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We study the deflection of lightand the redshift, or integrated time delayaused by the time-dependent
gravitational field generated by a localized material source lying close to the line of sight. Our calculation
explicitly takes into account the full, near-zone, plus intermediate-zone, plus wave-zone, retarded gravitational
field. Contrary to several recent claims in the literature, we find that the deflections due to both the wave-zone
1/r gravitational wave and the intermediate-zong? kktarded fields vanish exactly. The leading tdtale-
dependentleflection caused by a localized material source, such as a binary system, is proved to be given by
the quasi-static, near-zone quadrupolar piece of the gravitational field, and therefore to fall off as the inverse
cube of the impact parameté60556-282(198)03016-1

PACS numbe(s): 04.30.Nk, 04.25.Nx, 04.80.Nn

I. INTRODUCTION claims of Refs[5-7] are incorrect in that the deflection is

. : . . ... not of ordera~h(b)~a;b t+0O(b~?), but falls off like
The subject of light deflection, and/or light amplification, b-3:a~azb2. In other words, the contributions to the de-

by gravitational waves has a long but somewhat ConfusmQIectiona of both the purely wavelike fiel¢a;(t—r)/r and
history. Early work[1-3] correctly concluded with the ab- the faster falling piece,(t—r)/r? cancel out to leave only
sence of first-order effects increasing linearly with the dis-o contribution of the(time-dependetnear-zone gravita-
tance traversed by light within gravitational waves. This re-jonal field as(t—r)/r3. The resulting time-dependent de-
sult has recently been confirmédl, and casts doubt on the fjection (which must be superposed on the static effect of the
possibility of detecting or constraining a stochastic gravitaotal mass of the sourtés much too smalffor reasonable
tional wave background by astronomical measurem@r#s  jmpact parametejdo be of observational interest. The same
they astrometric or photometjicHowever, the works sup- pessimistic conclusion applies to the other time-dependent
porting this pessimistic conclusion consider only purelyeffects linked toh(t,r): scintillation, variable redshifts and
transverse, source-free, gravitational waves and often use a@riable time delays.

indirect formalism(propagation equation for the local expan-

sion rate of a light beamso that their impact on the problem II. LIGHT DEFLECTION BY A GENERIC,
of light deflection by gravitational waves from localized TIME-DEPENDENT LOCALIZED
sources is unclear. Recently, several authors have considered GRAVITATIONAL SOURCE

the case where light rays pass close to a binary gravitational-

wave source and have suggested that, in such a configura- We work in the geometrical optics approximation. Let
tion, there could arise photometri] or astrometric[6,7]  |“=dz*/d¢, ©=0,1,2,3, denote the tangent 4-vector to a
effects proportional to the gravitational-wave amplitige)  light ray z#(£) propagating in a curved spacetirgg,(x")
evaluated at the impact parameterlf such effectsxh(b),  (with signature—+++). Here, denotes an affine parameter
decreasing only as l/in the wave zone of the source, ex- along the light ray. The tangent vecttf is (by definition
isted they might fall in the detectability range of forthcoming “light-like” in the technical sense of

optical interferometric arrays. )

The purpose of the present paper is to study in detail the 1°=9,,(2)1*1"=0, 2.
deflection of light passing near any localized, not necessarily o ) o
periodic, gravitational-wave sourdsuch as an inspiralling and satisfies the geodesic equatioR,1#=0 or, explicitly
binary). We focus, in particular, on the effect of the time- (With I ,=g,,,1"),
dependent gravitational field associated with a varying quad-
rupole moment. As far as we know, our treatment is the first i | = 1 |28 (&) 2.2
one in the literature to work out the complete effect of a dé # 2 uGap ' '
time-dependent, retarded, quadrupolar fiéld,r), which is
given by a sum of terms having different falloff properties As the main aim of the present work is to clarify the deflect-
away from the sourceh(t,r)~a;(t—r)r 1+a,(t—r)r 2 ing effect of locally generated bursts of gravitational waves
+ag(t—r)r 3. [To save writing we suppress here indices,on nearby passing light rays, we shall formally consider that
though our calculations take into account the full tensoriaboth the light source and the observer are at infinity in a flat
structureh,,,(t,x) of the gravitational field.We find that the ~ spacetime. In other words, settirgy, ,(X)=7,,+h,,(X),
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we neglect the effects df,,, near the light source and near ~ This simple, algebraic argument makes it clear that the
the observer, and consider that the affine paramgteries  wave-like,O(1/r) part of the gravitational field generated by
between—o and+. To first order inh,, the light deflec-  any local source will give no contribution to the total deflec-

tion is given by the 4-vector tion Al, [when neglecting edge effects and faster falling
. termsO(1/r%)]. We need, however, to do more work to de-
b ; /4
_ 0 ey = o B " N rive the explicit, nonzero value !, generated by the con-
Al =l (+2) =y (—2)=53 f_w dél“17a,h,g(zo+ &1Y). tributions O(1/r?) +O(1/r3)+--- to h,,(X). First, we need

