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Superconducting cosmic strings with exotic spacetime

Marcus J. Thatch&rand Michael J. Morgah
Department of Physics, Monash University, Clayton 3168, Victoria, Australia
(Received 22 January 1998; published 15 July 1998

The metric for a superconducting cosmic string with constant momentum has been calculated analytically
and numerically using the full Einstein field equations. We show that the string metric has mixed components,
which for heavy strings %~ 10'® GeV) describe a spacetime with exotic properties. In the string spacetime
particles are deflecte@n the z-direction as they approach the string, effectively isolating the defect from the
outside Universe. The inclusion of gravity into models of charged strings and vortons is expected to have
significant cosmological implication§S0556-282198)01216-§

PACS numbes): 98.80.Cq, 04.62:v, 11.27+d

I. INTRODUCTION presence of nonzero momentum results in the spacetime met-
ric acquiring mixed metric components, which give rise to
Many grand unified theorig&SUTs) predict that the early  oscillatory behavior foigy;, g,, andg;,. The oscillation of
Universe underwent successive phase transitions. It is corihe metric components also forms multiple “horizons”in
jectured that these phase transitions were accompanied I8 various distances from the cosmic string. Particles are
the formation of topological defects, such as cosmic stringiound to be deflected at these horizons and hence the cosmic
[1] which are described by the Abelian Higgs mod2]. string is effectively isolated from the outside Universe.
Cosmic strings are of interest due to their unusual properties The organization of this paper is as follows. In Sec. Il we
and cosmological consequences. examine a weak field approximation to a cosmic string and
Cosmic strings possessing an internal structure may undghow that the inclusion of momentum leads directly to mixed
certain conditions exhibit superconductivitg]. The origin ~ metric components. In Sec. Il we derive the field equations
of superconductivity can be due to bosonic, fermd@tor ~ which govern the spacetime of a superconducting cosmic
non-Abelian gauge field currenfd]. Superconducting cos- String with a bosonic supercurrent. The qualitative results are
mic strings are of interest since the supercurrents are ex@pplicable to any string object which has moment(eng.,
pected to significantly alter string spacetime and string dyfermonic superconductivily In Sec. IV we present analyti-
namics. Supercurrents in the string can also have a nonzef@&l and numerical solutions to the Einstein field equations
momentum in the direction of the current flgixe., along the which elucidate the oscillatory behavior of the metric. The
string), and this will modify the properties of cosmic strings main results and implications of the model are summarized
and string loops. Davis and Shellaff]] demonstrated that in Sec. V.
charged superconducting loofi., vorton$ have sufficient
angular momentum to stabilize centrifugally. Vortons have Il. WEAK FIELD SOLUTION
been studied by many authofsee, e.g.[5-10]), and it is o )
thought that these loops have adverse cosmological conse- !NSight into how momentum affects the spacetime proper-
quences, particularly for primordial nucleosynthddi]. ties of a cosmic string can be gained by examining a weak
Since superconducting cosmic string loops have signifi-f'eld _solut|0n. To model a cosmic string with momentum, we
cant ramifications for cosmology, the properties of superconM0dify the energy-momentum tensor used by VilerKid]
ducting strings(with zero momentut have been investi- and Hiscock [15], by adding components,T;,; =T,
gated analyticallf11] and numerically{12]. The spacetime = —M&(X)8(y), which describe the momentum per unit
of charged superconducting cosmic strings has also been eigngth in the string along thez-direction. Adopting
amined in the weak field approximati¢h3]. However, pre- ~Cartesian coordinates t,&,y,z) with metric signature
vious models neglect momentum when constructing théliag(+,—,—,—), the en_ergy-momenturpsgensor bzecorfles
energy-momentum tensor; consequently the spacetime propatural unitsh =c=1, with G=6.72<10"* GeV"),
erties of a cosmic string with nonzero momentum have not

been examined. In this paper we show that the inclusion of E 00 -M

momentum leads to exotic spacetime properties, which may 0 0 0 O

have significant cosmological consequences. We present T,=06X)46Y) o 0o o o0 | (1)
analytical and numerical solutions to the full Einstein field

equations for cosmic strings with constant momentum. The -M 0 0 -S

whereE, M and S are the energy, momentum and tension
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+61 3 9905 3637. ploy the weak field approximation
'Email address: Michael.Morgan@sci.monash.edu.au; Fax:
+61 3 9905 3637. 9uv=Muvt iy, )

0556-2821/98/5@1)/04350%9)/$15.00 58 043505-1 © 1998 The American Physical Society



MARCUS J. THATCHER AND MICHAEL J. MORGAN PHYSICAL REVIEW D58 043505

where |h,,|<1, and utilize the Fock—de Donder gauge, 16GMIn(r/5)
dh,— %a#hzzo. The resulting weak field equations are b= > 9
V1-[4G(E-9)In(r/6)]
1 1
EDhuVZSWG(Tw_ 2 WVT) ' 3) In generalZ# 0 and hence photons in the vicinity of a string
which has nonzero momentum will be dragged along the
whereT=»*"T,,. z-direction.

