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Light deflection by gravitational waves from localized sources
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We study the deflection of light~and the redshift, or integrated time delay! caused by the time-dependent
gravitational field generated by a localized material source lying close to the line of sight. Our calculation
explicitly takes into account the full, near-zone, plus intermediate-zone, plus wave-zone, retarded gravitational
field. Contrary to several recent claims in the literature, we find that the deflections due to both the wave-zone
1/r gravitational wave and the intermediate-zone 1/r 2 retarded fields vanish exactly. The leading totaltime-
dependentdeflection caused by a localized material source, such as a binary system, is proved to be given by
the quasi-static, near-zone quadrupolar piece of the gravitational field, and therefore to fall off as the inverse
cube of the impact parameter.@S0556-2821~98!03016-1#

PACS number~s!: 04.30.Nk, 04.25.Nx, 04.80.Nn
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I. INTRODUCTION

The subject of light deflection, and/or light amplificatio
by gravitational waves has a long but somewhat confus
history. Early work@1–3# correctly concluded with the ab
sence of first-order effects increasing linearly with the d
tance traversed by light within gravitational waves. This
sult has recently been confirmed@4#, and casts doubt on th
possibility of detecting or constraining a stochastic grav
tional wave background by astronomical measurements~be
they astrometric or photometric!. However, the works sup
porting this pessimistic conclusion consider only pure
transverse, source-free, gravitational waves and often us
indirect formalism~propagation equation for the local expa
sion rate of a light beam!, so that their impact on the problem
of light deflection by gravitational waves from localize
sources is unclear. Recently, several authors have consid
the case where light rays pass close to a binary gravitatio
wave source and have suggested that, in such a config
tion, there could arise photometric@5# or astrometric@6,7#
effects proportional to the gravitational-wave amplitudeh(b)
evaluated at the impact parameterb. If such effects}h(b),
decreasing only as 1/b in the wave zone of the source, e
isted they might fall in the detectability range of forthcomin
optical interferometric arrays.

The purpose of the present paper is to study in detail
deflection of light passing near any localized, not necessa
periodic, gravitational-wave source~such as an inspiralling
binary!. We focus, in particular, on the effect of the tim
dependent gravitational field associated with a varying qu
rupole moment. As far as we know, our treatment is the fi
one in the literature to work out the complete effect of
time-dependent, retarded, quadrupolar field,h(t,r ), which is
given by a sum of terms having different falloff properti
away from the source:h(t,r );a1(t2r )r 211a2(t2r )r 22

1a3(t2r )r 23. @To save writing we suppress here indice
though our calculations take into account the full tenso
structurehmn(t,x) of the gravitational field.# We find that the
0556-2821/98/58~4!/044003~6!/$15.00 58 0440
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claims of Refs.@5–7# are incorrect in that the deflection i
not of ordera;h(b);a1b211O(b22), but falls off like
b23:a;a3b23. In other words, the contributions to the d
flectiona of both the purely wavelike field}a1(t2r )/r and
the faster falling piecea2(t2r )/r 2 cancel out to leave only
the contribution of the~time-dependent! near-zone gravita-
tional field a3(t2r )/r 3. The resulting time-dependent de
flection ~which must be superposed on the static effect of
total mass of the source! is much too small~for reasonable
impact parameters! to be of observational interest. The sam
pessimistic conclusion applies to the other time-depend
effects linked toh(t,r ): scintillation, variable redshifts and
variable time delays.

II. LIGHT DEFLECTION BY A GENERIC,
TIME-DEPENDENT LOCALIZED

GRAVITATIONAL SOURCE

We work in the geometrical optics approximation. L
l m5dzm/dj, m50,1,2,3, denote the tangent 4-vector to
light ray zm(j) propagating in a curved spacetimegmn(xl)
~with signature2111!. Here,j denotes an affine paramete
along the light ray. The tangent vectorl m is ~by definition!
‘‘light-like’’ in the technical sense of

l 2[gmn~z!l ml n50, ~2.1!

and satisfies the geodesic equationl l¹ll m50 or, explicitly
~with l m[gmnl n!,

d

dj
l m5

1

2
l al b]mgab„z~j!…. ~2.2!

