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Superconducting cosmic strings with exotic spacetime

Marcus J. Thatcher* and Michael J. Morgan†
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The metric for a superconducting cosmic string with constant momentum has been calculated analytically
and numerically using the full Einstein field equations. We show that the string metric has mixed components,
which for heavy strings (hf;1018 GeV! describe a spacetime with exotic properties. In the string spacetime
particles are deflected~in thez-direction! as they approach the string, effectively isolating the defect from the
outside Universe. The inclusion of gravity into models of charged strings and vortons is expected to have
significant cosmological implications.@S0556-2821~98!01216-8#

PACS number~s!: 98.80.Cq, 04.62.1v, 11.27.1d
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I. INTRODUCTION

Many grand unified theories~GUTs! predict that the early
Universe underwent successive phase transitions. It is
jectured that these phase transitions were accompanie
the formation of topological defects, such as cosmic stri
@1# which are described by the Abelian Higgs model@2#.
Cosmic strings are of interest due to their unusual proper
and cosmological consequences.

Cosmic strings possessing an internal structure may u
certain conditions exhibit superconductivity@3#. The origin
of superconductivity can be due to bosonic, fermonic@3# or
non-Abelian gauge field currents@4#. Superconducting cos
mic strings are of interest since the supercurrents are
pected to significantly alter string spacetime and string
namics. Supercurrents in the string can also have a non
momentum in the direction of the current flow~i.e., along the
string!, and this will modify the properties of cosmic string
and string loops. Davis and Shellard@5# demonstrated tha
charged superconducting loops~i.e., vortons! have sufficient
angular momentum to stabilize centrifugally. Vortons ha
been studied by many authors~see, e.g.,@5–10#!, and it is
thought that these loops have adverse cosmological co
quences, particularly for primordial nucleosynthesis@10#.

Since superconducting cosmic string loops have sign
cant ramifications for cosmology, the properties of superc
ducting strings~with zero momentum! have been investi-
gated analytically@11# and numerically@12#. The spacetime
of charged superconducting cosmic strings has also been
amined in the weak field approximation@13#. However, pre-
vious models neglect momentum when constructing
energy-momentum tensor; consequently the spacetime p
erties of a cosmic string with nonzero momentum have
been examined. In this paper we show that the inclusion
momentum leads to exotic spacetime properties, which m
have significant cosmological consequences. We pre
analytical and numerical solutions to the full Einstein fie
equations for cosmic strings with constant momentum. T
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presence of nonzero momentum results in the spacetime
ric acquiring mixed metric components, which give rise
oscillatory behavior forgtt , gzz and gtz . The oscillation of
the metric components also forms multiple ‘‘horizons’’ inr
at various distances from the cosmic string. Particles
found to be deflected at these horizons and hence the co
string is effectively isolated from the outside Universe.

The organization of this paper is as follows. In Sec. II w
examine a weak field approximation to a cosmic string a
show that the inclusion of momentum leads directly to mix
metric components. In Sec. III we derive the field equatio
which govern the spacetime of a superconducting cos
string with a bosonic supercurrent. The qualitative results
applicable to any string object which has momentum~e.g.,
fermonic superconductivity!. In Sec. IV we present analyti
cal and numerical solutions to the Einstein field equatio
which elucidate the oscillatory behavior of the metric. T
main results and implications of the model are summari
in Sec. V.

II. WEAK FIELD SOLUTION

Insight into how momentum affects the spacetime prop
ties of a cosmic string can be gained by examining a w
field solution. To model a cosmic string with momentum, w
modify the energy-momentum tensor used by Vilenkin@14#
and Hiscock @15#, by adding components,Ttz5Tzt
52Md(x)d(y), which describe the momentum per un
length in the string along thez-direction. Adopting
Cartesian coordinates (t,x,y,z) with metric signature
diag(1,2,2,2), the energy-momentum tensor becomes~in
natural units\5c51, with G56.72310239 GeV22),

Tmn5d~x!d~y!F E 0 0 2M

0 0 0 0

0 0 0 0

2M 0 0 2S
G , ~1!

whereE, M and S are the energy, momentum and tensi
per unit length, respectively. To solve for the metric we e
ploy the weak field approximation

gmn5hmn1hmn , ~2!

x:

x:
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where uhmnu!1, and utilize the Fock–de Donder gaug
]nhm

n 2 1
2 ]mhn

n50. The resulting weak field equations are

1

2
hhmn58pGS Tmn2

1

2
hmnTD , ~3!

whereT5hmnTmn .
Substituting for the energy-momentum tensor~1!, the

weak field equations reduce to a set of differential equati
of the form

¹2htt5¹2hzz58p~E2S!d~x!d~y! ~4a!