Substituting for the energy-momentum tenddy, the For GUT scale cosmic string&S(E+S)~10¢, and
weak field equations reduce to a set of differential equationsence the weak field approximation should be an adequate
of the form description of the string metric. However, it is expected that

) ) the metric properties will alter significantly in the full Ein-
V*hy=V*h,,=87(E—S)4(x)4(y) (48 stein field equations. In Sec. Il we explore this conjecture by
oo analyzing the field equations of general relativity for a cylin-

Voh,o=V7hyy=8m(E+S)(x)(y) (4D grically symmetric system with nonzero momentum.
V2h,=—16mM 8(x) 8(y), (40

ll. FIELD EQUATIONS
where h;,=h,;, sinceT;,=T,;. The solution to the weak

field equations can be written as To describe a superconducting cosmic strimgth non-

zero momentun we employ a model of bosonic supercon-

hy=h,,=4G(E—S)In(r/5) (59  ducting cosmic strings due to Wittef8]. The numerical
evaluation of the metric is made tractable by considering a

hyx=hyy=4G(E+S)In(r/8) (5b) cosmic string with a neutral current, which does not couple
to a gauge field. It is important to emphasize that the metric

h;,=h,=—8GMIn(r/é), (5¢0  properties discussed in this paper are a consequence of the

s o . ~nonzero momentum of the string and the concomitant mixed
wherer“=x°+y® and 6 denotes the width of the cosmic metric components. The model of a superconducting string
string. Following[14] we exploit rescaled, cylindrical coor- with a neutral bosonic supercurrent is chosen purely for con-
dinates defined by venience, and the results are applicable to fermonic super-

_ 2 2 conducting cosmic strings.
[1+4G(E=S)In(r/§)]dt"=dv (63 The Lagrangian for a superconducting cosmic string with

[1-4G(E—S)In(r/8)]d2=d¢? (6b) a neutral bosonic current is given by

1
[1-4G(E+S)In(r/6)]dr?=dp? (60) £=|D#¢|2+|Vﬂcr|2—ZFMF’“’—V(¢>,0), (10

2_ 2
[1-4G(E+S)in(r/ )] =[1-4G(E+S)]p" (6 whereV , is the conventional covariant derivativé, is the
In terms of the rescaled coordinates, the weak field approxicomplex Higgs field,s describes the bosonic current field,
mation to the metric for a straight cosmic string with nonzeroD ,=V ,—ieA, is the gauge covariant derivative and the
constant momentum becomes electromagnetic field tensor is given b¥#,, =V A,
—V.,A,. The potential is
ds?=dv?—d{?—dp?—[1-4G(E+S)]p?d#?

A \,
~ 16BMIn(r/9) " . V(g,0) = (12~ n5) 2+ (o2~ n2)?
VI_[4GE-_9ntIoR =

A
21 12 "o 4
From Eq.(7), it is evident that the existence of nonzero mo- +Blo[ o] 4 Mo (1)

mentum leads to a conical metric with a mixgg metric

component. Mixed metric components involving timelike where\ ,, 7,4, N\, and 7, are constants which define the
and spacelike coordinates will affect particle geodesics, iform of the potential for the string and current fields. The
which case we would expect particles to be dragged alongwvo fields are coupled together through a paramgter

the z-direction. To describe the motion of a photon we cal- To ensure that the Higgs field undergoes symmetry break-
culate the null geodesic for the coordinate by varying the ing first, we introduce the constraim;,)nfﬁ> )\07/‘;. Requir-

metric with respect to an affine parametegr.e., ing the current field to vanish outside the string introduces a
second constraint, 2\,=75/75. A final constraint,
a A‘DJFB’ ® BING<\,74/4\ 4774, ensures thalir|=0 is unstable in the
1+ P2 presence of a strinplL6].

