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Sources for the Majumdar-Papapetrou space-times
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Einstein’s field equations are solved exactly for static charged dust distributions. These solutions generalize
the Majumdar-Papapetrou metrics. Maxwell’s equations lead to the equality of charge and mass densities of the
dust distrubition. Einstein’s equations reduce to a nonlinear version of Poisson’s equation.
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INTRODUCTION

Majumdar-Papapetrou~MP! metrics@1,2# describe the ex-
terior gravitational field of static objects~discrete point
sources, line charges, point dipoles, charged dusts, etc.!. The
line element of the corresponding metric is given by

ds252 f dt21 f 21d i j dxidxj , ~1!

where f is a function ofxi and the electromagnetic potenti
four vector is given byAu5(A0,0,0,0). Lettingf 51/l2 and
A05k/l with k251 one can then reduce the electrovacu
field equations to the Laplace equation¹2l50. The solution
of the Laplace equation corresponding to discrete po
sources is given by

l511(
i 51

N
mi

r i
, ~2!

r i5@~x2xi !
21~y2yi !

21~z2zi !
2#1/2. ~3!

In this solution the charge and mass of each point source
equal, ei5mi . These metrics describe multiple extrem
black-hole solutions of Einstein’s theory of gravity in a co
formostatic space-time@3,4#. They are also exact solutions o
the low energy limit of string theory@5# which respect su-
persymmetry@6,7#. There are also other possible solutions
the Laplace equation but the space-time geometries co
sponding to these solutions have naked singularities@3#. To
this end it is important to find interior solutions to remo
such singularities.

An extension of the MP metrics has been studied a lo
time ago by Das@8#. He considered the charged dust so
tions of the static Einstein field equations. His interest wa
find the conditions for an extreme case. He showed~in his
notation! that theg44 component of the metric andA4 com-
ponent of the vector potential are related,g445a1bA4

14pA4
2, in order for the chargere and massr densities to

be equal,re56r. He did not investigate the rest of the fie
equations.
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CHARGED DUST CLOUDS

In this work we consider the same problem as Das
generalization of the MP metrics to the case of a continu
charged dust distribution~a charged perfect fluid with zero
pressure!. The energy momentum tensor is the sum of t
energy momentum tensors of the Maxwell field and a d
distribution. We investigate the complete Einstein field eq
tions for charged dust distributions in a conformosta
space-time. We first show that Einstein field equations
duce to a nonlinear potential equation. We then show that
charge and mass densities are directly related,re56r. This
relation is not an assumption but arises as a result of the
equations.

Let M be a four dimensional spacetime with the line e
ment ~1!. Here Latin letters represent the space indices
d i j is the three dimensional Kronecker delta. In this work w
shall use the same convention as in@9#. The only difference
is that we use Greek letters for four dimensional indic
Here M is static. It is useful to write the metric tensor in
more elegant form. It is given by

gmn5 f 21h1mn2umun , ~4!

whereh1mn5diag(0,1,1,1) andum5Af dm
0 . The inverse met-

ric is given by

gmn5 f h2
mn2umun, ~5!

where h2mn5diag (0,1,1,1) andum5gmnun52(1/Af )d0
m .

Hereum is a timelike four vector,umum521.
The Ricci scalar and Einstein tensor components co

sponding to the conformostatic metric~1! are given by

R5
1

2 f
„2 f ¹2f 23~¹ f !2

…, ~6!

G005 f ¹2f 2
5

4
~¹ f !2, G0i50, ~7!

Gi j 52
1

2 f 2 ] i f ] j f 1
~¹ f !2

4 f 2 d i j , ~8!

where¹2 denotes the three dimensional Laplace operato
Cartesian flat coordinates. The Maxwell antisymmetric te
sor and the corresponding energy momentum tensor are
spectively given by
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Fmn5¹nAm2¹mAn , ~9!

Mmn5
1

4pS FmaFn
a2

1

4
F2gmnD , ~10!

whereF25FmnFmn . The current vectorj m is defined as

¹nFmn54p j m. ~11!

Here we should assumeAi50. Then

M005
f

8p
~¹A0!2,

M0i50, Mi j 52
1

4p f
] iA0] jA01

1

8p f
~¹A0!2d i j ,

~12!

and

4p j 05 f ¹~ f 21¹A0!, j i50. ~13!