As the main aim of the present work is to clarify the defle
ing effect of locally generated bursts of gravitational wav
on nearby passing light rays, we shall formally consider t
both the light source and the observer are at infinity in a
spacetime. In other words, settinggmn(x)[hmn1hmn(x),
© 1998 The American Physical Society03-1
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we neglect the effects ofhmn near the light source and nea
the observer, and consider that the affine parameterj varies
between2` and1`. To first order inhmn the light deflec-
tion is given by the 4-vector

D l m5 l m~1`!2 l m~2`!5
1

2 E
2`

1`

dj l al b]mhab~z0
l1j l l!.

~2.3!

On the right-hand side of Eq.~2.3! one can consider thatl a

denotes the constant, incoming light-like vectorl a(2`),
and we have replaced the photon trajectory by its unp
turbed approximationzunpert

l (j)5z0
l1j l l.

It will be technically very convenient to reexpress t
deflection~2.3! in terms of the spacetime Fourier transfor
ĥmn(kl) of the gravitational field:

hmn~xl!5E d4k

~2p!4 ĥmn~kl!eik•x. ~2.4!

Henceforth, we use the Minkowski metrichmn to raise and
lower indices, and make use of standard flat space nota
such as k•x[hmnkmxn5k•x2vt, k2[k•k, h
[hmnhmn ,... . It is important to note that whilel m ~the 4-
momentum of the impinging photon! is on-shell, l 25 l • l
50, the variablekm @4-momentum of the virtual graviton
contributing tohmn(x)# is generically off-shell,k2Þ0.

After inserting Eq.~2.4! into Eq. ~2.3!, one can perform
the j-integration @using *dj exp(ik•z01ijk•l)52pd(k•l)#,
with the result

D l m5 ipE d4k

~2p!4 kml al bĥab~kl!eik•z0d~k• l !. ~2.5!

This result is sufficient to show thatsource-freegravitational
wave packets do not deflect light. Indeed, any lineariz
vacuum wave packethab(x) is a superposition of transvers
plane waves propagating with the velocity of light. In oth
words, the Fourier transformĥab(k) of a source-free wave
packet contains a mass-shell delta functiond(k2) and satis-
fies ~independently of the coordinate gauge! the transversal-
ity condition

kaS ĥab~k!2
1

2
ĥhabD50 ~on shell: k250!, ~2.6!

from which follows the consequence

kakbĥab~k!50 ~on shell!. ~2.7!

Coming back to Eq.~2.5!, it is easy to see that whenkm is
on-shell, the delta functiond(k• l ), whereboth km andl m are
on the light-cone, forceskm to be parallel~or antiparallel! to
l m. The deflection is then proportional tol al bĥab(k)
}kakbĥab(k) which vanishes because of Eq.~2.7! ~i.e. be-
cause of transversality!. Therefore

D l m50, for any ~localized! gravitational wave packet.
~2.8!
04400
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This simple, algebraic argument makes it clear that
wave-like,O(1/r ) part of the gravitational field generated b
any local source will give no contribution to the total defle
tion D l m @when neglecting edge effects and faster falli
termsO(1/r 2)#. We need, however, to do more work to d
rive the explicit, nonzero value ofD l m generated by the con
tributions O(1/r 2)1O(1/r 3)1¯ to hmn(x). First, we need
to relatehmn(x) to the material source, i.e. to the~localized!
stress-energy tensorTmn(x). The linearized Einstein equa
tions, in the harmonic gauge, read

hS hmn2
1

2
hhmnD5216pGTmn ~2.9!

or, in Fourier space,

k2ĥmn~k!5116pGS T̂mn~k!2
1

2
hmnT̂~k! D , ~2.10!

where

T̂mn~k!5E d4xe2 ik•xTmn~x!. ~2.11!