¹2hxx5¹2hyy58p~E1S!d~x!d~y! ~4b!

¹2htz5216pMd~x!d~y!, ~4c!

where htz5hzt , since Ttz5Tzt . The solution to the weak
field equations can be written as

htt5hzz54G~E2S!ln~r /d! ~5a!

hxx5hyy54G~E1S!ln~r /d! ~5b!

htz5hzt528GMln~r /d!, ~5c!

where r 25x21y2 and d denotes the width of the cosmi
string. Following@14# we exploit rescaled, cylindrical coor
dinates defined by

@114G~E2S!ln~r /d!#dt25dn2 ~6a!

@124G~E2S!ln~r /d!#dz25dz2 ~6b!

@124G~E1S!ln~r /d!#dr25dr2 ~6c!

@124G~E1S!ln~r /d!#r 25@124G~E1S!#r2. ~6d!

In terms of the rescaled coordinates, the weak field appr
mation to the metric for a straight cosmic string with nonze
constant momentum becomes

ds25dn22dz22dr22@124G~E1S!#r2du2

2
16GMln~r /d!

A12@4G~E2S!ln~r /d!#2
dndz. ~7!

From Eq.~7!, it is evident that the existence of nonzero m
mentum leads to a conical metric with a mixedgtz metric
component. Mixed metric components involving timelik
and spacelike coordinates will affect particle geodesics
which case we would expect particles to be dragged al
the z-direction. To describe the motion of a photon we c
culate the null geodesic for thez coordinate by varying the
metric with respect to an affine parametert, i.e.,

ż52
AF1B

11F2
, ~8!

where an overdot denotes differentiation with respect to
affine parameter,A andB are constants and
04350
,
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F5
16GMln~r /d!

A12@4G~E2S!ln~r /d!#2
. ~9!

In general,żÞ0 and hence photons in the vicinity of a strin
which has nonzero momentum will be dragged along
z-direction.

For GUT scale cosmic stringsG(E1S);1026, and
hence the weak field approximation should be an adeq
description of the string metric. However, it is expected th
the metric properties will alter significantly in the full Ein
stein field equations. In Sec. III we explore this conjecture
analyzing the field equations of general relativity for a cyli
drically symmetric system with nonzero momentum.

III. FIELD EQUATIONS

To describe a superconducting cosmic string~with non-
zero momentum!, we employ a model of bosonic superco
ducting cosmic strings due to Witten@3#. The numerical
evaluation of the metric is made tractable by considerin
cosmic string with a neutral current, which does not cou
to a gauge field. It is important to emphasize that the me
properties discussed in this paper are a consequence o
nonzero momentum of the string and the concomitant mi
metric components. The model of a superconducting str
with a neutral bosonic supercurrent is chosen purely for c
venience, and the results are applicable to fermonic su
conducting cosmic strings.

The Lagrangian for a superconducting cosmic string w
a neutral bosonic current is given by

L5uDmfu21u¹msu22
1

4
FmnFmn2V~f,s!, ~10!

where¹m is the conventional covariant derivative,f is the
complex Higgs field,s describes the bosonic current fiel
Dm5¹m2 ieAm is the gauge covariant derivative and th
electromagnetic field tensor is given byFmn5¹mAn

2¹nAm . The potential is

V~f,s!5
lf

4
~ ufu22hf

2 !21
ls

4
~ usu22hs

2 !2

1bufu2usu22
ls

4
hs

4 , ~11!

wherelf , hf , ls and hs are constants which define th
form of the potential for the string and current fields. T
two fields are coupled together through a parameterb.

To ensure that the Higgs field undergoes symmetry bre
ing first, we introduce the constraintlfhf

4 .lshs
4 . Requir-

ing the current field to vanish outside the string introduce
second constraint, 2b/ls>hs

2/hf
2 . A final constraint,

b/ls,lshs
4/4lfhf

4 , ensures thatusu50 is unstable in the
presence of a string@16#.

