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Evolution of the scale factor with a variable cosmological term
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The evolution of the scale facta(t) in Friedmann modelgthose with zero pressure and a constant
cosmological termA) is well understood, and elegantly summarized in the review of Felten and Isaacman
[Rev. Mod. Phys58, 689(1986]. Developments in particle physics and inflationary theory, however, increas-
ingly indicate thatA ought to be treated as a dynamical quantity. We reexamine the evolution of the scale
factor with a variable\ term, and also generalize the treatment to include nonzero pressure. New solutions are
obtained and evaluated using a variety of observational criteria. Existing arguments for the inevitability of a big
bang(i.e., an initial state witla=0) are substantially weakened, and can be evaded in some casés,witte
present value ofA) well below current experimental limit§S0556-282198)02416-3

PACS numbd(s): 98.80.Bp, 04.20.Dw

[. INTRODUCTION give rise to a negative energy density which grows with time,
tending to cancel out any pre-existing positive cosmological
The behavior of the cosmological scale facagt) in so- term and drive the net value df toward zero. Processes of
lutions of Einstein’s field equations with the Robertson-this kind are among the most promising wag¢6] to resolve
Walker line element has been the subject of numerous studbe longstanding cosmological “constant” problesee[31]
ies. Textbook presentations tend to focus on models in whicfor review.

pressurep is zero and there is no cosmological tefm=0). The purpose of the present paper is to re-examine the
Some treatments include thaiedmann modelsin which evolution of the scale factor wheh+ const. This has not yet

p=0 butA =0 [1-5]. Much less attention has been directedP€€n done in a systematic way. We also expand on most
at the more generdlematre models in which pressure is earlier treatments by considering a fairly g_eneral equation of
given in terms of density by an equation of state=p(p) state for ordinary matter rather than restricting ourselves.to
and A 0 [6-9] ’ t_he pressure-free_Frl_edmann models. These two generaliza-
The possibility of a nonzera\ term, in particular, has tions lead to qualitatively as well as quantitatively new be-

faced lately i ) ith th b ¢ havior fora(t), and hence for related phenomena such as the
resurfaced lately in connection with the age prob[@@l. If ;e of the Universe, the appearance of gravitational lenses,

A is large enough, in fact, the age of the Univesefined in 4 the redshifts of distant astronomical objects. They can
the standard mod¢lL1] as the time elapsed sinee=0) can  giso allow one to circumvent the abovementioned arguments
in principle becomenfinite, as a(t) never drops below a against oscillating models.
nonzero minimum value, in the past direction. The exis-  The remainder of the paper is organized as follows: the
tence of such “big bangless” oscillating models has beenrequired assumptions, definitions and dynamical equations
recognized for over sixty yearsl2]. They have however are assembled in Sec. I, and applied in Secs. Il1-VI to mod-
been dismissed as unphysical on the grounds that the rels in whichA varies as a function of timg the scale factor
guired values ofA are incompatible with observatidqi3—  a, the Hubble parametét and the deceleration parametgr
16]. respectively. In each section we obtain analytic or numerical
We will return to the observational constraints later on,solutions for the scale factor, paying particular attention to
merely noting here that the above arguments, along witlthe question of the initial singularity, and discuss observa-
nearly all existing astrophysical work on the cosmologicaltional constraints where appropriate. Conclusions are sum-
term, operate on the assumption that=const. Quantum marized in Sec. VII.
field theorists and others, by contrast, have been treating the

cosmological term as dynamicalquantity for thirty years 1. VARIABLE- A COSMOLOGY
[17-22. Anything which contributes to the energy density _
p, of the vacuum behaves like a cosmological term Aija A. The cosmological “constant

=8mGp,. Many potential sources of fluctuating vacuum  To begin, we recall why the cosmological term has often

energy have now been identified, including scalar fieldsheen treated as a constant of nature. The Einstein field equa-
[23,24), tensor fieldg 25,26, nonlocal effectd27], worm-  tions read

holes[28], inflationary mechanismp29] and even cosmo-
logical perturbation$30]. Each of these has been claimed to G, tAg9,,=8n1GT,,, 23

whereG,,=R,,—Rg,,/2 is the Einstein tensor ang,, is
*Now at Department of Physics and Astronomy, University of the energy-momentum tensor of matigve assume units
Waterloo, Waterloo, Ontario, Canada N2L 3G1. Electronic addresssuch thatc=1). Taking the covariant divergence of Eq.
overduin@astro.uwaterloo.ca (2.1), recalling that the vanishing covariant divergence of the
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Einstein tensor is guaranteed by the Bianchi identities, and Differentiating Eq.(2.4) with respect to time and inserting
assuming that the energy-momentum tensor satisfies the cokg. (2.7), we obtain

servation lawv'T,,
gence ofAg,, must vanish also, and hence that const.

This argument, which situate's firmly on the left-hand side

=0, it follows that the covariant diver-

3y

2

. 8wG
a: —_—

A
3 patsa.

3 (2.9

of the field equations, constitutes a “geometrical interpreta-

tion” of the cosmological term.
More recently, it has become increasingly comngsee,

Equation(2.8) shows that a positive densipyacts to decel-
erate the expansion, as expected — but only wjer2/3. If,

e.g.,[32]) to move the cosmological term to the right-hand on the other hand, the cosmological fluid is such that

side of Eq.(2.1):

G,,=87GT,,, T,=T (2.2

v MV—%QW;

<2/3, then its density can actually accelerate the expansion,

a>0 (this is the phenomenon commonly known iala-
tion). Equation(2.8) also confirms that a positive cosmologi-
cal term contributes positively to acceleration, “propping
up” the scale factor against the deceleration caused by the

that is, to interpretA as part of the matter content of the matter termp. A negativeA term, on the other hand, acts in
universe, rather than a purely geometrical entity. Once this i§1€ opposite direction and brings about recollapse more

done, there are na priori reasons whyA should not

vary—as long as theffectiveenergy-momentum tensﬁrw
satisfies energy conservatigB3]:

vV'T,,=0. (2.3

B. Dynamical equations

quickly.

Combining Egs.(2.4) and (2.8, we can eliminatep to
obtain a differential equation for the scale factor in terms of
the cosmological term alone:

G
@ a2 27

3y
2

é_
o= 2.9

We will make the usual assumptions: a homogeneous andihis differential equation governs the behavior of the scale

isotropic Universdi.e., Robertson-Walker line elemerand
perfect-fluid-like ordinary mattef35] with pressurep and

energy densityp. The definition(2.2) of T,, then implies

that theeffectiveenergy-momentum tensor also has the per-

fect fluid form, with effective pressurp=p—A/87G and

energy density=p+ A/87G [11]. The field equation€2.2)
and law of energy-momentum conservati@?3) then read

.2_87TG 2+A 2_ 4 04
a‘= 3 pa 3a (2.9
ot 2 Jaz|=—alp- 2 2
da | P " 8xG)? |” g-g/% (9
For the equation of state we take
p=(y—1)p, (2.6

with y=const. Previous analytic and numerical studies o

dust-like casey=1 [2-5], and occasionally also the

radiation-like casey=4/3[6-9,36. We will not restrict our-

selves to these values, as many other possibilities have be

considered in the literatur7].
Substituting Eq(2.6) into Eq. (2.5, we find

d o a’” dA )
2P = "8G da’ 27

When A =const, Eq.(2.7) reverts to the well-known result

that densityp scales asa 2 in a pressure-free universe (
=1) anda* in a radiation-dominated universe € 4/3).

factor in the presence of a cosmological teAmwhether or
not the latter is constant.

C. PhenomenologicalA -decay laws

The above mentioned sources of negative vacuum energy
[23-30 do not, in general, lend themselves to simple expres-
sions forA in terms oft,a,H or g. There are some excep-
tions, including scalar field-bas€d9,20,34,68 and other
theorieg[42,53,72—74in which analytic decay laws are de-
rived from modified versions of the Einstein action. In most
such papers, however, no exact solution foiis obtained;
the intent is merely to demonstrate that deGayd preferably
near-cancellationof the effective cosmological term is pos-
sible in principle.

In a complementary approach, a number of authors have
constructed models of a more phenomenological character,
in which specific decay laws are postulated forwithin
general relativity. These theories are incomplete to the extent
fthat they do not include explicit physical mechanisms to gov-
ern the exchange of energy between the shrinking cosmo-
ﬁ)gical term and other forms of mattEf7]. In some models
this issue is not addressed at all; in others the energy is
assumed to be channelled into production of baryonic matter
@Rd/or radiation. The former case can be constrained by ob-
servations of the diffuse gamma-ray background, si@ase
suming the decay process does not violate baryon number
one might expect equal amounts of matter and antimatter to
be formed[47,59. The latter can be constrained by nucleo-
synthesis argumen{g7,49, cosmic microwave background
(CMB) anisotropied47,54,58, the absolute CMB intensity
[50,59, and thermodynamical consideratidi,66,74.

We take the point of view here that simple-decay sce-
narios are worth examining, irrespective of whether they
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TABLE I. Examples of phenomenological-decay laws. where A,B,C,D,I,m,n andr serve as adjustable constants.
These four variablex scenarios and their cosmological con-
Decay lav Reference sequences are explored in Sec. lll, Sec. IV, Sec. V and Sec.
Aoct-2 [19,20,34,38—4]L VI respectively.
AocT4 [20]
AocTB [21] D. Definitions
Aoce™ P2 [42] We conclude Sec. Il by introducing the terms and defini-
dA/dt=AP [43] tions which will be needed to connect our solutions to obser-
Axa? [41,44-48 vation. Chief among these are the energy densities of ordi-
Aocg=4(ite) [47-50Q nary matter and the cosmological term, expressed in units of
Aocg™m [51-56 the critical density:
dA/dtcaH"A [57] 2
dA/dteH3 [57] a=-" x=—é— = o (2.19
AxC+pa ™ (58,59 “pe’ - 3H2T P 8aGT '
Acct! =24 gt20-1) [60]
AocpBa?+H?2 (61,62 We will be particularly interested in the values of these pa-
Aoct™24 =2 [63] rameters at the present tintgubscript “0”):
AxC+e Pt (63,64
AxC+Ba 2+H? [65] 8mwGp, Ao
Aocﬁafm_*_HZ [66] OZW OZW. (213
AoxH? [67-69 0 0
A“(}iﬁH)('_"f* k/a?) [70] These will constitute our primary free parameters throughout
Axt™(B+1) , [71] the following sections.
dA/d_t;‘ﬁA_A [72] The usefulness of the quantiky, (sometimes denoted ,
N [73] in the literaturg is highlighted by using the definition8.14)
Ao<a2 +ha [74] to rewrite the Lemare Eq. (2.4) in the form H2=H3(Q
A=H"+ paH(dH/da) [75] +\)—k/a?. At the present time this implies

aT,a,t,H are the temperature, scale factor, time and Hubble param-

— 22142 _
eter respectively; whilg,e,|,m andC are constants. k_aOHO(QO+)‘0 1. (2.16

From Eq.(2.16) it is clear that
come from extended theories of gravity or phenomenological a.(2.10

considerations, for at least four reasofis: they have been Qo+ No>1=k>0,
shown to address a number of pressing problems in cosmol-
ogy[38-77; (2) many are independently motivated, e.g., by Qo+ Mo=1=k=0

dimensional arguments, or as limiting cases of more compli-
cated theories{3) most are simple enough that meaningful
conclusions can be drawn about their viability; a@dd suc-
cessfgl |mplemenFat|on would point toward the eventual La'Most cosmologists implicitly choose units fag, such that
grangian formulation of a more complete theory. For conve-

nience, we have collected together the most common decq;tge value ofk is normalized to either 0 or=1. We wil
laws from the literature and listed them in Tabléy chron- llow Felten and Isaacmafs] in refraining from this, be-

ological order of appearanie cause it is more convenient for our purposes to choose units
9 PP such thatay=1.

