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Evolution of the scale factor with a variable cosmological term

J. M. Overduin* and F. I. Cooperstock
Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada V8W 3P6

~Received 9 February 1998; published 15 July 1998!

The evolution of the scale factora(t) in Friedmann models~those with zero pressure and a constant
cosmological termL) is well understood, and elegantly summarized in the review of Felten and Isaacman
@Rev. Mod. Phys.58, 689~1986!#. Developments in particle physics and inflationary theory, however, increas-
ingly indicate thatL ought to be treated as a dynamical quantity. We reexamine the evolution of the scale
factor with a variableL term, and also generalize the treatment to include nonzero pressure. New solutions are
obtained and evaluated using a variety of observational criteria. Existing arguments for the inevitability of a big
bang~i.e., an initial state witha50) are substantially weakened, and can be evaded in some cases withL0 ~the
present value ofL) well below current experimental limits.@S0556-2821~98!02416-3#

PACS number~s!: 98.80.Bp, 04.20.Dw
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I. INTRODUCTION

The behavior of the cosmological scale factora(t) in so-
lutions of Einstein’s field equations with the Robertso
Walker line element has been the subject of numerous s
ies. Textbook presentations tend to focus on models in wh
pressurep is zero and there is no cosmological term~L50!.
Some treatments include theFriedmann models, in which
p50 butLÞ0 @1–5#. Much less attention has been direct
at the more generalLemaıˆtre models, in which pressurep is
given in terms of densityr by an equation of statep5p(r),
andLÞ0 @6–9#.

The possibility of a nonzeroL term, in particular, has
resurfaced lately in connection with the age problem@10#. If
L is large enough, in fact, the age of the Universe~defined in
the standard model@11# as the time elapsed sincea50) can
in principle becomeinfinite, as a(t) never drops below a
nonzero minimum valuea* in the past direction. The exis
tence of such ‘‘big bangless’’ oscillating models has be
recognized for over sixty years@12#. They have however
been dismissed as unphysical on the grounds that the
quired values ofL are incompatible with observation@13–
16#.

We will return to the observational constraints later o
merely noting here that the above arguments, along w
nearly all existing astrophysical work on the cosmologi
term, operate on the assumption thatL5const. Quantum
field theorists and others, by contrast, have been treating
cosmological term as adynamicalquantity for thirty years
@17–22#. Anything which contributes to the energy dens
rv of the vacuum behaves like a cosmological term viaLv
58pGrv . Many potential sources of fluctuating vacuu
energy have now been identified, including scalar fie
@23,24#, tensor fields@25,26#, nonlocal effects@27#, worm-
holes @28#, inflationary mechanisms@29# and even cosmo
logical perturbations@30#. Each of these has been claimed
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give rise to a negative energy density which grows with tim
tending to cancel out any pre-existing positive cosmologi
term and drive the net value ofL toward zero. Processes o
this kind are among the most promising ways@26# to resolve
the longstanding cosmological ‘‘constant’’ problem~see@31#
for review!.

The purpose of the present paper is to re-examine
evolution of the scale factor whenLÞconst. This has not ye
been done in a systematic way. We also expand on m
earlier treatments by considering a fairly general equation
state for ordinary matter rather than restricting ourselves
the pressure-free Friedmann models. These two genera
tions lead to qualitatively as well as quantitatively new b
havior fora(t), and hence for related phenomena such as
age of the Universe, the appearance of gravitational len
and the redshifts of distant astronomical objects. They
also allow one to circumvent the abovementioned argume
against oscillating models.

The remainder of the paper is organized as follows:
required assumptions, definitions and dynamical equati
are assembled in Sec. II, and applied in Secs. III–VI to m
els in whichL varies as a function of timet, the scale factor
a, the Hubble parameterH and the deceleration parameterq
respectively. In each section we obtain analytic or numer
solutions for the scale factor, paying particular attention
the question of the initial singularity, and discuss obser
tional constraints where appropriate. Conclusions are s
marized in Sec. VII.

II. VARIABLE- L COSMOLOGY

A. The cosmological ‘‘constant’’

To begin, we recall why the cosmological term has oft
been treated as a constant of nature. The Einstein field e
tions read

Gmn1Lgmn58pGTmn , ~2.1!

whereGmn[Rmn2Rgmn/2 is the Einstein tensor andTmn is
the energy-momentum tensor of matter~we assume units
such thatc51). Taking the covariant divergence of E
~2.1!, recalling that the vanishing covariant divergence of t

f
s:
© 1998 The American Physical Society06-1
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Einstein tensor is guaranteed by the Bianchi identities,
assuming that the energy-momentum tensor satisfies the
servation law¹nTmn50, it follows that the covariant diver
gence ofLgmn must vanish also, and hence thatL5const.
This argument, which situatesL firmly on the left-hand side
of the field equations, constitutes a ‘‘geometrical interpre
tion’’ of the cosmological term.

More recently, it has become increasingly common~see,
e.g., @32#! to move the cosmological term to the right-ha
side of Eq.~2.1!:

Gmn58pGT̃mn , T̃mn[Tmn2
L

8pG
gmn ; ~2.2!

that is, to interpretL as part of the matter content of th
universe, rather than a purely geometrical entity. Once th
done, there are noa priori reasons whyL should not
vary—as long as theeffectiveenergy-momentum tensorT̃mn

satisfies energy conservation@33#:

¹nT̃mn50 . ~2.3!

B. Dynamical equations

We will make the usual assumptions: a homogeneous
isotropic Universe~i.e., Robertson-Walker line element! and
perfect-fluid-like ordinary matter@35# with pressurep and
energy densityr. The definition~2.2! of T̃mn then implies
that theeffectiveenergy-momentum tensor also has the p
fect fluid form, with effective pressurep̃[p2L/8pG and
energy densityr̃[r1L/8pG @11#. The field equations~2.2!
and law of energy-momentum conservation~2.3! then read

ȧ25
8pG

3
ra21

L

3
a22k ~2.4!

d

daF S r1
L

8pGDa3G523S p2
L

8pGDa2. ~2.5!

For the equation of state we take

p5~g21!r, ~2.6!

with g5const. Previous analytic and numerical studies
the evolution of the scale factor have tended to focus on
dust-like case g51 @2–5#, and occasionally also th
radiation-like caseg54/3 @6–9,36#. We will not restrict our-
selves to these values, as many other possibilities have
considered in the literature@37#.

Substituting Eq.~2.6! into Eq. ~2.5!, we find

d

da
~ra3g!52

a3g

8pG

dL

da
. ~2.7!

When L5const, Eq.~2.7! reverts to the well-known resul
that densityr scales asa23 in a pressure-free universe (g
51) anda24 in a radiation-dominated universe (g54/3).
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Differentiating Eq.~2.4! with respect to time and insertin
Eq. ~2.7!, we obtain

ä5
8pG

3 S 12
3g

2 D ra1
L

3
a. ~2.8!

Equation~2.8! shows that a positive densityr acts to decel-
erate the expansion, as expected — but only wheng.2/3. If,
on the other hand, the cosmological fluid is such thatg
,2/3, then its density can actually accelerate the expans
ä.0 ~this is the phenomenon commonly known asinfla-
tion!. Equation~2.8! also confirms that a positive cosmolog
cal term contributes positively to acceleration, ‘‘proppin
up’’ the scale factor against the deceleration caused by
matter termr. A negativeL term, on the other hand, acts i
the opposite direction and brings about recollapse m
quickly.

Combining Eqs.~2.4! and ~2.8!, we can eliminater to
obtain a differential equation for the scale factor in terms
the cosmological term alone:

ä

a
5S 12

3g

2 D S ȧ2

a2
1

k

a2D 1
g

2
L. ~2.9!

This differential equation governs the behavior of the sc
factor in the presence of a cosmological termL, whether or
not the latter is constant.

C. PhenomenologicalL-decay laws

The above mentioned sources of negative vacuum en
@23–30# do not, in general, lend themselves to simple expr
sions forL in terms oft,a,H or q. There are some excep
tions, including scalar field-based@19,20,34,68# and other
theories@42,53,72–74# in which analytic decay laws are de
rived from modified versions of the Einstein action. In mo
such papers, however, no exact solution forL is obtained;
the intent is merely to demonstrate that decay~and preferably
near-cancellation! of the effective cosmological term is pos
sible in principle.

In a complementary approach, a number of authors h
constructed models of a more phenomenological charac
in which specific decay laws are postulated forL within
general relativity. These theories are incomplete to the ex
that they do not include explicit physical mechanisms to g
ern the exchange of energy between the shrinking cos
logical term and other forms of matter@77#. In some models
this issue is not addressed at all; in others the energ
assumed to be channelled into production of baryonic ma
and/or radiation. The former case can be constrained by
servations of the diffuse gamma-ray background, since~as-
suming the decay process does not violate baryon num!
one might expect equal amounts of matter and antimatte
be formed@47,59#. The latter can be constrained by nucle
synthesis arguments@47,49#, cosmic microwave backgroun
~CMB! anisotropies@47,54,56#, the absolute CMB intensity
@50,59#, and thermodynamical considerations@52,66,76#.

We take the point of view here that simpleL-decay sce-
narios are worth examining, irrespective of whether th
6-2
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EVOLUTION OF THE SCALE FACTOR WITHA . . . PHYSICAL REVIEW D 58 043506
come from extended theories of gravity or phenomenolog
considerations, for at least four reasons:~1! they have been
shown to address a number of pressing problems in cos
ogy @38–77#; ~2! many are independently motivated, e.g.,
dimensional arguments, or as limiting cases of more com
cated theories;~3! most are simple enough that meaning
conclusions can be drawn about their viability; and~4! suc-
cessful implementation would point toward the eventual L
grangian formulation of a more complete theory. For con
nience, we have collected together the most common de
laws from the literature and listed them in Table I~by chron-
ological order of appearance!.

In the remainder of the paper, we focus on power-l
functions of one parameter. Our discussion is however m
general than most of those noted in Table I, because we
not fix values of the exponentsa priori. In particular, we
consider decay laws of the following four kinds:

L5At2 l ~2.10!

L5Ba2m ~2.11!

L5CHn ~2.12!

L5Dqr , ~2.13!

TABLE I. Examples of phenomenologicalL-decay laws.

Decay lawa Reference

L}t22 @19,20,34,38–41#
L}T4 @20#

L}Tb @21#

L}e2ba @42#

dL/dt}Lb @43#

L}a22 @41,44–46#
L}a24(11e) @47–50#
L}a2m @51–56#
dL/dt}aHnL @57#

dL/dt}H3 @57#

L}C1ba2m @58,59#
L}t l 221bt2( l 21) @60#

L}ba221H2 @61,62#
L}t221bt22/l @63#

L}C1e2bt @63,64#
L}C1ba221H2 @65#

L}ba2m1H2 @66#

L}H2 @67–69#
L}(11bH)(H21k/a2) @70#

L}t21(b1t)21 @71#

dL/dt}bL2L2 @72#

L}a23 @73#

L}a221ba24 @74#

L}H21baH(dH/da) @75#

aT,a,t,H are the temperature, scale factor, time and Hubble par
eter respectively; whileb,e,l ,m andC are constants.
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whereA,B,C,D,l ,m,n and r serve as adjustable constan
These four variable-L scenarios and their cosmological co
sequences are explored in Sec. III, Sec. IV, Sec. V and S
VI respectively.