We generalize Eq.~7! to describe the metric for a station
ary cylindrically symmetric string with constant momentum
i.e.,
5-2
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SUPERCONDUCTING COSMIC STRINGS WITH EXOTIC . . . PHYSICAL REVIEW D58 043505
ds25L~r !dt222F~r !dtdz2dr22C~r !2du22V~r !dz2,
~12!

where the string is orientated along thez-direction andgtz
5gzt . Invoking an argument due to Garfinkle@17# allows
the metric componentgrr to be set to unity without loss o
generality.

To calculate the vortex solution for a superconduct
cosmic string with constant momentum, we exploit the c
lindrical symmetry to write

f5hf f ~r !exp~ inu! ~13a!

Au5
12Alfhfau~r !

eC~r !
~13b!

s5hfs~r !exp@ i ~kz2vt !#, ~13c!
ir
f
ld

y
,

04350
-

wherek andv are constants which describe the string’s m
mentum ~see Sec. IV!. For simplicity the phase winding
numbern of the Higgs field is set to 1. The model paramete

are rescaled according tob5lfb̄, ls5lfl̄s , hs

5hfh̄s , k25lfhf
2 k̄2, v25lfhf

2 v̄2 ande25lfē2, and the

radial coordinate is rescaled tor 5 r̄ /(Alfhf), so that dis-
tances are measured in terms of the string widthd
5(Alfhf)21. Finally, for the numerical calculations, w

have chosenb̄55.0, l̄s540.0 andh̄s50.387, and for con-
venience we sete25lf so thatē51.0.

The equations of motion are obtained from the Lagra
ian ~10! by varying f̄, Am and s̄, respectively. Substituting
the cylindrically symmetric forms off, Au and s into the
equations of motion produces the following set of equatio
~in the Lorentz gauge!:
¹ r̄
2
f 2

f au
2

C2
2

1

2
f ~ f 221!2b̄ f s250 ~14a!

Vau9

F21LV
1S CV~LV82VL812F222FF8!22V~F21LV!C8

2C~F21LV!2 D au822ē2f 2au50 ~14b!

¹ r̄
2
s1

Vsv̄22Lsk̄212Fsk̄v̄

F21LV
2

l̄s

2
s~s22h̄s

2 !2b̄s f250, ~14c!

where a dash indicates differentiation with respect tor̄ and¹ r̄
2 is given by

¹ r̄
2
5

]2

] r̄ 2
1S 2F2C812LVC812CFF81CVL81CLV8

2C~F21LV!
D ]

] r̄
. ~15!
The boundary conditions imposed on the string field requ
us to accommodate an undefined phase at the center o
string defect, and the vacuum solution in the far fie
whence f (0)50, f (r→`)→1, au(0)51, au(r→`)→0,
s8(0)50 ands(r→`)→0.

To evaluate the metric we calculate the energ
momentum tensor for the superconducting cosmic string

Tmn5
dL

dgmn
2gmnL, ~16!

for which the tensor components are

T̄tt52s2v̄22LL ~17a!

T̄rr 52~ f 8!212~s8!21ē22~au8!2C221L ~17b!

T̄uu52 f 2au
21ē22~au8!21C2L ~17c!

T̄zz52s2k̄21VL ~17d!
e
the
,

-

T̄tz524s2k̄v̄1FL, ~17e!

whereTmn5lfhf
4 T̄mn , T̄tz5T̄zt and

L52~ f 8!22~s8!21
Vs2v̄22Ls2k̄212Fs2k̄v̄

F21LV
2

f 2au
2

C2

2
~au8!2

2ē2C2
2

1

4
~ f 221!22

l̄s

4
~s22h̄s

2 !2

2b̄ f 2s21
l̄s

4
h̄s

4 . ~18!

The Einstein field equations can be written in the form

R̄mn54pGhf
2 ~2T̄mn2gmnT̄!, ~19!

whereT̄5gmnT̄mn andRmn5lfhf
2 R̄mn . The field equations

~19! become
5-3
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R̄tt5
L9

2
1

C8L8

2C
1

2LF821LL8V822FF8L82VL82

4~F21LV!
~20a!

R̄uu52CS C91
2FC8F81VC8L81LC8V8

2~F21LV!
D ~20b!

R̄zz52
V9

2
2

C8V8

2C

2
2VF821VL8V822FF8V82LV82

4~F21LV!
~20c!

R̄tz52
F9

2
2

C8F8

2C
1

VF8L81LF8V822FL8V8

4~F21LV!
,

~20d!

where R̄tz5R̄zt and R̄rr is redundant@17#. The boundary
conditions for the metric components are chosen to en
that the metric at the center of the string is smooth, whe
L(0)51, L8(0)50, F(0)50, F8(0)50, C(0)50,
C8(0)51, V(0)51 andV8(0)50.