In.the remainder of the paper, we f‘?°”$ on power-law In place ofQ) and\, some authors prefer to use the quan-
functions of one parameter. Our discussion is however mo;ﬁties o andq, defined by
O 1

general than most of those noted in Table |, because we
not fix values of the exponents priori. In particular, we

Qo+ Ag<1=k<0. (2.17)

_ 47wGp aa

consider decay laws of the following four kinds: o= q=— —. (2.18
. 3H2 ' a?
A=At (2.10
The present values of these parameters are fixed with the
A=Ba-™ 2.11) help of Egs.(2.8) and2.14):
00290/2, q0:(37/2_1)90_)\0 (219)
A=CH" (2.12 ) . .
Negative values af, can be obtained for largg@ositive A,
or smally. Equation(2.19 yields the standard expressifs]
A=Dq", (2.13  for gg wheny=1.
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. A AS A FUNCTION OF TIME standardLematre) solution applies, withA = A .= const. If
A. Interpretation of the time co-ordinate 7~ T, then Eq.(3.1) holds all the way tor~0.

We begin with the oldest, and probably the most straight-
forward implementation of the variabl&-idea; namely, one _ B _
in which the cosmological term is a simple power-law func- We are now in a position to study the evolution of the

B. Riccati's equation

tion of time, as set out in Eq2.10: scale factor. Switching dependent variables frarto H:
A=Ar", (3.1 _a da
HZE_HOa_dT , (3.3

where, for later convenience, we measure time in units of

Hubble times ¢=H,t). The casd =2 has previously been Wwe obtain for the differential equatia(2.9):
considered by several authors. Each, however, has imposed
supplementary conditions. End&ukui and otherg19,34 dH [=3y| , vy
operate in the context of a modified Brans-Dicke theory. Ca- dr 2H, R+ 55
nuto et al. [20] assume invariance under changes of scale,

while Lau [38] adopts the Dirac large-number hypothesis|¢ \ye restrict ourselves to spatially flat universes=(0),

(with a time-varying gravitational “constantG) from the  hen the last term drops off, leaving a special case of Ric-
outset. Bermari39] requires that the density of ordinary  ¢at's equation:

matteralsoscale asr~ 2, and that the deceleration parameter

g be a constant. BeeshamO] restricts his treatment to Bi- dH

anchi type | models with variablé. Lopez and Nanopoulos a9 - X H?+ Q(1H+R(7), (3.9
[41] take A to have the same dependence ongbale factor

(Axa ?) as on time, for late times at leagThese latter where P=—3y/2H,, Q=0 and R(7)=(y/2Ho)A (7). We
authors also make the important claim that alecay ansatz i adopt this restriction for the remainder of Sec. Ill. This

of this kind could follow from certain versions of string pas also been imposed in most of the special cases studied so
theory) The question of the initial singularity is not ad- f5r[19,38,39,41
dressed in any of these papers. In this paper, we examine the go|ying Riccati’s equation by standard meth¢@s], we

properties of models with the fori8.1) in a more compre-  change dependent variables fréinto x via:
hensive way.

Several conceptual issues should be dealt with before we 1 dx [2Hg)\ dx
proceed. First, since we are interested in oscillating as well H=— Pxdr | 37 |xdr’
as traditional “big bang” models, we are obliged to broaden Y
the conventional definition of cosmic tinj&8], in which it is whereupon Eq(3.4) takes the fornfputtingk=0 and insert-
set to zero at the moment whar 0. In those cases where ; .

: ing Eq. (3.2) for A(7)]:
the scale factor never vanishes, we choose here to measure

3
A+(1——7

5| (34

Hoa

(3.6

instead from the most recent moment whda'd7=0 (the d2x
“big bounce”). In either case we refer to this as the “initial 7 — —ax=0, (3.7
moment” and denote it by= 7, =0. (Here and elsewhere, dr

the subscript “*” will indicate quantities taken at this time.
Secondly, Eq(3.1) implies thatA —c in the limit 7—0,  With
which may not be realisticA may go to infinity at some 5
other time ¢.., say than the initial moment. Or, more _3r°A
likely, its divergent behavior may be cut off at some critical “= 4H§ '
temperaturdat time 7., say by a phase transition or similar
mechanism, above which is effectively constani21]. Soa  This is now linear, as desired. We will solve fo¢7) in the
more plausible formulation of Eq3.1) might take the form  cased =1,2,3,4.
Oncex(7) is found, the Hubble parametét(7) follows
A A, when 7<7, 32 immediately from the definitior{3.6). Moreover, the scale
= O . factora(7) is also known, as may be verified by comparing
A(r=7.)" when =1, Egs. (3.3 and(3.6) to yield

(3.9

where continuity across the cutoff time implies thatA a(7)=[x(7)]%%. (3.9

= A(7.— 7.,)~'. However, the fact that the dynamical equa-

tions of Sec. Il contain no explicit time dependence meand he constanir given by Eq.(3.8) can be fixed in terms of
that we can shift our time co-ordinate via- 7..) — 7 with observational quantities as follows. Applying the decay law
impunity. The decay law3.2) then reverts to the forrn(3.1), (3.1 to the present epoch= 7y, and using the definition
for all 7=7, at least. In practice we will assume that Eg. (2.15 of A\, we find thatA=3H§)\or'0, which can be sub-
(3.1 holds for all times of interest. For earlier times the stituted into Eq.(3.8) to yield
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a=(3y/2)°\o7p. (3.10 AL L LI

r 4

L 085 e b

With the restrictiork=0, Eq.(2.17) implies that(), is given N e =3
by (1—\,) throughout Sec. Ill. o °F E
= - 4

2 L ~_—05 a

C. The casel=1 8 e 3\ ]

We now proceed to the first case. The differential equa- % b \\\ E
tion (3.7) reads 8 C N
d* 0 (3.11 5_ \A

T— —aXx=0, : . 1

d? o Lt Vi LT

-1 [} 1 2 3 4 S

Time T-7, (units Hy ")

where« is given by Eq.(3.10:

FIG. 1. Evolution of the scale factor for flat models with
<7~ 1 and y=1. Values of\, are labelled beside each curve, and
Qy=1-X\g in each case.

a=(3v/2)*\o7p. (3.12

Following standard techniqug¢39], we switch independent

variables fromr to z=2\— ar, whereupon
P ZOES'}/’To\ _)\0. (319)
2
ZZd_X_Zd_X+22X=O_ (3.13 To keepa(r) finite at 7=0, we requirec,=0, sinceY(z)
dz2 dz diverges logarithmically az=0. This constitutes our third

boundary condition. In conjunction with E¢B.18) it implies
This is transformable to Bessel’'s equation, with general SOthat J;(2o) — v— NoJo(2Zo) =0. This equation may be solved
lution x(z) =c,zJ,(2) +¢,zY1(2), whereJy(z) and Yi(z2)  numerically forrq as a function of\,, with the help of the
are Bessel and Neumann functions of order one. Equatiogefinition (3.19. The results can then be substituted back
(3.9 then gives for the scale factor: into Eq. (3.17) to fix the value ofc,. With ¢; andc, both
a(7)= 1Y c,d,(2)+ ¢,Y1(2) 12, (3.14 l:gsp\)/ér;,ts(erl))/.and H(r) are given by Eqs(3.14 and (3.1
The evolution of the scale factor for this case is illustrated
in Fig. 1 for various values ol assumingy=1 (after
Felten and Isaacmalt]). In particular, we have followed
these authors in plotting the scale factols a function of
, (3.195 (7— 7p), rather thanr for each curve. This has the effect of
shifting all the curves so that they intersect at (0,1), which
marks the present epocfRecall that we have chosen units
such thatay=1, Eq.(2.16).]

where we have absorbed a factor of 2« into ¢4,c,. The
Hubble parameter is found by puttingz) into Eq. (3.6):

/ 70
H(T):HO _)\0(7

whereJy(z) andYy(z) are Bessel and Neumann functions of

order zero. We note from the definitid8.12) thatz(7), and . .
e ; We have plotted for four Hubble times into the future, and
hencea(r) andH(r), can only be reaffor positive times if one Hubble time into the past. It may be seen thatXhe

Ao=0, which would imply a negative cosmological constant._0 (solid line) int s the i is atr o
While this possibility has been considered in some contexts 2/§urv§ io' fme n:hersec”sk € |me|a>§|hs tathe 7o) = ¢
[73,80, we will see shortly that it leads in the present theory » which confirms the well-known ru'e that tné age ot a

to unrealistically short ages for the Universe. Therefore théIat universe with no cosmologlcal constantzig=2/3. Th?
casel =1 is probably not realized in nature. models with \y<0 (dashed linesare younger than this,

: ; o which considerably diminishes their attractiveness. e
pre\{SV:nfaer;)(l)r;gose the following boundary conditions at the: 1 model, for instance, hag,— 0.48, while thex— —3
model has7,=0.35. If we use a current widely-accepted
a(to)=a,=1, H(ro)=Ho. (3.1 Vvalue of Hy=73+10 kms* Mpc™* [81] for the Hubble
parameter, thefrecalling thatt=7/H;) we see that the age
Substituting these expressions into E@s14 and(3.15, it  of the Universe in these models can be no more than 7.4 and

