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Relativistic second-order perturbations of the Einstein–de Sitter universe
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We consider the evolution of relativistic perturbations in the Einstein–de Sitter cosmological model, includ-
ing second-order effects. The perturbations are considered in two different settings: the widely used synchro-
nous gauge and the Poisson~generalized longitudinal! one. Since, in general, perturbations are gauge depen-
dent, we start by considering gauge transformations at second order. Next, we give the evolution of
perturbations in the synchronous gauge, taking into account both scalar and tensor modes in the initial condi-
tions. Using the second-order gauge transformation previously defined, we are then able to transform these
perturbations to the Poisson gauge. The most important feature of second-order perturbation theory is mode
mixing, which here also means, for instance, that primordial density perturbations act as a source for gravita-
tional waves, while primordial gravitational waves give rise to second-order density fluctuations. Possible
applications of our formalism range from the study of the evolution of perturbations in the mildly nonlinear
regime to the analysis of secondary anisotropies of the cosmic microwave background.
@S0556-2821~98!03314-1#
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I. INTRODUCTION

The study of the evolution of cosmological perturbatio
is of primary importance for understanding the present pr
erties of the large-scale structure of the Universe and its
gin. This study is usually performed with different tec
niques and approximations, depending on the specific ra
of scales under analysis. So for scales well within the Hub
radius, the analysis of the gravitational instability of col
sionless matter is usually restricted to the Newtonian
proximation. As seen in the Eulerian picture, this approxim
tion basically consists in adding a first-order lap
perturbation 2wg /c2 to the line element of a matter
dominated Friedmann-Robertson-Walker~FRW! model,
while keeping nonlinear density and velocity perturbatio
around the background solution. The peculiar gravitatio
potential wg is determined by the dimensionless matt
density contrastd via the cosmological Poisson equatio
¹2wg54pGa2%bd, with %b the background matter densit
anda the FRW scale factor. The fluid dynamics is then stu
ied by accounting for mass and momentum conservation
close the system~see, e.g., Ref.@1#!. This procedure is
thought to produce accurate results on scales much la
than the Schwarzschild radius of collapsing bodies but m
smaller than the Hubble horizon, wherewg /c2 stays much
less than unity, while the peculiar matter flows never beco
relativistic. The first-order matter perturbations obtained w
this Newtonian treatment can be shown to coincide with
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results of linear general relativistic perturbation theory in t
so-called longitudinal gauge@2#. To second order, however
the comparison is made nontrivial by the occurrence of n
linear post-Newtonian~and higher order in 1/c) terms in the
relativistic theory~see also Refs.@3,4#!. Some, but not all, of
the aspects of the relativistic treatment can be accounted
by adding an extra post-Newtonian perturbation22wg /c2 to
the conformal spatial metric, an extension that leads to
so-called weak-field approximation~see, e.g., Ref.@5#!. This
improvement allows, for instance, a rather accurate treatm
of photon trajectories in the geometry produced by ma
inhomogeneities, as required in the study of gravitatio
lensing by cosmic structures~see, e.g., Ref.@6#! and other
applications. It is worth mentioning that the full pos
Newtonian line element in Eulerian coordinates would a
include nonvanishing shift components~see, e.g., Ref.@7#!.
A second-order perturbative expansion starting from t
metric would lead to the same result of our Poisson-ga
approach discussed below, with the obvious exception
those terms which are post-post-Newtonian or higher in ac
expansion.

From the point of view of the Lagrangian frame of th
matter, corresponding to our synchronous and comov
gauge below, the Newtonian approach is quite different:
‘‘Newtonian Lagrangian metric’’ can be cast in a simp
form, where the spatial metric tensor is written in terms
the Jacobian matrix connecting Lagrangian to Eulerian co
dinates. According to this approach, post-Newtonian ter
of any order appear as spatial metric perturbations over
‘‘Newtonian background’’@4#. Without discussing the long
list of cosmological approximation schemes which have b
proposed to follow the nonlinear dynamics of collisionle
© 1998 The American Physical Society04-1
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SABINO MATARRESE, SILVIA MOLLERACH, AND MARCO BRUNI PHYSICAL REVIEW D58 043504
matter in the Newtonian framework, let us only mention t
celebrated Zel’dovich approximation@8#, which is strictly
related to the Lagrangian Newtonian approach. Various
tensions of Zel’dovich theory to the relativistic case ha
been proposed in the literature; all of them, however, req
either global or local symmetries, thereby preventing th
application to the cosmological structure formation proble
A relativistic formulation of the Zel’dovich approximation
assuming no limitations on the initial conditions, is inste
introduced in Ref.@9#.

So far the list basically covers all those methods wh
have been devised to follow nonlinear structure formation
gravitational instability in the Universe, with the only po
sible exception of a few relevant exact solutions of Einstei
field equations, such as the Tolman-Bondi one and som
the Bianchi and Szekeres solutions~see, e.g., Ref.@10# and
references therein for a review!. These exact solutions, how
ever, have only limited application to realistic cosmologic
problems.