IV. METRIC SOLUTION AND ITS PROPERTIES

Equations~14!, ~17!, ~20! and the attendant boundary co
ditions enable us to calculate the metric for a supercond
ing cosmic string with constant momentum. Because of
nonlinear nature of the equations, we use numerical te
niques to explore the metric properties of realistic cosm
strings. Where appropriate, comparisons are made with
proximate analytical solutions.

To emphasize the unusual properties of the metric,
consider a heavy string for whichGhf

2 50.02 (hf

;1018 GeV). The momentum per unit length of the string
calculated from theTtz-component~17e!, by choosing the
values ofk̄ and v̄ according to

M522pE
0

`

TtzC dr52plfhf
4 E

0

`

~4s2k̄v̄2FL !C dr.

~21!

A typical vorton is conjectured to havek̄;v̄ @5#; however, it
was found that fork̄5v̄ the spacetime curvature is sufficie
to initiate current quenching. For cosmic strings w
charged current carriers, the current is prevented fr
quenching due to charge conservation. In the case of ne
currents there exists a similar mechanism, which can be s
by writing the current fields in the form

s5s~ t,r !exp$ i @ k̄z2k~ t !#%. ~22!

The imaginary part of the equation of motion becomes

2k̇ ṡ1k̈s50, ~23!

where an overdot denotes differentiation with respect tot.
Equation~23! has the solution
04350
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k̇5
S1

s2
, ~24!

where S1 is a constant. As the current field quenchess
→0), k̇ increases until it offsets the quenching. Typically f
the static metric of a heavy string we havev̄. k̄. For the
time independent metric considered in this paper we cho
parameters for whichv̄. k̄. To investigate the metric solu
tion, the superconducting string vortex solution was eva
ated numerically by relaxation techniques with a fourth-ord
Runge-Kutta scheme used to calculate the metric com
nents. The coupled vortex and Einstein field equations w
solved iteratively until the solution converged.

A. Oscillatory solutions

The metric solution withk̄50.85 andv̄51.15 is dis-
played in Fig. 1. This differs from previous string solution
@11–13# by the appearance of a mixed metric compon
gtz , which we have shown to be a direct consequence of
string’s momentum~Sec. II!. The appearance of a nonze
gtz-component allowsgtt and gzz to become spacelike an
timelike, respectively~i.e., L,0 andV,0). This behavior
is impossible for strings without momentum, which is se
by settingF(r )50 ~i.e., M50) in the field equations~20!.
For example, writingR̄tt as

R̄tt5L91
C8L8

2C
1L8S V8

V
2

L8

L D , ~25!

reveals that far from the string~whereT̄tt50), asL→0 we
haveL9→1`, and hence the metric componentL cannot
become negative. A similar analysis also applies toV.

Extending the domain of the metric solution inr ~see Fig.
2! reveals that the metric components,gtt , gzz andgtz , os-

FIG. 1. Plot of the metric components for a superconduct

cosmic string with constant momentum (k̄50.85 andv̄51.15).
The radius is scaled by the string widthd. The mixed metric com-
ponentF allows thet- and z-directions to interchange spacetim
roles for negative values ofL and V, respectively. SinceV be-
comes negative beforeL, there exists a region which has two time
like metric components.
5-4
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SUPERCONDUCTING COSMIC STRINGS WITH EXOTIC . . . PHYSICAL REVIEW D58 043505
cillate successively between positive and negative va
~i.e., between timelike and spacelike!. The oscillations in the
metric components appear to continue indefinitely, with
amplitude of each oscillation and the distance between
cessive interchanges quickly becoming large.

We can gain insight into the spacetime properties ofL
and V by finding analytical exterior solutions to the fie
equations@i.e., Tmn(r .d)50#. To simplify the problem we
will assume thatTtt'Tzz everywhere, so that the field equ
tions Rtt58pGTtt and Rzz58pGTzz are equivalent~i.e.,
L5V). This assumption is reasonable for strings with sm
momentum since

lim
M→0

S Ttt

Tzz
D51, ~26!

for which the Einstein field equations become

C91C8S FF81LL8

F21L2 D 50 ~27a!

L91
C8L8

C
1F8S LF82FL8

F21L2 D 50 ~27b!