When dividing byk2 to get ĥmn(k) from Eq. ~2.10!, one
needs to define carefully the singularity structure atk250,
which is related to the boundary conditions incorporated
the corresponding Green’s function. The Fourier transfo
of the usual retarded Green’s function is (k22 i ek0)21,
wheree is a positive infinitesimal, so that

ĥmn~kl!516pG

T̂mn~k!2
1

2
hmnT̂~k!

k22 i ek0 . ~2.12!

Note in passing that, in the decomposition (P denoting the
principal part!

1

k22 i ek0 5P
1

k2 1 ip sgn~k0!d~k2!, ~2.13!

the second~on shell! term is the only one to contribute to th
‘‘radiation’’ Green function Gretarded2Gadvanced which de-
fines a free wave packet associated with the sourceTmn and
falling off at infinity like 1/r . By the argument above we
know that this on-shell term will not contribute toD l m . This
shows that the deflection would be the same for the phys
retarded fieldhab

ret (x), or for the acausal fieldshab
adv(x) or

hab
sym(x)5 1

2 @hab
ret (x)1hab

adv(x)#. Let us continue working with
the retarded field~2.12!.

Inserting Eq.~2.12! into Eq. ~2.5! we get~because of the
vanishing ofl al bhab!

D l m516ip2GE d4k

~2p!4

kml al bT̂ab~k!

k22 i ek0 eik•z0d~k• l !.

~2.14!
3-2
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The energy-momentum conservation law 05¹nTmn

5]nTmn1O(hT), or, in Fourier space and at lowest orde
knT̂mn(k)50, gives explicitly

T̂0i52
kj

k0 T̂i j , ~2.15!

T̂0052
ki

k0 T̂0i51
kikj

~k0!2 T̂i j , ~2.16!

so that

l al bT̂ab~k!5~ l 0!2S ki

k0 2
l i

l 0D S kj

k0 2
l j

l 0D T̂i j ~k!. ~2.17!

Let us henceforth split space and time and work in the ce
of mass frame of the source~with the center of mass used a
the spatial origin!. The temporal origin is fixed by the re
quirement that thej50 event on the photon world line b
spatially closest to the center of mass of the source and
pen at coordinate timet50. Technically, this implies tha
z0

l5(0,b) where the~vectorial! impact parameterb[bi is
orthogonal to the photon 3-momentuml[ l i . We can then
introduce usual polar coordinates~u,w! to parametrize the
direction of the 3-vectork with respect to a spatial triad with
x-axis alongb andz-axis alongl, i.e.

km5~v,k1,k2,k3!

5~v,k sin u cosw,k sin u sin w,k cosu!.

Henceforth,k,l ,... denote the spatial lengths of the 3-vecto
k,l,... and no longer 4-vectors as above. We denote
v[k0 ~while l 05u lu5 l !. From kml m5k• l2v l 0

5kl cosu2vl the delta function in Eq.~2.14! reads

d~kml m!5
1

kl
dS cosu2

v

k D . ~2.18!

This implies that the integration onk is restricted to values
such thatk2>v2. When writing Eq.~2.14! explicitly, we
find it convenient to replace thek-integration in d4k
5dvk2dkd(cosu)dw by an integration over

u[Ak22v25k sin u. ~2.19!

Finally, inserting Eqs.~2.17! and ~2.18! into Eq. ~2.14! we
get

am[
D l m

l
5 i

G

p2 E
2`

1`

v22dvE
0

1`

uduE
0

2p

dwKm~v,u,w!

3eibu cosw@cos2wT̂11~v,k!1sin2wT̂22~v,k!

12 sin w coswT̂12~v,k!#, ~2.20!

where the denominator (k22v22 i ev)21 cancelled with a
contribution}k22v2 in the numerator~confirming the irrel-
evance ofe, i.e. of the Green’s function boundary cond
04400
,

er

p-

so

tions!, and whereKm denotes the value ofkm when restricted
by the delta function~2.18!, namely

Km~v,u,w!5~K0 ,K1 ,K2 ,K3!5~2v,u cosw,u sin w,v!.