The study of small perturbations giving rise to large-sc
temperature anisotropies of the cosmic microwave ba
ground is instead usually treated with the full technology
first-order relativistic perturbation theory, either in a gaug
invariant fashion or by specifying a suitable gauge. On sm
and intermediate angular scales, however, where the des
tion in terms of first-order perturbation theory is no long
accurate, second-order metric perturbations can play a
trivial role and determine new contributions, such as th
leading to the nonlinear Rees-Sciama effect@11#. In such a
case a fully general relativistic treatment is needed, suc
that recently put forward by Pyne and Carroll@12# and
implemented in second-order perturbation theory by Moll
ach and Matarrese@13#.

The aim of the present paper is to provide a compl
account of second-order cosmological perturbations in
gauges: the synchronous and comoving gauge and the
called Poisson one, a generalization of the longitudinal ga
discussed by Bertschinger@2# and Ma and Bertschinger@14#.
The former was chosen here because of the advantag
presents in performing perturbative calculations. The lat
on the other hand, being the closest to the Eulerian New
ian picture, allows a simpler physical understanding of
various perturbation modes. The link between these gau
is provided by a second-order gauge transformation of all
geometrical and physical variables of the problem. The g
eral problem of nonlinear gauge transformations in a giv
background spacetime has been recently dealt with by B
et al. @15# ~see also@16#!, and will be shortly reviewed in the
following section.

The range of applicability of our general relativist
second-order perturbative technique is that of small fluct
tions around a FRW background, but with no extra limi
tions. It basically allows one to describe perturbations do
to scales which experience slight departures from a lin
behavior, which, in present-day units, would include
scales above about 10 Mpc in any realistic scenario of st
ture formation. Accounting for second-order effects gen
ally helps to follow the gravitational instability on a longe
time scale and to include new nonlinear and nonlocal p
04350
x-

re
ir
.

h
y

s
of

l

e
k-
f
-
ll
ip-
r
n-
e

as

-

e
o
so-
e

it
r,
n-
e
es
e

n-
n
ni

a-
-
n
ar
l
c-
r-

-

nomena. The advantage of such a treatment is precisely
it enables one to treat a large variety of phenomena
scales within the same computational technique.

The literature on relativistic second-order perturbati
theory in a cosmological framework is not so vast. The p
neering work in this field is by Tomita@17#, who, back in
1967, performed a synchronous-gauge calculation of
second-order terms produced by the mildly nonlinear evo
tion of scalar perturbations in the Einstein–de Sitter u
verse. Matarrese, Pantano, and Sa´ez @3# obtained an equiva-
lent result, but with a different technique, in comoving a
synchronous coordinates. Using a tetrad formalism, R
et al. @18# recently extended these calculations to include
second-order terms generated by the mixing of growing
decaying linear scalar modes. Salopek, Stewart, and C
dace@19# applied a gradient expansion technique to the c
culation of second-order metric perturbations. The inclus
of vector and tensor modes at the linear level, acting as
ther seeds for the origin of second-order perturbations of
kind ~scalar, vector, and tensor!, was, once again, first con
sidered by Tomita@20#.

In this paper we study the second-order perturbations
an irrotational collisionless fluid in the Einstein–de Sitt
background, including both growing-mode scalar pertur
tions and gravitational waves at the linear level. The plan
the paper is as follows. In the next section we summarize
results of Ref.@15# regarding nonlinear gauge transform
tions for perturbations of any given background spacetim
In Sec. III we consider perturbations of a generic fl
Robertson-Walker model, and we give the transformatio
between any two given gauges, up to second order. Sec
IV is devoted to the study of the evolution of perturbations
the synchronous gauge, in the specific case of irrotatio
dust in the Einstein–de Sitter background. In Sec. V we
ply the formulas obtained in Sec. III to obtain the transfo
mations between the synchronous@21# and Poisson~general-
ized longitudinal@2#! gauges. Using these transformations,
Sec. VI the results of Sec. IV are transformed to the Pois
gauge. Section VII contains a final discussion. Appendix
reviews some mathematical results obtained in Ref.@15# and
used in Sec. II; Appendixes B and C contain useful formu
in the synchronous gauge, used in Sec. IV. Appendix D c
tains formulas used to obtain some of the Poisson-gauge
sults in Sec. VI.

II. GAUGE DEPENDENCE AT SECOND
AND HIGHER ORDER

The idea underlying the theory of spacetime perturbati
is the same that we have in any perturbative formalism:
try to find approximate solutions of some field equation
regarding them as ‘‘small’’ deviations from a known exa
background solution. The basic difference arising in gene
relativity, or in other spacetime theories, is that we have
deal with perturbations not only of fields in a given geom
etry, but of the geometry itself.