F91
C8F8

C
2L8S LF82FL8

F21L2 D 50, ~27c!

where we have made the additional assumption thatCÞ0.
Equation~27a! can be simplified to

C91
1

2
C8

dln~F21L2!

dr
50. ~28!

We define an arbitrary functionK(r ) in terms ofL andV,
by

F21L25K~r !. ~29!

FIG. 2. Extended plot of the metric components in Fig. 1. T
metric components are seen to revert to their original space
roles. Note that the spatial period and the amplitude of the osc
tions increase withr and that thegzz metric component reverts to
spacelike before thegtt component becomes timelike. This behavi
produces a spatial region with no timelike metric component.
04350
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We also define the functionC(r ) according to

LF82FL85C~r !K~r !. ~30!

The field equations~27! then reduce to

C91
1

2
C8

dln@K~r !#

dr
50 ~31a!

L91
C8L8

C
1C~r !F850 ~31b!

F91
C8F8

C
2C~r !L850. ~31c!

Equation~31a! can be solved immediately to give

C85
P1

AK
, ~32!

whereP1 is a constant andKÞ0.
After differentiation, Eq.~29! becomes

FF81LL85K8/2. ~33!

Solving Eq.~33! and Eq.~30! simultaneously yields the dif-
ferential equations

L85
K8

2K
L2CF ~34a!

F85
K8

2K
F1CL. ~34b!

Differentiating Eq.~34! and substituting into the field equa
tions ~27! for L andF yields

F8S K8

2K
1

C8

C D1
F

2

d

drS K8

K D1C8L50 ~35a!

L8S K8

2K
1

C8

C D1
L

2

d

drS K8

K D2C8F50.

~35b!

If we now define the functionsh(r ) andg(r ) by

h~r !5C8S K8

2K
1

C8

C D 21

~36a!

g~r !5F d

drS K8

2K D G S K8

2K
1

C8

C D 21

, ~36b!

then Eq.~35! can be written in matrix form as

S F8

L8
D 5S 2g~r ! 2h~r !

h~r ! 2g~r !
D S F

L
D . ~37!

Equation~37! can be written more compactly as

x85B~r !x, ~38!

e
a-
5-5
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wherex is a vector andB is a 232 matrix. The problem can
be simplified further if we choose the solution to Eq.~38! to
be of the form

x5ez~r !u, ~39!

whereu is a constant vector. Substituting Eq.~39! into Eq.
~38! gives

Bu5z8u. ~40!

Hence solving the field equations is reduced to an eigenv
problem. The eigenvalues ofB are

z852g~r !6 ih~r !, ~41!

with corresponding eigenvectors

u5S 6 i

1 D . ~42!

The appearance of constant eigenvectors is consistent
the assumption thatu is constant. Finally we write the exte
rior metric solution toL andF as

F5e2G~r !$2D1sin@H~r !#1D2cos@H~r !#% ~43a!

L5V5e2G~r !$D1cos@H~r !#1D2sin@H~r !#%, ~43b!

whereD1 andD2 are constants,

H~r !5E h~r ! dr1H1 ~44a!

G~r !5E g~r ! dr1G1 , ~44b!

andH1 andG1 are integration constants. Equations~43! de-
scribe metric components that oscillate harmonically, w
the amplitude and spatial frequency varying as a function
r . The numerical solution for a more realistic energ
momentum tensor also suggests that oscillatory solut
will occur for TttÞTzz. This behavior leads to exotic spac
time properties which are discussed in the following s
tions.

The equations forC(r ) andK(r ) are found by substitut-
ing the solution~43! into the defining equations~29! and
~30!, i.e.,

K~r !5e22G~r !~D1
21D2

2! ~45a!

C~r !52h~r !. ~45b!

Equation~45a! can be differentiated to give
04350
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d2ln~K !

dr2
52

dln~K !

dr S 1

2

dln~K !

dr
1

dln~C!

dr D . ~46!

From Eq.~32! we know thatC can be solved in terms ofK
and hence Eq.~46! is a nonlinear ordinary differential equa
tion. Furthermore, Eq.~45b! can be simplified to

C5
C1

CAK
, ~47!

whereC1 is a constant andKÞ0. C is then solved in terms
of K. Hence the Einstein field equations have been redu
to a single nonlinear ordinary differential equation~46!.