D. Definitions

We conclude Sec. II by introducing the terms and defi
tions which will be needed to connect our solutions to obs
vation. Chief among these are the energy densities of o
nary matter and the cosmological term, expressed in unit
the critical density:

V[
r

rcrit
, l[

L

3H0
2

, rcrit[
3H0

2

8pG
. ~2.14!

We will be particularly interested in the values of these p
rameters at the present time~subscript ‘‘0’’!:

V05
8pGr0

3H0
2

, l05
L0

3H0
2

. ~2.15!

These will constitute our primary free parameters through
the following sections.

The usefulness of the quantityl0 ~sometimes denotedVL

in the literature! is highlighted by using the definitions~2.14!
to rewrite the Lemaıˆtre Eq. ~2.4! in the form H25H0

2(V
1l)2k/a2. At the present time this implies

k5a0
2H0

2~V01l021!. ~2.16!

From Eq.~2.16! it is clear that

V01l0.1⇒k.0,

V01l051⇒k50,

V01l0,1⇒k,0. ~2.17!

Most cosmologists implicitly choose units fora0 such that
the value ofk is normalized to either 0 or61. We will
follow Felten and Isaacman@5# in refraining from this, be-
cause it is more convenient for our purposes to choose u
such thata0[1.

In place ofV andl, some authors prefer to use the qua
tities s andq, defined by

s[
4pGr

3H2
, q[2

äa

ȧ2
. ~2.18!

The present values of these parameters are fixed with
help of Eqs.~2.8! and~2.14!:

s05V0/2, q05~3g/221!V02l0 . ~2.19!

Negative values ofq0 can be obtained for large~positive! l0,
or smallg. Equation~2.19! yields the standard expression@5#
for q0 wheng51.

-

6-3
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III. L AS A FUNCTION OF TIME

A. Interpretation of the time co-ordinate

We begin with the oldest, and probably the most straig
forward implementation of the variable-L idea; namely, one
in which the cosmological term is a simple power-law fun
tion of time, as set out in Eq.~2.10!:

L5At2 l , ~3.1!

where, for later convenience, we measure time in units
Hubble times (t[H0t). The casel 52 has previously been
considered by several authors. Each, however, has imp
supplementary conditions. Endo,̄ Fukui and others@19,34#
operate in the context of a modified Brans-Dicke theory. C
nuto et al. @20# assume invariance under changes of sc
while Lau @38# adopts the Dirac large-number hypothe
~with a time-varying gravitational ‘‘constant’’G) from the
outset. Berman@39# requires that the densityr of ordinary
matteralsoscale ast22, and that the deceleration parame
q be a constant. Beesham@40# restricts his treatment to Bi
anchi type I models with variableG. Lopez and Nanopoulos
@41# takeL to have the same dependence on thescale factor
(L}a22) as on time, for late times at least.~These latter
authors also make the important claim that aL-decay ansatz
of this kind could follow from certain versions of strin
theory.! The question of the initial singularity is not ad
dressed in any of these papers. In this paper, we examin
properties of models with the form~3.1! in a more compre-
hensive way.

Several conceptual issues should be dealt with before
proceed. First, since we are interested in oscillating as w
as traditional ‘‘big bang’’ models, we are obliged to broad
the conventional definition of cosmic time@78#, in which it is
set to zero at the moment whena50. In those cases wher
the scale factor never vanishes, we choose here to meast
instead from the most recent moment whenda/dt50 ~the
‘‘big bounce’’!. In either case we refer to this as the ‘‘initia
moment’’ and denote it byt5t* [0. ~Here and elsewhere
the subscript ‘‘*’’ will indicate quantities taken at this time!

Secondly, Eq.~3.1! implies thatL→` in the limit t→0,
which may not be realistic.L may go to infinity at some
other time (t` , say! than the initial moment. Or, more
likely, its divergent behavior may be cut off at some critic
temperature~at timetc , say! by a phase transition or simila
mechanism, above whichL is effectively constant@21#. So a
more plausible formulation of Eq.~3.1! might take the form

L5H Lc when t,tc ,

A~t2t`!2 l when t>tc ,
~3.2!

where continuity across the cutoff timetc implies thatLc
[A(tc2t`)2 l . However, the fact that the dynamical equ
tions of Sec. II contain no explicit time dependence me
that we can shift our time co-ordinate via (t2t`)→t with
impunity. The decay law~3.2! then reverts to the form~3.1!,
for all t>tc at least. In practice we will assume that E
~3.1! holds for all times of interest. For earlier times th
04350
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standard~Lemaı̂tre! solution applies, withL5Lc5const. If
tc't` , then Eq.~3.1! holds all the way tot'0.

B. Riccati’s equation

We are now in a position to study the evolution of th
scale factor. Switching dependent variables froma to H:

H[
ȧ

a
5H0S da

adt D , ~3.3!

we obtain for the differential equation~2.9!:

dH

dt
5S 23g

2H0
DH21S g

2H0
DL1S 12

3g

2 D k

H0a2
. ~3.4!

If we restrict ourselves to spatially flat universes (k50),
then the last term drops off, leaving a special case of R
cati’s equation:

dH

dt
5P~t!H21Q~t!H1R~t!, ~3.5!

whereP[23g/2H0, Q[0 andR(t)[(g/2H0)L(t). We
will adopt this restriction for the remainder of Sec. III. Th
has also been imposed in most of the special cases studie
far @19,38,39,41#.

Solving Riccati’s equation by standard methods@79#, we
change dependent variables fromH to x via:

H[2
1

Px

dx

dt
5S 2H0

3g D dx

xdt
, ~3.6!

whereupon Eq.~3.4! takes the form@puttingk50 and insert-
ing Eq. ~3.1! for L(t)#:

t l
d2x

dt2
2ax50, ~3.7!

with

a[
3g2A
4H0

2
. ~3.8!

This is now linear, as desired. We will solve forx(t) in the
casesl 51,2,3,4.

Oncex(t) is found, the Hubble parameterH(t) follows
immediately from the definition~3.6!. Moreover, the scale
factor a(t) is also known, as may be verified by comparin
Eqs.~3.3! and ~3.6! to yield

a~t!5@x~t!#2/3g. ~3.9!

The constanta given by Eq.~3.8! can be fixed in terms of
observational quantities as follows. Applying the decay l
~3.1! to the present epocht5t0, and using the definition
~2.15! of l0, we find thatA53H0

2l0t0
l , which can be sub-

stituted into Eq.~3.8! to yield
6-4
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EVOLUTION OF THE SCALE FACTOR WITHA . . . PHYSICAL REVIEW D 58 043506
a5~3g/2!2l0t0
l . ~3.10!

With the restrictionk50, Eq.~2.17! implies thatV0 is given
by (12l0) throughout Sec. III.

C. The casel 51

We now proceed to the first case. The differential eq
tion ~3.7! reads

t
d2x

dt2
2ax50, ~3.11!

wherea is given by Eq.~3.10!:

a5~3g/2!2l0t0 . ~3.12!

Following standard techniques@79#, we switch independen
variables fromt to z[2A2at, whereupon

z2
d2x

dz2
2z

dx

dz
1z2x50. ~3.13!

This is transformable to Bessel’s equation, with general
lution x(z)5c1zJ1(z)1c2zY1(z), where J1(z) and Y1(z)
are Bessel and Neumann functions of order one. Equa
~3.9! then gives for the scale factor:

a~t!5t1/3g@c1J1~z!1c2Y1~z!#2/3g, ~3.14!

where we have absorbed a factor of 2A2a into c1 ,c2. The
Hubble parameter is found by puttingx(z) into Eq. ~3.6!:

H~t!5H0A2l0S t0

t D Fc1J0~z!1c2Y0~z!

c1J1~z!1c2Y1~z!G , ~3.15!

whereJ0(z) andY0(z) are Bessel and Neumann functions
order zero. We note from the definition~3.12! thatz(t), and
hencea(t) andH(t), can only be real~for positive times! if
l0<0, which would imply a negative cosmological consta
While this possibility has been considered in some conte
@73,80#, we will see shortly that it leads in the present theo
to unrealistically short ages for the Universe. Therefore
casel 51 is probably not realized in nature.

We can impose the following boundary conditions at t
present epoch:

a~t0!5a0[1, H~t0!5H0 . ~3.16!

Substituting these expressions into Eqs.~3.14! and ~3.15!, it
is straightforward to solve forc1 andc2:

c15
A2l0Y0~z0!2Y1~z0!

A2l0t0@J1~z0!Y0~z0!2J0~z0!Y1~z0!#
~3.17!

c25
2A2l0J0~z0!1J1~z0!

A2l0t0@J1~z0!Y0~z0!2J0~z0!Y1~z0!#
, ~3.18!

where:
04350
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z0[3gt0A2l0. ~3.19!

To keepa(t) finite at t50, we requirec250, sinceY1(z)
diverges logarithmically atz50. This constitutes our third
boundary condition. In conjunction with Eq.~3.18! it implies
that J1(z0)2A2l0J0(z0)50. This equation may be solve
numerically fort0 as a function ofl0, with the help of the
definition ~3.19!. The results can then be substituted ba
into Eq. ~3.17! to fix the value ofc1. With c1 and c2 both
known, a(t) andH(t) are given by Eqs.~3.14! and ~3.15!
respectively.

The evolution of the scale factor for this case is illustrat
in Fig. 1 for various values ofl0, assumingg51 ~after
Felten and Isaacman@5#!. In particular, we have followed
these authors in plotting the scale factora as a function of
(t2t0), rather thant for each curve. This has the effect o
shifting all the curves so that they intersect at (0,1), wh
marks the present epoch.@Recall that we have chosen uni
such thata051, Eq. ~2.16!.#

We have plotted for four Hubble times into the future, a
one Hubble time into the past. It may be seen that thel0
50 curve ~solid line! intersects the time axis at (t2t0)5
22/3, which confirms the well-known rule that the age of
flat universe with no cosmological constant ist052/3. The
models with l0,0 ~dashed lines! are younger than this
which considerably diminishes their attractiveness. Thel0
521 model, for instance, hast050.48, while thel0523
model hast050.35. If we use a current widely-accepte
value of H0573610 km s21 Mpc21 @81# for the Hubble
parameter, then~recalling thatt5t/H0) we see that the age
of the Universe in these models can be no more than 7.4
5.4 billion years old respectively. This conflicts badly wi
estimated globular cluster ages, which are thought to b
least 9.6 billion years old in some cases@82#. The situation
improves slightly if one switches to the lower values forH0
which are reported by some authors@83#. If H0555610
km s21 Mpc21, then the maximum possible age for the
two models increases to 10.4 and 7.6 billion years resp
tively. One can safely rule out models withl0,21 on this
basis, while models in the range21,l0<0 remain margin-
ally viable at best.