The perturbationDT in any relevant quantity, say, repre
sented by a tensor fieldT, is defined as the difference be
tween the valueT has in the physical spacetime~the per-
4-2
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RELATIVISTIC SECOND-ORDER PERTURBATIONS OF THE . . . PHYSICAL REVIEW D 58 043504
turbed one! and the valueT0 the same quantity has in th
given ~unperturbed! background spacetime. However, it is
basic fact of differential geometry that, in order to make t
comparison of tensors meaningful at all, one has to cons
them at the same point. SinceT andT0 are defined in differ-
ent spacetimes, they can thus be compared only after a
scription for identifying points of these spacetimes is give
A gauge choiceis precisely this, i.e., a one-to-one correspo
dence ~a map! between the background and the physi
spacetime. A change of this map is then a gauge transfor
tion, and the freedom one has in choosing it gives rise to
arbitrariness in the value of the perturbation ofT at any
given spacetime point, unlessT is gauge invariant.
This is the essence of the ‘‘gauge problem,’’ which h
been discussed—mainly in connection with line
perturbations—in many papers@22–26# and review articles
@27,28#, following different approaches.

In order to discuss in depth higher-order perturbations
gauge transformations, and to define gauge invariance,
needs to formalize the above ideas, giving a precise g
metrical description of what perturbations and gauge cho
are. In a previous paper@15# ~see also@16#! we have consid-
ered this problem in great detail, following in the main t
approach used in Refs.@23,26,29#. Instead of directly consid-
ering perturbations, we have first looked upon the geom
of the problem in full generality, taking an exact~i.e., non-
perturbative! point of view; after that, we have expanded a
the geometrical quantities in appropriately defined Taylor
ries, thus going beyond the usual linear treatment.

In this section we shall summarize the main results
tained in Ref.@15#. Appendix A explains in some more deta
how to proceed in the calculations. Here and in the follow
Greek indicesm,n, . . . take values from 0 to 3 and the Lat
onesi , j , . . . from 1 to 3; units are such thatc51.

We finally recall here some basics about the Lie deri
tive along a vector fieldj, which will be useful in the fol-
lowing. The Lie derivative of any tensorT of type (p,q) ~a
tensor withp contravariant andq covariant indices, which
we omit here and in the following! is also a tensor of the
same type (p,q). For a scalarf , a contravariant vectorZ and
a covariant tensorT of rank 2, the expressions of the Li
derivative alongj are, respectively,

£j f 5 f ,mjm, ~2.1!

£jZ
m5Z,n

m jn2j ,n
m Zn, ~2.2!

£jTmn5Tmn,sjs1j ,m
s Tsn1j ,n

s Tms . ~2.3!

Expressions for any other tensor can easily be derived f
these. A second or higher Lie derivative is easily defin
from these formulas; e.g., for a vector we have £j

2Z
5£j(£jZ): since one clearly sees from Eq.~2.2! that £jZ is
itself a contravariant vector, one needs only to apply
~2.2! two times to obtain the components of £j

2Z. Similarly,
one derives expressions for the second Lie derivative of
tensor.
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A. Gauge transformations: An exact point of view

A basic assumption in perturbation theory is the existe
of a parametric family of solutions of the field equations,
which the unperturbed background spacetime belongs@29#.
In cosmology and in many other cases in general relativ
one deals with a one-parameter family of modelsMl ; l is
real, andl50 identifies the backgroundM0. On eachMl

there are tensor fieldsTl representing the physical and ge
metrical quantities~e.g., the metric!. The parameterl is used
for Taylor expanding theseTl ; the physical spacetimeMl

can eventually be identified byl51. The aim of perturba-
tion theory is to construct an approximated solution toMl .

Each one-to-one correspondence between points ofM0
and points ofMl is thus a one-parameter function ofl: we
can represent two such ‘‘point identification maps’’@23# as
cl and wl ~for a depiction of this and the following, se
Figs. 1 and 2 in@15#!. Suppose that coordinatesxm have been
assigned on the backgroundM0, labeling the different
points. A one-to-one correspondence, e.g.,cl , carries these
coordinates overMl , and defines a choice of gauge: ther
fore, it is natural to call the correspondence itself a ‘‘gauge
A change in this correspondence, keeping the backgro
coordinates fixed, is a gauge transformation@24#. Thus, letp
be any point inM0, with coordinatesxm(p), and let us use
the gaugecl : O5cl(p) is the point inMl corresponding
to p, to which cl assigns the same coordinate labels. Ho
ever, we could as well use a different gaugewl and think of
O as the point ofMl corresponding toa different point qin
the background, with coordinatesx̃m: then O5cl(p)
5wl(q). Thus, the change of the correspondence, i.e.,
gauge transformation, may actually be seen as aone-to-one
correspondence between different points in the backgrou.
Since we start from a pointp in M0, we carry it over toO
5cl(p) in Ml , and then we may come back toq in M0

with wl
21 , i.e.,q5wl

21(O); the overall gauge transformatio
is also a function ofl, which we may denote asFl , and is
given by composingwl

21 with cl , so that we can writeq
5Fl(p):5wl

21
„cl(p)…. We then have that the coordinate

of q, x̃m(l,q)5Fl
m
„xa(p)…, are one-parameter functions o

those ofp, xa(p). Such a transformation, which in one give
coordinate system moves each point to another, is o
called an ‘‘active coordinate transformation,’’ as opposed
passive ones, which change coordinate labels to each p
~see Appendix A!.