(2.3  torelateh,,(x) to the material source, i.e. to tlicalized

. ) . stress-energy tensdr,,(x). The linearized Einstein equa-
On the right-hand side of E¢2.3) one can consider that  tjons, in the harmonic gauge, read

denotes the constant, incoming light-like vectdy( —x),

and we have replaced the photon trajectory by its unper-

turbed approximatiorzﬁnpergg):zg+ &, O
It will be technically very convenient to reexpress the

deflection(2.3) in terms of the spacetime Fourier transform

hw(k") of the gravitational field:

=—167GT,, 2.9

1
h,uV_ Ehn,uv

or, in Fourier space,

d'k . : K2h (k)=+16wG('T’ (k)—E ], (210
h/“,(X)\)ZJ' th(k")e”"x. (2.9 24 mv 277/“’ ' :

Henceforth, we use the Minkowski metrig,, to raise and where
lower indices, and make use of standard flzzit space notation,
such as k-x=7%$,k"=K-x— ot, ke=k-Kk, h A _ 4o —ik-x
=7*"h,,,... . Itis irrlleortant to note that whilé* (the 4- T“V(k)_f d’xe Tun(): (219
momentum of the impinging photpris on-shell, 12=]-|
=0, the variablek* [4-momentum of the virtual gravitons \when dividing byk? to get F‘/w(k) from Eq. (2.10, one
contributing toh,,,(x)] is generically off-shellk®+ 0. needs to define carefully the singularity structurek@t 0,
After inserting Eq.(2.4) into Eq. (2.3), one can perform which is related to the boundary conditions incorporated in
the ¢-integration [using [d¢ exp(k-z+igk-1)=2md(Kk-1)],  the corresponding Green’s function. The Fourier transform
with the result of the usualretarded Green’s function is K2—iek® 1,
4K wheree is a positive infinitesimal, so that
AIM=i7rf —(277)4kMI“IBhaB(k”)e'k‘ZO(S(kI). (2.5 ) L )
This result is sufficient to show thaburce-freggravitational R, (K\)=167G (2.12
wave packets do not deflect light. Indeed, any linearized, i k?—iek®
vacuum wave packet,z(x) is a superposition of transverse,
plane waves propagating with the velocity of light. In other Note in passing that, in the decompositidd enoting the
words, the Fourier transforrﬁaﬁ(k) of a source-free wave Principal par
packet contains a mass-shell delta functié{k?) and satis-

fies (independently of the coordinate gaydiee transversal- 1 1 0 2
ity condition iZ—iek0 Pz Him sgrk?)a(k), (2.13

Ka ﬁaﬁ(k) _ E ﬁnaﬂ =0 (on shell: k*=0), (2.6 the secondon shel) term is the only one to contribute to the

2 “radiation” Green function G eiargeq Gadvanced Which de-
fines a free wave packet associated with the sotirgeand
falling off at infinity like 1/r. By the argument above we
know that this on-shell term will not contribute td , . This
shows that the deflection would be the same for the physical

, t : d
Coming back to Eq(2.5), it is easy to see that whekt is res';arded I'el‘rjeft‘f (), or for the acausal fieldsZs(x) or
on-shell, the delta functiofi(k-1), whereboth k* andl* are Mg (X) = 2[00 + hZE(X)]. Let us continue working with
, (k-1), /

on the light-cone, forcek* to be parallelor antiparalle) to thel reta:_dedEfleIgZilz_. 0 Eq.(2 b i
[+, Trle deflection is then proportional tb“lﬁﬁaﬁ(k) van?s,sriglg;n%fl a?én' 2)) into Eq. (2.5 we get(because of the
ock“kﬁhaﬁ(k) which vanishes because of EQ.7) (i.e. be- “p
cause of transversalityTherefore

from which follows the consequence

k*kPh,4(k)=0 (on shel. 2.7

Al ,=16i %G d% k1T ap(k) ik-205(k - |
Al,=0, for any (localized gravitational wave packet. pT AT (2m)*  k°—iek® € (k-1).
(2.8 (2.19
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The energy-momentum conservation law=¥,T#”  tions), and where&k , denotes the value &, when restricted
=4,T*”+0(hT), or, in Fourier space and at lowest order, by the delta function2.18, namely

k"T,,(K)=0, gives explicitly .
K’u(w,u,cp)=(K0,K1,K2,K3)=(—w,u COS¢,U Sin ¢, w).

