forKi j com-
puted in this region. Note that becausehi j and a evolve
along the coordinate time axis, these equations need onl
integrated in the region in which their values are desired,
over the whole gridL ~these quantities have characteris
speed zero!.

III. NUMERICAL IMPLEMENTATION

This section is a general guide for the numerical imp
mentation of the Cauchy-perturbative matching method
5-4
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radiation extraction and outer boundary conditions descri
so far.

Consider a 3D numerical relativity code which solves t
Cauchy problem of Einstein’s equations in either the st
dard 311 form @18# or a hyperbolic form@19#. During each
time step the procedure followed by our module for extra
ing radiation and imposing outer boundary conditions can
summarized in three successive steps:~1! extractionof the
independent multipole amplitudes onE, ~2! evolutionof the
radial wave equations~11!–~13! on L out to the distant wave
zone, and~3! reconstructionof Ki j and ] tKi j at specified
grid points at the outer boundary ofN. We now discuss in
detail each of these steps.

A. Extraction

As mentioned in Sec. II, the extraction 2-sphereE acts as
the joining surface between the evolution of the highly d
namical, strong field region~dark shaded area of Fig. 1! and
the perturbative regions~light shaded areas!. At each time
step,Ki j and] tKi j are computed onN as a solution to Ein-
stein’s equations. In the test cases presented here,N uses
topologically Cartesian coordinates, although there are
restrictions on the choice of the coordinate system. The C
tesian components of these tensors are then transformed
their equivalents in a spherical coordinate basis and t
traces are computed using the inverse background metric
H5g̃i j Ki j , ] tH5g̃i j ] tKi j . From the spherical componen
of Ki j and ] tKi j , the independent multipole amplitudes f
each (l ,m) mode are then derived by an integration over
2-sphere:

~a3!
lm

5
1

l ~ l 11!
E 1

sinu
@Krf]u2Kru]f#Y

lm
* dV,

~14a!

~a1!
lm

5E Ñ2Krr Ylm* dV, ~14b!

~h!
lm

5E HYlm* dV. ~14c!

Their time derivatives are computed similarly. Rather th
performing the integrations~14a!–~14c! using spherical po-
lar coordinates, it is useful to coverE with two stereographic
coordinate ‘‘patches.’’ These are uniformly spaced tw
dimensional~2D! grids onto which the values ofKi j and
] tKi j are interpolated using either a three-linear or a thr
cubic polynomial interpolation scheme. Each point on
2-sphere, denoted by spherical coordinate values (u,f), cor-
responds to a point (q,p) on a stereographic grid whos
coordinates can be combined into a single complex num
z:

z
N
[q

N
1 ip

N
5tanS u

2Deif, ~15a!
04400
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z
S
[q

S
1 ip

S
5

1

z
N

, ~15b!

whereN andS denote the northern (0<u<p/2) and south-
ern (p/2<u<p) hemispheres, respectively. As a result
this transformation, the integrals over the 2-sphere in E
~14! are computed over the stereographic patches, wh
naturally avoid polar singularities~see@20# for a complete
discussion of the properties and advantages of the ste
graphic coordinates!. In our tests, the integrals over eac
patch are computed using a second-order stereogra
quadrature routine developed within the Alliance@20#.

B. Evolution

Once the multipole amplitudes (a3)
lm

, (a1)
lm

, (h)
lm

and

their time derivatives are computed onE in the time slicet
5t0, they are imposed as inner boundary conditions on
1D grid. Using a second-order integration scheme~we have
tested with both leapfrog and Lax-Wendroff methods@21#!,
our module then evolves the radial wave equations~11!–~13!
for each (l ,m) mode forward to the next time slice att5t1.
The outer boundary of the 1D grid is always placed a
distance large enough that background field and near-z
effects are unimportant, and a radial Sommerfeld condit
for the wave equations~11!–~13! can be imposed there. O
course, the initial data onL must be consistent with the ini
tial data onN. This can either be imposed analytically o
determined by applying the aforementioned extraction p
cedure to the initial data set at each gridpoint ofL in the
region of overlap withN. In the latter case, initial data out
side the overlap region can be set by considering
asymptotic falloff of each variable. It should be noted that
the Cauchy-characteristic matching approach initial data a
must be set in the characteristic hypersurfaces and, for r
istic sources like binary black holes, will necessarily be a
proximate.