FIG. 1. Evolution of the scale factor for flat models withL
}t21 andg51. Values ofl0 are labelled beside each curve, an
V0512l0 in each case.
6-5
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J. M. OVERDUIN AND F. I. COOPERSTOCK PHYSICAL REVIEW D58 043506
Figure 1 tells us that, while flat models withl050 will
continue to expand indefinitely as usual, those with nega
values ofl0 will experience eventual recollapse. This can
understood by looking at Eq.~2.8!, which shows that there
are two contributions to the deceleration: one~which goes as
2ra) due to ordinary matter and the other~which goes as
1La) due to the negative cosmological constant. Beca
the densityr of matter rapidly thins out with expansion, th
first contribution alone is not enough to close the Unive
when k50. The second contribution, however, is dilute
much more slowly (L drops off as onlyt21 in this case!,
and is therefore sufficient to turn the expansion around ev
tually, no matter how small its value at the present tim
Thus, models withl0521 andl0523 encounter the ‘‘big
crunch’’ after only 2.94 and 1.21 Hubble times respective

D. The casel 52

For this case, Eq.~3.7! takes the form:

t2
d2x

dt2
2ax50, ~3.20!

with a given by Eq.~3.10! as follows:

a5~3g/2!2l0t0
2 . ~3.21!

This is a special case of Euler’s differential equation. App
ing standard methods@79#, we switch independent variable
via y[ lnt to recast Eq.~3.20! in the form:

d2x

dy2
2

dx

dy
2ax50. ~3.22!

This now has constant coefficients, as desired. There
three subcases, according asl0 is greater than, equal to, o
less than21/(3gt0)2.

1. The subcasel0>21/(3gt0)
2

Since we expect on observational grounds thatl0 is prob-
ably positive, this is the most physical of the subcases.
lution of Eq. ~3.22! for x(y) and hencex(t) is straightfor-
ward. The scale factor and Hubble parameter are found f
Eqs.~3.9! and ~3.6! to be:

a~t!5t1/3g~c1tm01c2t2m0!2/3g ~3.23!

H~t!5
2H0

3g Fm1c1tm01m2c2tm0

t~c1tm01c2t2m0!
G ,

~3.24!

wherem0[ 1
2 A11(3gt0)2l0. It is clear thata(t) diverges

at t50 for l0.0 unlessc250, which we consequently
adopt as a boundary condition~as in thel 51 case!. Equa-
tions ~3.23! and ~3.24! simplify to

a~t!5~c1tm1!2/3g ~3.25!
04350
e

e

e
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H~t!5
2H0

3g Fm1

t G , ~3.26!

wherem1[1/21m0. We then apply the boundary condition
~3.16! at t5t0. Equation ~3.26! with H(t0)5H0 implies
that:

t052m1/3g. ~3.27!

Substituting this result into Eq.~3.25!, with a(t0)51, we
find that c15(3g/2m1)m1, which can be put back into Eq
~3.25! to yield the following expression fora(t):

a~t!5S t

t0
D 2m1/3g

. ~3.28!

The scale factor expands as a simple power-law function
time. This is consistent with previous special cases obtai
for l 52: Endō and Fukui’sa(t)}t2n/3(n21) @19#, Berman
and Som’sa(t)}t1/m @34#, Lau and Beesham’sa(t)}t1/3

@38,40#, Berman’s a(t)}t2/3 @39#, and Lopez and Nano
poulos’ a(t)}t @41#.

In conjunction with the definitions ofm0 and m1, Eq.
~3.27! fixes the age of the Universe at:

t05
2

3g~12l0!
, ~3.29!

from which we draw two conclusions: first that all mode
satisfying the boundary conditions obeyl0,1; and sec-
ondly, that the age of the Universet0→` as l0→1. The
initial singularity can thus be pushed back arbitrarily far in
the past. We also find a lower limit on the age of the U
verse in these models by noting thatm15(m011/2).1/2.
Inserting this into Eq.~3.27! produces the result:

t0.1/3g. ~3.30!

In other words, assuming zero pressure (g51), all models in
this case have survived for at least one-third of a Hub
time. Adopting a recent observational upper limit of 8
km s21 Mpc21 @81#, this implies a minimum age of at leas
3.9 billion years. Finally, putting Eq.~3.30! back into the
expression~3.29! for t0, we find thatl0.21, which fixes
the critical value ofl0 separating this subcase from the oth
two.

2. The subcasel0521/(3gt0)
2

Solution of Eq. ~3.22! is also straightforward, and on
finds from Eqs.~3.9! and~3.6! the following general expres
sions fora(t) andH(t):

a~t!5t1/3g~c31c4lnt!2/3g ~3.31!

H~t!5
2H0

3g F ~c312c4!1c4lnt

2t~c31c4lnt! G ,
~3.32!

wherec3 ,c4 are arbitrary constants. To keepa(t) finite at
t50 we requirec450, so that:
6-6
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a~t!5~c3At!2/3g ~3.33!

H~t!5
H0

3gt
. ~3.34!

InsertingH(t0)5H0 into Eq. ~3.34!, we find for the age of
the Universe in this model:

t051/3g, ~3.35!

which is exactly the limitl0→21 in Eq. ~3.29!. Equation
~3.35! also corresponds to the lower limit allowed by E
~3.30!, as one might expect.
lu
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04350
Substituting the age~3.35! into Eq. ~3.33!, meanwhile,
and imposinga(t0)51 as usual, we find thatc35A3g. In-
serted back into Eq.~3.33!, this yields:

a~t!5S t

t0
D 1/3g

, ~3.36!

which joins smoothly onto the result~3.28! from the previ-
ous subcase.

3. The subcasel0<21/(3gt0)
2

Solution of Eq.~3.22! is also straightforward and leads t
the following general expressions fora(t) andH(t):
a~t!5t1/3g@c5sin~m3lnt!1c6cos~m3lnt!#2/3g ~3.37!

H~t!5
2H0

3g H ~c522m3c6!sin~m3lnt!1~c612m3c5!cos~m3lnt!

2t@c5sin~m3lnt!1c6cos~m3lnt!# J , ~3.38!
e
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wherem3[ 1
2 A2(3gt0)2l021 andc5 ,c6 are arbitrary con-

stants. Application of the boundary conditions~3.16! gives
c5 andc6 in terms oft0:

c55
1

At0

sin~m3lnt0!1
1

m3
F S 3g

2 DAt02
1

2At0
Gcos~m3lnt0!

~3.39!

c65
1

At0

cos~m3lnt0!2
1

m3
F S 3g

2 DAt02
1

2At0
Gsin~m3lnt0!.

~3.40!

As usual, we need a third boundary condition to fix the va
of t0. Unlike the previous two subcases, we cannot ke
a(t) finite at t50 by setting one ofc5 ,c6 to zero. Instead
we have adopted a numerical approach, searching iterati
for the value oft0 consistent with the boundary condition
@i.e., with the requirement that eithera(t) or H(t) go
smoothly to zero ast→0]. The values ofc5 and c6 then
follow from Eqs.~3.40! and ~3.40! respectively.

The evolution of the scale factor for this case is illustra
in Fig. 2, which has exactly the same format as Fig. 1, exc
that we have plotted for three Hubble times into the p
instead of one. Figure 2 exhibits a richer variety of solutio
than Fig. 1. The most noticeable difference is the existe
of solutions for positivel0 ~short-dashed lines!. Of particu-
lar interest is the limiting casel051, which only approaches
a50 asymptotically ast→2`. This case is not very real
istic, however, as it has zero density~sinceV0512l0). It is
in fact the empty de Sitter model. The same solution is fou
for these values ofl0 andV0 in conventional Lemaıˆtre cos-
mology with L5const@5#.

Figure 2 therefore shows that we cannot avoid the
bang in a theory withL}t22 andk50. We can, however
significantly extend the age of the Universe. Suppose
e
p

ly

d
pt
t

s
e

d

g

e

choosel050.5, for example; a value compatible with th
tightest observational bounds thus far@84#. Figure 2 shows
that this model would have come into being 1.33 Hubb
times ago@see also Eq.~3.29! above#. Even if we adopt the
upper limit of 83 km s21 Mpc21 for H0 @81#, this translates
into an age of 15.7 billion years — more than enough tim
for the oldest globular clusters to form@82#. By way of com-
parison, aconstant-L model withl05V050.5 has an age o
only 0.83 Hubble times.

Flat models with no cosmological constant are rep
sented in Fig. 2 by the curve labelledl050 ~solid line!. As
in the l 51 case, these have an age of 2/3 Hubble tim
Models with a negativel0 ~long-dashed lines! all have
shorter ages, as in thel 51 case. The difference is that the
are now even shorter, because the negative cosmologic
term is driven to high negative values more quickly in t
past direction whenl 52. Thus, the age of thel0521
model has dropped from 0.48 to 0.33 Hubble times, wh

FIG. 2. Evolution of the scale factor for flat models withL
}t22 andg51. Values ofl0 are labelled beside each curve, an
V0512l0 in each case.
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that of thel0523 model is now onlyt050.30, down from
0.35 in Fig. 1.

Figure 2 indicates that thel0,0 models tend toward
eventual recollapse, as they did in thel 51 case. However
this process now takes much longer. In other words, w
the l 52 models are younger, their life expectancies are c
siderably greater. This can be understood by means of
same argument as before~Sec. III C!. The larger value ofl
means that the contribution of the cosmological term to
deceleration drops off more quickly in the future directio
thereby postponing recollapse for a longer period of tim
Thus, models withl0521 andl0523 now survive fort
@5 andt53.37 Hubble times respectively.

E. The casel 53

For this case, Eq.~3.7! reads

t3
d2x

dt2
2ax50, ~3.41!

wherea is given by Eq.~3.10!:

a5~3g/2!2l0t0
3 . ~3.42!

Following standard techniques@79#, we switch independen
variables fromt to z[1/t, whereupon:

z
d2x

dz2
12

dx

dz
2ax50. ~3.43!

This is now in a similar form to Eq.~3.11! in the l 51 case,
and it can be solved in the same manner@79#. Changing
independent variables again, fromz to y[2A2az, Eq.
~3.43! takes the form:

y2
d2x

dy2
13y

dx

dy
1y2x50. ~3.44!

This is again transformable to Bessel’s equation, but wit
different general solutionx(y)5y21@c1J1(y)1c2Y1(y)#,
where c1 ,c2 are arbitrary constants. Equation~3.9! then
givesa(t), as usual:

a~t!5t1/3g@c1J1~y!1c2Y1~y!#2/3g, ~3.45!

where y(t)52A2a/t and we have absorbed a factor
2A2a into c1 ,c2. The Hubble parameter is found as usu
by puttingx(y) into Eq. ~3.6!:

H~t!5H0A2l0S t0

t D 3Fc1J2~y!1c2Y2~y!

c1J1~y!1c2Y1~y!G ,
~3.46!

whereJ2(y) and Y2(y) are Bessel and Neumann functio
of order two. As in thel 51 case, these solutions are rea
valued~for t.0) only if the cosmological term is negative

In conjunction with the boundary conditions~3.16!, Eqs.
~3.45! and ~3.46! give for c1 andc2:
04350
e
-

he

e
,
.

a

l

c15
A2l0Y2~y0!2Y1~y0!