. K . 2.2
Toi==10 Tij» (2.15 (2%
Note that the resul(2.20 is entirely expressed in terms of
A K . Kk the components oi'ij pertaining to thex-y-plane, i.e. the
Too= i To=+ uy Ty, (2.16 plane orthogonal to the direction of propagation of the in-
(k%) coming light. This is again an aspect of the transversality of
so that the gravitational field.
a1 B3 ool K IV (KT lll. LIGHT DEFLECTION BY A TIME-DEPENDENT,
1P Tap(K) = (1) 10~ 10 | jo — o T (k). (2.17) QUADRUPOLAR GRAVITATIONAL FIELD

To see better the physical content of the reg2IR0), let
make the further approximation that the source internal
motions are nonrelativistic so that the time-dependent part of
the external field is well described by the quadrupolar ap-
roximation. Explicitly, this mean§n x-space a field which
eads(in a suitable harmonic gauge, and after subtraction of
the Schwarzschild-like, monopolar pigce

Let us henceforth split space and time and work in the centef g
of mass frame of the sourdwith the center of mass used as
the spatial origin The temporal origin is fixed by the re-
guirement that th&=0 event on the photon world line be
spatially closest to the center of mass of the source and ha
pen at coordinate timé=0. Technically, this implies that
z3=(0,b) where the(vectoria) impact parameteb= b' is
orthogonal to the photon 3-momenturs!'. We can then
introduce usual polar coordinatés,¢) to parametrize the hoo= +2Gaij(
direction of the 3-vectok with respect to a spatial triad with

x-axis alongb andz-axis alongl, i.e.

Dij(t_r))
f )

s D;i(t—
k= (w, kL k2, K3) h= _ZG‘*’(M)’
=(w,k sin 6 cos ¢,k sin 8 sin ¢,k cos 9).
. D (t—r
Henceforthk,l,... denote the spatial lengths of the 3-vectors h''=+ ZGy. (3.1
k,(,.. and no longer 4-vectors as above. We denote also
w=k® (while 1°=[l|=1). From k*l,=k:1-wl° ~ . -
=kl cosé6—wl the delta function in Eq(2.14) reads Hereh#’=h*"—3h»"" satisfiess, h*"=0, and
1 w By yis ) T00
5(k”IM)=H5 cosa—E . (2.18 Dij(t)= | dxxX')X'T(t,x) (3.2

This implies that the integration dk is restricted to values is the quadrupole momeftvith its tracg. Note that, when
such thatk?=w?. When writing Eq.(2.14 explicitly, we  expanding the action on of the spatial derivatives in Egs.
find it convenient to replace thé-integration in d*k  (3.1), the resulting retarded gravitational field contains a sum

=dwk?dkd(cos)de by an integration over of contributions of the forma,(t—r)/r +a,(t—r)/r?+as(t
—r)/r3. The 1t piece is the usual quadrupolar wave, the
u=k?— w?=k sin 6. (2.19 1/r® piece is a retarded version of the near-zone quadrupolar

_ _ _ _ field [R3°=2h3°=2GD;;(t—r)d;1/r] and the /> piece
Finally, inserting Eqs(2.17) and (2.18 into Eq.(2.14 we  pjays a role in the region intermediate between the near zone
get and the wave zone. Our present calculatidone below in
Al G (i e o Fourier spacetakes into account all these contrib_utions and
—ti 5 J w—zdwf udu deK ,(w,u,¢) e_lllows one to study carefully the fallo_ff properties of the

| 7T J - 0 a light-deflectionAl , as a function of the impact parameter.