We generalize Eq.7) to describe the metric for a station-
where an overdot denotes differentiation with respect to thary cylindrically symmetric string with constant momentum,
affine parameterA andB are constants and i.e.,
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ds2= A(r)dt2—2®(r)dtdz— dr2— ¥ (r)2d 62— Q(r)d 2,
(12

where the string is orientated along thalirection andg;,
=g,:. Invoking an argument due to Garfinkj&7] allows
the metric componeng,, to be set to unity without loss of
generality.

PHYSICAL REVIEW &8 043505

wherek andw are constants which describe the string’s mo-
mentum (see Sec. Y. For simplicity the phase winding
numbem of the Higgs field is set to 1. The model parameters

are rescaled according tB=\4B, Ny=Agh,, 7,
= 0yns, K2=Ngn3K2, 0?=\,n50° ande?=\ €2, and the
radial coordinate is rescaled te=r/(yA 47,), so that dis-

To calculate the vortex solution for a superconductingtances are measured in terms of the string width

cosmic string with constant momentum, we exploit the cy-

lindrical symmetry to write

d=n4f(r)exqing) (1339
Agz%?:fe(r) (13b
o=n48(r)exgi(kz—wt)], (130

(VN gmy) 1. Finally, for the numerical calculations, we
have chose8=5.0,\,=40.0 andzn,=0.387, and for con-
venience we se¢’=\ 4 so thate= 1.0.

The equations of motion are obtained from the Lagrang-
ian (10) by varying ¢, A* and o, respectively. Substituting
the cylindrically symmetric forms of5, A, and o into the
equations of motion produces the following set of equations
(in the Lorentz gauge

2

fa; 1 _
V%f—‘y—g—zf(fz—l)—,sfsz=0 (143
Qal TOAQ — QA +2D%-20D")—2Q(DP%+AQ)TV’ _
+ a,—2e’f?a,=0 (14b)
B2+ AQ 2W (D24 AQ)2 o ¢
Qsw?—Aske+2Dsko  \, _
Vis+ Y - 73(52—;(2,)—,83f2=0, (149
where a dash indicates differentiation with respeaTund V% is given by
V2o 92 2020+ 2AQ¥' + 20 DD+ POA' +PAQ' | § 15
rogr? 2W(D2+AQ) ar’
|
The boundary conditions imposed on the string field require ?t = —45%Kw+ DL (179
us to accommodate an undefined phase at the center of the z ’
string defect, and the vacuum solution in the far field, —y AT T _T
whence f(0)=0, f(r—x)—1, a0)=1, a,(r—=<)—0, whereT,,, =\ 47T 0, Tiz= T, and
s’(0)=0 ands(r—«)—0. o 5 T— 2.2
To evaluate the metric we calculate the energy- | _ _(f/y2_ ()24 050"~ Ask*+20s°ke 72
momentum tensor for the superconducting cosmic string, P2+ A0 P2
oL (a(;)z 1 2 2 f,, 2_T2\2
T,uV: 5gluv_g/.w£1 (16) _ZEZ\I’Z_Z(]( _1) _T(S _770-)
for which the tensor components are = f,,_‘l
— Bf<s +T o (18
Tu=25%w?— AL (173
o . The Einstein field equations can be written in the form
T, =2(f)2+2(s")?+e 4a,)?v 2+L  (17b
R,,=47G7%(2T,,—0,,T), 19
T,,=2f%%+e 2(a)2+ WL (170 - 7l " B ) 9
B B whereT=g*'T,, andR,,=\47;R,, . The field equations
T,7~=25°k*+ QL (17d (19 become
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— A" WA 2AD2HAAQ 2D A — QA2 3 4000
Ry=—+ + 2 ., 3000
2 AL 4(P2+AQ) < 2000
(209 o : 1000 |
-1

$ 500 XOO (‘J 160 7200 360

200'd'+ QP A+ AV Q'

Rgo=—¥| ¥"+ 2D AQ) (20b) r/o r/d
1.2 6
— Q" v’ 0.8 4
Re== 5 = %9 Cl o4 S 2
, 0 : | 0 1 |
L 2002+0A'Q'-200'0' - AQ 2 (200 -0_41£ 20 \40 2 1£ 10000 20000
4(D2+AQ) r/d r/od

o D" PP QDA +ADQ —2DAQ’ FIQ. 1..Plot f)f the metric components for a sup_erconducting
2= 5 , cosmic string with constant momenturk<0.85 andw=1.15).
2 2w 4(P°+AQ) The radius is scaled by the string widéh The mixed metric com-
(200 ponent® allows thet- and z-directions to interchange spacetime
- _ roles for negative values ok and (), respectively. Sincé) be-

where R;,=R,; and R, is redundan{17]. The boundary comes negative befork, there exists a region which has two time-
conditions for the metric components are chosen to ensurige metric components.
that the metric at the center of the string is smooth, whence