A2l0t0@J1~y0!Y2~y0!2J2~y0!Y1~y0!#
~3.47!

c25
2A2l0J2~y0!1J1~y0!

A2l0t0@J1~y0!Y2~y0!2J2~y0!Y1~y0!#
,

~3.48!

wherey05z0 is given by Eq.~3.19!. We require one addi-
tional boundary condition to fixt0. Unfortunately, as in the
previous subcase, the procedure is complicated by the
that both terms in Eq.~3.45! diverge att50, whereas we
expect that the scale factor as a whole should beh
smoothly there.

We can make this more precise by employing t
asymptotic expressions forJ1(y) andY1(y) at largey ~i.e.,
small t). We find ~for t!1)

a~t!'t1/2gFC1sinS v0

At
D 1C2cosS v0

At
D G 2/3g

, ~3.49!

where C1[C0
2/3g(c12c2), C2[2C0

2/3g(c11c2), C0

[1/Apv0 and v0[3gt0A2l0t0. This goes smoothly to
zero for t→0. In order to find the correct~i.e., self-
consistent! value oft0, we use the same numerical approa
as in thel 52 case. Oncet0 is obtained, the values ofc1 and
c2 follow from Eqs.~3.47! and ~3.48! respectively.

The evolution of the scale factor for this case is illustrat
in Fig. 3, which has exactly the same format as Fig. 1. T
l050 model ~solid line! has an age of 2/3 Hubble times
while those with negative values ofl0 ~long-dashed lines!
all have shorter ages, as usual. The age of thel0523
model, for example, has dropped from 0.30 to just 0
Hubble times. It is unlikely that any of these models cou
describe the real universe, given the observational c
straints onH0 andt0 ~Sec. III C!.

The main difference between Fig. 3 and its predecess
occurs at large times, where we observe that the curves
straighten out, and show no sign of leading to a recollaps
the scale factor. The explanation for this is that the~negative!

FIG. 3. Evolution of the scale factor for flat models withL
}t23 andg51. Values ofl0 are labelled beside each curve, an
V0512l0 in each case.
6-8
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cosmological term is now decaying so quickly with tim
that, like ordinary matter, it is no longer sufficient to turn t
expansion around.

F. The casel 54

For this case, Eq.~3.7! reads

t4
d2x

dt2
2ax50, ~3.50!

with a given by Eq.~3.10! as follows:

a5~3g/2!2l0t0
4 . ~3.51!

Switching independent variables viaz[1/t as in the previ-
ous case, we find that Eq.~3.50! takes the form:

z
d2x

dz2
12

dx

dz
2azx50. ~3.52!
e.

04350
Employing standard methods@79#, we switch dependen
variables fromz to y via dy/dz[zx(z). It may then be veri-
fied thaty(z) satisfies the familiar equation:

d2y

dz2
5ay. ~3.53!

The solutions of Eq.~3.53! are well known; there are thre
subcases to consider, according asa @and hencel0, Eq.
~3.51!# is positive, zero, or negative.

1. The subcasel0>0

Since we expect on observational grounds thatl0 is prob-
ably positive, this is the most physical of the three. Solut
of Eq. ~3.53! for y(z) and hencex(z) is straightforward. The
scale factor and Hubble parameter are given by Eqs.~3.9!
and ~3.6!:
a~t!5t2/3gFc1expSAa

t D 1c2expS 2Aa

t D G2/3g

~3.54!

H~t!5
2H0

3g Fc1~12Aa/t!exp~Aa/t!1c2~11Aa/t!exp~2Aa/t!

c1texp~Aa/t!1c2texp~2Aa/t!
G , ~3.55!
-

ter
ble

els.

n

wherec1 ,c2 are arbitrary constants. It is clear thata(t) di-
verges att50 unlessc150, which we consequently assum
Equations~3.54! and ~3.55! simplify:

a~t!5Fc2texpS 2Aa

t D G2/3g

~3.56!

H~t!5
2H0

3g S 11
Aa

t D 1

t
. ~3.57!

We then apply the boundary conditions~3.16! at t5t0, as
usual. Equation~3.57! with H(t0)5H0 fixes the age at:

t05
2

3g~12Al0!
. ~3.58!

Substituting this result into Eq.~3.56! with a(t0)51, we
find thatc25(1/t0) exp(Aa/t0), which can be put back into
Eq. ~3.56! to yield this expression fora(t):

a~t!5F S t

t0
DexpSAa

t0
2

Aa

t D G2/3g

. ~3.59!

We can draw a number of conclusions from Eq.~3.58!: first,
that l0,1; and secondly, that the age of the Universet0
→` asl0→1. This is reminiscent of thel 52 case, and in
fact Eq. ~3.58! is almost identical to Eq.~3.27!, the only
difference being thatl0 in the denominator has been re
placed byAl0. Therefore, for the same value ofl0, the l
54 models are longer-lived by a factor of (12l0)/(1
2Al0). This is due to the fact that, for positiveL, the higher
value of l means that the cosmological term exerts a grea
repulsive force in the past direction, and is consequently a
to push the big bang back more effectively. As in thel 52
case, we also find a lower limit on the age of these mod
This is, from Eq.~3.58!:

t0.2/3g. ~3.60!

This is twice as long as in thel 52 case, but here the reaso
is simply that this lower limit corresponds to the casel0
50 ~not l0521 as before!. With dust-like conditions~g
51! and the upper boundH0<83 km s21 Mpc21 @81#, we
now find a minimum age of at least 7.9 billion years.

2. The subcasel050

For this subcase Eq.~3.53! is trivial. Using Eqs.~3.9! and
~3.6! we find immediately that:

a~t!5~c31c4t!2/3g ~3.61!

H~t!5
2H0

3g S c4

c31c4t D , ~3.62!
6-9
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where c3 ,c4 are arbitrary constants. For the first time w
have a scale factor with the potential to go smoothly to so
finite valueother thanzero att50. Let us pursue this pos
sibility and see if a nonsingular solution is possible. Inste
of the boundary conditiona(t0)51, we impose a(0)
5a* , wherea* is the minimum value of the scale factor. I
Eq. ~3.61! this implies thatc35a

*
3g/2 . Inserting this result

back into Eq. ~3.61! and applying the usual conditio
a(t0)51, we obtainc45(12c3)/t0. Substituting this into
Eq. ~3.62! and applying the third boundary conditio
H(t0)5H0, we obtain for the age of the Universe:

t052~12c3!/3g. ~3.63!

This result matches onto that of the previous subcase,
~3.58!, only if c350, which also implies thata 50. The
*

e
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present case is therefore singular att50, like all the others
studied in this section. The age of the Universe is given
Eq. ~3.63! as t052/3g. Putting these results back into E
~3.61!, we find:

a~t!5S t

t0
D 2/3g

. ~3.64!

This is just the standardk50 solution with no cosmologica
term, as might have been expected.

3. The subcasel0<0

Solution of Eq.~3.53! is again straightforward and lead
via Eqs.~3.9! and ~3.6! to:
a~t!5t2/3gFc5sinSA2a

t D 1c6cosSA2a

t D G2/3g

~3.65!

H~t!5
2H0

3g H @c51~A2a/t!c6#sin~A2a/t!1@c62~A2a/t!c5#cos~A2a/t!

c5tsin~A2a/t!1c6tcos~A2a/t!
J ,
n.
ain
s
in
uch

he
hat

set

de-
ties

s
e
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s

hat,
of
where c5 ,c6 are arbitrary constants. Application of th
boundary conditions~3.16! fixes these constants in terms
t0:

c55
1

A2a
Fb0sinb01cosb0S 12

3g

2
t0D G ~3.66!

c65
1

A2a
Fb0cosb02sinb0S 12

3g

2
t0D G ,

~3.67!

whereb0[(3g/2)t0A2l0. As usual, we require one add
tional boundary condition to fix the value oft0. The situation
is again complicated by the fact that both terms in Eq.~3.65!
diverge att50, whereasa(t) itself goes smoothly to zero
there.@In fact, Eq.~3.65! has exactly the same form as th
asymptotic expression~3.49! in the l 53 case.# We therefore
have recourse once again to the numerical method desc
in Sec. III D 3. Oncet0 is obtained in this way, the values o
c5 andc6 are fixed by Eqs.~3.66! and ~3.67!.

The evolution of the scale factor for this case is illustra
in Fig. 4, which has exactly the same format as Fig. 2. S
eral features may be noted. To begin with, we see that m
els with L}t24 are qualitatively the same as those withL
}t22 for positivel0, and qualitatively similar to those with
L}t23 for negativel0.

There are important quantitative differences, howev
Models with positivel0 are significantly older. Withl0
50.5, for example,t0 is now 2.28 Hubble times — older b
a factor of 1.71 times than the equivalentl 52 model, ex-
ed

d
-

d-

r.

actly as predicted in the discussion following Eq.~3.59!.
This is once again due to the fact that, withl 54, a positive
L-term increases in size very rapidly in the past directio
Negative-l0 models, on the other hand, are once ag
younger. The age of thel0523 model, for instance, ha
dropped from 0.27 to just 0.25 Hubble times. And finally,
the future direction, we see that there is no longer very m
distinction between thel0,0 andl050 models, compared
to Fig. 3. The contribution of the cosmological term to t
deceleration of the scale factor now drops off so quickly t
it rapidly becomes irrelevant.

IV. L AS A FUNCTION OF THE SCALE FACTOR

A. Previous work

We now move on to consider decay laws of the form
out in Eq.~2.11!:

L5Ba2m. ~4.1!

The scale factor may be more natural than time as an in
pendent variable, to the extent that many physical quanti
~such as temperature! depend more simply ona than t.
Nearly half of the decay laws listed in Table I contain term
of the form~4.1!. The casem52 has been singled out for th
most attention@41,44–46#, and is motivated by some dimen
sional arguments@41,45#. A second group of authors ha
concentrated on values ofm'4 @47–50#, for which theL
term behaves like ordinary radiation. It has been shown t
for certain kinds ofL decay, the lower of these two values
m is thermodynamically more stable@52#. A third idea, that
6-10
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EVOLUTION OF THE SCALE FACTOR WITHA . . . PHYSICAL REVIEW D 58 043506
the cosmological term scales witha like ordinary matter
(m53), follows from one interpretation of an intriguing ne
scale-invariant extension of general relativity@73#.

There are also some studies in which the value ofm is not
fixed a priori. Ages of general-m models have been calcu
lated and agree with observation ifm,3 @51#. The power
spectrum of matter density perturbations does not appea
be greatly modified by a decayingL term, at least for
0<m<2 @54#. Lensing statistics favor models withm>1
@55#, or m>1.6 when combined with other tests involvin
CMB anisotropies and the classical magnitude-redshift r
tion for high-redshift supernovae@56#. Other aspects of mod
els in whichL decays asa2m have been discussed by se
eral authors @53,58,59#, although no specific numerica
bounds are set onm.