C. Reconstruction and matching

From the perturbative data evolved to timet1, outer
boundary values forN can now be computed. The procedu
for doing this depends on the formulation of Einstein’s equ
tions used by the 3D ‘‘interior code.’’ For a hyperbolic cod
~cf. @19#!, it is necessary to provide boundary data forKi j
and] tKi j . For a standard 311 code~cf. @18#!, on the other
hand, outer boundary data only forKi j are necessary, sinc
the interior code can calculategi j at the outer boundary by
integrating in time the boundary values forKi j . In either
case, if outer boundary values for the lapseN are needed
@e.g. for integrating harmonic slicing condition~5!#, these
can be computed by the perturbative module or by integ
tion of H at the boundary.

In order to computeKi j at an outer boundary point ofN
~or any other point in the overlap betweenN andP @7#!, it is
necessary to reconstructKi j from the multipole amplitudes
and tensor spherical harmonics. The Schwarzschild coo
nate values (r ,u,f) of the relevant grid point are first dete
mined. Next, (a3)

lm
, (a1)

lm
, and (h

lm
) for each (l ,m) mode
5-5
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are interpolated to the radial coordinate value of that po
The dependent multipole amplitudes (b3)

lm
, (b1)

lm
, (c1)

lm
,

and (d1)
lm

are then computed using the constraint equati

~10!. Finally, the Regge-Wheeler tensor spherical harmon

(ê1) i j –( f̂ 4) i j are computed for the angular coordinates (u,f)
for each (l ,m) mode and the sum in Eq.~8! is performed.
This leads to the reconstructed component ofk i j ~and there-
fore Ki j ); a completely analogous algorithm is used to rec
struct] tKi j .

It is important to emphasize that this procedure allo
one to computeKi j at any point ofN which is covered by the
perturbative region. As a result, the numerical module
reconstruct the values ofKi j and ] tKi j on a 2-surface of
arbitrary shape, or any collection of points outside ofE.

Numerical implementation of this method is rath
straightforward. Very few modifications to a standard 3
numerical relativity code are necessary in order to allow
the simultaneous evolution of the highly dynamical regi
and of the perturbative one. Because of the use of a num
cally inexpensive integration of 1D wave equations, imp
mentation of this module provides gravitational wave extr
tion andstable outer boundary conditions with only minim
additional computational cost.

Finally, it should be noted that, in practice, we may n
know a priori if the Schwarzschild-perturbative approxim
tion is valid near the outer boundary of a given numeri
relativity simulation. Through experimentation, however,
is possible to test the validity of the approximation. This c
be done, for instance, by extracting data at different radii
comparing the waveforms computed at the outer sphere
those evolved from the inner sphere. This makes it poss
to determine if the neglected terms in the approximat
have a significant effect. At any point in the overlap regi
betweenN andP, it is possible to reconstruct gravitation
wave data and compare these values with those compute
the full nonlinear evolution.

IV. NUMERICAL TESTS

In order to establish the accuracy and convergence p
erties of our code we have studied the propagation of lin
waves on a Minkowski background (M50) . This is a natu-
ral first test since we can compare each stage of the num
cal procedure described in Sec. III against a known anal
solution @22,23#.

In these tests we assign analytic values to each grid p
of N at every time step. This allows us to study the accur
and convergence properties of the module independentl
any errors which may develop in a 3D numerical evoluti
of linear waves. Elsewhere@7#, we will present results of
tests of this module running with a full 3D evolution cod
~i.e. the interior code of the Alliance@18#!, with emphasis on
the issues of stability of the outer boundary and accurac
extracted waveforms.