Now, consider the tensor fieldsTl on eachMl . With the
gaugeswl andcl we can define, in two different manners,
representation onM0 of eachTl : we can denote these sim
ply by T(l) and T̃(l), respectively. These are tensor fiel
defined onM0 in such a way that each of them has, in t
related gauge, the same components ofTl . On the other
hand,T(l) andT̃(l) are related byFl , which gives rise to
a relation between their components given by Eq.~A13!.
Since in each gauge we now have a field representingTl on
M0, at each point of the background we can compare th
fields withT0 and define perturbations. In the first gauge t
total perturbation isDT(l):5T(l)2T0, and in the second
one isDT̃(l):5T̃(l)2T0. This nonuniqueness is the gaug
4-3
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dependence of the perturbations.
It should be noted at this point that we have not so

made any approximation: the definitions given above are
act, and hold in general, to any perturbative order.

B. Gauge transformations: Second-order expansion

In order to proceed and compute at the desired orde
accuracy inl the effects of a gauge transformation, we ne
Taylor expansions. In this respect, a crucial point is t
gauge choices such ascl and wl form one-parameters
groups with respect tol, while the gauge transformation
Fl form a one-parameter family that in general is not
group ~see Appendix A and@15,16# for more details!. Only
in linear theory is the action ofFl approximated by that o
the element of a one-parameter group of transformations
one-parameter group of transformations is associated w
vector fieldj and the congruence it generates, and there
at first order inl the effect ofFl on the coordinatesxm(p)
is approximated byx̃m.xm1ljm, whereas for a tensorT we
haveT̃.T1l£jT, as is well known. However, the fact tha
Fl does not form a group comes into play with nonlineari
and one can show that at second order two vector fieldsj (1)
andj (2) are involved, and so on. That is, the Taylor expa
sion of a one-parameter family of transformationsFl in-
volves, at a given ordern, n vector fieldsj (k) , k51, . . . ,n.
At second order, the expansion of the transformationx̃m(l)
5Fl

m(xa) between the coordinates of any pair of points
the background mapped into one another byFl gives

x̃m~l!5xm1lj~1!
m 1

l2

2
~j~1!

m
,nj~1!

n 1j~2!
m !1O~l3!.

~2.4!

This is often called an ‘‘infinitesimal point transformation.
From this, one can always define~again, see Appendix A! an
associated ordinary~passive! coordinate transformation, Eq
~A19!. Substitution of this into Eq.~A13! gives—after prop-
erly collecting terms—the gauge transformation for a ten
T:

T̃~l!5T~l!1l£j~1!
T1

l2

2
~£j~1!

2 1£j~2!
!T1O~l3!.

~2.5!

If T is a tensor of type (p,q), the components of each term
this formula havep contravariant andq covariant indices,
appropriately given by the rules~2.1!–~2.3!.

A simple heuristic argument that may help to understa
why two vector fields are involved in the second-order gau
transformations~andn vectors atnth order! is the following.
In practice, we usually consider the gauge transforma
between two given gauges, e.g., in this paper, the sync
nous and the Poisson ones. Therefore, having the condi
that fix the two gauges, the unknowns of the problem are
degrees of freedom that allow us to pass from one gaug
another. Then, consider the usual first-order gauge trans
mation, i.e., the first-order part of Eqs.~2.4!, ~2.5!: it is clear
that this fully determinesj (1) as a field in the background
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Going to second order, it should be clear by the very defi
tion of a Taylor expansion thatj (1) itself cannot depend on
l, and its contribution to second order is built from what w
already know at first order; i.e., it can only give a quadra
contribution. On the other hand, since at second order in b
gauges we have new degrees of freedom in any quan
~with respect to first order!, it is clear that the gauge trans
formation itself must contain new degrees of freedom: th
are given byj (2) .

Since in the two gauges we can write, respectively@30#,

T~l!5T01ldT1
l2

2
d2T1O~l3!, ~2.6!

T̃~l!5T01ldT̃1
l2

2
d2T̃1O~l3!, ~2.7!

we can substitute Eq.~2.6! and Eq.~2.7! into Eq. ~2.5! in
order to obtain, at first and second order inl, the required
gauge transformations fordT andd2T:

dT̃5dT1£j~1!
T0 , ~2.8!

d2T̃5d2T12£j~1!
dT1£j~1!

2 T01£j~2!
T0 . ~2.9!

Equation ~2.8! is the well-known result mentioned abov
Equation ~2.9! gives the general gauge transformation f
second-order perturbations, and shows that this is made u
three parts: the first couples the first-order generator of
transformationj (1) with the first-order perturbationdT; the
second part couples the zeroth-order backgroundT0 with
terms quadratic inj (1) ; and the last part couplesT0 with the
second order generatorj (2) of the transformation, in the
same manner than the term £j~1!

T0 does at first order, in Eq
~2.8!. Equation ~2.9! also shows that there are spec
second-order gauge transformations, purely due toj (2) ,
whenj (1)50; on the other hand, a nonvanishingj (1) always
affects second-order perturbations~cf. @31#!. Finally, in some
specific problems in which only effects quadratic in firs
order perturbations are important, one can considerj (2)50:
for instance, this is the case of back-reaction effects~cf. Ref.
@32#!.