C1Jo(2)+¢,Yo(2)
€1J1(2)+¢,Y4(2)

is straightforward to solve foc; andc,: 5.4 billion years old respectively. This conflicts badly with
estimated globular cluster ages, which are thought to be at
c V=AY0o(2Zg) = Y1(2p) (317 !east 9.6 bill'”%nl y_efars old i_n Eome Cﬁ&{ﬁ&]. The isitua;id%n
1= TV _ : improves slightly if one switches to the lower values
No7olJ1(20) Yo(Zo) =~ Jo(Z0) Y1(2o) ] which are reported by some authdi®3]. If Hy=55*10
kms ! Mpc?, then the maximum possible age for these
co— — V= AoJo(Zo) +J1(20) (3.19 two models increases to 10.4 and 7.6 billion years respec-
2 V=No70l31(20) Yo(Z0) — Jo(Z0) Y1(Z0) ] B tivel_y. On_e can safe!y rule out models wikhy< —_1 on th_is
basis, while models in the rangel<<\,<0 remain margin-
where: ally viable at best.
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Figure 1 tells us that, while flat models widy=0 will 2H,
continue to expand indefinitely as usual, those with negative H(7)= 3
values ofi o will experience eventual recollapse. This can be Y
understood by looking at Ed2.8), which shows that there wherem,=1/2+m,. We then apply the boundary conditions
are two contributions to the deceleration: dagich goes as (3,16 at r=r,. Equation(3.26 with H(r,)=H, implies
—pa) due to ordinary matter and the oth@vhich goes as that:
+Aa) due to the negative cosmological constant. Because
the densityp of matter rapidly thins out with expansion, the To=2mMy/3y. (3.27

first contribution alone is not enough to close the Universe o ) . .
when k=0. The second contribution, however, is diluted SuPstituting this result into Eq3.29, with a(7)=1, we

much more slowly { drops off as onlyz~! in this casg find that c.1=(3y/2m1)m1., which can be put back into Eqg.
and is therefore sufficient to turn the expansion around ever{3-29 to yield the following expression faa(7):

m

: (3.26

T

tually, no matter how small its value at the present time. -\ 2M/3y
Thus, models withh o= —1 and\y= —3 encounter the “big a(r)= (— (3.28
crunch” after only 2.94 and 1.21 Hubble times respectively. 7o

The scale factor expands as a simple power-law function of

D. The casel =2 time. This is consistent with previous special cases obtained
For this case, Eq(3.7) takes the form: for 1=2: Endoand Fukui'sa(r)oc7*"*"~1 [19], Berman
and Som’sa(7)= 7™ [34], Lau and Beesham'a(r)o 73
,d% [38,40, Berman'sa(r)x 72 [39], and Lopez and Nano-
T P—ax=0, (3.20  poulos’a(r)e 7 [41].

In conjunction with the definitions ofm, and m,, Eq.

with @ given by Eq.(3.10 as follows: (3.27 fixes the age of the Universe at:

_ 2
07 3y(1-N)’

This is a special case of Euler's differential equation. Apply-from which we draw two conclusions: first that all models
ing standard method§9), we switch independent variables gatisfying the boundary conditions obey<1; and sec-

a=(3v/2)?\75. (3.21) (3.29

viay=Inr to recast Eq(3.20 in the form: ondly, that the age of the Universg—= as\o,—1. The
initial singularity can thus be pushed back arbitrarily far into
d?  dx _ the past. We also find a lower limit on the age of the Uni-

d_yz_ @_“X_O' (322 yerse in these models by noting that = (my+ 1/2)>1/2.

Inserting this into Eq(3.27) produces the result:
This now has constant coefficients, as desired. There are

. . >1/3y. 3.3
three subcases, accordinglagis greater than, equal to, or 70 Y (3.30
less than—1/(3y,)*. In other words, assuming zero pressue=(1), all models in
) this case have survived for at least one-third of a Hubble
1. The subcaseo>—1/(3y7) time. Adopting a recent observational upper limit of 83

Since we expect on observational grounds tgis prob- ~ km s~ Mpc™* [81], this implies a minimum age of at least
ably positive, this is the most physical of the subcases. So3-9 billion years. Finally, putting Eq3.30 back into the
lution of Eq. (3.22 for x(y) and hencex(7) is straightfor-  expression3.29 for 7o, we find thatho>—1, which fixes
ward. The scale factor and Hubble parameter are found frorihe critical value of, separating this subcase from the other

Egs.(3.9) and(3.6) to be: two.
a(7) = 7Y3(c 0+ ¢ Mo)23y (3.23 2. The subcasé\,=—1/(3y7,)?
Solution of Eq.(3.22 is also straightforward, and one
2H0[ M, Cy 70+ MyCy 7™ finds from Eqs(3.9) and(3.6) the following general expres-
H(7)= - : sions fora(7) andH(7):
37[ 7(c 70+ C, 7 M)
(3.29 a(7)=1"(c3+c,4lnm) 2 (3.3)
wheremy= 3% /1+ (3y75)%\o. It is clear thata(r) diverges 2H0[(03+ 2c,)+cylnt
at 7=0 for A;>0 unlessc,=0, which we consequently H(r)= 3y| 2+(catciny) |
adopt as a boundary conditidas in thel =1 case¢. Equa- (3.32

tions (3.23 and(3.24 simplify to
wherecs,c, are arbitrary constants. To keegr) finite at
a(7)=(c,7M)%3 (3.295 7=0 we requirec,=0, so that:
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a(7)=(cg\/7)2 (3.33
Ho

InsertingH(79) =H, into Eq. (3.34), we find for the age of
the Universe in this model:

T0=1/3y, (3.35

which is exactly the limit\g— —1 in Eq. (3.29. Equation

(3.35 also corresponds to the lower limit allowed by Eqg.
(3.30, as one might expect.

a(7)= " cssin(mgInT) +cscog myinz) 122

2HOJ (c5—2mzcg)sin(msInT) + (cg+2mMsCs)cog mglnT)

PHYSICAL REVIEW D 58 043506

Substituting the agé3.35 into Eq. (3.33, meanwhile,
and imposinga(7,) =1 as usual, we find that;= \3y. In-
serted back into Eq3.33), this yields:
pe ) 1/3y

7o

a(7) =( (3.3

which joins smoothly onto the resui8.28 from the previ-
ous subcase.

3. The subcasé\g<—1/(3y7,)?

Solution of Eq.(3.22) is also straightforward and leads to
the following general expressions faf7) andH(7):

(3.37

= 3y |

wherems= 1/~ (3y79)?\o— 1 andcs,cg are arbitrary con-
stants. Application of the boundary conditiof(&16) gives
Cs andcg in terms of 7y:

L sin(myinzg) + — (37)J— ~_|cogmyingy)
Cg= —=SIN( Mxin —| | = - C0os Myin
T {2
1 1 3)/) .
- Inrg)— —| | 22| \ro——— Inm).
Ce \/T—OcoS{mg N7o) s ( 5 | V70 2 Sln(ms(f::)o)

27 cssin(mgInT) +cgcogmainT) |

' (3.39

choosely=0.5, for example; a value compatible with the
tightest observational bounds thus f&#]. Figure 2 shows
that this model would have come into being 1.33 Hubble
times agdsee also Eq(3.29 abovd. Even if we adopt the
upper limit of 83 km s Mpc™? for H, [81], this translates
into an age of 15.7 billion years — more than enough time
for the oldest globular clusters to forf@2]. By way of com-
parison, econstartA model withh o= ,=0.5 has an age of
only 0.83 Hubble times.

Flat models with no cosmological constant are repre-
sented in Fig. 2 by the curve labellag=0 (solid line). As
in the =1 case, these have an age of 2/3 Hubble times.
Models with a negativer, (long-dashed lingsall have

As usual, we need a third boundary condition to fix the valueshorter ages, as in tHe=1 case. The difference is that they
of 7o. Unlike the previous two subcases, we cannot keeyre noweven shorter because the negative cosmological

a(r) finite at r=0 by setting one ots,cg to zero. Instead

for the value ofry consistent with the boundary conditions
[i.e., with the requirement that eithex(7) or H(7) go
smoothly to zero ag—0]. The values ofcs and cg then
follow from Egs.(3.40 and(3.40 respectively.

The evolution of the scale factor for this case is illustrated
in Fig. 2, which has exactly the same format as Fig. 1, except o z
that we have plotted for three Hubble times into the past &
instead of one. Figure 2 exhibits a richer variety of solutions
than Fig. 1. The most noticeable difference is the existence

of solutions for positiver; (short-dashed lingsOf particu-
lar interest is the limiting casey,= 1, which only approaches
a=0 asymptotically ag— —o0. This case is not very real-
istic, however, as it has zero densignceQ,=1—\y). Itis

in fact the empty de Sitter model. The same solution is found 0

for these values of, and(Q, in conventional Lemane cos-
mology with A =const[5].

| . N I term is driven to high negative values more quickly in the
we have adopted a numerical approach, searching iterativefyast direction when=2. Thus, the age of tha,

model has dropped from 0.48 to 0.33 Hubble times, while

25

-

Scale Fac

~3

-2

-1 1) 1 2 3 4
Time T—7, (units Hy ")

Figure 2 therefore shows that we cannot avoid the big FIG. 2. Evolution of the scale factor for flat models with

bang in a theory with\ 72 andk=0. We can, however,

«7 2 andy=1. Values of\y are labelled beside each curve, and

significantly extend the age of the Universe. Suppose w&,=1—)\, in each case.
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that qf tht_a)\oz —3 model is now onlyry=0.30, down from J=NoYa(Yo) = Y1(Yo)

0.35in Fig. 1. Ci1= (3.4
Figure 2 indicates that tha,<O models tend toward V= Ao70[J1(Yo) Y2(Yo) = Ja(Yo) Y1(Yo) ]

eventual recollapse, as they did in thel case. However,

this process now takes much longer. In other words, while . — V= AoJd2(Yo) +J1(Yo)

thel =2 models are younger, their life expectancies are con- 2T T _ '

siderably greater. This can be understood by means of the No7olJ1(Yo) Ya(Yo) = J2(Yo) Ya(Yo)] (3.48

same argument as befo8ec. Il O. The larger value of

means that the contribution of the cosmological term to theyherey,=z, is given by Eq.(3.19. We require one addi-
deceleration drops off more quickly in the future direction, tional boundary condition to fix,. Unfortunately, as in the
thereby postponing recollapse for a longer period of timeprevious subcase, the procedure is complicated by the fact
Thus, models with\o=—1 andio=—3 now survive fort  that poth terms in Eq(3.45 diverge atr=0, whereas we

>5 andt=3.37 Hubble times respectively. expect that the scale factor as a whole should behave
smoothly there.
E. The casel =3 We can make this more precise by employing the
For this case, Eq3.7) reads asymptotic expressions fdn(y) andY,(y) at largey (i.e.,
small 7). We find (for 7<1)
dx
7 — —ax=0, (3.41 ®o wo| |7
dr a(7)~71?| Cysin| —=| +C,coq — , (3.49
Vr Vr
wherea is given by Eq.(3.10:
2y 3 where C;=Ci%(c;—c;), Co=-Ci%(ci+c,), Co
a=(3y/2)°\oTp. 842  =1/Jmw, and wy=3y79\—No7o. This goes smoothly to

zero for —0. In order to find the correcti.e., self-
consistentvalue of ry, we use the same numerical approach
as in thel =2 case. Oncey is obtained, the values af and