The question of the initial singularity has so far receiv
little attention in theories of this kind@85#. Some explicitly
nonsingular solutions have been constructed, all withm52
@44#. In one other case it is noted in passing that the e
tence of an initial singularity would require 0,m,4 under
some circumstances@59#. The remaining authors either d
not mention the issue, or~as in one case@51#! rule out a
priori the possibility of nonsingular solutions. In this pape
we take a broader view and examine all possible soluti
for the scale factor, including those in which it takes a no
zero minimum value. Moreover we will extend the discu
sion, not only to generalm, but to generalg as well @where
g characterizes the equation of state of ordinary matter,
~2.6!#. If m and g are thought of as defining a paramet
space, then we determine, first, the extent to which the sp
is singularity-free; and secondly, the extent to which it
observationally viable.

B. Evolution of the scale factor

We begin with the dynamical equations~2.4!–~2.9!. In
particular, we consider the energy conservation law~2.7!,
which, with the decay law~4.1!, becomes:

d

da
~ra3g!5S mB

8pGDa3g2~m11!. ~4.2!

FIG. 4. Evolution of the scale factor for flat models withL
}t24 andg51. Values ofl0 are labelled beside each curve, a
V0512l0 in each case.
04350
to
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Integrating, we find for the matter energy density:

r~a!5r0a23g f ~a!, ~4.3!

where we have seta(t0)5a051,r(a0)5r0, and defined:

f ~a![11k03H m~a3g2m21!

3g2m
if mÞ3g

3g ln~a! if m53g

~4.4!

k0[B/8pGr0 . ~4.5!

When m50, then f (a)51 and Eq.~4.3! yields the usual
result thatr scales asa23 in a pressure-free universe (g
51) and a24 in a radiation-dominated universe (g54/3).
The new parameterk0 can be fixed in terms of observab
quantities by means of the decay law~4.1!, which givesB
5L053H0

2l0 @with a051 andl0 defined as usual by Eq
~2.15!#. Substituting this result into Eq.~4.5!, we find:

k05l0 /V0 , ~4.6!

whereV0 is defined by Eq.~2.15!. The parameterk0 is sim-
ply the ratio of energy density in the cosmological term
that in ordinary matter at the present epoch.

Substitution of Eqs.~4.1! and ~4.3! into the Lemaıˆtre
equation~2.4! yields:

da

dt
5a@V0a23g f ~a!2~V01l021!a221l0a2m#1/2,

~4.7!

where we have made use of the definitions~2.15!, recalled
that ȧ/a5(H0 /a)da/dt, and selected the positive root sinc
redshifts rather than blueshifts are observed.

At this point we could choose integer values ofm and
attempt to solve analytically fora(t), as in Sec. III. Detailed
analyses have been carried out along these lines for the
m50; i.e., for a constant cosmological term@86#. It is doubt-
ful that they can be usefully extended to the general situa
in which mÞ0. We opt instead to solve the problem nume
cally, following the lead of Felten and Isaacman@5#. The
time derivative of Eq.~4.7! is:

d2a

dt2
5S 12

3g

2 DV0a123g f ~a!1l0a12m. ~4.8!

@This could equally well have been obtained from Eq.~2.8!.#
We substitute Eqs.~4.7! and ~4.8! into a Taylor expansion
for the scale factor:

ak'ak211S da

dt D
k21

Dt1
1

2S d2a

dt2D
k21

~Dt!2. ~4.9!

This can be integrated numerically backwards in time to
termine whether or not a model with given values
$m,g,V0 ,l0% eventually reachesa50. We have tested the
procedure for the case of a constant cosmological termm
50) and dust-like equation of state (g51), and our results
6-11
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in this case confirm those of Felten and Isaacman@5#. Figure
5 depicts a group of examples withV050.34 ~typical of
large-scale observations@87#! and various values ofl0 ~la-
belled beside each curve!. Note that the difference betwee
this figure and the ones in the previous section is that
now include models of allthree kinds: closed~long-dashed
lines!, flat ~dash-dotted lines! and open~short dashes!. ~To
keep the diagram from being too crowded, we show o
models with the same valueV0 of the matter density.! Figure
5 indicates that negative values ofl0 can lead to recollapse
in open, as well as flat universes~cf. Sec. III!. Of greater
interest, however, is the fact that models withl0 above a
critical value l* ~51.774 605 in this case! avoid the big
bang, undergoing a finite ‘‘big bounce’’ instead. Mode
with slightly less than this critical value~e.g., l051.76 in
this case! are of the ‘‘coasting Lemaıˆtre’’ kind: they begin in
a singular state but go through an extended phase in w
the scale factor is nearly constant. Models withexactlyl0
5l* ~shown in Fig. 5 with a solid line! are perhaps the mos
interesting of all. As timet→2`, they neither plunge to
zero size nor bounce back up to infinite size, but level
indefinitely at a constant valuea5a* ~50.46 in this case!.
These are nonsingular Eddington-Lemaıˆtre models,
asymptotic to the static Einstein universe in the infinite pa

All these features of them50,g51 models have been
discussed at greater length elsewhere@5#. Our purpose here is
to generalize the discussion to arbitrary values ofm andg.

C. Critical values of l0

In particular, we wish to obtain general expressions
the critical valuel* of the lambda parameterl0 and mini-
mum sizea* of the scale factor, given any class of mode
$m,g,V0%. As discussed in Sec. III A, we are interested
models for whichda/dt→0 at some time in the past. Thi
occurs, for example, at the moment of the ‘‘bounce’’ in
the oscillating models shown in Fig. 5. Thecritical case is
distinguished by that fact that not onlyda/dt, but also
d2a/dt2 vanishes at this point@5,14#. We therefore set
da/dt5d2a/dt250 in Eqs.~4.7! and ~4.8!. This yields:

FIG. 5. Evolution of the scale factor for models withm50,g
51, V050.34, and values ofl0 labelled beside each curve~after
Felten and Isaacman@5#!.
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l* 5
~3g22!~3g2m!V0

3g~22m!a
*
3g2m1~3g22!m

, ~4.10!

wherea* , the minimum value of the scale factor, is foun
by solving:

3g~3g2m!V0a
*
2 13g~22m!~12V0!a

*
3g2~3g22!

3~3gV02m!a
*
m50. ~4.11!

In general Eq.~4.11! has to be solved numerically, but in th
casem50,g51 it reduces to a cubic equation@5#. Figure 6
is a phase space portrait of this case, with each point on
diagram corresponding to a choice ofV0 andl0 ~after Lahav
et al. @15#!. The critical valuesl* are represented in thi
figure by a heavy solid line. The region to the right of th
curve corresponds to universes withl0.l* ; that is, with no
big bang. Also shown in Fig. 6 is a straight dash-dotted l
representing the boundary between open and closed
verses; models on this line havek50 (V0512l0) while
those on the left and right havek,0 andk.0 respectively
~Sec. II D!.

We now have the tools we need to investigate mod
with arbitrary values ofm and g. The idea will be to use
phase space diagrams like Fig. 6 to determine how muc
the parameter space~1! corresponds to models with a non
zero minimum scale factor; and~2! agrees with observationa
constraints. We can then confirm whether a given mo
with $m,g,V0% does in fact avoid the big bang by carryin
out the numerical integration described in Sec. IV B, a
plotting the results on evolution diagrams like Fig. 5.

D. Observational constraints

1. Upper bounds onl0

We pause first to take stock of some of the experimen
constraints that have been placed on models with nonz
cosmological terms. Most immediate are direct upper bou
on l0 from a variety of methods, most of them assuming th
V01l051. Until recently, these have typically been of o
der ;1 @15#. Additional methods, however, have becom

FIG. 6. Phase space diagram showing constraints on mo
with m50 andg51 ~after Lahavet al. @15#!.
6-12
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available in the past few years. CMB fluctuations, for
stance, have produced an upper limit ofl0<0.86 @88#.
Gravitational lens statistics give a tighter bound ofl0,0.66
@89#, and observations of type Ia supernovae appear to
duce this still further, tol0,0.51 @84#. All of the above are
described as 95% confidence level measurements. On
other hand, alower limit of l0.0.53 has been obtained from
the galactic luminosity density —also at 95% confidence
@90#.

Complicating the picture somewhat is the fact that seve
other observational data are well explained by substan
values ofl0, including the lack of observed small-scale da
matter, the expectation that inflation should lead to ne
flatness, and especially the highageof the Universe inferred
from models of stellar evolution. This ‘‘cosmic conco
dance’’ @89# at one time led to calls forl0;0.8 @91#, al-
though this has since dropped to 0.5–0.7@92#.

Thus, the observational situation is not yet settled. It
clear, however, that the nonsingular models in Fig. 5, wh
requirel0.1.77, are almost certainly unphysical. It remai
to be seen if the same conclusion applies whenmÞ0 and/or
gÞ1.

2. Age of the Universe

A lower limit on l0 derives from the age of the Univers
t05*0

a0da/ȧ. In our units of Hubble times:

FIG. 7. The age constraintt0.0.5: ~a! as a function ofm,
assumingg51; and~b! as a function ofg, assumingm50.
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t0[H0t05E
0

1 da

da/dt
. ~4.12!

If we use a recent value of 73610 km s21 Mpc21 for H0
@81# in conjunction with the oldest globular cluster age
t0.9.6 Gyr @82#, then t0>0.62; that is, the Universe is a
least 0.62 Hubble times old. Of course, as noted in Sec. II
the true status of these two parameters is still a subjec
some controversy. A lower value ofH0555610 km s21

Mpc21 @83# leads tot0>0.44. We choose an intermedia
value of 0.5. In conjunction with our expression~4.7! for
da/dt, this implies:

t05E
1

` dv

@V0v213gg~v !2~V01l021!v41l0a21m#1/2

.0.5, ~4.13!

where we have changed variables of integration froma to
v[a21511z for computational reasons, and:

g~v ![11k03H m~vm23g21!

3g2m
if mÞ3g,

23g ln~v ! if m53g.

~4.14!

Equation~4.13! reduces to the standard results@2,15# in the
casem50,g51.

Numerical solution of Eq.~4.13! produces a lower limit
on l0 as a function of$m,g,V0%. This age constraint is
shown in Fig. 6~for the casem50,g51) as a long-dashed
line. Its position matches that in a similar plot by Lahavet al.
@15#. The region to the left of this curve corresponds to u
verses younger than half a Hubble time. Big bangless m
els, of course, are not constrained by this; they are infinit
old ~by definition!, the heavy solid line being precisely th
boundary wheret0→`. The main impact of the age con
straint is to rule out models with anegativecosmological
term.

In Fig. 7, we show the effects of varying the parametersm
andg respectively on this age constraint. It may be seen t
altering the value ofm changes the slope of the curve, b
does not otherwise greatly affect the age, even over the ra
21<m<3. Altering the value ofg, on the other hand, has
larger effect. In particular, the ‘‘harder’’ the equation of sta
~i.e., the larger the value ofg), the further this constrain
encroaches on the available parameter space. This is in
cord with the well-known fact that a radiation-dominate
universe (g54/3), for example, is a short-lived one.