~2.21!

Note that the result~2.20! is entirely expressed in terms o
the components ofT̂i j pertaining to thex-y-plane, i.e. the
plane orthogonal to the direction of propagation of the
coming light. This is again an aspect of the transversality
the gravitational field.

III. LIGHT DEFLECTION BY A TIME-DEPENDENT,
QUADRUPOLAR GRAVITATIONAL FIELD

To see better the physical content of the result~2.20!, let
us make the further approximation that the source inter
motions are nonrelativistic so that the time-dependent par
the external field is well described by the quadrupolar
proximation. Explicitly, this means~in x-space! a field which
reads~in a suitable harmonic gauge, and after subtraction
the Schwarzschild-like, monopolar piece!

h̃00512G] i j S Di j ~ t2r !

r D ,

h̃0i522G] j S Ḋ i j ~ t2r !

r
D ,

h̃i j 512G
D̈i j ~ t2r !

r
. ~3.1!

Here h̃mn[hmn2 1
2 hhmn satisfies]nh̃mn50, and

Di j ~ t !5E d3xxixjT00~ t,x! ~3.2!

is the quadrupole moment~with its trace!. Note that, when
expanding the action onr of the spatial derivatives in Eqs
~3.1!, the resulting retarded gravitational field contains a s
of contributions of the forma1(t2r )/r 1a2(t2r )/r 21a3(t
2r )/r 3. The 1/r piece is the usual quadrupolar wave, t
1/r 3 piece is a retarded version of the near-zone quadrup
field @ h̃3

0052h3
0052GDi j (t2r )] i j 1/r # and the 1/r 2 piece

plays a role in the region intermediate between the near z
and the wave zone. Our present calculation~done below in
Fourier space! takes into account all these contributions a
allows one to study carefully the falloff properties of th
light-deflectionD l m as a function of the impact parameter

In Fourier space, the quadrupolar approximati
is easily seen @e.g. by Fourier-transforminghh̃i j 5

28pGD̈i j (t)d
3(x)# to correspond to making the approxim

tion that

T̂i j ~v,k!5E d4xe2 ik•x1 ivtTi j ~ t,x! ~3.3!
3-3
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is independent ofk @8#, so that @using the standard viria
theorem *d3xTi j (t,x)5 1

2 ] t
2*d3xxixjT00(t,x) following

from ]nTmn50#

T̂i j ~v,k!.T̂i j ~v,0!

5E dteivtE d3xTi j ~ t,x!52
v2

2
Di j ~v!, ~3.4!

whereDi j (v)[*dteivtDi j (t).
Under this approximation, one can explicitly perform t

integrations in our general result~2.20!. Indeed, all the
u-integrals in Eq.~2.20! are of the form

Un5E
0

`

duunei ~b cosw!u5n! S 21

ib cosw2e D n11

, ~3.5!

with n51 or 2. Here, the positive infinitesimale ~which is
unrelated to the one entering the retarded Green’s funct!
is mathematically justified by appealing to distributio
theory, or physically justified by remembering that, in re
ity, T̂i j (v,k), Eq. ~3.3!, must fall off to zero asuku→`, i.e.
u→`. Using the result~3.5!, the w-integrals in Eq.~2.20!
are of the form

Fn5E
0

2p

dwS sin w

cosw1 i e D n

, ~3.6!

with n50, 1, 2 or 3. ClearlyF052p, while F15F350 by
symmetry. It remains only to evaluateF2 for which we find

F2522p1
2pe

A11e2
, ~3.7!

which tends to22p ase→0.
Finally, the two deflection anglesa15D l 1 / l , a2

5D l 2 / l , in the plane orthogonal to the light ray~remember
that the first axis is alongb, and the second is parallel t
l3b!, are given by

a152
2G

pb3 E
2`

1`

dv@D11~v!2D22~v!#

52
4G

b3 @D11~ t0!2D22~ t0!#, ~3.8!

a251
4G

pb3 E
2`

1`

dvD12~v!51
8G

b3 D12~ t0!. ~3.9!