@ dx c, follow from Egs.(3.47 and(3.48 respsctively._ _

— 42" ax=0. (3.43 The evolution of the scale factor for this case is illustrated
dz# dz in Fig. 3, which has exactly the same format as Fig. 1. The
No=0 model(solid line) has an age of 2/3 Hubble times,

This is now in a similar form to Eq:3.11) in thel =1 case, while those with negative values &f, (long-dashed linas
and it can be solved in the same manfigd]. Changing all have shorter ages, as usual. The age of Xhe —3
independent variables again, fromto y=2\—az, Eq. model, for example, has dropped from 0.30 to just 0.27

Following standard techniqu¢g9], we switch independent
variables fromr to z=1/r, whereupon:

(3.43 takes the form: Hubble times. It is unlikely that any of these models could
describe the real universe, given the observational con-
,d%x dx straints onH, and 7, (Sec. 1l O.
y d—y2+3y®+y x=0. (3.44 The main difference between Fig. 3 and its predecessors

occurs at large times, where we observe that the curves all

This is again transformable to Bessel's equation, but with Straighten out, and show no sign of leading to a recollapse of
different general solutionx(y)=y‘1[c1J1(y)+c2Y1(y)], the scale factor. The explanation for this is that @hegative

where c,,c, are arbitrary constants. EquatidB.9) then

givesa(r), as usual: 25 -

a(7)=7"c di(y) +eoY1 ()12, (3.49 2 _ -~ -
. - -

wherey(7)=2\J—a/7 and we have absorbed a factor of § N g i i
2\ —a into c;,c,. The Hubble parameter is found as usual § [ = =
by puttingx(y) into Eq. (3.6): = F ]
% 1 .
/ 70\ [ C1da(y) +CoY Z : ]
H(1)=Ho\/ —\g _o) 1J2(y) T C2Y2(y) ’ £ 1
7] [ €1da(y) +C2Ya(y) °r ]
(3.4 L .
ot VT b e T
S

whereJ,(y) andY,(y) are Bessel and Neumann functions
of order two. As in thd =1 case, these solutions are real-
valued(for 7>0) only if the cosmological term is negative. FIG. 3. Evolution of the scale factor for flat models with

In conjunction with the boundary conditioni8.16), Eqs. o« 3 and y=1. Values of\, are labelled beside each curve, and
(3.45 and(3.46 give for ¢, andc,: Qy=1-\, in each case.

Time T-7, (units Hy ')
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cosmological term is now decaying so quickly with time Employing standard methods/9], we switch dependent
that, like ordinary matter, it is no longer sufficient to turn the variables frone to y via dy/dz=zx(z). It may then be veri-

expansion around.

F. The casel=4
For this case, E(3.7) reads

7'4@—01X=0, (3.50
dr?
with a given by Eq.(3.10 as follows:
a=(3v/2)?\o75. (3.50)

Switching independent variables via=1/7 as in the previ-
ous case, we find that E¢3.50 takes the form:

fied thaty(z) satisfies the familiar equation:

(3.53

The solutions of Eq(3.53 are well known; there are three
subcases to consider, according @gand hence\,, Eq.
(3.51)] is positive, zero, or negative.

1. The subcasa\ >0

Since we expect on observational grounds dgis prob-
ably positive, this is the most physical of the three. Solution
of Eq. (3.53 for y(z) and hence(z) is straightforward. The

2

Zd_X+2d_X_aZX=0. (3.5  scale factor and Hubble parameter are given by E8$)

dz2 dz and(3.6):

|
_ 2/3y
a(r)=r"% clexp<\/—f +czexp< ;/E) (3.59
e 2Ho| c1(1— Jal r)exp(Val 1)+ co(1+ el 7)exp — Val 7) 355
T)= , .
37| ¢, rexp(Val )+ corexp — Vel 7)

wherec;,c, are arbitrary constants. It is clear tregtr) di-
verges atr=0 unlesx; =0, which we consequently assume.
Equations(3.54 and(3.55 simplify:

WE)

H( )—2H°(1+
T 3’),

a(n)=

(3.56

1

r

=

T

(3.57

We then apply the boundary conditiof3.16) at 7= 7y, as
usual. Equatior{3.57 with H(7y)=H, fixes the age at:

2
B WEEN wh

Substituting this result into Eq3.56) with a(79)=1, we
find thatc,= (1/75) exp(Ja/ o), which can be put back into
Eq. (3.56 to yield this expression foa(r):

) ) T
We can draw a number of conclusions from Eg58): first,

that A g<<1; and secondly, that the age of the Univerge
—o ashg— 1. This is reminiscent of the=2 case, and in

(3.58

2/3y

a(7r)= (3.59

fact Eq. (3.58 is almost identical to Eq(3.27), the only
difference being thab, in the denominator has been re-
placed by\/\,. Therefore, for the same value af, thel

=4 models are longer-lived by a factor of {I\g)/(1
—/\o). This is due to the fact that, for positive, the higher
value ofl] means that the cosmological term exerts a greater
repulsive force in the past direction, and is consequently able
to push the big bang back more effectively. As in the2
case, we also find a lower limit on the age of these models.
This is, from EQq.(3.59:

70> 2/3y. (3.60

This is twice as long as in the=2 case, but here the reason
is simply that this lower limit corresponds to the casg
=0 (not Apg=—1 as beforg With dust-like conditions(y
=1) and the upper bounH,<83 km s Mpc™! [81], we
now find a minimum age of at least 7.9 billion years.

2. The subcase\,=0

For this subcase E43.53 is trivial. Using Eqs(3.9) and
(3.6) we find immediately that:

a(7)=(ca+cym) 2 (3.61
2Hy[ ¢4
H(T)—W CatCar)’ (3.62
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where c3,c, are arbitrary constants. For the first time we present case is therefore singularratO, like all the others
have a scale factor with the potential to go smoothly to sometudied in this section. The age of the Universe is given by
finite valueother thanzero at7=0. Let us pursue this pos- Eq. (3.63 as 7o=2/3y. Putting these results back into Eq.
sibility and see if a nonsingular solution is possible. Instead3.61), we find:

of the boundary conditiona(7y)=1, we imposea(0)

=a, , wherea, is the minimum value of the scale factor. In -\ 23y

Eq. (3.61) this implies thatc;=a3”2. Inserting this result a(r)=(—) . (3.649
back into Eq.(3.61) and applying the usual condition 7o

a(tg) =1, we obtainc,=(1—c3)/7o. Substituting this into

Eq. (3.62 and applying the third boundary condition This is just the standarkl=0 solution with no cosmological
H(rg)=Hg, we obtain for the age of the Universe: term, as might have been expected.

=2(1—-c3)/3y. (3.63 3. The subcase\,<0

This result matches onto that of the previous subcase, Eg. Solution of Eq.(3.53 is again straightforward and leads
(3.58, only if c;=0, which also implies that, =0. The via Egs.(3.9) and(3.6) to:

— — 2/3y
a(r)=r2¥ c5sin( Ve +cecos( \/7) (3.65
M= [[c5+(J_/T Co]Sin(v/— al7) +[Ce— (J_/T)c5]cosw—_a/r)
(7 37[ cs7sin(\/— a/ 7) + cgrcog \— al 7)

where c5,cq are arbitrary constants. Application of the actly as predicted in the discussion following E&.59.

boundary condition$3.16) fixes these constants in terms of This is once again due to the fact that, with4, a positive

To: A-term increases in size very rapidly in the past direction.
NegativeA, models, on the other hand, are once again

1 [ 3y younger. The age of they=—3 model, for instance, has
Cs= e BoSINBo+ 00330< 1- 770) (3.66  dropped from 0.27 to just 0.25 Hubble times. And finally, in
) the future direction, we see that there is no longer very much
] distinction between th& ;<0 and\,=0 models, compared
e 1 B4COSBo—Sing (1_ 3_77 ) to Fig. 3. The contribution of the cosmological term to the
SN LS 0 2 9 deceleration of the scale factor now drops off so quickly that
(3.67 it rapidly becomes irrelevant.
where Bo=(3y/2) 7o\~ \o. As usual, we require one addi- IV. A AS A FUNCTION OF THE SCALE FACTOR
tional boundary condition to fix the value ef. The situation )
is again complicated by the fact that both terms in G065 A. Previous work

diverge atr=0, whereasa(r) itself goes smoothly to zero  We now move on to consider decay laws of the form set
there.[In fact, Eq.(3.65 has exactly the same form as the gyt in Eq.(2.11):

asymptotic expressiof8.49 in thel =3 case] We therefore

have recourse once again to the numerical method described A=Ba"" (4.9
in Sec. Il D 3. Oncery is obtained in this way, the values of
Cs andcg are fixed by Eqs(3.66 and(3.67). The scale factor may be more natural than time as an inde-

The evolution of the scale factor for this case is illustratedpendent variable, to the extent that many physical quantities
in Fig. 4, which has exactly the same format as Fig. 2. Sev¢such as temperaturedepend more simply om than t.
eral features may be noted. To begin with, we see that modNearly half of the decay laws listed in Table | contain terms
els with A« 7% are qualitatively the same as those with  of the form(4.1). The casen=2 has been singled out for the
« 7~ 2 for positive\,, and qualitatively similar to those with most attentio41,44—48, and is motivated by some dimen-
A7~ 3 for negative\ . sional argument$41,45. A second group of authors has
There are important quantitative differences, howeverconcentrated on values ofi~4 [47-5(, for which the A
Models with positive\, are significantly older. With\,  term behaves like ordinary radiation. It has been shown that,
=0.5, for examples, is now 2.28 Hubble times — older by for certain kinds ofA decay, the lower of these two values of
a factor of 1.71 times than the equivaldrt2 model, ex- m is thermodynamically more stab[&2]. A third idea, that
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v Integrating, we find for the matter energy density:

- ] p(a)=poa~*f(a), 4.3
N ]
2 . ] where we have set(ty) =ay=1,0(ag) = pg, and defined:
Q L 4
° 15— ] 3y-m_ 1
ER: ] m@T " s,
< L ] f(a)=1+ kX 3y—m (4.4
a 3yIn(a) if m=3y
sk .
: Kko=BI8wGp,. (4.5

Oty I
O‘JT-AJILJf’l|x||'|'|x||:[||x||||||]|1:x|‘|||

-3 -2 -1 o 1 2 3 4

el 1

When m=0, thenf(a)=1 and Eq.(4.3) yields the usual
Time T-7, (units Hy ') result thatp scales asa™2 in a pressure-free universey (
=1) anda 4 in a radiation-dominated universe € 4/3).
The new parametex, can be fixed in terms of observable
guantities by means of the decay la4.1), which givesB
=A0=3H§)\O [with ag=1 and\, defined as usual by Eq.

the cosmological term scales with like ordinary matter (2.15]. Substituting this result into Ed4.5), we find:

(m=3), follows from one interpretation of an intriguing new PRESTe (4.6)

scale-invariant extension of general relatiig]. o otRror '
There are also some studies in which the valuma$ not whereQ, is defined by Eq(2.15. The parametek is sim-

fixed a priori. Ages of generain models have been calcu- ply the ratio of energy density in the cosmological term to

lated and agree with observationrnif<3 [51]. The power that in ordinary matter at the present epoch.

spectrum of matter density perturbations does not appear to Suypstitution of Eqgs.(4.1) and (4.3 into the Lemare

be greatly modified by a decaying term, at least for equation(2.4) yields:

0=m=2 [54]. Lensing statistics favor models witm=1

[55], or m=1.6 when combined with other tests involving da _3y s 1/

CMB anisotropies and the classical magnitude-redshift rela- g, — &L %0@ ~7f(@)=(Qo+ro=1)a “+roa "™,

tion for high-redshift supernovd&6]. Other aspects of mod- 4.7

els in whichA decays as™ ™ have been discussed by sev-

eral authors[53,58,59, although no specific numerical where we have made use of the definitid@sl9), recalled

FIG. 4. Evolution of the scale factor for flat models with
«7~ % andy=1. Values of\, are labelled beside each curve, and
Qy=1-)\q in each case.

bounds are set om. thata/a=(H,/a)da/d, and selected the positive root since
The question of the initial singularity has so far receivedredshifts rather than blueshifts are observed.
little attention in theories of this kinf85]. Some explicitly At this point we could choose integer values raf and

nonsingular solutions have been constructed, all with2  attempt to solve analytically fa(7), as in Sec. IlI. Detailed
[44]. In one other case it is noted in passing that the exisanalyses have been carried out along these lines for the case
tence of an initial singularity would require<Om<<4 under m=0; i.e., for a constant cosmological tefB86]. It is doubt-
some circumstance$9]. The remaining authors either do ful that they can be usefully extended to the general situation
not mention the issue, dias in one cas¢51]) rule outa  in whichm=0. We opt instead to solve the problem numeri-
priori the possibility of nonsingular solutions. In this paper, cally, following the lead of Felten and Isaacms]. The

we take a broader view and examine all possible solutionsime derivative of Eq(4.7) is:

for the scale factor, including those in which it takes a non-

zero minimum value. Moreover we will extend the discus- d2a
sion, not only to generah, but to generaly as well[where

vy characterizes the equation of state of ordinary matter, Eq.

(2.6)]. If m and y are thought of as defining a parameter this could equally well have been obtained from E2j8).]

space, then we determine, first, the extent to which the spagge sypstitute Eqsi4.7) and (4.9) into a Taylor expansion
is singularity-free; and secondly, the extent to which it iS¢y, the scale factor:

observationally viable.

3y

2

F— Qoa1’37f(a)+)\oa1*m. (4.8
T

da

aQ=~ay_1+
k k-1 dr

B. Evolution of the scale factor 2

1( d%a

At+ —( —2> (A7)?%. (4.9
k=1 d7°/\ s

We begin with the dynamical equatiorig.4)—(2.9). In
particular, we consider the energy conservation [@w), This can be integrated numerically backwards in time to de-
which, with the decay law4.1), becomes: termine whether or not a model with given values of
{m,y,Q0,\o} eventually reachea=0. We have tested the
procedure for the case of a constant cosmological term (

adr-(m+) (4.2) ; :
' ' =0) and dust-like equation of states£1), and our results

d 3 mB
daP® = g2G
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FIG. 6. Phase space diagram showing constraints on models

FIG. 5. Evolution of the scale factor for models with=0, .
Y with m=0 andy=1 (after Lahavet al.[15]).

=1, Q,=0.34, and values of, labelled beside each curvefter
Felten and Isaacmdi®]).
_ (By=2)(3y—m)Q,
in this case confirm those of Felten and IsaacfignFigure * _37(2_ m)ai7‘m+ (3y—2)m’
5 depicts a group of examples witi,=0.34 (typical of
large-scale observationi87]) and various values of, (la-  wherea, , the minimum value of the scale factor, is found
belled beside each curkeNote that the difference between by solving:
this figure and the ones in the previous section is that we
now include models of afthreekinds: closed(ong-dashed 3y(3y—m)QgaZ +3y(2—m)(1-Qg)a’—(3y—2)
lines), flat (dash-dotted lingsand open(short dashes (To
keep the diagram from being too crowded, we show only X(3yQo—m)ay'=0. (4.1
models with the same valu@, of the matter densityFigure
5 indicates that negative values X§ can lead to recollapse In general Eq(4.11) has to be solved numerically, but in the
in open, as well as flat universésf. Sec. Ill. Of greater ~casem=0,y=1 it reduces to a cubic equati¢h]. Figure 6
interest, however, is the fact that models with above a is a phase space portrait of this case, with each point on the
critical value A, (=1.774 605 in this cageavoid the big diagram corresponding to a choice@f and\, (after Lahav
bang, undergoing a finite “big bounce” instead. Models et al. [15]). The critical values\, are represented in this
with slightly less than this critical valuée.g.,\,=1.76 in  figure by a heavy solid line. The region to the right of this
this casgare of the “coasting Lemitre” kind: they beginin ~ curve corresponds to universes with>\, ; that is, with no
a singular state but go through an extended phase in whidbig bang. Also shown in Fig. 6 is a straight dash-dotted line
the scale factor is nearly constant. Models wétkactly,  representing the boundary between open and closed uni-
=\, (shown in Fig. 5 with a solid lineare perhaps the most Vverses; models on this line hake=0 (Qo=1—X\y) while
interesting of all. As timer— —, they neither plunge to those on the left and right have<0 andk>0 respectively
zero size nor bounce back up to infinite size, but level off(Sec. I1 D).
indefinitely at a constant value=a, (=0.46 in this case We now have the tools we need to investigate models
These are nonsingular Eddington-Létmai models, with arbitrary values ofm and y. The idea will be to use
asymptotic to the static Einstein universe in the infinite pastphase space diagrams like Fig. 6 to determine how much of
All these features of then=0,y=1 models have been the parameter spadd) corresponds to models with a non-
discussed at greater length elsewH&leOur purpose here is zero minimum scale factor; an@) agrees with observational
to genera“ze the discussion to arbitrary valuesnofnd v. constraints. We can then confirm whether a given model
with {m,y,Q,} does in fact avoid the big bang by carrying
out the numerical integration described in Sec. IV B, and

(4.10

C. Critical values of Ao plotting the results on evolution diagrams like Fig. 5.
In particular, we wish to obtain general expressions for
the critical valuex, of the lambda parameter, and mini- D. Observational constraints

mum sizea, of the scale factor, given any class of models
{m,y,Q¢}. As discussed in Sec. lll A, we are interested in
models for whichda/d7— 0 at some time in the past. This  We pause first to take stock of some of the experimental
occurs, for example, at the moment of the “bounce” in all constraints that have been placed on models with nonzero
the oscillating models shown in Fig. 5. Theitical case is  cosmological terms. Most immediate are direct upper bounds
distinguished by that fact that not oniga/dr, but also on\gfrom a variety of methods, most of them assuming that
d?a/d7? vanishes at this poinf5,14]. We therefore set Qg+ \o=1. Until recently, these have typically been of or-
da/dr=d?a/d7?=0 in Egs.(4.7) and(4.9). This yields: der ~1 [15]. Additional methods, however, have become

1. Upper bounds om\,
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>‘ - A . . . .
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r N PO 7 . . .
g - /X;/;/://,’;//;/,” ] t,>9.6 Gyr[82], then 7,=0.62; that is, the Universe is at
- / . .
3 L i—'f’{;:/:’/:ij’/z?// ] least 0.62 Hubble times old. Of course, as .note_d in Sec_. I c,
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(a) Cosmological Term A,
® dv
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- 7 4
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C:o N f/ /// /// ] ) ) )
o . / y i 1 where we have changed variables of integration frorto
= al 4 21 - ] =a l=1+4+2zf tati | d:
@ o s - . v=a ~=1+z for computational reasons, and:
g . // - . //// /’// ///: 3
N < - PR ] m—
f;) 27/ //// . /// 7/6 //// - m(v Y- 1) |f m¢3y
= 4 . -~ - s —_— ,
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e T T :
N e e e S N N S P Equation(4.13 reduces to the standard resyl#s15] in the
-4 -3 -2 -1 [} 1 2 3 4 _ —
(b) Cosmological Term A, casem=0,y=1.

Numerical solution of Eq(4.13 produces a lower limit
on Aq as a function of{m,y,Q,}. This age constraint is
shown in Fig. 6(for the casem=0,y=1) as a long-dashed
line. Its position matches that in a similar plot by Latet\al.
available in the past few years. CMB fluctuations, for in-[15]. The region to the left of this curve corresponds to uni-
stance, have produced an upper limit o§=<0.86 [88]. verses younger than half a Hubble time. Big bangless mod-
Gravitational lens statistics give a tighter bound\gi0.66  €ls, of course, are not constrained by this; they are infinitely
[89], and observations of type la supernovae appear to redld (by definition, the heavy solid line being precisely the
duce this still further, to\,<<0.51[84]. All of the above are boundary wherer,—2. The main impact of the age con-
described as 95% confidence level measurements. On tiséraint is to rule out models with megativecosmological
other hand, dower limit of A;>0.53 has been obtained from term.
the galactic luminosity density —also at 95% confidence In Fig. 7, we show the effects of varying the parameters
[90]. and y respectively on this age constraint. It may be seen that

Complicating the picture somewhat is the fact that severagltering the value ofn changes the slope of the curve, but
other observational data are well explained by substantigoes not otherwise greatly affect the age, even over the range
values of\, including the lack of observed small-scale dark —1<m=3. Altering the value ofy, on the other hand, has a
matter, the expectation that inflation should lead to nearlarger effect. In particular, the “harder” the equation of state
flatness, and especially the higgeof the Universe inferred  (i.€., the larger the value of), the further this constraint
from models of stellar evolution. This “cosmic concor- encroaches on the available parameter space. This is in ac-
dance” [89] at one time led to calls foh,~0.8[91], al- cord with the well-known fact that a radiation-dominated
though this has since dropped to 0.5-[02]. universe y=4/3), for example, is a short-lived one.

Thus, the observational situation is not yet settled. It is
clear, however, that the nonsingular models in Fig. 5, which
require\g>1.77, are almost certainly unphysical. It remains
to be seen if the same conclusion applies whea0 and/or
y#1.

FIG. 7. The age constraint,>0.5: (a) as a function ofm,
assumingy=1; and(b) as a function ofy, assumingn=0.

3. Gravitational lensing and the antipode

For closed models, the most stringent constraintagn
comes from gravitational lensing, which requires that the
“antipode” be further away than the most distant normally
lensed objecf93]. The antipode is the point where the radial
coordinatewzfiodt/a(t) =fZ°d a/aa takes the valuer [6].