3. Gravitational lensing and the antipode

For closed models, the most stringent constraint onl0
comes from gravitational lensing, which requires that t
‘‘antipode’’ be further away than the most distant norma
lensed object@93#. The antipode is the point where the radi
coordinatev[* t

t0dt/a(t)5*a
a0da/ȧa takes the valuep @6#.

Using our expression~4.7! for da/dt, together with Eq.
~2.16!, we obtain~taking a051 as usual!:
6-13
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v5AV01l021

3E
1

11z dv

@V0v3gg~v !2~V01l021!v21l0am#1/2
,

~4.15!

where we have again changed integration variables froma to
v. The standard formula@2# is recovered whenm50 andg
51.

At present, the furthest known normally lensed object i
pair of lensed galaxies atzl54.92@94#. We therefore require

zA~V0 ,l0 ,m,g!.4.92, ~4.16!

wherezA(V0 ,l0 ,m,g) is defined by Eq.~4.15! with v5p.
Numerical solution of this equation yields an upper limit
l0 as a function of$m,g,V0%. This lensing constraint is
shown in Fig. 6~for the casem50,g51) as a short-dashe
line. Its position is close to that in previous plots@15,93#
employing a smaller valuezl53.27 ~our constraints are
slightly stronger!. The region to the right of this curve cor
responds to universes incompatible with the lensing obse
tions. Since this includes the entirety of nonsingular para
eter space, we can see that oscillating models with cons
L and zero pressure are ruled out, as noted previously
these authors.

In Fig. 8, we show the effects of varying the parametersm
andg respectively on this lensing constraint. As before, it
seen that harder values ofg lead to tighter constraints on th
available parameter space. However, the situation with
gard to m is altered quite dramatically. In particular, th
higher the value ofm, theweakerthe lensing constraint be
comes. As we will see, this significantly improves the pro
pects for viable big bangless models.

4. The maximum redshift constraint

A fourth observational constraint, which must be satisfi
only by nonsingular models, concerns the maximum obse
able redshiftz* 5a

*
2121 in a universe with a minimum

scale factora* . This must obviously be larger than th
greatest redshiftzobs actually observed. Thus the nonsingul
e
e
s

av
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models in Fig. 5, which never get smaller thana* 50.46,
cannot accommodate redshifts greater thanz* 51.2. This
disagrees with observations such as those of the lensed
axies mentioned above.

The conditionz* .zobs can be reformulated as an upp
limit on the matter densityof the Universe. Assuming tha
da/dt50 andd2a/dt2>0 atz5z* for nonsingular models,
Eqs.~4.7! and ~4.8! can be combined to read~for mÞ3g):

FIG. 8. The lensing constraintzA.4.92: ~a! as a function ofm,
assumingg51; and~b! as a function ofg, assumingm50.
V0<
22m1~m/3g!~3g22!~11z* !3g2m

22m2~3g2m!~11z* !3g221~3g22!~11z* !3g2m
. ~4.17!
we

nt
s as

w
t

Equation~4.17! reduces to earlier expressions of Bo¨rner and
Ehlers@14# whenm50 andg51 or 4/3. These authors hav
then argued as follows: given that quasar redshifts have b
observed out tozobs.4, we know that the Universe ha
z* .4. This constraint with Eq.~4.17! implies ~assumingm
50 andg51 or 4/3) thatV0<0.018, which is contrary to
observation. This indicates that our Universe could not h
been nonsingular.
en

e

Let us see how the above conclusion changes when
generalize the situation to values ofmÞ0. Moreover, we
will strengthenthe argument by noting that some dista
galaxies have now been assigned photometric redshift
high aszobs.6 @95#, implying thatz* .6. The resulting up-
per limits on densityV0 are listed in Table II for various
values ofm and g. From this table we see that the ne
photometric redshifts tighten the Bo¨rner-Ehlers constrain
6-14
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EVOLUTION OF THE SCALE FACTOR WITHA . . . PHYSICAL REVIEW D 58 043506
noticeably: as long asm50, a nonsingular Universe require
V0<0.006~if g51) or V0,0.001~if g54/3). These num-
bers, of course, are too low to describe the real unive
However, Table II demonstrates that much higher densi
are possible in singularity-free models withvariable L. For
example, retaining pressure-free conditions (g51), we see
that if m51, then the matter density in a nonsingular u
verse must satisfyV0,0.48. This value is not unreasonab
at all; in fact it is well above most dynamical measuremen
which suggestV0'0.3 @87#. The constraint is similarly loos
ened if we move toward softer equations of state withg,1,
such as those that have been proposed in@37#.

E. Viable oscillating models

We now demonstrate that models withmÞ0 are capable
of satisfying all the constraints discussed above. Figure 9
phase space diagram like Fig. 6, but plotted for a range
nonzero values ofm. We have assumedg51 as before, but
there is now a different line of critical valuesl* (m,g,V0)
for each value ofm. Like Fig. 6, Fig. 9 shows that much o
the nonsingular parameter space~below and to the right of
the heavy solid lines! is eliminated because it does not ove
lap with the regions allowed by the lensing constraint~above
and to the left of the lighter dashed lines!. This is especially

TABLE II. Börner-Ehlers-type upper limits on matter dens
V0 for various values ofm andg, assumingz* .6.

g: 2/3 5/6 1 7/6 4/3 5/3 2

m:
0 ` 0.033 0.006 0.002 0.000 0.000 0.00
1/4 ` 0.16 0.10 0.079 0.067 0.053 0.04
1/2 ` 0.31 0.20 0.16 0.14 0.11 0.090
3/4 ` 0.49 0.33 0.26 0.22 0.17 0.14
1 ` 0.75 0.48 0.38 0.32 0.25 0.20
5/4 ` 1.1 0.71 0.55 0.46 0.35 0.29
3/2 ` 1.9 1.1 0.87 0.71 0.54 0.44
7/4 ` 4.2 2.4 1.8 1.4 1.0 0.84
2 ` ` ` ` ` ` `

FIG. 9. Enlarged view of the phase space diagram, Fig. 6, n
plotted for various values ofm between 0 and 2~labelled beside
each pair of curves!, assumingg51.
04350
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true for small values ofm. With increasing m, however,
significant triangle-shaped regions of parameter space ap
near k50. Thus form51, there are allowed models wit
V0;0.3 andl0 between about 0.7 and 0.9. These are v
close to the values favored by observation@87,92#, so we
focus on this case. The lensing constraint imposes the lo
boundV0.0.31. If we takeV050.34 as a specific exampl
~as before!, then by tracing horizontally across Fig. 9 we fin
that lensing also places an upper boundl0<0.72 on the
cosmological term. From Eq.~4.10! the critical value for this
case turns out to bel* 50.68, which is marginally consisten
with the upper limits onl0 mentioned earlier. Thereforem
51 models withV050.34 and 0.68<l0<0.72 are both re-
alistic and singularity free.

For larger values ofm, the range of acceptablel0 values
is broader, but one is also driven to higher values ofV0.
With m53/2, for example, we find that viable nonsingul
models occur only forV0.0.46, and that atV050.51 they
lie in the range 0.51<l0<0.57. At m57/4 andV050.59
this broadens to 0.42<l0<0.50~low enough to satisfy even
the supernova constraint@84#!. As m→2, we find thata*→0, so that nonsingularity is lost. This also happens in
limit g→2/3 and, interestingly, asl*→12V0. ~It is for this
latter reason that all the nonsingular solutions in Fig. 9 ha
k.0.!

Unusual values ofg, although interesting and possibl
relevant at early times, do not alter these results in any f
damental way. In practice we find that the parameter sp
allowed by observation shrinks slightly for harder values
g, like 4/3, but grows significantly for softer values such
those in the range 0.4,g,1 @37#.

To verify that models with the properties described abo
can in fact avoid the big bang, Fig. 10 shows the evolution
the scale factor whenm51,g51 andV050.34, obtained by
numerical integration using the Taylor expansion~4.9!, as
before. Various values ofl0 are labelled beside the appro
priate curves. This plot has exactly the same format as Fig
with long dashes corresponding tok.0, short ones tok
,0, and the dash-dotted line corresponding tok50.

w

FIG. 10. Evolution of the scale factor for universes wi
m51,g51 andV050.34. Compare Fig. 5.
6-15
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Figure 10 confirms that whenl0 takes on the critical
value l* ~50.679 807 621 in this case!, the scale factora
evolves back to a constant valuea* , as expected~solid line!.
More importantly, the smallsize of this minimum value,
a* 50.0097, means that we can now accommodate obse
redshifts up toz* 5102, well beyond the furthest objects y
seen. The model is thus compatible with all observatio
data. It cannot, however, accommodate larger redshifts
that attributed to the last scattering surface (zlss;1100), let
alone the era of nucleosynthesis, which occurred at temp
turesTnuc;1010 K, or — sinceT}(11z) — redshiftsznuc

;1010. In fact, withz* 5102 them51 model heats up to no
more than aboutT* 5103T05281 K, which is just under
room temperature. That is to say, if the Universe is descri
by a nonsingular variable-L theory with m51, then the
CMB and the abundance of the light elements cannot
accounted for in the conventional way.

Unconventional explanations have been proposed for b
these phenomena, but are not widely accepted@96#. A more
conservative approach might be to retain the traditional h
dense early phase in the context of variable-L theory by
moving to larger values ofm. As discussed above, this lead
to smaller values ofa* and hence larger values ofz* and
T* . In this picture the high temperature of the early unive
is a result, not of an initial big bang singularity, but of a ve
deep ‘‘big bounce.’’ With m51.5 and V050.51, for in-
stance, we find thata* 51.731024, corresponding to a
maximum redshift of 5900 and a ‘‘bounce temperature’’
16,000 K — more than sufficient for recombination. Atm
51.8, this latter number climbs to 5.73109 K — hot enough
for nucleosynthesis.~An analysis like that below Fig. 9
shows that models withm51.8 andV050.61, for example,
are observationally viable if 0.41<l0<0.49.! With m51.9,
one can entertain bounce temperatures as high as 2.931013

K ~2.5 GeV!, approaching the realm of electroweak unific
tion. ~Models with m51.9 andV050.67 agree with obser
vation if 0.39<l0<0.48.! As m→2, in fact, one finds tha
a*→0 and T*→`. As remarked above, however, the
higher values ofm come at the modest observational price
higher matter densities. The lensing constraint sets a lim
V0.0.54 form51.8 models, for example, andV0.0.57 for
m51.9 models.

V. L AS A FUNCTION OF THE HUBBLE PARAMETER

A. Previous work

We have seen in Sec. IV that variable-L theories in which
L}a2m appear to offer the possibility of avoiding the b
bang singularity without violating any observational co
straints. The parameter space occupied by viable mod
however, remains small. As discussed in Sec. IV E, one
son for this is that the oscillating solutions are all close
whereas observational evidence tends to favor an open
verse@96#. In this section we shift our attention to decay law
of the form set out in Eq.~2.12!:

L5CHn. ~5.1!
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Among other things we will find that a cosmological term
this kind allows for a nonzero minimum scale factor inopen
models.