We have considered analytic data forl 52, m50 even-
parity linear waves, initially modulated by a Gaussian en
lope with amplitudeA51026 and width parameterb51.
These waves are time-symmetric att50 and thus have in-
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going and outgoing parts. The 3D grid is vertex-cente
with extents (x,y,z)P@24,4# and resolutions ranging from
(17)3 to (129)3 points @corresponding to (16)3 and (128)3

zones, respectively#. The resolution of the stereographic c
ordinate patches corresponds to the resolution ofNand there-
fore ranges from (16)2 to (128)2 zones on each hemispher
For the specific tests presented here,E is located at a radius
r

E
53 and similar results have been obtained also forr

E

50.5,1.0,1.5,2,2.5,3.5. In fact, on a flat background spa
time and for weak waves on Schwarzschild-like bac
grounds, the perturbative approximation is valid through
the 3D domain and the position ofE is thus arbitrary.

Since these waves are traceless and even-parity, with
l 52, m50 angular dependence, the only non-zero indep
dent multipole amplitude we expect to find atE is (a1)

20
.

Diagram~a! of Fig. 2 shows plots of (a1)
20

extracted atr
E

53 as a function oft2r for various resolutions ofN. The
amplitude is scaled byr 3 to compensate for the radial falloff

The curves in diagram~a! clearly show that the extracte
waveform approaches the analytic value~denoted by a solid
line! as the resolution is increased. However, in order
establish the exact rate at which the computed solution
proaches the analytic one, we have also performed con
gence tests. These tests are designed to check that no c
error has been made and that the numerical scheme
ployed in the solution is providing results at the expec
accuracy. While there are a number of different ways to p
form these tests, we have exploited the knowledge of
analytic solution and computed the residualsR between the
computed solutionFc and the analytic oneFa as a function

FIG. 2. ~a! Time series of the multipole amplitude (a1)
20

ex-
tracted at a 2-sphere of radiusr

E
53 for various grid resolutions.

The amplitude is scaled byr 3 to compensate for the radial falloff
~b! Residuals of the leading order error term for different grid re
lutions differing by a factor of 2. The residuals are multiplied by
16, and 64 in order to make the errors comparable. If no high
order terms were present, all of the curves would coincide.
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of the resolution~or, equivalently, of the number of grid
points!. For a second-order accurate numerical scheme~as
the one used here! on a uniform cubical grid, we expect th
residuals to follow the simple law

R~N3!5Fc2Fa5O~h2!, ~16!

where O(h2) contains the second and higher order er
terms andh5L/(N21) is the grid resolution, withL being
the spatial dimension of the grid. If the numerical compu
tion is second-order accurate and a number of simulat
with different grid resolutions, each differing by a factor
are performed, we should expect the residual to fall quadr
cally to zero. Diagram~b! of Fig. 2 shows this is indeed th
case; there, we have multiplied the residuals obtained w
different resolutions by the coefficients that make the lead
order error terms comparable. The good overlapping of
different curves is an indication that a second-order conv
gence has been achieved.

The accuracy of this extraction procedure can also
tested by examining the waveforms for the other multip
amplitudes computed which analytically vanish. Figure
shows plots of several even-parity~upper diagram! and odd-
parity ~lower diagram! amplitudes computed at the extractio
2-sphere for an resolution inN of (65)3 points. As a result of
a numerical truncation error introduced in the extraction p
cedure, these modes are not exactly zero. However, eve
largest amplitude mode is over three orders of magnit
smaller than the only analytically non-vanishing independ
amplitude (a1)

20
. Moreover, all of these amplitudes a

second-order convergent to zero as the resolution is
creased. Similar considerations apply also for the (h)

lm
mul-

tipole amplitudes: although the data are analytically tra

FIG. 3. Time series of the analytically vanishing even (a1)
lm

and odd (a3)
lm

parity multipole amplitudes. The extraction is mad
at a 2-sphere of radiusr

E
53 andN has (65)3 points.
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less, very small (h)
lm

modes are extracted at the 2-sphe
These modes, which we will not show here, are of the or
of the round-off error~approximately 10222 for these tests!
and may be considered as effectively zero.