In Fourier space, the quadrupolar approximation

is easily seen[e.g. by Fourier-transformingdh'i =
+2sing coseTiw,K)], (2.20 t—871;hG I;Dij (1) 8%(x)] to correspond to making the approxima-
ion tha

where the denominatokf— w?—iew) ! cancelled with a
contribution=k?— w? in the numeratofconfirming the irrel-
evance ofe, i.e. of the Green’s function boundary condi-

@y

% eibu COSQD[COS')QD']\'I:L((I),I() + Sinz(P:i—Qg((l),k)

'T'ij(a),k)zf d4xeiik.x+ithij(t,X) (33)
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is independent ok [8], so that[using the standard virial

theorem  [d3T;;(t,x) = 302 d*xx X Toe(t,x) ~ following
from 9, T#"=0]
'AI',J(w,k)z'AI'”(w,O)
. (1)2
:fdtéwtf dSXTij(t,X):_7Dij(w), (34)

whereD;j(w)=[dte“'Dj;(t).

PHYSICAL REVIEW D58 044003
. iG [+
a =a3=+—zﬂ_b - dow[D1y(w)—Dofw)]

2G 9
:_Fo?_to[Dll(tO)_DZZ(tO)]' (3.10

Let us note in passing that these results, here expressed in
terms of the quadrupole mome(®&.2) with its trace, depend
only on the trace-free quadrupole mome®q;;=D;;
—%DSS(S”- . This wasa priori expected as it is well-known

Under this approximation’ one can exp“cmy perform the that, modulo a coordinate transformation, the time-dependent

integrations in our general resu(.20. Indeed, all the
u-integrals in Eq(2.20 are of the form

Un= deuu“e‘“’ COqu)”=n!(—. !
0 ib cosp—e¢

n+1
) , (3.9

with n=1 or 2. Here, the positive infinitesimal (which is

unrelated to the one entering the retarded Green'’s function
is mathematically justified by appealing to distribution
theory, or physically justified by remembering that, in real-

ity, 'T'ij(w,k), Eq. (3.3, must fall off to zero agk|—, i.e.
u—oo, Using the resul{3.5), the ¢-integrals in Eq.(2.20
are of the form

2m sing \"
®,= | dol —2 |
0 cosg+ie

with n=0, 1, 2 or 3. Clearlyb,=2, while ®,=d;=0 by
symmetry. It remains only to evaluade, for which we find

(3.6

By —2m+ T 3.7
=—21TT . .
2 1+ €
which tends to— 27 ase—0.

Finally, the two deflection anglesa;=Al;/l, ay

=Al,/l, in the plane orthogonal to the light rdgemember

that the first axis is alondp, and the second is parallel to

X b), are given by
2G [+=
=T 3 J: dw[D1y(w) =Dy w)]

4G
=- F[Dll(to)_Dzz(to)L (3.9

4G [+ 8G
(Zl’z:"l‘m fﬁx del2(w):+FD12(tO) (39)

Here,ty (=0 in our coordinate systendenotes the date
when the light ray passes nearest to the source. The longitu-

dinal fractional change of the photon momentuay

gravitational field external to any source depends only on
Qij(t). We could everywhere replad®; by Q;; but we will
not bother to do so.

The resultg3.8—(3.10 can be encoded in a scalar poten-
tial V(z}) which is essentially the gravitational perturbation
of the time delay between the light source and the observer.
Indeed, if we define

1 [+=
V(23)=E J_w dél®1Ph,g(zp+ &™), (3.11)
we see that Eq2.3) yields
Al, 4 \
a,= I—: QV(ZO) (312

Using the integrals given above, it is easy to obtain
N G
V(zp) = 2 dw[D1y(@) —Dyfw)]

2G
= F[Dll(to)_DZZ(tO)]- (3.13

Then, to compute Eq.3.12 one needs to expresst,, as
well as the tensor projection;;—D,,, as explicit functions
of Zy=(25,2)). This is achieved as follows: Let the system’s
center of masgc.m) world line be denotedy”(7)=y§

+ 7u*, where ris the c.m. proper time. In spacetime, the
impact parameter is a 4-vectbf which connects/*(7) to
the photon world line# (&) =z§ + £1* and which is orthogo-
nal tobothworld lines: O=u,b*=I,b*. This bi-normal b*

is unique and is obtained by projectirgf (&) —y*(7) or-
thogonally to the two-plane spanned by andl*. Its origin
y#(7,) on the c.m. world line defines th@rope) time of
impact: to=7,. By working in a c.m. frame[with u*
=(1,0,0,0) butyy not necessarily zetmne easily finds

to= =29~ 1210 (zh—y}), (3.143
bO:O, (314b
b'=zp—yh—172(Z)—yh),

(3.149

=Al3/1 is equal to the fractional change in photon energywhich allows one to compute the derivatives with respect to