Terms of the form~5.1! are nearly as common as thos
studied in Sec. IV, appearing in almost a third of the dec
laws listed in Table I. The valuen52, favored on dimen-
sional@61# and other grounds@67#, is adopted almost univer
sally @61,62,65–69#. Other powers ofH are considered
in three cases, but only in combinations such
exp(2*aHndt) @57#, a22H @70#, andaH(dH/da) @75#. The
question of the initial singularity has received little attenti
in these papers, apart from one explicitly nonsingular@62#
and one asymptotically de Sitter–like solution@70#.

B. Riccati’s equation

Substituting the decay law~5.1! into the differential equa-
tion ~2.9!, we obtain:

dH

da
5S gC

2aDHn212S 3g

2aDH2S 3g22

2a D S k

a2D H21,

~5.2!

where we have used the fact thatä/a5aH(dH/da)1H2.
This is nonlinear, but bears some resemblance to the Ric
equation~3.5!. We switch dependent variables fromH to x
[Hr , wherer is an arbitrary constant whose value will b
chosen in a moment. In terms ofx, Eq. ~5.2! takes the form

dx

da
5S rgC

2a D xl2S 3rg

2a D x2F r ~3g22!k

2a3 Gxm, ~5.3!

wherel[(n1r 22)/r andm[(r 22)/r .
When n54, we see that the choicer 52 puts l 52 and

m50, whereupon Eq.~5.3! takes the form:

dx

da
5P~a!x21Q~a!x1R~a!, ~5.4!

with

P~a![
gC
a

, Q~a![2
3g

a
, R~a![

~223g!k

a3
.

~5.5!

This is Riccati’s equation~3.5!, as desired.
Whenn52, on the other hand, the choicer 52 leads to

l 51 andm50, whereupon Eq.~5.3! reduces to

dx

da
1S~a!x5T~a!, ~5.6!

with:

S~a![
g~32C!

a
, T~a![

~223g!k

a3
. ~5.7!

This case is linear, and may be solved easily.
6-16
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For other values ofn, a check reveals that no appare
choice ofr will put Eq. ~5.3! into a form which can be solved
analytically forx ~i.e., for H). We therefore concentrate o
the casesn52 and n54 for the time being, leaving the
others to future numerical analysis. In both cases the Hub
parameter is given byH5Ax ~sincer 52).

C. The casen52

Multiplying through by a factor of exp@*S(a)da#
5ag(32C) puts Eq.~5.6! into exact form, which may be in
tegrated directly forx(a) and henceH(a):

H~a!5H F ~223g!k

g~32C!22Ga221C0ag~C23!J 1/2

, ~5.8!

whereC0 is a constant of integration. Using the bounda
conditionH(a0)5H(1)5H0 to eliminateC0, we obtain:

H~a!5H0@aag~C23!1ba22#1/2, ~5.9!

where

a[12b, b[F 223g

g~32C!22G k

H0
2

. ~5.10!

The parametersa,b andC can all be fixed in terms of ob
servable quantities at the present timet5t0, as follows. With
n52, the decay law~5.1! givesC5L0 /H0

253l0, where we
have used the definition~2.15!. Substituting this result into
Eqs.~5.10! and ~5.9!, we find:

a5F ~3g/221!V02l0

~3g/2!~12l0!21G , b512a, ~5.11!

da

dt
5@aa223g~12l0!1b#1/2, ~5.12!

where we have used Eq.~2.16! and seta051 as usual.

D. Evolution of the scale factor

For special values ofg andl0, it may be possible to solve
Eq. ~5.12! in terms of elliptic~or simpler! integrals. For gen-
eral purposes, however, we take the same approach as in
IV and evolve the scale factor numerically in terms of its fi
and second derivatives. The latter of these is given by:

d2a

dt2
5aF12

3g

2
~12l0!Ga123g~12l0!. ~5.13!

Equations~5.12! and ~5.13! can be substituted into the Tay
lor expansion~4.9! and integrated backward numerically
determine the behavior of the scale factor.

We also wish to determine the conditions under which
Universe evolves backward to a nonzero minimum scale
tor, a5a* . Settingda/dt50 ~at a5a* ), we find from Eq.
~5.12! that:
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3g~12l0!22

52a/b. ~5.14!

It is convenient to distinguish two cases, according
whether the exponent ona* is positive or negative. Using
Eqs.~5.11!, we obtain:

a* 55
F 2l02~3g22!V0

~3g22!~12V02l0!G
1/[3g~12l0!22]

if l0,lc

F ~3g22!~12V02l0!

2l02~3g22!V0
G1/[223g~12l0!]

if l0.lc ,

~5.15!

where we have definedlc[122/3g ~leaving the casel0
5lc aside for the time being!.

From Eq.~5.15! we draw a number of important conclu
sions: ~1! Spatially flat solutions (V01l051) have either
a* 5` ~if l0,lc) or a* 50 ~if l0.lc). The former case is
not interesting. The latter case is de Sitter–like, with t
initial singularity pushed back into the infinite past. We ha
encountered this kind of solution before~Sec. III D 3!.

~2! With the modest assumption thatg.2/3 ~i.e., normal,
non-inflationary matter!, we notice thatclosedsolutions~i.e.,
l0.12V0) must satisfy l0,(3g/221)V0, while open
ones (l0,12V0) obey l0.(3g/221)V0. These conclu-
sions follow from requiring that the terms in square brack
be positive; i.e., from the requirement thata* be a real num-
ber.~The exception in which the exponent is an even inte
` occurs only for special values of the lambda parame
l05122/3g21/6̀ g, and will not be considered furthe
here.!

~3! Requiring that 0,a* ,1, we learn that both the nu
merators and denominators in Eq.~5.15! must be positive.
Comparing their relative absolute magnitudes, we distingu
two possibilities:~a! if l0,lc , then both the numerator an
denominator must be positive, since otherwise (3g22)(1
2V02l0),2l02(3g22)V0, which reduces tol0.lc ,
contrary to the hypothesis. On the other hand,~b! if l0.lc ,
then wealsofind that both numerator and denominator mu
be positive, since otherwise (3g22)(12V02l0).2l0
2(3g22)V0, which reduces tol0,lc , again contrary to
the hypothesis. Therefore both the numerators and deno
nators are positive in all cases.

~4! It follows from the conclusion~3!, in conjunction with
the assumptiong.2/3, that:

l0,12V0 . ~5.16!

In other words, to realistically describe the present Univer
models with a nonzero minimum scale factor must, in t
present theory, beopen. While some nonsingular open solu
tions have been found in theories employing scalar fie
@97# and higher-order curvature terms@98#, we are not aware
of precedents for this in theories based on the cosmolog
term.

~5! By combining Eq.~5.16! with the conclusion~2!, we
infer that:

l0.~3g/221!V0 , ~5.17!
6-17
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which sets a lower limit on the size of the cosmological ter
~6! Equations~5.16! and~5.17! together impose an uppe

limit:

V0,2/3g, ~5.18!

on the matter density of the Universe.

E. Minimum values of the scale factor

The information contained in Eqs.~5.15!–~5.18! is sum-
marized in Fig. 11, which is a phase space plot like Fig.
but enlarged to show only the range of interest, 0<V0<1
and 0<l0<1. Models with (l0 ,V0) are represented b
points on this diagram, as usual. The critical values ofl0 in
this theory define the upper edges of the triangular regio
the base of the diagram; i.e., the region bounded by
curves V01l0,1 ~dash-dotted line! and V01l0
.(3g/2)V0 ~dashed line!. All models between these curve
are nonsingular, with real values ofa* in the range
0,a* ,1, as we have stipulated. Figure 11 is plotted forg
51.

Using Eq.~5.15!, we have plotted contours of equal min
mum scale factora* in this region~heavy solid lines!. Any
point along one of the contours corresponds to an oscilla
model with the labelled value ofa* . Following the discus-
sion in Sec. IV E, we would like to find models in whicha*
is as small as possible, in order to obtain the largest poss
maximum observable redshiftzobs<a

*
2121. For instance, to

be compatible with observations of quasars (zobs'10), a*
must be less than about 0.1. If we wish to explain the CM
as relic radiation from the last scattering surface atzlss
'1100, then we require a smaller minimum scale fac
a* ,0.001. And to meet the demand that the early Unive
heat up to nucleosynthesis temperatures@Tnuc'T0(a0 /a* )
'1010 K#, our model must satisfy

a* ,1029 ~nucleosynthesis! . ~5.19!

Figure 11 demonstrates that the present theory can rea
satisfy this constraint. Any model lying along the curve
belled 1029 will be capable, in principle, of reaching thes
temperatures near the ‘‘big bounce.’’ This confirms co

FIG. 11. Phase space diagram for the casen52 with g51,
showing contours of equal minimum sizea* .
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ments made by several authors@99# that there is no reason in
principle why the oscillations in a nonsingular model cann
be deep enough to account for all the evidence which
usually taken as proof that the Universe began in a singu
ity. Moreover, the only observational constraint which se
ously limited the variable-L models in the last section — th
lensing constraint — does not apply in this section beca
there is no antipode in an open universe.

To meet the condition~5.19!, models in this theory mus
lie close to the upper edge of the triangular region in Fig.
To an extent this is ‘‘fine-tuning.’’ However, it also allow
us to make very definite predictions~as in Sec. IV! about the
values ofl0 that would be required in a realistic oscillatin
model. As an example, let us consider the observation
favored value ofV050.3 @87#, and let us assumeg51 as
usual. Tracing horizontally across the line defined
V050.3 in Fig. 11, we can see that the nucleosynthesis c
dition ~5.19! is met by onlytwo values of the cosmologica
term: l0'0.15 andl0'0.7. Of these, the larger value i
only marginally viable, being very close to the observation
upper bounds described in Sec. IV D 1. The smaller val
however, is perfectly acceptable from an observational sta
point.

In general, the theory predicts that the most likely val
of l0 is eitherjust below:

12V0 , ~5.20!

or elsejust above:

~3g/221!V0 ; ~5.21!

which is to say, just aboveV0/2 in a dust-like universe (g
51). The former situation might be preferable to some
theoretical grounds@92#, while the latter is in better agree
ment with the increasingly stringent observational upper li
its on l0 ~Sec. IV D 1!.

To confirm that models with these features really do av
the big bang, the solutions can be evolved backward in t
as before, using Eqs.~5.12! and~5.13! with the Taylor series
expansion~4.9!. The results of this procedure are shown
Fig. 12 for the caseV050.3 andg51. This diagram is an

FIG. 12. Evolution of the scale factor for models withn52,g
51, V050.3, and values ofl0 labelled beside each curve.
6-18
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enlarged version of the evolution plots in Sec. IV~Figs. 5
and 10!, showing only the past three Hubble times. Values
l0 are marked beside the appropriate curves. Several
tures can be noted.