Here, t0 (50 in our coordinate system! denotes the date
when the light ray passes nearest to the source. The lon
dinal fractional change of the photon momentuma3
5D l 3 / l is equal to the fractional change in photon ener
a05D l 0/ l 52D l 0 / l and is given by
04400
n

-

tu-

y

a05a351
iG

pb2 E
2`

1`

dvv@D11~v!2D22~v!#

52
2G

b2

]

]t0
@D11~ t0!2D22~ t0!#. ~3.10!

Let us note in passing that these results, here express
terms of the quadrupole moment~3.2! with its trace, depend
only on the trace-free quadrupole momentQi j [Di j
2 1

3 Dssd i j . This wasa priori expected as it is well-known
that, modulo a coordinate transformation, the time-depend
gravitational field external to any source depends only
Qi j (t). We could everywhere replaceDi j by Qi j but we will
not bother to do so.

The results~3.8!–~3.10! can be encoded in a scalar pote
tial V(z0

l) which is essentially the gravitational perturbatio
of the time delay between the light source and the obser
Indeed, if we define

V~z0
l!5

1

2l E2`

1`

dj l al bhab~z0
l1j l l!, ~3.11!

we see that Eq.~2.3! yields

am[
D l m

l
5

]

]z0
m V~z0

l!. ~3.12!

Using the integrals given above, it is easy to obtain

V~z0
l!5

G

pb2 E dv@D11~v!2D22~v!#

5
2G

b2 @D11~ t0!2D22~ t0!#. ~3.13!

Then, to compute Eq.~3.12! one needs to expressb,t0 , as
well as the tensor projectionD112D22, as explicit functions
of z0

l5(z0
0 ,z0

i ). This is achieved as follows: Let the system
center of mass~c.m.! world line be denotedym(t)5y0

m

1tum, wheret is the c.m. proper time. In spacetime, th
impact parameter is a 4-vectorbm which connectsym(t) to
the photon world linezm(j)5z0

m1j l m and which is orthogo-
nal to both world lines: 05umbm5 l mbm. This bi-normal bm

is unique and is obtained by projectingzm(j)2ym(t) or-
thogonally to the two-plane spanned byum andl m. Its origin
ym(tb) on the c.m. world line defines the~proper! time of
impact: t05tb . By working in a c.m. frame@with um

5(1,0,0,0) buty0
i not necessarily zero# one easily finds

t05tb5z0
02 l 22l 0l j~z0

j 2y0
j !, ~3.14a!

b050, ~3.14b!

bi5z0
i 2y0

i 2 l 22l i l j~z0
j 2y0

j !,
~3.14c!

which allows one to compute the derivatives with respec
z0

l5(z0
0 ,z0

i ) of t0 and b5Ad i j b
ibj . ~Note that ]t0 /]z0

i

3-4
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52l22l0li52l21li does not vanish.! As for the dependence
on z0

i of the tensor projection

D11~ t0!2D22~ t0!52D111D332Dii

52Di j b̂
i b̂ j1Di j l̂

i l̂ j2Di j d
i j ,

~3.15!

where b̂i[bi /b, l̂ i[ l i / l , it comes ~besides the
z0

i -dependence of the time-argumentt0! from the

bi-dependence of the term 2Di j b̂
i b̂ j in Eq. ~3.15!. By so

computing thez0
m-derivative of Eq.~3.13!, we verified the

above direct calculation ofam .
Equations~3.8!, ~3.9!, ~3.10! and ~3.13! are the main re-

sults of this paper.