A lower limit on A derives from the age of the Universe, Using our expressiori4.7) for da/dr, together with Eq.
t0=fgoda/é. In our units of Hubble times: (2.16), we obtain(takingag=1 as usual

2. Age of the Universe
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where we have again changed integration variables &rdm
v. The standard formulf2] is recovered whem=0 andvy

Matter Density

=1.

At present, the furthest known normally lensed object is a
pair of lensed galaxies af=4.92[94]. We therefore require:

(4.19 (a)

ZA(QO ,)\o,m, '}/)>492,
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wherez,(Qq,\g,m,7y) is defined by Eq(4.15 with w= 7.
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Numerical solution of this equation yields an upper limit on
Ao as a function of{m,y,Qg}. This lensing constraint is
shown in Fig. 6(for the casem=0,y=1) as a short-dashed 4
line. Its position is close to that in previous pldis5,93
employing a smaller valug,=3.27 (our constraints are
slightly stronge). The region to the right of this curve cor-
responds to universes incompatible with the lensing observa-

y=5/6]

)
1
'

tter Density Q,
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tions. Since this includes the entirety of nonsingular param- _—

eter space, we can see that oscillating models with constans ‘ L

A and zero pressure are ruled out, as noted previously by t L /3]

these authors. S N
In Fig. 8, we show the effects of varying the parameters ofoviitiisa ;:-wi:;;rl 315 PR

and y respectively on this lensing constraint. As before, it is ®)
seen that harder values gflead to tighter constraints on the
available parameter space. However, the situation with re-
gard tom is altered quite dramatically. In particular, the
higher the value ofm, the weakerthe lensing constraint be-
comes. As we will see, this significantly improves the pros-
pects for viable big bangless models.

Cosmological Term A,

FIG. 8. The lensing constraim>4.92:(a) as a function ofn,
assumingy=1; and(b) as a function ofy, assumingm=0.

models in Fig. 5, which never get smaller thap=0.46,
cannot accommodate redshifts greater tligr=1.2. This
disagrees with observations such as those of the lensed gal-
A fourth observational constraint, which must be satisfied@Xies mentioned above.

only by nonsingular models, concerns the maximum observ- The conditionz, >z, can be reformulated as an upper
able redshiﬁz*:a;l_l in a universe with a minimum limit on the matter densityof the Universe. Assuming that

scale factora, . This must obviously be larger than the da/dr=0 andd®a/d7*=0 atz=z, for nonsingular models,
greatest redshift,,; actually observed. Thus the nonsingular Egs.(4.7) and (4.8) can be combined to reafor m+#3y):

4, The maximum redshift constraint

2—m+(mi3y)(3y—2)(1+z,)% ™
2—m—(3y—m)(1+2,)37 2+ (3y—2)(1+2z,)%"™ ™

[PRES

(4.17

Equation(4.17) reduces to earlier expressions ofrBer and Let us see how the above conclusion changes when we
Ehlers[14] whenm=0 andy=1 or 4/3. These authors have generalize the situation to values of#¥0. Moreover, we
then argued as follows: given that quasar redshifts have beewill strengthenthe argument by noting that some distant
observed out taz,,>4, we know that the Universe has galaxies have now been assigned photometric redshifts as
z, >4. This constraint with Eq(4.17) implies (assumingn  high asz,,s>6 [95], implying thatz, >6. The resulting up-

=0 andy=1 or 4/3) that();=<0.018, which is contrary to per limits on density(), are listed in Table Il for various
observation. This indicates that our Universe could not havealues ofm and y. From this table we see that the new
been nonsingular. photometric redshifts tighten the "Bwer-Ehlers constraint
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TABLE Il. Borner-Ehlers-type upper limits on matter density
Q, for various values ofm and y, assumingz, >6.

2/3  5/6 1 716 4/3 5/3

Y-

m:

0 » 0.033 0.006 0.002 0.000 0.000 0.000
1/4 © 016 0.10 0.079 0.067 0.053 0.044
1/2 © 031 020 016 0.14 0.11 0.090
3/4 o0 049 033 026 022 017 0.14
1 » 075 048 038 032 025 0.20
5/4 o 11 071 055 046 035 0.29
3/2 0 1.9 11 087 071 054 044
714 0 4.2 2.4 1.8 1.4 1.0 0.84
2 o) o) o) o) o) o) o)

noticeably: as long asi=0, a nonsingular Universe requires
0,=<0.006(if y=1) or Q1,<0.001(if y=4/3). These num-
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FIG. 10. Evolution of the scale factor for universes with
m=1,y=1 and(),=0.34. Compare Fig. 5.

bers, of course, are too low to describe the real universaruye for small values ofn. With increasing m however,

However, Table Il demonstrates that much higher densitie
are possible in singularity-free models withriable A. For
example, retaining pressure-free conditions=(1), we see
that if m=1, then the matter density in a nonsingular uni-
verse must satisf§),<<0.48. This value is not unreasonable
at all; in fact it is well above most dynamical measurements
which suggesf)(~0.3[87]. The constraint is similarly loos-
ened if we move toward softer equations of state withl,
such as those that have been proposd@.

E. Viable oscillating models

We now demonstrate that models with= 0 are capable
of satisfying all the constraints discussed above. Figure 9 is

phase space diagram like Fig. 6, but plotted for a range of

nonzero values ofm. We have assumegl=1 as before, but
there is now a different line of critical values, (m,y,Qq)

for each value om. Like Fig. 6, Fig. 9 shows that much of
the nonsingular parameter spad®low and to the right of
the heavy solid lingsis eliminated because it does not over-
lap with the regions allowed by the lensing constréatiove
and to the left of the lighter dashed line¥his is especially

LNLILE AL T N B B LA LA IO
4

T

T
/
/

Ly BLIE
/

Matter Density 1,

PRI AR A R
1.2 14 1.6 1.8

T IR BT S
4 .6 8 1

Cosmological Term A,

Zignificant triangle-shaped regions of parameter space appear
neark=0. Thus form=1, there are allowed models with
0,~0.3 and\y between about 0.7 and 0.9. These are very
close to the values favored by observati@v,92, so we
focus on this case. The lensing constraint imposes the lower
boundQ,>0.31. If we take(),=0.34 as a specific example
(as beforg, then by tracing horizontally across Fig. 9 we find
that lensing also places an upper boung<0.72 on the
cosmological term. From E@4.10 the critical value for this
case turns out to be, = 0.68, which is marginally consistent
with the upper limits on\y mentioned earlier. Therefora

=1 models withQ);=0.34 and 0.6&\,=<0.72 are both re-
8listic and singularity free.

For larger values ofn, the range of acceptable, values

is broader, but one is also driven to higher values(gf
With m=3/2, for example, we find that viable nonsingular
models occur only fof),>0.46, and that af)y=0.51 they

lie in the range 0.5%\(<0.57. Atm=7/4 and(Q,=0.59
this broadens to 0.42\ (,<0.50(low enough to satisfy even
the supernova constraif84]). As m—2, we find thata,
—0, so that nonsingularity is lost. This also happens in the
limit y—2/3 and, interestingly, as, —1— Q. (It is for this
latter reason that all the nonsingular solutions in Fig. 9 have
k>0

Unusual values ofy, although interesting and possibly
relevant at early times, do not alter these results in any fun-
damental way. In practice we find that the parameter space
allowed by observation shrinks slightly for harder values of
v, like 4/3, but grows significantly for softer values such as
those in the range 0dy<<1 [37].

To verify that models with the properties described above
can in fact avoid the big bang, Fig. 10 shows the evolution of
the scale factor whem=1,y=1 and(),=0.34, obtained by
numerical integration using the Taylor expansi@h9), as
before. Various values of, are labelled beside the appro-

FIG. 9. Enlarged view of the phase space diagram, Fig. 6, nowlriate curves. This plot has exactly the same format as Fig. 5,

plotted for various values ain between 0 and Zlabelled beside
each pair of curvesassumingy=1.

with long dashes corresponding to>0, short ones tdk
<0, and the dash-dotted line corresponding 0.
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Figure 10 confirms that when, takes on the critical Among other things we will find that a cosmological term of
value N, (=0.679 807 621 in this cagethe scale factoa this kind allows for a nonzero minimum scale factoropen
evolves back to a constant valag, as expectesolid line). models.

More importantly, the smalbize of this minimum value, Terms of the form(5.1) are nearly as common as those
a, =0.0097, means that we can now accommodate observedudied in Sec. IV, appearing in almost a third of the decay
redshifts up taz, =102, well beyond the furthest objects yet laws listed in Table I. The value=2, favored on dimen-
seen. The model is thus compatible with all observationaPion@l[61] and other groundg57], is adopted almost univer-
data. It cannot, however, accommodate larger redshifts lik§ally [61,62,65-69 Other powers ofH are considered

that attributed to the last scattering surfaeg £~ 1100), let In three cases, but only in combinations such as

a n -2
alone the era of nucleosynthesis, which occurred at temperg-Xp( _faH ) [5.7].’ a H [70]’. andaH(dI—!/da) .[75]' The_
turesT, .~ 10% K, or — sinceTo(1+2) — redshiftsz question of the initial singularity has received little attention
nuc 1 nuc

. in these papers, apart from one explicitly nonsingligg]
~10'° In fact, withz, =102 them=1 model heats up to no n - - - -
more than about ;1031_0:281 K. which is just punder and one asymptotically de Sitter—like solutipf0].
* ’
room temperature. That is to say, if the Universe is described

by a nonsingular variabld- theory with m=1, then the o _ _ _
CMB and the abundance of the light elements cannot be Substituting the decay la¥b.1) into the differential equa-

B. Riccati's equation

accounted for in the conventional way. tion (2.9), we obtain:

Unconventional explanations have been proposed for both
these phenomena, but are not widely accep®&&dl A more o f n—1_ 3_7 _(37v=2 5 1
conservative approach might be to retain the traditional hot, da \2a 2a 2a a2 '

dense early phase in the context of variahletheory by (5.2
moving to larger values ah. As discussed above, this leads B

to smaller values of, and hence larger values af and Where we have used the fact thata=aH(dH/da)+H?.