A trivial solution to Eq.~46! is

K5A1 ~48!

whereA1 is a constant. The solution forK allows us to write
C as

C5A2r , ~49!

whereA2 is an integration constant and we have chosen
other constant of integration to be consistent with the bou
ary conditionC(r 50)50. This form ofC can describe a
conical metric, depending on the form ofL and F. The
solution to Eq.~47! gives the functionC(r ) as

C5
A3

r
, ~50!

whereA3 is another constant. We now haveh52A3 /r and
g50, and hence the solution to the metric~43! may be writ-
ten as

F5e2G1$D1 sin@A3ln~r !2H1#

1D2 cos@A3ln~r !2H1#% ~51a!

L5V5e2G1$D1 cos@A3ln~r !2H1#

2D2 sin@A3ln~r !2H1#%. ~51b!

We can evaluate the constants by equating Eqs.~51! to the
weak field solution~7! at r 5d. Requiring the metric and its
first derivative to be continuous gives (A2)25(128GE),
e2G1D151, D250, H15A3lnd and A358GMd21. Equa-
tions ~51! then become

C25~128GE!r 2 ~52a!

F5sin$8GMd21@ ln~r !2 ln~d!#% ~52b!

L5V5cos$8GMd21@ ln~r !2 ln~d!#%, ~52c!

or in terms of the metric

ds25cos$8GMd21@ ln~r !2 ln~d!#%~dt22dz2!

22 sin$8GMd21@ ln~r !2 ln~d!#%dtdz

2dr22~128GE!r 2du2. ~53!
5-6
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The solutions~52! display an harmonic variation of thegtt ,
gzz and gtz metric components, which oscillate betwe
timelike and spacelike. The exterior metric described by
~53! is valid for all r .d ~i.e., whereTmn50). We also note
that the spatial frequency of the oscillations is determined
M ; for M50, the solution describes a conical metric.

There are, however, some notable differences between
numerical solution and the approximate analytical soluti
SinceTttÞTzz everywhere, the numerical solutions toL and
V are of a different oscillatory form. The oscillations in th
analytical solution have a constant amplitude, whereas
amplitude of the oscillations determined from the numeri
solution increases with increasingr . However, the spatia
frequency predicted by both the numerical and analytical
lutions decreases with increasingr ~i.e., according to lnr
which grows more slowly thanr ). The oscillations for the
numerical solution appear to continue indefinitely, which
supported by the indefinite oscillations displayed by the a
lytical solution. Hence, the metric components never limit
a flat spacetime. The indefinite oscillation of the metric co
ponents is discussed in Sec. V.

B. Timelike directions

From Fig. 1, we observe an unusual situation in whichgzz
becomes timelike beforegtt becomes spacelike~i.e., where
V,0 andL.0); consequently, there is a region where tw
metric components are timelike. The appearance of
timelike metric components is indicative of a poor choice
coordinate system. To ameliorate this situation, we make
e

04350
.

y

he
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e
l
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-

-

o
f
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coordinate transformation,z5x2j andt5x1j. The metric
~12! now becomes

ds25~L12F2V!dj212~L1V!djdx

1~L22F2V!dx22dr22C2du2. ~54!

Since F.0 in the region whereL.0 and V,0, gjj is
timelike andgxx is spacelike and the transformed metric~54!
has only one timelike component. In this region all timeli
vectors must have a component in thej-direction. Extending
the domain of theL andV solutions radially, we find thatF
becomes negative and the metric componentsgtt and gzz
revert to their original roles. Sincegzz becomes spacelike
beforegtt reverts to timelike, there exists a region where t
metric ~12! has no timelike component. Once again this
dicates a poor choice of coordinate system. From Eq.~54!,
F,0 implies gjj is spacelike andgxx is the only timelike
metric component. Timelike vectors in this region must ha
a component in thex-direction. We conclude that, as on
moves out radially from the string core, a timelike vect
must rotate periodically through the directionst, j, z, x and
back tot.

C. Isolated cosmic strings

To understand the physical significance of the str
spacetime, consider a photon moving outwards from
string core. The photon geodesics are obtained by vary
the metric with respect to proper time. Foru5const. the
geodesics are given by
ṫ5
AV2BF

LV1F2
~55a!

ṙ 25
L~AV2BF!212F~AV2BF!~AF1BL!2V~AF1BL!2

~LV1F2!2
~55b!