First, the initial singularity is avoided for any value ofl0
between 0.15 and 0.7, as expected on the basis of the p
space diagram, Fig. 11. In the limiting case wherel050.7
exactly, which is spatially flat, we see thata* 50 ~de Sitter–
like behavior!, as expected based on the discussion follow
Eq. ~5.15!.

Secondly, Fig. 12 confirms that the value ofa* is smallest
near the critical values ofl0: 0.064 for thel050.6 case~just
below 0.7!, and 0.018 for thel050.2 case~just above 0.15!.
These numbers have been chosen for illustrative purpo
smaller values ofa* ~with consequently larger bounce tem
peratures! are obtained by lettingl0 approach the critica
values more closely.

Thirdly, this evolution plot gives us some informatio
about the ages of the models; that is, the elapsed time s
the big bang~or the big bounce, as appropriate!. It may be
seen that, within the range 0.15,l0,0.7, larger values of
l0 correspond to older universes, as usual: 1.10 Hub
times forl050.2, and 1.70 Hubble times forl050.6. Even
if H0 takes on its largest currently acceptable value of
km s21 Mpc21 @81#, the ages of the two models are 13
and 20.1 billion years respectively — well above the glob
lar cluster limit of 9.6 Gyr@82#.

F. The casen54

We proceed to the other case of interest,n54, which
consists of the Riccati equation~5.4! for x(a). This can be
solved using standard techniques@79#. Switching dependen
variables fromx to y via x5(21/Py) dy/da, we obtain:

d2y

da2
1za21

dy

da
1ha24y50, ~5.22!

where:

z[113g, h[gC~223g!k. ~5.23!

The parameterh can be connected to observation as follow
With n54, the decay law~5.1! givesC5L0 /H0

453l0 /H0
2.

Substituting this result into the second of Eqs.~5.23!, we find

h[3g~223g!l0~V01l021!, ~5.24!

where we have used Eq.~2.16! and seta051 as usual.
Equation~5.22! is linear as desired, but not straightfo

ward because of its variable coefficients. We can recast
normal form by changing independent variables froma to
z[*e2f(a)da, wheref(a)[*(za21)da5z lna. This proce-
dure leads to the following differential equation fory(z):

zm
d2y

dz2
1ny50, ~5.25!

wherez5(12z)21a12z and:
04350
f
a-

ase

g

s;

ce

le

3

-

.

in

m[
2~22z!

12z
, n[h~12z!2m. ~5.26!

Somewhat surprisingly, Eq.~5.25! has the same form as th
differential equation~3.7! governing the solutions of theL
}t2 l models in Sec. III.~The two are identical if we putz
→t, y→x, m→ l , andn→2a.!

So we could in principle bring over all the results of Se
III, for the casesm51,2,3,4 at least. However, combinin
the definitions~5.23! and ~5.26!, we find thatm5(2/3g)
3(3g21); or g5@3(12m/2)#21. Therefore solutions ob-
tained in this way would correspond to equations of st
with g-values of 2/3,̀ ,22/3 and21/3 respectively. These
do not describe realistic forms of matter, at least not in
present universe@37#. Conversely, values ofg that are rea-
sonable~such asg51 or 4/3) correspond to non-integra
values ofm ~such as 4/3 and 3/2 respectively!. It is doubtful
that Eq.~5.25! can be solved analytically in these cases. W
therefore leave the possibility thatn54 for future numerical
analysis.

VI. L AS A FUNCTION OF THE DECELERATION
PARAMETER

A. Evolution of the scale factor

We turn finally to the last of our phenomenological dec
laws, Eq.~2.13!, writing it in the form:

L5DS ä

a
D r

. ~6.1!

As far as we are aware, no such dependence has previo
been considered for the cosmological term. However, it i
natural extension of the other decay scenarios considere
far. There is no fundamental difference between the first
second derivatives of the scale factor that would preclude
latter from acting as an independent variable if the forme
acceptable.

Substituting the decay law~6.1! into Eq. ~2.9!, we find:

DS aH
dH

da
1H2D r

5S 32
2

g D S H21
k

a2D 1
2

gS aH
dH

da
1H2D .

~6.2!

We adopt the valuer 51 for the remainder of Sec. VI, sinc
we would like to solve for the Hubble parameter in analy
form in order to make use of of the Taylor expansion~4.9!.
Equation~6.2! then takes the form:

dH

da
5

g

aS 32D
gD22DH1

k

a3S 3g22

gD22DH21. ~6.3!

As in Sec. V B, let us make a change of dependent varia
from H to x[Hs, wheres is an arbitrary constant. Equatio
~6.3! then takes the form:

dx

da
5

sg

a S 32D
gD22D x1

sk

a3S 3g22

gD22D x~s22!/s. ~6.4!
6-19
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If we chooses52, this is reduced to the linear form~5.6!,
with:

S~a![2gS D23

gD22Da21,
~6.5!

T~a![2kS 3g22

gD22Da23.

Multiplying through by a factor of exp@*S(a)da#
5a2g(D23)/(gD22) and solving exactly as in Sec. V C, w
obtain for the Hubble parameter:

H~a!5@C0a22g~D23!/~gD22!2ka22#1/2, ~6.6!

whereC0 is a constant of integration. Imposing the bounda
condition H(a0)5H(1)5H0, we find with the help of Eq.
~2.16! that C05H0

21k5H0
2(V01l0). We can also fixD

in terms of observable quantities. Withr 51, the decay
law ~6.1! gives D5L0(ä/a) t5t0

52L0 /H0
2q0523l0 /q0,

whereq0 is the present value of the deceleration parame
and we have used the definitions~2.15! and ~2.18!. Substi-
tuting this result into Eq.~6.6! along with Eq.~2.16!, and
recalling thatH5(H0 /a)da/dt, we find:

da

dt
5@aaj1b#1/2, ~6.7!

where:

a5~V01l0!, b512a,
~6.8!

j[
~223g!q0

q01~3g/2!l0
.

This expression, together with its time derivative:

d2a

dt2
5

j

2
~V01l0!aj21, ~6.9!

can be substituted into the Taylor expansion~4.9!.

B. Minimum values of the scale factor

As in Sec. V D, we require that oscillating models satis
da/dt50 at a5a* . In conjunction with Eq.~6.7!, this im-
plies:

a
*
j 5S V01l021

V01l0
D . ~6.10!

Let us write this out explicitly using the last of Eqs.~6.8!. As
with Eq. ~5.15!, we will find it convenient to distinguish two
possible cases:
04350
y
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a* 5H S V01l0

V01l021D [ „11~3gl0/2q0!…/~3g22!]

if q0.qc

S V01l021

V01l0
D [ „2~3gl0/2q0!21…/~3g22!]

if q0,qc ,

~6.11!

where we have definedqc[2(3g/2)l0 ~leaving the case
q05qc aside for the time being!.

We can draw a number of useful conclusions from t
form of Eq. ~6.11!. First, ~1! that spatiallyflat solutions
(V01l051) again have eithera* 5` ~if q0.qc) or a*
50 ~if q0,qc). This is just as in the previous section~Sec.
V D!.

~2! Secondly, requiring real values fora* ~subject to the
same proviso about even-numbered integer exponents a
Sec. V D!, we can conclude thatclosedsolutions ~i.e., l0
.12V0) must satisfyl0.2V0, while openones (l0,1
2V0) obey l0,2V0. It follows that, if l0 is a positive
quantity, as observations almost certainly indicate~Sec.
IV D 2!, then models with a nonzero minimum scale fac
must, in the present theory, beclosed. We will assume that
both these conditions hold in the remainder of Sec. VI.

~3! Thirdly, requiring that 0,a* ,1 as before, we learn
that the deceleration parameterq0 satisfies

q0,qc . ~6.12!

This follows from the fact thatuV01l021u cannot be
greater thanuV01l0u ~assuming thatV0 and l0 are both
positive!.

~4! Finally, combining the conclusion~3! with the defini-
tion of qc , we infer that

q0,2~3g/2!l0 . ~6.13!

Assuming as we are that the cosmological term is posit
this implies that the deceleration parameter must benegative
for a universe filled with normal matter (g.2/3).

Unfortunately, the deceleration parameterq0 remains
among the most poorly-constrained quantities in obser
tional cosmology. Nevertheless, it is fair to say that the m
jority opinion among cosmologists holds thatq0 is probably
positive @100#. The most recent experimental determinatio
obtained from type Ia supernovae, leads to a value
q050.38560.36 @101#. Since oscillating models in the
present theory not only haveq0,0, but k.0 as well, they
are somewhat disfavored in comparison to those of Sec
and Sec. V; and we judge that this is a reasonable plac
halt our investigation for the time being.

VII. CONCLUSIONS

We have examined the evolution of the scale factora(t)
in the presence of a variable cosmological termL, and also
extended existing treatments by adopting a fairly gene
equation of state for ordinary matter.

A number of new exact solutions fora(t) have been ob-
tained in cases whereL}t2 l . These models are singular, b
can be significantly older than those in whichL5const. For
6-20
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odd values ofl , the cosmological term must be negative~or
zero! if the scale factor is to be real-valued. Our conclusio
may not extend to cases in whichkÞ0; this will require
more detailed numerical analysis.

For a cosmological term that scales asL}a2m, we have
solved numerically for the scale factor as a function of tim
and found that there are closed models which are compa
with observation and contain no big bang. This is in sh
contrast to the situation whereL5const, for which experi-
mental evidence firmly establishes the existence of an in
singularity.~The variation effectively allows one to obtain
large L term where it is most important — near the ‘‘bi
bounce’’ — without the price of a large cosmological co
stant at present times.! This appears not to have been wide
appreciated, probably because variable cosmological te
have so far been studied almost exclusively in the contex
the cosmological ‘‘constant’’ problem. We have obtain
constraints from experimental upper limits onL0, as well as
requirements of sufficient age, normal gravitation
lensing at high redshifts, and others. As specific numer
examples, oscillating models with zero pressu
V05$0.34,0.51,0.61,0.67% and l0 in the ranges
$0.68–0.72,0.51–0.57,0.41–0.49,0.39–0.48% are observa-
tionally viable if m51,1.5,1.8 or 1.9 respectively. If th
bounce is to be deep enough to generate the tempera
on
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e
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required by conventional nucleosynthesis, thenm>1.8.
We have also solved numerically for the scale fac

whenL}Hn. In this case we have foundopenmodels which
can account for the observational data despite their lack o
initial singularity. In particular, oscillating models with zer
pressure and values ofl0 either just aboveV0/2 or just
below 12V0 are viable if V0,2/3 and n52. ~We have
investigated only the casesn52 and 4 in detail.! If V0
'0.3 andl0'0.15 ~or 0.7), for example, then the most re
cent ‘‘big bounce’’ could have been deep enough to acco
for phenomena such as the cosmic microwave backgro
radiation and light element synthesis in a model withn52.

For a cosmological term that depends on thedeceleration
parametervia L}qr , we have solved only the caser 51.
Closed oscillating models are possible, but require thatq be
negative at the present time, if the cosmological term is po
tive.
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