T, . In this picture the high temperature of the early universel his is nonlinear, but bears some resemblance to the Riccati
is a result, not of an initial big bang singularity, but of a very €quation(3.5. We switch dependent variables frathto x
deep “big bounce.” Withm=1.5 andQ,=0.51, for in- =H', wherer is an arbitrary constant whose value will be

stance, we find thak, =1.7x107%, corresponding to a chosen in a moment. In terms »f Eq. (5.2) takes the form

maximum redshift of 5900 and a “bounce temperature” of
16,00 K — more than sufficient for recombination. A %:
=1.8, this latter number climbs to 5710° K — hot enough da
for nucleosynthesis(An analysis like that below Fig. 9

shows that models witm= 1.8 andQ2,=0.61, for example, Wherel=(n+r—2)/r andm=(r—2)/r.

are observationally viable if 0.44\ ,=<0.49) With m=1.9, Whenn=4, we see that the choige=2 puts|=2 and
one can entertain bounce temperatures as high as1@§  M=0, whereupon Eq(5.3) takes the form:

K (2.5 GeVj, approaching the realm of electroweak unifica- dx

tion. (Models withm=1.9 and(),=0.67 agree with obser- — =P(a)x?+ Q(a)x+R(a), (5.4
vation if 0.39<)\;=<0.48) As m—2, in fact, one finds that da

a,—0 and T,—». As remarked above, however, theseWith

higher values ofn come at the modest observational price of

higher matter densities. The lensing constraint sets a limit of \C 3y
0¢>0.54 form= 1.8 models, for example, arfdl,>0.57 for P(a)=-—, Q(a)=——, R(a)
m=1.9 models. a a

ryC
2a

3ry

r(3y—2)k
2a

2a®

x™ (5.3

_(2-3y)k

a3

(5.5

V. A AS A FUNCTION OF THE HUBBLE PARAMETER This is Riccati's equatiori3.5), as desired.

A. Previous work Whenn=2, on the other hand, the choice=2 leads to

We have seen in Sec. |V that variabletheories in which I=1 andm=0, whereupon Eq(5.3) reduces to

Axa™™ appear to offer the possibility of avoiding the big dx

bang singularity without violating any observational con- da+S(a)x=7(a), (5.6
straints. The parameter space occupied by viable models,
however, remains small. As discussed in Sec. IV E, one reagith:
son for this is that the oscillating solutions are all closed,
whereas observational evidence tends to favor an open uni- _ _

: ; ) . _v(3=0) _(2=3y)k
verse[96]. In this section we shift our attention to decay laws S(a)= ., Ta)=—7F—. (5.7
of the form set out in Eq(2.12: a a®

A=CH". (5.1)  This case is linear, and may be solved easily.
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For other values of, a check reveals that no apparent a2t M2 _ . (5.14
choice ofr will put Eq. (5.3) into a form which can be solved *

analytically forx (i.e., for H). We therefore concentrate on It is convenient to distinguish two cases, according to
the casemn=2 andn=4 for the time being, leaving the whether the exponent oa, is positive or negative. Using
others to future numerical analysis. In both cases the HubblEgs. (5.11), we obtain:

parameter is given byl = X (sincer=2).

(T 2)\0_(3,)/_ Z)QO TU[3y(1-X\g)—2]
C. The casen=2 [ (3y=2)(1—=Qp— o) ]
Multiplying through by a factor of exXgS(a)da] I LR R
=a”®~9 puts Eq.(5.6) into exact form, which may be in- A= [(3y—2)(1—Qg—\g)|M237(1-20)] (5.19
tegrated directly fox(a) and henceH (a): | 20— (37— 2)0Qp
(2-3y)k | i o>,

112
H(a)z[ ———la %+ c0a7<°’3>} , (5.8
¥(3-0)-2 where we have definedl,=1—2/3y (leaving the case\,
=\ aside for the time being
From Eq.(5.195 we draw a number of important conclu-
sions: (1) Spatially flat solutions Xy+\g=1) have either

a, = (if N\g<\) ora, =0 (if A\g>\;). The former case is

where Cy is a constant of integration. Using the boundary
conditionH(ag) =H(1)=H, to eliminateC,, we obtain:

_ -3 —-2791/2
H(a)=Ho[aa”“ ¥+ pa *]"%, (5.9 not interesting. The latter case is de Sitter—like, with the
where initial singularity pushed back into the infinite past. We have
encountered this kind of solution befo{8ec. Il D 3.
)_3 K (2) With the modest assumption that>2/3 (i.e., normal,
—9Y

- (5.10 non-inflationary matter we notice thatlosedsolutions(i.e.,

H3 ' No>1—Q,) must satisfy\y<(3y/2—1)Q,, while open
ones fy<1-1) obey\y>(3y/2—1)Q,. These conclu-

The parameters, 3 andC can all be fixed in terms of ob- sions follow from requiring that the terms in square brackets

servable quantities at the present titset,, as follows. With ~ be positive; i.e., from the requirement tfegt be a real num-

n=2, the decay law5.1) givesC=A,/H3=3\,, where we  ber. (The exception in which the exponent is an even integer

have used the definitio(2.15. Substituting this result into # occurs only for special values of the lambda parameter,

“=imh EE{W

Egs.(5.10 and(5.9), we find: No=1—2/3y—1/6py, and will not be considered further
here)
(3v/2—1)Q9—\g (3) Requiring that B<a, <1, we learn that both the nu-

= 32 A=ng) =1 B=1-a, (5.1)  merators and denominators in E&.15 must be positive.
Y 0 Comparing their relative absolute magnitudes, we distinguish
two possibilities:(a) if Ag<\., then both the numerator and

d_a:[aaZ—sy(l—Ao)Jrﬁ]llzl (5.12  denominator must be positive, since otherwisey {2)(1
dr —Qp—No)<2\o— (37—2)Q¢, Which reduces to\y>\.,
contrary to the hypothesis. On the other haftlif \o> X\,
where we have used E(.16) and setap=1 as usual. then wealsofind that both numerator and denominator must
be positive, since otherwise §3-2)(1—Qs—Ag)>2\g
D. Evolution of the scale factor —(3y—2)Qg, which reduces to.g<\., again contrary to

For special values of and, it may be possible to solve the hypothesis. Therefore both the numerators and denomi-

. o : : nators are positive in all cases.
Eq. (5.12 in terms of elliptic(or simple) integrals. For gen- . . . . .
eral purposes, however, we take the same approach as in Sﬁ(}:.(d') It folloz/-vs fr>0r2n/?t’h?hc?.nclu5|om3), in conjunction with
IV and evolve the scale factor numerically in terms of its first € assumptiory » that:

and second derivatives. The latter of these is given by: Ao<1—Qg. (5.1
d?a 3y 131 In other words, to realistically describe the present Universe,
F:a 1—7(1—7\0) al~37172), (5.13  models with a nonzero minimum scale factor must, in the
T

present theory, bepen While some nonsingular open solu-
tions have been found in theories employing scalar fields

Equations(5.12) and(5.13 can be substituted into the Tay- [97] and higher-order curvature terrf8], we are not aware

lor expgn3|on(4.9) an_d integrated backward numerically to precedents for this in theories based on the cosmological
determine the behavior of the scale factor. term

We also wish to determine the conditions under which the

Universe evolves backward to a nonzero minimum scale faci-nfé?ﬂ?gt.combmmg Ea.(5.16 with the conclusior(2), we
tor,a=a, . Settingda/dr=0 (ata=a, ), we find from Eq. '
(5.12 that: No>(3y/2—1)Qy, (5.17)
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FIG. 11. Phase space diagram for the case2 with y=1, FIG. 12. Evolution of the scale factor for models with=2,y
showing contours of equal minimum siag . =1, Q,=0.3, and values ok, labelled beside each curve.

which sets a lower limit on the size of the cosmological term.ments made by several authg@g] that there is no reason in
(6) Equations(5.16 and(5.17) together impose an upper principle why the oscillations in a nonsingular model cannot
limit: be deep enough to account for all the evidence which is
usually taken as proof that the Universe began in a singular-
0¢<2/3y, (5.18 ity. Moreover, the only observational constraint which seri-
ously limited the variablet models in the last section — the
lensing constraint — does not apply in this section because
there is no antipode in an open universe.
To meet the conditiori5.19, models in this theory must
The information contained in Eq$5.15—(5.18 is sum- lie close to the upper edge of the triangular region in Fig. 11.
marized in Fig. 11, which is a phase space plot like Fig. 9,To an extent this is “fine-tuning.” However, it also allows
but enlarged to show only the range of interesg @ <1 us to make very definite predictiofias in Sec. I\ about the
and 0s\y<1. Models with §¢,Q,) are represented by values of\q that would be required in a realistic oscillating
points on this diagram, as usual. The critical valuea ofn  model. As an example, let us consider the observationally
this theory define the upper edges of the triangular region gavored value of(2;=0.3 [87], and let us assume=1 as
the base of the diagram; i.e., the region bounded by thesual. Tracing horizontally across the line defined by
curves Qg+Ap<1l (dash-dotted line and Qg+Ag 0,=0.3in Fig. 11, we can see that the nucleosynthesis con-
>(3v/2)Q, (dashed ling All models between these curves dition (5.19 is met by onlytwo values of the cosmological
are nonsingular, with real values o, in the range term: Ayg=~0.15 and\y~0.7. Of these, the larger value is
0O<a, <1, as we have stipulated. Figure 11 is plotted for only marginally viable, being very close to the observational
=1. upper bounds described in Sec. IV D 1. The smaller value,
Using Eq.(5.19, we have plotted contours of equal mini- however, is perfectly acceptable from an observational stand-
mum scale factoa, in this region(heavy solid lines Any  point.
point along one of the contours corresponds to an oscillating In general, the theory predicts that the most likely value
model with the labelled value &, . Following the discus- 0f \q is eitherjust below
sion in Sec. IV E, we would like to find models in whieh)
is as small as possible, in order to obtain the largest possible 1-9Qo, (5.20
maximum observable redshift, < a;l— 1. For instance, to
be compatible with observations of quasazg,(~10), a,
must be less than about 0.1. If we wish to explain the CMB
as relic radiation from the last scattering surfacezgt
~1100, then we require a smaller minimum scale factor, ,. . . . . :
a, <0.001. And to meet the demand that the early Universé’vhICh is to say, just abovy/2 in a dust-like universe

. =1). The former situation might be preferable to some on
heat up to nucleosynthesis temperaturés,.~To(ap/a,) : . S
~10° K], our model must satisfy theoretical ground$92], while the latter is in better agree-

ment with the increasingly stringent observational upper lim-
a,<10"° (nucleosynthesjs. (5.19 itsonkg (Sec. IVD 1.
To confirm that models with these features really do avoid
Figure 11 demonstrates that the present theory can readithe big bang, the solutions can be evolved backward in time
satisfy this constraint. Any model lying along the curve la-as before, using Eq$5.12 and(5.13 with the Taylor series
belled 10 ° will be capable, in principle, of reaching these expansion(4.9). The results of this procedure are shown in
temperatures near the “big bounce.” This confirms com-Fig. 12 for the cas€)y=0.3 andy=1. This diagram is an

on the matter density of the Universe.