IV. DISCUSSION AND CONCLUSIONS

Our explicit results~3.8!–~3.10! show that the suggestion
of Refs.@5–7# are incorrect because the time-dependent p
of the light deflection by a localized gravitational source fa
off as theinverse cubeof the impact parameterb, instead of
their suggesteda;h(b)}b21. Not only is the effect of the
main 1/r retarded wave cancelled, but even the sublead
retarded contribution}1/r 2 has no effect. This implies tha
the effect of the local gravitational source will be much t
small ~for reasonable impact parameters, when conside
chance alignments! to be of observational interest. We co
centrated above on astrometric effects~geometrical deflec-
tion!, but our negative conclusions apply equally well
photometric effects~scintillation! which can be directly de-
rived from the redshift and deflection effects we compute

Note that something rather remarkable happened in
calculations. Though we performed them for technical c
venience in Fourier space, the quantity we evaluated is
line integral~2.3! in which hmn(xl) is the full ~quadrupolar!
retarded field given by Eqs.~3.1!, with the structureh(t,r )
;a1(t2r )/r 1a2(t2r )/r 21a3(t2r )/r 3. The final results
~3.8!–~3.10! not only depend on the fastest decaying con
bution a3(t2r )/r 3, but they no longer contain an integr
over time. Without our making a near-zone approximat
@in which one expands all the retarded quantities,a(t
2r /c)5a(t)2 (r /c)ȧ(t)1 (r 2/2c2)ä(t)1¯# the exact re-
sults depend only on the value of the coefficienta3 at the
time t0 of closest impact.~In particular, as we said above th
results do not depend on the retarded, advanced or t
symmetric Green function used.!

In other words, our results can be stated by saying that
exact deflection in the complicated retarded field is sim
obtained by computing the deflection in thet0-instantaneous
near-zone gravitational field

h00
near zone~ t,x!5F2GM

r G1G] i j

Di j ~ t !

r
1¯ , ~4.1!

hi j
near zone~ t,x!5h00

near zoned i j . ~4.2!
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Here, we have added~in brackets!, to the previously consid-
ered time-dependent quadrupolar part, the static monop
part associated with the total massM of the gravitational
source, which causes a well-known deflectiona1
524GM/b. Taking advantage of this dependence on
t0-instantaneous near-zone field, it is possible to reexp
our results~3.8!–~3.13! in a very compact~but somewhat
subtle! way by considering the scalar potential~3.11! due to
a unit-mass monopolar field,hmn

1 52Gdmn /r . One finds

V1
mono~b!524G ln b, ~4.3!

after discarding a formally infinite additional constant whi
is irrelevant in view of the later application of derivatives
V1

mono(b).
As the two spatial derivatives~acting onr 215ux2y0u! in

the quadrupolar term in Eq.~4.1! can be replaced by deriva
tives with respect to the c.m.y0

i , we can very simply expres
the total, monopolar plus quadrupolar, scalar potential
terms of the unit-mass quadrupolar one:

Vtot~z0
l!5MV1

mono~b!1
1

2
Di j ~ t0!

]2

]y0
i ]y0

j V1
mono~b!.

~4.4!

It is easily checked@using Eqs.~3.14! to differentiate lnb#
that the quadrupolar piece of Eq.~4.4! yields back Eq.~3.13!.
Finally, using the general result~3.12!, the deflection 4-
vectoram can be written entirely as a sum of derivatives
the unit-mass monopolar potential~4.3!.

In view of our present, ‘‘negative’’ results~absence of
large enough time-dependent deflections! we did not study in
as much detail the effects of the higher multipole momen
We just formally checked@by inserting in Eq.~2.20! the
expansion in powers ofk of T̂i j (v,k)# that their contribu-
tions fall off with b at least as fast~and probably faster! than
the quadrupolar one.

Let us also note in passing that our results can be ea
extended to the case where gravity is not described by E
stein’s theory but by a more general tensor-scalar the
Indeed, let us work in the ‘‘Einstein conformal frame’’ i
which the field equations read~see, e.g.,@9#!

Rmn52]mw]nw18pGS Tmn2
1

2
gmnTD , ~4.5!

hw524pGa~w!T. ~4.6!