C. Gauge invariance

It is logically possible to establish a condition for gau
invariance to a given perturbative ordern even without
knowledge of the gauge transformation rules holding at t
order; see@15#. However, we shall focus here on gauge i
variance to second order, using Eqs.~2.8!, ~2.9!.

We need to state a clear definition of gauge invarian
before giving a condition. The most natural definition is th
a tensorT is gauge invariant to ordern if and only if dkT̃
5dkT for every k<n ~we define d0T:5T0, dT:5d1T).
Thus, a tensorT is gauge invariant to second order ifd2T̃

5d2T anddT̃5dT. Then, from Eqs.~2.8! and ~2.9! we see
that, sincej (1) and j (2) are arbitrary, this condition implies
that £jT050 and £jdT50, for every vector fieldj in the
4-4
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backgroundM0. Therefore, apart from trivial cases—i.e
constant scalars and combinations of Kroneker deltas w
constant coefficients—gauge invariance to second orde
quires thatT050 anddT50 in any gauge. This condition
generalizes to second order the results for first-order ga
invariance that can be found in the literature and is ea
extended to ordern; see Ref.@15#.

III. GAUGE TRANSFORMATION IN A FLAT
COSMOLOGY UP TO SECOND ORDER

In view of the application that will follow in Sec. V, we
shall now use the formulas obtained in the previous sec
to show how the perturbations on a spatially flat Roberts
Walker background in two different gauges are related, up
second order. This will also introduce the notation used in
the following sections. Here and in the following Latin ind
ces are raised and lowered usingd i j andd i j , respectively. As
discussed before, we setl51 to describe the physical spac
time.

A. Perturbed flat Robertson-Walker universe

We shall first consider the metric perturbations, then th
in the energy density and four-velocity of the matter.

The components of a perturbed spatially flat Roberts
Walker metric can be written as

g0052a2~t!S 112(
r 51

1`
1

r !
c~r !D , ~3.1!

g0i5a2~t!(
r 51

1`
1

r !
v i

~r ! , ~3.2!

gi j 5a2~t!H F122S (
r 51

1`
1

r !
f~r !D Gd i j 1(

r 51

1`
1

r !
x i j

~r !J ,

~3.3!

wherex i
(r ) i50, andt is the conformal time. The function

c (r ), v i
(r ) , f (r ), andx i j

(r ) represent ther th-order perturbation
of the metric.

It is standard to use a nonlocal splitting of perturbatio
into the so-called scalar, vector, and tensor parts, where
lar ~or longitudinal! parts are those related to a scalar pot
tial, vector parts are those related to transverse~divergence-
free or solenoidal! vector fields, and tensor parts t
transverse trace-free tensors. In our case, the shiftv i

(r ) can be
decomposed as

v i
~r !5] iv

~r !i1v i
~r !' , ~3.4!

where v i
(r )' is a solenoidal vector, i.e.,] iv i

(r )'50. Simi-
larly, the traceless part of the spatial metric can be dec
posed at any order as

x i j
~r !5Di j x

~r !i1] ix j
~r !'1] jx i

~r !'1x i j
~r !Á , ~3.5!

wherex (r )i is a suitable function,x i
(r )' is a solenoidal vector

field, and] ix i j
(r )Á50; hereafter,
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Di j :5] i] j2
1

3
d i j ¹

2. ~3.6!

Now, consider the energy density%, or any other scalar
that depends only ont at zero order: this can be written a

%5% ~0!1(
r 51

1`
1

r !
d r%. ~3.7!

For the four-velocityum of matter we can write

um5
1

aS d0
m1(

r 51

1`
1

r !
v ~r !

m D . ~3.8!

In addition, um is subject to the normalization conditio
umungmn521; therefore at any order the time compone
v (r )

0 is related to the lapse perturbationc (r ) . For the first- and
second-order perturbations we obtain, in any gauge,

v ~1!
0 52c~1! , ~3.9!

v ~2!
0 52c~2!13c~1!

2 12v i
~1!v ~1!

i 1v i
~1!v ~1!

i . ~3.10!

The velocity perturbationv (r )
i can also be split into a scala

and vector~solenoidal! part:

v ~r !
i 5] iv ~r !

i
1v ~r !'

i . ~3.11!

As we have seen in the last section, the gauge trans
mation is determined by the vectorsj (r ) . Splitting their time
and space parts, one can write

j~r !
0 5a~r ! ~3.12!

and

j~r !
i 5] ib~r !1d~r !i , ~3.13!

with ] id
(r ) i50.

B. First-order gauge transformations

We begin by reviewing briefly some well-known resul
about first-order gauge transformations, as we shall n
them in the following. As in Sec. II, we simply denote qua
tities in the new gauge by a tilde.

From Eq.~2.8!, it follows that the first-order perturbation
of the metric transform as

dg̃mn5dgmn1£j~1!
gmn

~0! , ~3.14!

where gmn
(0) is the background metric. Therefore, using E

~2.3!, we obtain the following transformations for the firs
order quantities appearing in Eqs.~3.1!–~3.3!:

c̃~1!5c~1!1a~1!8 1
a8

a
a~1! , ~3.15!