A(0)=1, A’(0)=0, ®(0)=0, P'(0)=0, ¥(0)=0,

T’(0)=1,Q(0)=1 andQ'(0)=0. K= —, (24)

IV. METRIC SOLUTION AND ITS PROPERTIES _ )
where S; is a constant. As the current field quenchas (

Equationg14), (17), (20) and the attendant boundary con- - - . .
ditions enable us to calculate the metric for a superconduct-_>0)’ « increases untl it offsets the quenchﬂlgj’ypmally for

ing cosmic string with constant momentum. Because of théN€ Static metric of a heavy string we hawe-k. For the
nonlinear nature of the equations, we use numerical tecHiMe independent metric considered in this paper we choose
niques to explore the metric properties of realistic cosmiParameters for whiclw>k. To investigate the metric solu-
strings. Where appropriate, comparisons are made with apion, the superconducting string vortex solution was evalu-
proximate analytical solutions. ated numerically by relaxation techniques with a fourth-order

To emphasize the unusual properties of the metric, wékunge-Kutta scheme used to calculate the metric compo-
consider a heavy string for whichG ,75):0_02 4 nents. The coupled vortex and Einstein field equations were
~10'® GeV). The momentum per unit length of the string is SOlved iteratively until the solution converged.
calculated from therT,,-component(17e), by choosing the

values ofk and w according to A. Oscillatory solutions

% % _ The metric solution withk=0.85 andw=1.15 is dis-
M= —27-rj T,V dr=27r)\¢,77fﬁj (4s’kw—DL)V dr. played in Fig. 1. This differs from previous string solutions
0 0 [11-13 by the appearance of a mixed metric component
(22) Oz, Which we have shown to be a direct consequence of the

A typical vorton is conjectured to ha\EvZ[S]; however, it string’s momentum(Sec. I). The appearance of a nonzero
gi,-component allowsy,; and g,, to become spacelike and

was found that fok=w the spacetime curvature is sufficient i qike, respectivelyi.e., A<0 andQ<0). This behavior
to initiate current quenching. For cosmic strings with g impossible for strings without momentum, which is seen

chargeq current carriers, the current is prevented froan, setting®(r)=0 (i.e., M=0) in the field equation20).
guenching due to charge conservation. In the case of neutr N
or example, writingRy; as

currents there exists a similar mechanism, which can be seen
by writing the current fieldr in the form PN

Ry=A"+ il
tt 2y

o x) @

The imaginary part of the equation of motion becomes reveals that far from the stringvhereT,=0), asA—0 we
have A"— +«, and hence the metric componektcannot

+A’

o=s(t,r)expli[kz— x(t)]}. (22)

2ks+ks=0, (23)  pecome negative. A similar analysis also applie$)to
where an overdot denotes differentiation with respect.to Extending the domain of the metric solutionririsee Fig.
Equation(23) has the solution 2) reveals that the metric componengs,, d,, andg;,, 0s-
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100 1.E+06 We also define the functio@(r) according to
5.E+05 O'—DPA ' =C(r)K(r). 30
< 50 NB" AD' —DA’ JK(r) (30)
0
- 4 s 8 0.E+00 The field equation$27) then reduce to
-50 2l 25 78 35 4
1 din[K(r
log(r/d) og(r/d) o Ly AOKOT_ (319
15 10 T 2 dr
10 % / 0 = : | TIA
5 -10 2 4 [} ” r—
e Y - e A"+ —5—+C(N®'=0 (31b
-5 4 6 -30 T
-10 40 + VP’
log(r/0) log(r/5) D"+ ~C(r)A’=0. (310

FI_G. 2. Extended plot of the metric compor_1ent§ in Fig. 1. TheEquation(3la) can be solved immediately to give
metric components are seen to revert to their original spacetime

roles. Note that the spatial period and the amplitude of the oscilla- p
tions increase withr and that they,, metric component reverts to P = _1, (32)
spacelike before thg,, component becomes timelike. This behavior \/R
produces a spatial region with no timelike metric component.
whereP is a constant an& # 0.