The Einstein field equations for a charged dust distribut
are given by

Gmn58pTmn58pMmn1~8pr!umun , ~14!

wherer is the energy density of the charged dust distribut
and the four velocity of the dust is the same vectorum ap-
pearing in the metric tensor. We find thatj m52reu

m, where

re5
1

4p
f 3/2¹~ f 21¹A0! ~15!

is the charge density of the dust distribution. Letl be a real
function depending on the space coordinatesxi . Einstein’s
equationGi j 58pTi j forces us to chooseA05kAf or

f 5
1

l2 , A05
k

l
, ~16!

where k561. Then the remaining field equationG00
58pT00 reduces simply to the following equations:

¹2l14prl350, ~17!

re5kr. ~18!

These equations represent the Einstein and Maxwell e
tions, respectively. In particular the first equation~17! is a
generalization of the Poisson’s potential equation in Newt
ian gravity. In the Newtonian approximationl511V, Eq.
~17! reduces to the Poisson equation,¹2V14pr50. Hence
for any physical mass densityr of the dust distribution we
solve the equation~17! to find the functionl. This deter-
mines the space-time metric completely. As an example f
constant mass densityr5r0.0 we find that

l5
a

2Apr0

cn~ l ix
i !. ~19!
04400
n

n

a-

-

a

Here l i is a constant three vector,a25 l i l
i andcn is one of

the Jacobi elliptic functions with modulus square equals1
2 .

This is a model universe which is filled by an~extreme!
charged dust with a constant mass density.

INTERIOR SOLUTIONS †10‡

In an asymptotically flat space-time, the functionl as-
ymptotically obeys the boundary conditionl→1. In this
case we can establish the equality of mass and chargee5
6m0, wherem05*rA2gd3x. For physical consideration
our extended MP space-times may be divided into inner
outer regions. The inner and outer regions are defined as
regions where r i.0 and r50, respectively. Herei
51,2, . . . ,N, whereN represents the number of regions. T
gravitational fields of the outer regions are described by
solution of the Laplace equation¹2l50 , for instance by the
MP metrics. As an example the extreme Reissner-Nordst¨m
~RN! metric ~for r .R0), l511m0 /r , may be matched to a
metric with

l5a
sin ~br !

r
, r ,R0 ~20!

describing the gravitational field of an inner region filled b
a spherically symmetric charged dust distribution with
mass density

r5r~0!F br

sin ~br !G
2

. ~21!

Herer(0)51/4pa2, r 25xix
i , anda andb are constants to

be determined in terms of the radiusR0 of the boundary and
total massm0 @or in terms ofr(0)]. They are given by

bR05A3m0

R0
, a sin bR05R01m0 . ~22!

In this way one may eliminate the singularities of the ou
solutions by matching them to an inner solution with a phy
cal mass density.

We can extend the above solution toN charged dust
spheres by letting the mass densityr5b2/4pl2 where we
have the complete solution of Eq.~17!,

l5(
l ,m

al ,mj l~br !Yl ,m~u,f!, ~23!

where j l(br) are the spherical Bessel functions which a
given by

j l~x!5~2x! l S 1

x

d

dxD
l S sin x

x D ~24!

andYl ,m are the spherical harmonics. The constantsal ,m are
determined when this solution is matched to an outer so
tion with ¹2l50. The interior solution given above for th
extreme RN metric (N51) with density~21! correspond to
l 50.
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CONCLUDING REMARKS

In this work we have solved the Einstein field equations
a conformostatic space-time for a charged dust distribut
We reduced the problem to a nonlinear Poisson type of
tential equation~17!. Any physically reasonable solution o
this equation gives an interior solution to an exterior M
metric with naked singularities. In this way we remove t
naked singularities of the MP metrics by matching them
the metrics of extremely charged dust distributions. We h
given some explicit exact solutions corresponding to so
specific mass densities. In particular we have given an i
rior solution of the extreme Reissner-Nordstro¨m ~RN! met-
ric.

In reality such objects may or may not exist. If they exi
such charged dust clouds cannot be detected directly,
cause they may transmit light rays. On the other hand, t
may be observed through the bending of light rays pass
very close to them. The measure of deflection angles wil
of the same order of magnitude of the deflection angle of
null geodesics in the Schwarzschild geometry with the sa
total massm0. The reason for this becomes obvious when
04400
n.
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write the RN metric in the Schwarzschild coordinates

ds252S 12
m0

r D 2

dt21
dr2

S 12
m0

r D 2 1r 2dV2. ~25!

For a charged dust cloud withm0 /R0,1 andr .R0 we have
(12m0 /r )2→(122m0 /r ). Thus in the neighborhood of th
charged dust cloud, the exterior metric becomes closer to
Schwarzschild metric. We then expect the same effects a
the Schwarzschild geometry on the test particles in
neighborhood of extremely charged dust clouds. The m
sure of the deflection angle may be much larger if these li
rays are also transmitted through the dust clouds.
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