ṽ i
~1!5v i

~1!2a ,i
~1!1b ,i

~1!81di
~1!8 , ~3.16!
4-5
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f̃~1!5f~1!2
1

3
¹2b~1!2

a8

a
a~1! , ~3.17!

x̃ i j
~1!5x i j

~1!12Di j b
~1!1di , j

~1!1dj ,i
~1! ,

~3.18!

where a prime denotes the derivative with respect tot.
For a scalar%, from Eqs.~2.8!, ~3.7!, and~2.1! we have

d%̃5d%1% ~0!8 a~1! . ~3.19!

For the four-velocityum, we have, from Eqs.~2.8!,

dũm5dum1£j~1!
u~0!

m . ~3.20!

Using Eqs.~2.2! and ~3.8! this gives

ṽ ~1!
0 5v ~1!

0 2
a8

a
a~1!2a~1!8 , ~3.21!
04350
ṽ ~1!
i 5v ~1!

i 2b~1!8,i 2d~1!
i8 . ~3.22!

The four-velocity is, however, subject to the constraint~3.9!;
therefore Eq.~3.21! reduces to Eq.~3.15!.

C. Second-order gauge transformations

We now extend these well-known transformation rules
linear metric perturbations to second order.

Second-order perturbations of the metric transform,
cording to Eq.~2.9!, as

d2g̃mn5d2gmn12£j~1!
dgmn1£j~1!

2 gmn
~0!1£j~2!

gmn
~0! .

~3.23!

This leads to the following transformations in the secon
order quantities appearing in Eqs.~3.1!–~3.3.!

Lapse perturbation:
c̃~2!5c~2!1a~1!F2S c~1!8 12
a8

a
c~1!D1a~1!9 15

a8

a
a~1!8 1S a9

a
1

a82

a2 D a~1!G1j~1!
i S 2c ,i

~1!1a ,i
~1!81

a8

a
a ,i

~1!D
12a~1!8 ~2c~1!1a~1!8 !1j~1!

i8 ~a ,i
~1!2j i

~1!822v i
~1!!1a~2!8 1

a8

a
a~2! . ~3.24!

Shift perturbation:

ṽ i
~2!5v i

~2!24c~1!a ,i
~1!1a~1!F2S v i

~1!812
a8

a
v i

~1!D2a ,i
~1!81j i

~1!924
a8

a
~a ,i

~1!2j i
~1!8!G1j~1!

j ~2v i , j
~1!2a ,i j

~1!1j i , j
~1!8!

1a~1!8 ~2v i
~1!23a ,i

~1!1j i
~1!8!1j~1!

j8 ~24f~1!d i j 12x i j
~1!12j j ,i

~1!1j i , j
~1!!1j~1!,i

j ~2v j
~1!2a , j

~1!!2a ,i
~2!1j i

~2!8 . ~3.25!

Spatial metric, trace:

f̃~2!5f~2!1a~1!F2S f~1!8 12
a8

a
f~1!xD2S a9

a
1

a82

a2 D a~1!2
a8

a
a~1!8 G1j~1!

i S 2f ,i
~1!2

a8

a
a ,i

~1!D
2

1

3 S 24f~1!1a~1!]01j~1!
i ] i14

a8

a
a~1!D¹2b~1!2

1

3
~2v~1!

i 2a~1!
,i 1j~1!

i8 !a ,i
~1!

2
1

3
~2x i j

~1!1j i , j
~1!1j j ,i

~1!!j~1!
j ,i 2

a8

a
a~2!2

1

3
¹2b~2! . ~3.26!

Spatial metric, traceless part:

x̃ i j
~2!5x i j

~2!12S x i j
~1!812

a8

a
x i j

~1!Da~1!12x i j ,k
~1! j~1!

k 12S 24f~1!1a~1!]01j~1!
k ]k14

a8

a
a~1!D ~d~ i , j !

~1! 1Di j b~1!!

12F (2v~ i
~1!2a ,(i

~1!1j ( i
~1!8)a , j )

~1!2
1

3
d i j ~2v~1!

k 2a~1!
,k 1j~1!

k8 !a ,k
~1!G

12F (2x~ i uku
~1! 1jk,~ i

~1! 1j~ i ,uku
~1! )j , j )

~1!k2
1

3
d i j ~2x lk

~1!1jk,l
~1!1j l ,k

~1!!j~1!
k,l G12~d~ i , j !

~2! 1Di j b~2!!. ~3.27!

For the energy density%, or any other scalar, we have, from Eq.~2.9!,
4-6
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d2%̃5d2%1~£j~2!
1£j~1!

2 !% ~0!12£j~1!
d%. ~3.28!

From this we obtain, using Eq.~2.1!,

d2%̃5d2%1% ~0!8 a~2!1a~1!~% ~0!9 a~1!1% ~0!8 a~1!8 12d%8!1j~1!
i ~% ~0!8 a ,i

~1!12d% ,i !. ~3.29!