cillate successively between positive and negative values After differentiation, Eq.(29) becomes
(i.e., between timelike and spacelik&he oscillations in the , L
metric components appear to continue indefinitely, with the POT+HAN=K[2. (33
amplitude of each oscillation and the distance between S“%olving Eq.(33) and Eq.(30) simultaneously yields the dif-
cessive interchanges quickly becoming large. ferential equations

We can gain insight into the spacetime properties\of

and Q) by finding analytical exterior solutions to the field K’
equationgi.e., T,,,(r>¢8)=0]. To simplify the problem we A= A-Co (3439
will assume thafl;~T,, everywhere, so that the field equa-
tions R;=87GT; and R,,=87wGT,, are equivalent(i.e., K’
A=Q). This assumption is reasonable for strings with small d'= R@%—CA. (34b
momentum since
T Differentiating Eq.(34) and substituting into the field equa-
lim (l) =1, (26)  tions(27) for A and® yields
M—0 zz
(KW @ d (K ,
for which the Einstein field equations become Plogty )T ogn k) TEA=0 (359
DD’ +AAN’ K" ¥\ A d/K’
"+’ —————| =0 (279 N s |+ | —c'd=
B2+ A2 ) A 2K+\If)+2dr(K) c'=0.
(35b)
A oA o’ AP Z DA =0 27h If we now define the functionk(r) andg(r) b
’ ry —1
‘I’ICI)’ A(I)/_(I)A/ h(r):C, R"‘? (366)
P+ —A’ =0, (279
v D2+ A2
B d/ K’ K’ P! -1 o
where we have made the additional assumption a0 . 9= g2/ |\ 2 T ) (36D
Equation(27g can be simplified to
then Eqg.(35) can be written in matrix form as
, o1 ,dln(d>2+A2)
4 +§\If T:O' (28 ((I)’ _ —g(r) —=h()\/® @7
A’ h(r)  —g(r) '
We define an arbitrary functiok(r) in terms of A andQ,
by Equation(37) can be written more compactly as
2+ A%=K(r). (29 X" =B(r)x, (39
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wherex is a vector ands is a 2xX 2 matrix. The problem can d2In(K) dIn(K)/ 1din(K) din(¥)
be simplified further if we choose the solution to E88) to 7 T g \5 d a (46)
be of the form dr ' ' '

From Eq.(32) we know that¥ can be solved in terms df
x=e“"u, (39  and hence Eq46) is a nonlinear ordinary differential equa-

] o ) tion. Furthermore, Eq45b) can be simplified to
whereu is a constant vector. Substituting E§9) into Eq.

(38) gives . C,
= _—d

whereC, is a constant an& # 0. C is then solved in terms
Hence solving the field equations is reduced to an eigenvalugf K. Hence the Einstein field equations have been reduced
problem. The eigenvalues & are to a single nonlinear ordinary differential equati@¥).
A trivial solution to Eq.(46) is

(47)
Bu=2z'u. (40

= — —+ 1
z'=—g(r)xih(r), (41) K=A, (48)
with corresponding eigenvectors whereA, is a constant. The solution fét allows us to write
T as
*i
u=| ) : (42) V=A,r, (49

whereA, is an integration constant and we have chosen the
The appearance of constant eigenvectors is consistent witither constant of integration to be consistent with the bound-
the assumption that is constant. Finally we write the exte- ary conditionW(r=0)=0. This form of ¥ can describe a
rior metric solution toA and® as conical metric, depending on the form df and ®. The
solution to Eq.(47) gives the functiorC(r) as

®=e ®"{—D;siMH(r)]+D,codH(r)]} (433 As

C et (50
A=Q=e CID;cogH(r)]+D,siMH(r)]}, (43b
! ? whereA; is another constant. We now hakies —A;/r and
whereD; andD, are constants, g=0, and hence the solution to the metf@3) may be writ-

ten as
d=e %D, siMAgIn(r)—H,]

H(r)=f h(r) dr+H; (44a
+D, cod AzIn(r)—H]} (51a

A=Q=e %D, cog§AzIn(r)—H,]

G(r)zf g(r) dr+Gq, (44b)
—D, siMAzIn(r)—H4]}. (51b

andH; andG; are integration constants. Equatidd$) de- W
scribe metric components that oscillate harmonically, wit
the amplitude and spatial frequency varying as a function (I;Yiv
r. The numerical solution for a more realistic energy-
momentum tensor also suggests that oscillatory solution
will occur for Ty # T,,. This behavior leads to exotic space-

e can evaluate the constants by equating Es{. to the
eak field solution7) atr = §. Requiring the metric and its
rst derivative to be continuous give\f)?=(1—8GE),
e ©1D;=1, D,=0, H;=A3Ins and A;=8GM 4 1. Equa-
fons (51) then become