a®=Al1%1=—Aly/1 and is given by

zy=(29,2p) of to and b=\/5;b'b!. (Note that dto/dz,
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=—1729"=~171" does not vanish.As for the dependence Here, we have adde(ih brackets, to the previously consid-
on zi0 of the tensor projection ered time-dependent quadrupolar part, the static monopolar
part associated with the total mabt of the gravitational
D11(to) —D2aAto) =2D 11+ D33~ Dji source, which causes a well-known deflection;
=-—-4GM/b. Taking advantage of this dependence on the
=2Dij6‘61+DijT‘Tj—Dijé”, to-instantaneous near-zone field, it is possible to reexpress

our results(3.8—(3.13 in a very compacibut somewhat
(3.19 subtle way by considering the scalar potentidl1l) due to
o o a unit-mass monopolar fieldh,fw=265w,/r. One finds
where b'=b'/b, [I'=I'/I, it comes (besides the
z,-dependence of the time-argument;) from the V" b)=—-4G In b, 4.3
b'-dependence of the termDg;b'b! in Eg. (3.19. By so
computing thez4-derivative of Eq.(3.13, we verified the after discarding a formally infinite additional constant which

above direct calculation of, . is irrelevant in view of the later application of derivatives to
Equations(3.9), (3.9), (3.10 and(3.13 are the main re- Vi 1b).
sults of this paper. As the two spatial derivative@cting onr ~1=|x—y|) in

the quadrupolar term in E@4.1) can be replaced by deriva-
tives with respect to the c.nyy, we can very simply express
the total, monopolar plus quadrupolar, scalar potential in

Our explicit resultg3.8—(3.10 show that the suggestions terms of the unit-mass quadrupolar one:
of Refs.[5—7] are incorrect because the time-dependent part 1 )
of the light deflection by a localized gravitational source falls d
off as theinverse cubef the impact parametdr, instead of V*©l(zg) = MV b) + ED‘i(tO) ayhayh VI*"b).
their suggested~h(b)<b~1. Not only is the effect of the (4.4
main 1f retarded wave cancelled, but even the subleading
retarded contribution<1/r? has no effect. This implies that |t js easily checkedusing Egs.(3.14 to differentiate Inb]
the effect of the local gravitational source will be much toothat the quadrupolar piece of E@.4) yields back Eq(3.13.
small (for reasonable impact parameters, when consideringinally, using the general resu(8.12, the deflection 4-
chance alignmengo be of observational interest. We con- vectora,, can be written entirely as a sum of derivatives of
centrated above on astrometric effe@g@ometrical deflec- the unit-mass monopolar potenti@.3).
tion), but our negative conclusions apply equally well to |n view of our present, “negative” resultéabsence of
photometric effectgscintillation) which can be directly de- large enough time-dependent deflectjons did not study in
rived from the redshift and deflection effects we computed.as much detail the effects of the higher multipole moments.
Note that something rather remarkable happened in ouwe just formally checkedby inserting in Eq.(2.20 the
calculations. Though we performed them for technical CONaypansion in powers df of ?ij(w;k)] that their contribu-

venience in Fourier space, the quantity we evaluated is thﬁons fall off with b at least as fasand probably fastethan
ine integral (2.3 in which h,,(x") is the full (quadrupolar e quadrupolar one. sand probably faste

retarded field given by EQ$3'1)' W|th3the structuren(t,r) Let us also note in passing that our results can be easily
~ay(t—r)ir+ay(t—r)/ri+ag(t—r)/r°. The final results gyiended to the case where gravity is not described by Ein-
(3.8—(3.10 not only depend on the fastest decaying contri-giein's theory but by a more general tensor-scalar theory.
bution ag(t—r)/r®, but they no longer contain an integral |ngeed, let us work in the “Einstein conformal frame” in
over time. Without our making a near-zone approximationnich the field equations reddee, e.g.[9])
[in which one expands all the retarded quantitiegt
—r/c)=a(t)— (r/c)a(t) + (r¥2c?)a(t) +---] the exact re- 1
sults depend only on the value of the coefficiagtat the R,LVZZ%QD(?VWLSWG(TW— EQWT), (4.5
time ty of closest impact(In particular, as we said above the
results do not depend on the retarded, advanced or time-
symmetric Green function used.