.
For the four-velocityum, we have, from Eq.~2.9!,

d2ũm5d2um1~£j~2!
1£j~1!

2 !u~0!
m 12£j~1!

dum. ~3.30!

Using Eqs.~3.8! and ~2.2! this gives

ṽ ~2!
0 5v ~2!

0 2
a8

a
a~2!2a~2!8 1a~1!F2S v ~1!

08 2
a8

a
v ~1!

0 D1S 2
a82

a2
2

a9

a D a~1!1
a8

a
a~1!8 2a~1!9 G

1j~1!
i S 2v ~1!,i

0 2
a8

a
a ,i

~1!2a ,i
~1!8D1a~1!8 ~a~1!8 22v ~1!

0 !22a ,i
~1!v ~1!

i 1a ,i
~1!j~1!

i8 , ~3.31!

ṽ ~2!
i 5v ~2!

i 2b~2!8,i 2d~2!
i8 1a~1!F2S v ~1!

i8 2
a8

a
v ~1!

i D2S j~1!
i9 22

a8

a
j~1!

i8 D G
1j~1!

j ~2v ~1!, j
i 2j~1!, j

i8 !2j~1!, j
i ~2v ~1!

j 2j~1!
j8 !1j~1!

i8 ~2c~1!1a~1!8 !, ~3.32!
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for the time and the space components, respectively. Ag
the four-velocity um is subject toumungmn521, which
gives Eq.~3.10!; therefore Eq.~3.31! reduces to Eq.~3.24!.

IV. EVOLUTION IN THE SYNCHRONOUS GAUGE

A. General formalism

In this section we will obtain the second-order perturb
tions of the Einstein–de Sitter cosmological model in t
synchronous gauge, including scalar and tensor modes in
initial conditions. The synchronous gauge, which has b
one of the most frequently used in cosmological perturba
theory, is defined by the conditionsg0052a(t)2 andg0i50
@21#. In this way the four degrees of freedom associated w
the coordinate invariance of the theory are fixed.

We start by writing the Einstein’s equations for a perfe
fluid of irrotational dust in synchronous and comoving co
dinates. The formalism outlined in this subsection is d
cussed in greater detail in Ref.@4#. With the purpose of
studying gravitational instability in the Einstein–de Sitt
background, we first factor out the homogeneous and iso
pic expansion of the universe.

The line element is written in the form

ds25a2~t!@2dt21g i j ~x,t!dxidxj #, ~4.1!

with the spatial coordinatesx representing Lagrangian coo
dinates for the fluid elements. The scale factora(t)}t2 is
the solution of the Friedmann equations for a perfect fluid
dust in the Einstein–de Sitter universe.

By subtracting the isotropic Hubble flow, one introduc
the extrinsic curvature of constantt hypersurfaces:
04350
in,

-

he
n
n

h

t
-
-

o-

f

q j
i 5

1

2
g ikgk j8 , ~4.2!

with a prime denoting differentiation with respect to the co
formal timet.

One can then write Einstein’s equations in a cosmolo
cally convenient form. The energy constraint reads

q22q j
i q i

j 1
8

t
q1R5

24

t2
d, ~4.3!

whereR j
i (g) is the intrinsic curvature of constant time hy

persurfaces, i.e., the conformal Ricci curvature of the thr
space with metricg i j , andR5R i

i . We also introduced the
density contrastd[(%2% (0))/% (0) , with %(x,t) the mass
density and% (0)(t)53/2pGa2(t)t2 its background mean
value.

The momentum constraint reads

q j u i
i 5q , j , ~4.4!

where the vertical bar indicates a covariant derivative in
three-space with metricg i j .

Finally, after replacing the density from the energy co
straint and subtracting the background contribution, the e
lution equation for the extrinsic curvature reads

q j
i 81

4

t
q j

i 1qq j
i 1

1

4
~q l

k q k
l 2q2!d j

i 1R j
i 2

1

4
Rd j

i 50.

~4.5!
4-7
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Also useful is the Raychaudhuri equation for the evo
tion of the peculiar volume expansion scalarq, namely,

q81
2

t
q1q j

i q i
j 1

6

t2 d50. ~4.6!

An advantage of this gauge is that there are only geome
quantities in the equations, namely, the spatial metric ten
with its time and space derivatives. The only remaining va
able, the density contrast, can indeed be rewritten in term
g i j , by solving the continuity equation. We have

d~x,t!5„11d0~x!…@g~x,t!/g0~x!#21/221, ~4.7!

with g[detg i j . We denote by a subscript 0 without pare
theses the initial condition of the referred quantity.

B. First-order perturbations

We are now ready to deal with the equations above at
linear level. Let us then write the conformal spatial met
tensor in the form

g i j 5d i j 1gSi j
~1! . ~4.8!

According to our general definitions we then write

gSi j
~1!522fS

~1!d i j 1Di j xS
~1!i

1] ixSj
~1!'1] jxSi

~1!'1x i j
~1!Á ,

~4.9!

with

] ixSi
~1!'5x i

~1!Á i5] ix i j
~1!Á50. ~4.10!