:!me properties which are discussed in the following sec- P2=(1-8GE)r2 (523
ions.
The equations foC(r) andK(r) are found by substitut- ®=sin{8GM & [In(r)—In(8)]} (52b)
ing the solution(43) into the defining equation§29) and
(30), i.e., A=Q=cog8GMs In(r)—In(5)]}, (520
K(r):efge(r)(D%Jng) (459 or in terms of the metric
ds?=cod8GM& YIn(r)—In(8)]}(dt?*—dZ?)
C(r)=—nh(r). (45b) ~2sin(8GMS Y[In(r)—In(8)]}dtdz
Equation(45a can be differentiated to give —dr?—(1-8GE)r2d#>. (53
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The solutiong52) display an harmonic variation of ttgg;, coordinate transformatioa= y — ¢ andt= y+ £. The metric
g,; and g;, metric components, which oscillate between(12) now becomes

timelike and spacelike. The exterior metric described by Eq. )

(53) is valid for all r> & (i.., whereT ,,=0). We also note ds’=(A+20—Q)d&?+2(A+Q)dédy

that the spatial frequen.cy of the psmllaﬂong is determmed by +(A—20—Q)dy2—dr2—w2de?. (54)
M; for M =0, the solution describes a conical metric.

There are, however, some notable differences between tt&ince >0 in the region whereA>0 and <0, g is
numerical solution and the approximate analytical solutiontjmelike andg,, is spacelike and the transformed metéd)
SinceT,# T,, everywhere, the numerical solutionsAocand  has only one timelike component. In this region all timelike
Q) are of a different oscillatory form. The oscillations in the vectors must have a component in thdirection. Extending
analytical solution have a constant amplitude, whereas thghe domain of the\ and() solutions radially, we find thab
amplitude of the oscillations determined from the numericalpecomes negative and the metric componeptsand g,,
solution increases with increasing However, the spatial revert to their original roles. Sincg,, becomes spacelike
frequency predicted by both the numerical and analytical sopeforeg, reverts to timelike, there exists a region where the
lutions decreases with increasimg(i.e., according to In metric (12) has no timelike component. Once again this in-
which grows more slowly tham). The oscillations for the dicates a poor choice of coordinate system. From (84),
numerical solution appear to continue indefinitely, which is¢ <0 implies g, is spacelike and), , is the only timelike
supported by the indefinite oscillations displayed by the anametric component. Timelike vectors in this region must have
lytical solution. Hence, the metric components never limit toa component in the-direction. We conclude that, as one
a flat spacetime. The indefinite oscillation of the metric com-moves out radially from the string core, a timelike vector
ponents is discussed in Sec. V. must rotate periodically through the directions, z, y and

back tot.
B. Timelike directions

From Fig. 1, we observe an unusual situation in wiggh C. Isolated cosmic strings

becomes timelike beforg;; becomes spaceliké.e., where To understand the physical significance of the string
<0 andA>0); consequently, there is a region where twospacetime, consider a photon moving outwards from the
metric components are timelike. The appearance of twaetring core. The photon geodesics are obtained by varying
timelike metric components is indicative of a poor choice ofthe metric with respect to proper time. Fér const. the
coordinate system. To ameliorate this situation, we make thgeodesics are given by

,_AQ-BO (559
AQ+ D2
., A(AQ—B®)%+ 20 (A0 —Bd)(AD+BA)— Q(AD+BA)? (55b)
re=
(AQ+D?)?
. AD+BA
AQ+ D2

whereA andB are constants, and an overdot denotes differ(r )=0, beyond whichr becomes imaginary{¥<0). A

entiation with respect to an affine parameteiWe choose to  photon which originates at the string core cannot travel be-

setr=t atr=0, for whichA=1. Equationg55) descrlbe_ a yondr,. Sincez<0 for r,=r>0, photons are deflected in

family of photon trajectories governed I8 whereB=—2  hq pegativez-direction until they move parallel to the cos-
atr =0, which implies|B|<1 for a photon originating at the i« string asr —r,,. This behavior is a consequence ®f

string core. Consider the case wh&e:0 for whichr be- %0 and exemplifies how the mixed metric components af-

comes fect photon geodesics.
_ Q Regardless of the choice &, r is always imaginary at
r2=m. (56) some distancey;,(B), from the core, and hence no photon
J’_