E. Minimum values of the scale factor

or elsejust above

(32— 1)Qy; (5.20)
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enlarged version of the evolution plots in Sec. (Wigs. 5 2(2—-9)

and 10, showing only the past three Hubble times. Values of =gy VT (1=~ (5.26
\o are marked beside the appropriate curves. Several fea-

tures can be noted. Somewhat surprisingly, Eq5.25 has the same form as the

First, the initial singularity is avoided for any value ®§ differential equation(3.7) governing the solutions of tha
between 0.15 and 0.7, as expected on the basis of the phasg~' models in Sec. Ill(The two are identical if we put

space diagram, Fig. 11. In the limiting case whg=0.7 7 y—x u—l, andv— —a.)

exactly, which is spatially flat, we see tret =0 (de Sitter— So we could in principle bring over all the results of Sec.
like behavioy, as expected based on the discussion following||, for the casesu=1,2,3,4 at least. However, combining
Eqg. (5.15. the definitions(5.23 and (5.26), we find that u=(2/3y)

Secondly, Flg 12 confirms that the Value@f is smallest ><(3'y— 1), or 7:[3(1_/1’/2)]_1 Therefore solutions ob-
near the critical values ofy: 0.064 for thek = 0.6 casdjust  tained in this way would correspond to equations of state
below 0.7, and 0.018 for the.,=0.2 casdjust above 0.156  with y-values of 2/3¢,— 2/3 and—1/3 respectively. These
These numbers have been chosen for illustrative purposegp not describe realistic forms of matter, at least not in the
smaller values o, (with consequently larger bounce tem- present universg37]. Conversely, values of thatare rea-
peratures are obtained by letting., approach the critical sonable(such asy=1 or 4/3) correspond to non-integral
values more closely. values ofu (such as 4/3 and 3/2 respectivelit is doubtful

Thirdly, this evolution plot gives us some information that Eq.(5.25 can be solved analytically in these cases. We

about the ages of the models; that is, the elapsed time singgerefore leave the possibility that=4 for future numerical
the big bang(or the big bounce, as appropriatét may be  gpalysis.

seen that, within the range 045 ,<<0.7, larger values of
Ao correspond to older universes, as usual: 1.10 Hubble \,; A A5 A FUNCTION OF THE DECELERATION

times forAy=0.2, and 1.70 Hubble times for,=0.6. Even PARAMETER
if Hy takes on its largest currently acceptable value of 83 _
km s ! Mpc ! [81], the ages of the two models are 13.0 A. Evolution of the scale factor
and 20.1 billion years respectively — well above the globu- e turn finally to the last of our phenomenological decay
lar cluster limit of 9.6 Gyr82]. laws, Eq.(2.13, writing it in the form:
F. The casen=4 a\’
. , A=D| | . 6.1
We proceed to the other case of interast 4, which a

consists of the Riccati equatidp.4) for x(a). This can be
solved using standard techniqué®]. Switching dependent
variables fromx to y via x=(—1/Py) dy/da, we obtain:

As far as we are aware, no such dependence has previously
been considered for the cosmological term. However, it is a
natural extension of the other decay scenarios considered so

d?y dy far. There is no fundamental difference between the first and
—+/a 1=+ pa%y=0, (5.22  second derivatives of the scale factor that would preclude the
da’ da latter from acting as an independent variable if the former is
acceptable.
where: Substituting the decay law.1) into Eq.(2.9), we find:
{=1+3vy, n=7yC(2—-3y)k. (5.23 dH r 2 K 2 dH
Dl aH——+H? =(3——) H2+ — |+ —| aH—-—+H?|.
The parameter; can be connected to observation as follows. da Y a?) v da
With n=4, the decay law5.1) givesC=Ao/Hj=3\q/H3. (6.2

Substituting this result into the second of E@gs23, we find We adopt the value=1 for the remainder of Sec. VI, since

7=37(2—=37)\o( Qo+ No—1), (524 We would like to solve for the Hubble parameter in analytic
form in order to make use of of the Taylor expansidro).
where we have used E.16 and seta,=1 as usual. Equation(6.2) then takes the form:
Equation(5.22 is linear as desired, but not straightfor-
ward because of its variable coefficients. We can recast it in dH _y[3-D k 37—2)H1 63
normal form by changing independent variables franto da al\yD-2 as\ yD—2 ' '
z=[e ?@da, where¢(a)=/({a ')da= ¢Ina. This proce-
dure leads to the following differential equation fpfz): As in Sec. V B, let us make a change of dependent variables
from H to x=HS3, wheres is an arbitrary constant. Equation
d?y (6.3 then takes the form:
z#—+vy=0, (5.25
dz? dx sy[ 3-D\| sk/3y-2| _
—=— X+— )x(S 2ls. (6.9
wherez=(1—-¢) 'a' ¢ and: da al\yD-2]" g3\yD-2
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If we chooses=2, this is reduced to the linear for(.6), Qo+ Ao \[AFEN20)Ey=21
with: m) if do>0dc
D3 BT [ Qg - 1)L (370280~ 1/(3y-2)]
— B S if Qo<
S(a)=27< yD—2 a 1, Qo+ N ) T qo<dc,
(6.5 (6.11
B 3y-2| _, where we have defined.=—(3y/2)\, (leaving the case

T(a)=2k yD—2 go=0. aside for the time being

We can draw a number of useful conclusions from the
form of Eq. (6.11). First, (1) that spatiallyflat solutions
(Qo+Np=1) again have eithea, = (if go>q.) or a,
=0 (if gqp<q,). This is just as in the previous secti¢Bec.

V D).

(2) Secondly, requiring real values fa, (subject to the
same proviso about even-numbered integer exponents as in
Sec. VD, we can conclude thatlosedsolutions(i.e., A
whereC, is a constant of integration. Imposing the boundary>1— ) must satisfy\ o> — €, while openones §,<1
conditionH(ap) =H(1)=Hy, we find with the help of Eq. — () obey \o<—Q,. It follows that, if A, is a positive
(2.16 that Co=H3+k=H3(Qo+X\o). We can also fixD  quantity, as observations almost certainly indic48ec.
in terms of observable quantities. With=1, the decay IV D 2), then models with a nonzero minimum scale factor
law (6.1) gives D=Aq(&/a),_y,= —Ao/H3do=—3\o/do,  Must in the present theory, mtosed We will assume that

whereqq is the present value of the deceleration parametert,’o'[h these conditions hold in the remainder of Sec. VI.

and we have used the definitiof.15 and (2.18. Substi- (3) Thirdly, requiring that 6<a, <1 as before, we learn
tuting this result into Eq(6.6) along with Eq.(2.16), and that the deceleration parametgy satisfies
recalling thatH=(Hq/a)da/dr, we find: Go<0. - (6.12

Multiplying through by a factor of exXgS(a)da]
=a2"P=3)/(yP=2) gnd solving exactly as in Sec. VC, we
obtain for the Hubble parameter:

H(a):[C0a727(D73)/(7D72)_ka72]1/2, (66)

da__ 1 This follows from the fact thatQ,+\,—1| cannot be
E_[aa +BIM 6.7 gregt_eretharmﬁ No| (assuming that)y and \, are both
positive.
where: (4) Finally, combining the conclusio(8) with the defini-
' tion of q., we infer that
a=(QotAg), B=l-a, 6.9 0o<—(3v/2)\,. (6.13
(2—3y)0o Assuming as we are that the cosmological term is positive,
&= m this implies that the deceleration parameter mushégative
0 0

for a universe filled with normal matter/(2/3).
Unfortunately, the deceleration parametgf remains
among the most poorly-constrained quantities in observa-
tional cosmology. Nevertheless, it is fair to say that the ma-
d’a ¢ el jority opinion among cosmologists holds thgf is probably
a2 5 (QotAg)a® ", (6.9  positive[100]. The most recent experimental determination,
obtained from type la supernovae, leads to a value of
0o=0.385+0.36 [101]. Since oscillating models in the

This expression, together with its time derivative:

can be substituted into the Taylor expansidr®). present theory not only havg,<0, butk>0 as well, they
are somewhat disfavored in comparison to those of Sec. IV
B. Minimum values of the scale factor and Sec. V; and we judge that this is a reasonable place to

: . I .. halt our investigation for the time being.
As in Sec. V D, we require that oscillating models satisfy g g

da/d7=0 ata=a, . In conjunction with Eq(6.7), this im-
VII. CONCLUSIONS

plies:
We have examined the evolution of the scale faet()
af=|——=-— (6.10 in the presence of a variable cosmological tekmand also
Qo+ extended existing treatments by adopting a fairly general
equation of state for ordinary matter.

Let us write this out explicitly using the last of Ed§.8). As A number of new exact solutions fer(t) have been ob-
with Eq. (5.15), we will find it convenient to distinguish two tained in cases whergxt~'. These models are singular, but
possible cases: can be significantly older than those in whigdh=const. For
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odd values of, the cosmological term must be negatiee  required by conventional nucleosynthesis, tihes 1.8.
zerg if the scale factor is to be real-valued. Our conclusions We have also solved numerically for the scale factor
may not extend to cases in whidh#0; this will require  whenA«<H". In this case we have fourmpenmodels which
more detailed numerical analysis. can account for the observational data despite their lack of an
For a cosmological term that scales/asa™ ™, we have initial singularity. In particular, oscillating models with zero
solved numerically for the scale factor as a function of time pressure and values of, either just above(},/2 or just
and found that there are closed models which are compatibleelow 1—(, are viable ifQ,<2/3 andn=2. (We have
with observation and contain no big bang. This is in shargnvestigated only the cases=2 and 4 in detai). If Q,
contrast to the situation wher®= const, for which experi- ~0.3 and\,~0.15 (or 0.7), for example, then the most re-
mental evidence firmly establishes the existence of an initiatent “big bounce” could have been deep enough to account
singularity.(The variation effectively allows one to obtain a for phenomena such as the cosmic microwave background
large A term where it is most important — near the “big radiation and light element synthesis in a model with2.
bounce” — without the price of a large cosmological con-  For a cosmological term that depends on dieeeleration
stant at present timgsThis appears not to have been widely parametervia Axq’, we have solved only the case=1.
appreciated, probably because variable cosmological termBlosed oscillating models are possible, but require thae
have so far been studied almost exclusively in the context ofiegative at the present time, if the cosmological term is posi-
the cosmological “constant” problem. We have obtainedtive.
constraints from experimental upper limits d, as well as
requirements of sufficient age, normal gravitational
lensing at high redshifts, and others. As specific humerical
examples, oscillating models with zero pressure, We are grateful to R. H. Brandenberger, L. M. de Men-
0,={0.34,0.51,0.61,0.67 and Ao in the ranges ezes, T. Fukui, F. D. A. Hartwick, W. Israel and C. J.
{0.68-0.72,0.51-0.57,0.41-0.49,0.39—0.48re observa- Pritchet for their comments, and to the National Science and
tionally viable if m=1,1.5,1.8 or 1.9 respectively. If the Engineering Research Council of Canada for financial sup-
bounce is to be deep enough to generate the temperaturgert.
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