ż52
AF1BL

LV1F2
, ~55c!
be-

n
-

af-

n
rse.
whereA andB are constants, and an overdot denotes diff
entiation with respect to an affine parametert. We choose to
sett5t at r 50, for whichA51. Equations~55! describe a
family of photon trajectories governed byB, whereB52 ż
at r 50, which impliesuBu<1 for a photon originating at the
string core. Consider the case whereB50 for which ṙ be-
comes

ṙ 25
V

LV1F2
. ~56!

From Eq.~56! it is evident that there is a distancer n at which
r-V(r n)50, beyond whichṙ becomes imaginary (V,0). A
photon which originates at the string core cannot travel

yond r n . Sinceż,0 for r n>r .0, photons are deflected i
the negativez-direction until they move parallel to the cos
mic string asr→r n . This behavior is a consequence ofF
Þ0 and exemplifies how the mixed metric components
fect photon geodesics.

Regardless of the choice ofB, ṙ is always imaginary at
some distance,r n(B), from the core, and hence no photo
originating at the core can escape to the outside Unive

This is seen from calculatingṙ for B51 andB521:
5-7
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ṙ ~B51!52
L12F2V

LV1F2
~57a!

ṙ ~B521!52
L22F2V

LV1F2
. ~57b!

At distances whereL5V, if F is positive, then theB51
geodesic becomes imaginary and ifF is negative, then the
B521 geodesic is imaginary. In terms of the rotation o
timelike vector, theB51 geodesic is imaginary whengjj is
timelike and theB521 geodesic is imaginary whengxx is
timelike. As both these situations are exhibited by the
merical and analytical solutions to the metric, we conclu
that photons at the string core cannot escape to the ou
Universe, and conversely, no photons can reach the cent
the string. Photons incident on the string will be deflec
increasingly in thez-direction, until at a distancer n(B) they
are moving parallel to the string. AsF.0 near the string
core, photon geodesics described byB.0 are deflected a
smaller distances than geodesics described byB,0 @i.e.,
r n(B.0),r n(B50),r n(B,0)#.

The analytical and numerical solutions suggests that
metric components will oscillate indefinitely. As a resu
there are multiple regions whereṙ is imaginary for a given
photon geodesic. Photons on a given geodesic cannot
through these multiple regions, which form a series of ‘‘h
rizons.’’ Since photons are deflected, we can infer that
charged particles are similarly deflected. Moreover, as
string’s electromagnetic field cannot extend beyondr n(B
521), there are no magnetic fields generated by the st
beyond this distance. As such, charged particles beyond
distance will not be subject to electromagnetic fields and w
be deflected in the same way as uncharged particles. Th
fore, no particles from the outside Universe can reach
string core.

D. Behavior of clocks

We now consider the behavior of photon geodesics
terms of coordinate timet. The value ofṙ 2, when ṫ50, for
an arbitrary choice ofB (A51) is given by

ṙ 252B/F. ~58!

The analytical and numerical results indicate that for all p
ton geodesics which originate at the string coreF is positive
~i.e., particles cannot escape into a region whereF,0). The
choice ofB then determines the behavior of coordinate tim
t at different distances from the string. ForB,0, outgoing
photons will reach a distance at whichṫ,0, since Eq.~58!

indicates thatṙ is real whenṫ50. As the photon continues t
move out from the string, coordinate time runs backwar
However, coordinate time is only physically meaningful
r 50 ~where t5t) and measures the history of a phot
according to a stationary observer at the string core. To
lustrate the consequences ofṫ,0, consider the scenario de
picted in Fig. 3, where we have plotted the path of a pho
04350
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for B520.4. A photon originating at the string core is r
flected back to the string by a mirror located atr̄ 5150. In
Fig. 3~a!, the photon appears~in coordinate time! to be mov-
ing back to the string before reaching the mirror, which
lows the photon on its return path B to meet itself on t
outward path A. This causal paradox is resolved in Fig. 3~b!,
where the photon has been deflected along the nega
z-direction as a consequence of thegtz metric component.
Hence the outgoing photon never meets the returning pho
since they are spatially separated at the string core~i.e.,
events which would be timelike separated in Minkows
spacetime are spacelike separated in the string spacet!.
Causal paradoxes do not arise forB>0, since ṙ becomes
imaginary beforeṫ,0.