Next, we consider the accuracy of the evolution in t
perturbative region of the extracted amplitudes. The time
tegration of Eqs.~11!–~13! on L is performed using a leap
frog integration scheme with a spatial resolution adjusted

FIG. 4. Time series of (a1)
20

evolved tor 58 for various grid
resolutions. Here, also, the amplitude is scaled byr 3 to compensate
for the radial falloff.

FIG. 5. ~a! Time series of the reconstructed values forKzz at the
grid point (4,0,0) for various grid resolutions.~b! Residuals of the
leading order error term for different grid resolutions differing by
factor of 2 ~cf. Fig. 2!.
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that the time steps inN andL are identical. This imposes
relation involving the grid spacing ofN and the ratio of Cou-
rant factors forN andL. Such a choice ensures a correspo
dence between resolutions ofN andP. Figure 4 shows plots
of (a1)

20
evolved to a radiusr 58 from the extracted signa

at r 5r
E
53. Different curves correspond to different resol

tions and show the convergence to the analytic solution.
outer boundary ofL is located atr 533, where outgoing
wave Sommerfeld conditions are imposed. For radial sc
wave equations, this represents a very good approxima
which has been shown to be both accurate and stable.

Finally, we consider the accuracy in the reconstruction
the outer boundary data. Since we are using analytic dat
N, we can only compare the outer boundary data with
analytic ones. In a forthcoming paper@7#, where we will
make use of a numerical solution of Einstein’s equations,
will also discuss the issues of stability related to the use
Cauchy-perturbative matching method. For conciseness
consider here reconstructed outer boundary data only
Ki j ; the reconstruction of] tKi j follows analogously. Dia-
gram~a! of Fig. 5 shows the time series of the reconstruc
value of Kzz computed at the point (x54, y50, z50) for
various resolutions and its comparison with the analytic
lution. Also in this case, diagram~b! of Fig. 5 gives proof of
the second-order convergence of the numerical module e
if, in this case, higher order error terms become appa
with the very coarse resolution simulations@i.e. in the case of
(17)3 gridpoints#. The small peak observed att2r'1 is the
result of a slight difference between the analytic initial da
on L and the extracted signal att50. This error rapidly
disappears as the resolution is increased.

A more global measure of the accuracy and of the c
vergence properties of the boundary data is obtained by c
puting theL2 norm of the error inKi j as measured over th
whole 3D outer boundary. In Fig. 6 we plot theL2 norms of
Kzz at successive resolutions, normalizing these differen
by the factor which would make the plots overlap if th
convergence to analytic data were exactly second-or
Here we again see that the desired convergence rat
achieved over the whole boundary, particularly at finer g
resolutions.

V. CONCLUSION

We have presented a method for matching gravitatio
data computed from a 3D Cauchy evolution of Einstei
equations to a computationally simpler evolution of rad
wave equations linearized on a Schwarzschild backgrou
This method should be applicable to a variety of physi
problems where curvature is significant throughout the co
putational domain, as long as the time-dependent fields
be treated as linear perturbations on a spherical backgro
Our approach promises to offer an accurate means of c
puting asymptotically gauge-invariant waveforms at lar
distances from the domain of the simulation and to prov
stable, physically correct boundary conditions.

We have also discussed a numerical code we have de
oped that implements this procedure and can be used w
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general numerical 3D simulation. This code correctly e
tracts waveforms from analytic linear wave data and reco
putes that data at the outer boundary of the 3D grid. A m
extensive discussion of the stability properties of this a
proach will be discussed in a forthcoming paper@7#, as well
as practical issues arising from application to a real evolut
code environment.

Our Cauchy-perturbative matching method can be
tended to more general circumstances, e.g. perturbation
axially symmetric backgrounds or other slicings
Schwarzschild black holes. Similar analyses using other
perbolic formulations@13,24# may also provide important in
sight into the physical understanding of radiation extract
and lead to modules which work with simulations based
these formulations.
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FIG. 6. Plot ofL2 norms of the error inKzz computed over the
outer boundary for successive grid resolutions. The norms at dif
ent grid resolutions are scaled so that they overlap if truly seco
order convergent.
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