originating at the core can escape to the outside Universe.
From Eq.(56) it is evident that there is a distancgat which ~ This is seen from calculating for B=1 andB=—1:
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((Bo1)—_ 21200 579 w20 = 5
r(B=1)=— ——— - Q
Y Emo 5 A %-100 0 Q M'zoo
50 \ / -150 irror
-0 -200
. A=2d-0Q
r(B=— 1) — _ ) (57b) 0 10 20 30 -250 B
AQ+ D2 @) t/0 (b) r/o
At distances where\ =, if @ is positive, then theB=1 FIG. 3. (a) Photon geodesic, measured in coordinate timis

e plotted forB= —0.4. Arrows indicate the direction of proper time.
The photon is reflected back to the string by a mirror located at

'Ic?r:eﬁlje %Z?:?(?rsfhle% inf g'gg&ﬁsliz Itserlmz oi;;f:e \:’vc;;[atlorilsof ar/éz 150. According t¢ measured at the string core, the photon on
' 9 ginary Whegy, path B appears to be moving back to the string before arriving at the

timelike and theB=—1 geodesic is imaginary WheJ}(X IS mirror on its outward path A(b) The causal paradox is avoided

timelike. As both these situations are exhibited by the NUsince paths A and B are spatially separated. The displacement of the

merical and analytical _solutlons to the metric, we conclud_ephOton in thez-direction is a direct consequence of tg metric
that photons at the string core cannot escape to the outsi mponent as discussed in the text.

Universe, and conversely, no photons can reach the center of

the string. Photons incident on the string will be deflectediy, g= —0.4. A photon originating at the string core is re-
increasingly in thez-direction, qntil at a distance,(B) they flected back to the string by a mirror locatedrat 150. In
are moving parallel to the string. A®>0 near the string Fig. (@), the photon appeain coordinate timgto be mov-
corel,l ph((j)_totn geodfﬁcs desgrlb_ed H?bo at:e (geflectgd at ing back to the string before reaching the mirror, which al-
smaller distances than geodesics describedBby0 [i.e., lows the photon on its return path B to meet itself on the

r“(B>O)<r”(.B:0)<r“(B<Q)]' . outward path A. This causal paradox is resolved in F{g),3
The analytical and .numer-|cal spluﬂo_n; suggests that th9\/here the photon has been deflected along the negative
metric components will oscillate indefinitely. As a result, z-direction as a consequence of thg metric component
there are multiple regions whereis imaginary for a given  Hence the outgoing photon never meets the returning photon,
photon geodesic. I?hotons_ on a given geodesm_cannot Pasgce they are spatially separated at the string doee,
through these multiple regions, which form a series of “ho-eyents which would be timelike separated in Minkowski
rizons.” Since photons are deflected, we can infer that unspacetime are spacelike separated in the string spagetime

charged particles are similarly deflected. Moreover, as th%ausal paradoxes do not arise BE0, sincer becomes
string’s electromagnetic field cannot extend beyondB . . . '
5’nag|nary before <0.

=—1), there are no magnetic fields generated by the strin
beyond this distance. As such, charged particles beyond this

distance will not be subject to electromagnetic fields and will V. CONCLUSION
be deflected in the same way as uncharged particles. There-
fore, no particles from the outside Universe can reach th%O
string core.

geodesic becomes imaginary andlifis negative, then th

Numerical and analytical solutions to the superconducting

smic string spacetime have been preseriteet. IV A
which indicate that the metric components oscillate indefi-
nitely. However, the oscillating metric components are a

D. Behavior of clocks consequence of nonzero momentum and cylindrical symme-

We now consider the behavior of photon geodesics irffy- As a result, the metric solution is only valid for an infi-

terms of coordinate time. The value off2. whent=0. for nitely long straight string and would be invalid at distances
an arbitrary choice oB (A:l) is given b,y ' where the string’s curvature becomes apparent. In the case of

string loops, toroidal symmetry coupled with the requirement

12= _B/®D. (58) that the metric must be_ smooth at the center of the loop may
not give rise to an infinite number of oscillations. Supercon-

ducting cosmic string loops with momentufe.g., vortong

are therefore expected to have an oscillating metric solution

near the core of the string loop, but these oscillations will

decay at a scale where the loop’s curvature becomes signifi-

ant.