At linearized order in the deviations from a flat backgrou
hmn with constant background value of the scalar fieldw0 ,
i.e. writing gmn5hmn1hmn , w5w01f, the field equations
become simply~in the harmonic gauge!

hhmn5216pGS Tmn2
1

2
hmnTD , ~4.7!

hf524pGa~w0!T. ~4.8!
3-5
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Moreover, null geodesics are conformally invariant so t
light rays are null geodesics in the Einstein metricgmn @as
well as in the Jordan-Fierz metricg̃mn5A2(w)gmn , where
the conformal factorA(w) is related to thew-dependent cou-
pling a~w! of Eq. ~4.6! by a(w)5d ln A(w)/dw#. The first-
order geometrical deflection of a light ray is then given
the same Eq.~2.3! as above. As the first order tensor-sca
field equation~4.7! determininghmn is equivalent to the first-
order Einstein equation~2.9! ~and that]nTmn50 holds also
to that order of approximation! the total deflectionD l m will
be given by the same formula in tensor-scalar theories a
Einstein’s theory. Differences would appear only at the s
ond order where the term]mf]nf starts contributing.
Note that, strictly speaking, the value and time-depende
of the quadrupole momentDi j (t) can differ at lowest
~‘‘Keplerian’’ ! order when considering, e.g., a binary syste
made of neutron stars@9#. However, this does not change th
main conclusion that the deflection from a localized grav
tional source falls off asb23. In our present framework
@where both the light source and the observer are ‘‘at in
ity,’’ i.e. in a place where the deviations from the bac
ground (hmn ,w0) are neglected#, there is no ~time-
dependent! difference at the observer between the Einst
metric and the more ‘‘physical’’ Jordan-Fierz metricg̃mn .
Therefore our resultD l m

total}b23 in the Einstein conforma
frame implies the same conclusion for the physically m
sured deflectionD l̃ m . The situation would be slightly more
subtle if the deviationshmn andf could not be neglected a
the location of the observer~or the light source!. See below
our mention of edge effects in Einstein’s theory.~Note that
when discussing photometric effects, iff cannot be ne-
glected near the observer, one must take into account
additional area changes and variable redshifts which e
when translating Einstein-frame results into physical-fra
ones.! Anyway, the main point of the present work is
discuss the importance of localized gravitational sour
happening to lie close to the line of sight, and our framew
is sufficient to show that these locally generated effects
much smaller than one mighta priori think.
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Let us also mention some useful consequences of ou
sults. First, one could think that there remains~barring very
improbable exact chance alignments! one class of physica
systems where the light rays would propagate through
near zone field of a gravitational source, namely, that wh
the light source is located within the gravitational source. F
instance, we can think of a binary system, of which one bo
is emitting electromagnetic radiation.~A binary pulsar is pre-
cisely a system of this type.! Though our calculation does no
really apply to such a system, it suggests very strongly t
all the radiative pieces of the gravitational field~and, in par-
ticular, the slowly decreasing 1/r emitted retarded wave! do
not contribute to the light deflection. The latter can be sim
computed by using at0-instantaneous, static approximatio
to the near zone field. This confirms that the existing cal
lations of the local gravitational time delay~the integral of
a0! in binary pulsars@10#, which used such an approxima
tion, are accurate.

Finally, another consequence of our calculations is that
the real case where neither the light source nor the obse
are ‘‘at infinity in a flat spacetime,’’ our results show that th
observable light deflection can be computed by neglec
localized gravitational sources, and, more generally, a
quasi-localized gravitational wave packets@as we proved ex-
plicitly above, Eq. ~2.8!#. Therefore the observable effec
will come essentially from ‘‘edge effects,’’ i.e. from the fac
that either the light source or the observer are actually e
bedded in a nonlocalized background of gravitational wav
This confirms the results of Refs.@1–4#, and shows that thes
effects can be correctly calculated~as was done in these re
erences! by neglecting all the source-rooted, near-zone-ty
parts of the total gravitational fieldhmn(x) and replacing
hmn(x) by a pervading sea of on-shell, vacuum wave pa
ets.
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