V. CONCLUSION

Numerical and analytical solutions to the superconduct
cosmic string spacetime have been presented~Sec. IV A!
which indicate that the metric components oscillate inde
nitely. However, the oscillating metric components are
consequence of nonzero momentum and cylindrical sym
try. As a result, the metric solution is only valid for an infi
nitely long straight string and would be invalid at distanc
where the string’s curvature becomes apparent. In the cas
string loops, toroidal symmetry coupled with the requireme
that the metric must be smooth at the center of the loop m
not give rise to an infinite number of oscillations. Superco
ducting cosmic string loops with momentum~e.g., vortons!
are therefore expected to have an oscillating metric solu
near the core of the string loop, but these oscillations w
decay at a scale where the loop’s curvature becomes sig
cant.

The analytical solution to the metric components indica
that the metric will be oscillatory for any nonzero value
momentum per unit length,M . Hence the results should b
applicable to GUT strings~for which hf;1016 GeV!. How-
ever, Eq.~53! indicates that the scale at which the first o
cillation of the metric becomes apparent@i.e., r n(B50)# is
very sensitive toM „e.g., 8GMd21ln@rn(B50)#5p…. As a
result, for GUT strings, the oscillations will only be appare
where string curvature is significant. At these distances

FIG. 3. ~a! Photon geodesic, measured in coordinate timet, is
plotted forB520.4. Arrows indicate the direction of proper time
The photon is reflected back to the string by a mirror located
r /d5150. According tot measured at the string core, the photon
path B appears to be moving back to the string before arriving at
mirror on its outward path A.~b! The causal paradox is avoide
since paths A and B are spatially separated. The displacement o
photon in thez-direction is a direct consequence of thegtz metric
component as discussed in the text.
5-8
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metric solution is invalid and hence GUT vortons are u
likely to exhibit the spacetime properties discussed in t
paper. The exotic spacetime properties discussed above
only be found in heavy superconducting cosmic strings~i.e.,
hf;1018 GeV!. Such objects could arise in phase transitio
occurring before the GUT phase transition, as predicted
superstring theory@2#.

We have also examined GUT strings withk̄(5v̄).10
and found that the spacetime curvature is sufficient to init
current quenching. To investigate GUT strings with lar
momentum will require a detailed study of the wayv̄ in-
creases to offset quenching; unfortunately, this cannot be
scribed in terms of the static metric~12!. Such an investiga-
tion would be important, because if the momentum increa
significantly ~as a consequence ofv̄ counteracting gravita-
tionally induced current quenching!, then GUT scale super
conducting cosmic strings may exhibit the oscillatory met
properties described in this paper.

There are several important cosmological consequen
which follow from the new metric solution. For example,
constraint on the abundance of vortons is predicated on t
energy density not exceeding that of photons during the
diation era@9#. If this constraint was not satisfied, then n
cleosynthesis could not take place, since the Universe wo
not be radiation dominated. However, the present w
shows that the spacetime properties of heavy vortons
isolate them from particles in the outside Universe and he
heavy vortons may not take part in nucleosynthesis. Thi
turn would relax the constraint on nucleosynthesis si
heavy vortons would no longer adversely effect primord
nucleosynthesis. Another important ramification of t
present work relates to the anisotropy in the cosmic mic
wave background. The conical metric for nonsupercondu
ing cosmic strings has been shown to induce fluctuation
the cosmic background radiation@18#, providing an experi-
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mental test of the presence of cosmic strings during the e
Universe. However, the fluctuations predicted by ear
models will be altered radically when superconducti
strings with nonzero momentum are taken into account. T
magnitude and power spectrum of the fluctuations may
able superconducting cosmic strings to be distinguished
perimentally from nonsuperconducting cosmic strings.

In this paper we have examined the cylindrically symm
ric spacetime of a straight cosmic string with nonzero co
stant momentum. We have found that momentum indu
mixed metric components, which gives rise to oscillato
solutions to the field equations. The oscillations of the me
components led to exotic spacetime behavior, where time
vectors rotate withr . The rotation of timelike vectors also
results in particle geodesics that only extend a finite dista
in r and hence isolates the string from the outside Unive
Although the present work considers cosmic strings a
physical source for the energy-momentum tensor, the res
are also of interest in themselves as they suggest the e
tence of a new class of solutions to the Einstein field eq
tions. The development of new metrics may give insight in
the structure of cylindrically symmetric field equations. F
ture work will be directed at examining the spacetime me
of a string loop with momentum to ascertain whether t
metric oscillations decay. The behavior ofv̄ during gravita-
tional quenching, in a time-dependent metric, also need
be studied to determine if this process will significantly i
crease the momentum of the string. Finally, there are num
ous cosmological consequences whose ramifications req
careful investigation, and may be subject to experimen
tests.
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