In other words, our results can be stated by saying that the ) ) o
exact deflection in the complicated retarded field is simplyo‘t linearized order in the deviations from a flat background

obtained by computing the deflection in theinstantaneous  7uv with constant background value of the scalar fielg
near-zone gravitational field i.e. wntmg 9pur= Myt huws ¢=@ot ¢, the field equations
become simplyin the harmonic gauge

IV. DISCUSSION AND CONCLUSIONS

Oe=—47Ga(p)T. (4.6

2GM D;: (1)
near zon _ Y 1
hOO Et,X) _r }‘*’Ga” + y (41) Dh/_w:_]-GWG(TMV_EUMVT), (47)
hi*?" “2"t,x) =hgg™ “"8;; . (4.2 O¢=—4mGa(ey)T. 4.9
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Moreover, null geodesics are conformally invariant so that Let us also mention some useful consequences of our re-
light rays are null geodesics in the Einstein metig, [as  sults. First, one could think that there remaibarring very

well as in the Jordan-Eierz met@W:Az(@gﬂw where improbable exact chgnce alignmentse class of physical
the conformal factoA( ) is related to the--dependent cou- Systems where the light rays would propagate through the
pling a(¢) of Eq. (4.6) by a(¢)=d In A(¢)/dg]. The first- ~ near zone field _of a grawtat_lor_]al source, nqmely, that where
order geometrical deflection of a light ray is then given byf[he light source is Io_cated Wlt_hln the graV|tat|ona_I source. For
the same Eq(2.3) as above. As the first order tensor-scalarinstance, we can think of a binary system, of which one body
field equation4.7) determiningh,,, is equivalent to the first- IS emitting electromagnetic radiatiofh binary pulsar is pre-
order Einstein equatiof2.9) (and thatd, T#*=0 holds also  CiSely a system of this typeThough our calculation does not
to that order of approximatiorthe total deflectionl, will ~ really apply to such a system, it suggests very strongly that
be given by the same formula in tensor-scalar theories as illl the radiative pieces of the gravitational figlhd, in par-
Einstein’s theory. Differences would appear only at the seclicular, the slowly decreasingrLemitted retarded wayelo

ond order where the termy,¢d,¢ starts contributing. not contribute to the light deflection. The latter can be simply
Note that, strictly speaking, the value and time-dependence®Mputed by using &-instantaneous, static approximation
of the quadrupole momenD;;(t) can differ at lowest to the near zone field. This confirms that the existing calcu-
(“Keplerian”) order when considering, e.g., a binary system'ag'ohs of the local gravitational time deldshe integral of
made of neutron staf§]. However, this does not change the @) in binary pulsarg10], which used such an approxima-
main conclusion that the deflection from a localized gravita{lOn. are accurate. o _
tional source falls off ad~3. In our present framework Finally, another consequence of our calculations is that, in
[where both the light source and the observer are “at infin{he real case where neither the light source nor the observer
ity,” i.e. in a place where the deviations from the back- '€ “atinfinity in a flat spacetime,” our results show that the
ground (7,,.90) are neglectell there is no (time- observable light deflection can be computed by neglecting
dependentdifference at the observer between the EinsteifoCalized gravitational sources, and, more generally, any
metric and the more “physical” Jordan-Fierz metﬁgt;w. gﬁgﬁ;loacsg\fgd g;agaggl]on.?:];Vrz\]fgrgiﬂ;@:bvgeer\?;%\(sde?f)é_ct
Therefore our resumlifta'ocb % in the Einstein conformal

f imolies th lusion for the phvsicall will come essentially from “edge effects,” i.e. from the fact
rame implies the same conclusion for the physically meéay, ot either the light source or the observer are actually em-

sured deflectiolA| ,. The situation would be slightly more pedded in a nonlocalized background of gravitational waves.
subtle if the deviationd,,, and ¢ could not be neglected at This confirms the results of Refd—4], and shows that these
the location of the observéor the light source See below  effects can be correctly calculatéas was done in these ref-
our mention of edge effects in Einstein’s theofMote that  erencesby neglecting all the source-rooted, near-zone-type
when discussing photometric effects, ¢f cannot be ne- parts of the total gravitational fielth,,(x) and replacing

glected near the observer, one must take into account the (x) by a pervading sea of on-shell, vacuum wave pack-
additional area changes and variable redshifts which entqg{;_

when translating Einstein-frame results into physical-frame

ones) Anyway, the main point of the present work is to

dlscuss_ the |mportance of Ilocallze.d gravitational sources ACKNOWLEDGMENTS

happening to lie close to the line of sight, and our framework

is sufficient to show that these locally generated effects are Centre de Physique Theque is UnitePropre de Recher-

much smaller than one miglat priori think. che 7061.
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