The analytical and numerical results indicate that for all pho
ton geodesics which originate at the string cdrés positive
(i.e., particles cannot escape into a region whiere0Q). The
choice ofB then determines the behavior of coordinate time

t at different distances from the string. FBK 0, outgoing . . . .

. . - . The analytical solution to the metric components indicates
photons will reach a distance at whick:0, since Eq(S8)  hat the metric will be oscillatory for any nonzero value of
indicates that is real whent=0. As the photon continues to momentum per unit |engt[‘M_ Hence the results should be
move out from the string, coordinate time runs backwardsgpplicable to GUT stringéfor which 14~ 10 GeV). How-
However, coordinate time is only physically meaningful atever, Eq.(53) indicates that the scale at which the first os-
r=0 (wheret=17) and measures the history of a photon cjllation of the metric becomes appardie., r ,(B=0)] is
according to a stationary observer at the string core. To ilyery sensitive toM (e.g., &M~ In[r,(B=0)]=7). As a
lustrate the consequencestef0, consider the scenario de- result, for GUT strings, the oscillations will only be apparent
picted in Fig. 3, where we have plotted the path of a photorwhere string curvature is significant. At these distances the
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metric solution is invalid and hence GUT vortons are un-mental test of the presence of cosmic strings during the early
likely to exhibit the spacetime properties discussed in thidniverse. However, the fluctuations predicted by earlier

paper. The exotic spacetime properties discussed above withodels will be altered radically when superconducting

only be found in heavy superconducting cosmic strifigs,  strings with nonzero momentum are taken into account. The
Ny~ 10'® GeV). Such objects could arise in phase transitionsmagnitude and power spectrum of the fluctuations may en-
occurring before the GUT phase transition, as predicted bwble superconducting cosmic strings to be distinguished ex-
superstring theory2]. perimentally from nonsuperconducting cosmic strings.

We have also examined GUT strings wikif= w)>10 n this paper we havg examine_d the_ cylin_drically symmet-
and found that the spacetime curvature is sufficient to initiatdiC Spacetime of a straight cosmic string with nonzero con-
current quenching. To investigate GUT strings with largeStant momentum. We have found that momentum induces
mixed metric components, which gives rise to oscillatory
Solutions to the field equations. The oscillations of the metric
components led to exotic spacetime behavior, where timelike
cYectors rotate wittr. The rotation of timelike vectors also
results in particle geodesics that only extend a finite distance
in r and hence isolates the string from the outside Universe.
Although the present work considers cosmic strings as a
physical source for the energy-momentum tensor, the results
are also of interest in themselves as they suggest the exis-

There are several important cosmological cONSeqUENCEgce of 5 new class of solutions to the Einstein field equa-

which fQHOW from the new metric solutlpn. For' example, a tions. The development of new metrics may give insight into
constraint on the abundance of vortons is predicated on the,

densit i ding that of phot during th the structure of cylindrically symmetric field equations. Fu-
energy density not exceeding that of photons during the 1ag, .o \work will be directed at examining the spacetime metric

diation era[9]. If this constraint was not satisfied, then nu- f a string loop with momentum to ascertain whether the
cleosynthesis could not take place, since the Universe woulg . lati d The behavior efduri .
not be radiation dominated. However, the present worgnetric oscillations decay. The behavior fduring gravita-

shows that the spacetime properties of heavy vortons m%onal qgenching, in a tirrlle-d.ependent mgtriq, a!sp need§ to
isolate them from particles in the outside Universe and hencB® studied to determine if this process will significantly in-
heavy vortons may not take part in nucleosynthesis. This ifyfease the momentum of the string. Finally, th_ere are numer-
turn would relax the constraint on nucleosynthesis sinc@YS cosmolog_lcal_ consequences whosg ramn‘lcatlons_ require
heavy vortons would no longer adversely effect primordialcarefm investigation, and may be subject to experimental
nucleosynthesis. Another important ramification of thetests:
present work relates to the anisotropy in the cosmic micro-
wave background. The conical metric for nonsuperconduct-

ing cosmic strings has been shown to induce fluctuations in One of the authoréM.J.T.) acknowledges the support of
the cosmic background radiatidt8], providing an experi- an Australian Postgraduate Award.

momentum will require a detailed study of the wayin-
creases to offset quenching; unfortunately, this cannot be d
scribed in terms of the static metrit2). Such an investiga-
tion would be important, because if the momentum increas
significantly (as a consequence af counteracting gravita-
tionally induced current quenchinghen GUT scale super-
conducting cosmic strings may exhibit the oscillatory metric
properties described in this paper.
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