Recall that at first order the tensor modesx i j
(1)Á are gauge

invariant.
As is well known, in linear theory, scalar, vector, an

tensor modes are independent. The equation of motion
the tensor modes is obtained by linearizing the traceless
of the q j

i evolution equation. One has

x i j
~1!Á91

4

t
x i j

~1!Á82¹2x i j
~1!Á50, ~4.11!

which is the equation for the free propagation of gravi
tional waves in the Einstein–de Sitter universe. The gen
solution of this equation is

x i j
Á~1!~x,t!5

1

~2p!3E d3k exp~ ik–x!xs
~1!~k,t!e i j

s~ k̂!,

~4.12!

wheree i j
s ( k̂) is the polarization tensor, withs ranging over

the polarization components1,3, andxs
(1)(k,t) the ampli-

tudes of the two polarization states, whose time evolut
can be represented as

xs
~1!~k,t!5A~k!as~k!S 3 j 1~kt!

kt D , ~4.13!
04350
-

ic
or
i-
of
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n

with j 1 the spherical Bessel function of order 1 andas(k) a
zero mean random variable with autocorrelation funct
^as(k)as8(k8)&5(2p)3k23d3(k1k8)dss8. The spectrum
of the gravitational wave background depends on the p
cesses by which it was generated, and, for example, in m
inflationary models,A(k) is nearly scale invariant and pro
portional to the Hubble constant during inflation.

In the irrotational case the linear vector perturbations r
resent gauge modes which can be set to zero:x i

(1)'50.
The two scalar modes are linked together via the mom

tum constraint, leading to the condition

fS
~1!1

1

6
¹2xS

~1!i
5fS0

~1!1
1

6
¹2xS0

~1!i . ~4.14!

The energy constraint gives

¹2F2

t
xS

~1!i81
6

t2 ~xS
~1!i

2xS0
~1!i!12fS0

~1!1
1

3
¹2xS0

~1!iG5
12

t2 d0 ,

~4.15!

having consistently assumedd0!1.
The evolution equation also gives an equation for the s

lar modes:

xS
~1!i91

4

t
xS

~1!i81
1

3
¹2xS

~1!i
522fS

~1! . ~4.16!

An equation only for the scalar modexS
(1)i can be obtained

by combining together the evolution equation and the ene
constraint:

¹2FxS
~1!i91

2

t
xS

~1!i82
6

t2 ~xS
~1!i

2xS0
~1!i

!G52
12

t2
d0 .

~4.17!

On the other hand, by linearizing the solution of the co
tinuity equation, we obtain

dS
~1!5d02

1

2
¹2~xS

~1!i
2xS0

~1!i
!, ~4.18!

which replaced in the previous expression gives

dS
~1!91

2

t
dS

~1!82
6

t2 dS
~1!50. ~4.19!

This is the equation for linear density fluctuation~see, e.g.,
Ref. @1#!, whose general solution is straightforward to obta

The equations above have been obtained in whole ge
ality; one could have used instead the well-known resid
gauge ambiguity of the synchronous coordinates~see, e.g.,
Refs.@4,18#! to simplify their form. For instance, one coul
fix x0

(1)i so that¹2xS0
(1)i522d0, and thus thexS

(1)i evolution
equation takes the same form as that ford. With such a
gauge fixing one obtains

xS
~1!i

~x,t!5x1~x!t21x2~x!t23, ~4.20!
4-8
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wherex6 set the amplitudes of the growing (1) and decay-
ing (2) modes. In what follows, we shall restrict ourselv
to the growing mode. The effect of the decaying mode
second-order perturbations has been considered in Ref.@17#
and in Ref.@18# and will not be studied here. The amplitud
of the growing mode is related to the initialpeculiar gravi-

tational potential, throughx1[2 ( 1
3 )w, where, in turn,w is

related to d0 through the cosmological Poisson equati
¹2w(x)5 (6/t0

2)d0(x). Therefore,

Di j xS
~1!i

52
t2

3 S w ,i j 2
1

3
d i j ¹

2w D . ~4.21!

The remaining scalar mode

fS
~1!~x,t!5

5

3
w~x!1

t2

18
¹2w~x! ~4.22!

immediately follows.
The linear metric perturbation therefore reads

gSi j
~1!52

10

3
wd i j 2

t2

3
w ,i j 1x i j

~1!Á . ~4.23!

With purely growing-mode initial conditions, the linea
density contrast reads

dS
~1!5

t2

6
¹2w. ~4.24!
04350
n

C. Second-order perturbations

The conformal spatial metric tensor up to second orde
expanded as

g i j 5d i j 1gSi j
~1!1

1

2
gSi j

~2! , ~4.25!

with

gSi j
~2!522fS

~2!d i j 1xSi j
~2! ~4.26!

andxSj
(2)i50.

The technique of second-order perturbation theory
straightforward: with the help of the relations reported
Appendix B, we first substitute the expansion above in o
exact fluid-dynamical equations~momentum and energy
constraints plus evolution and Raychaudhuri equations!, ob-
taining equations forgSi j

(2) with source terms containing qua
dratic combinations ofgSi j

(1) plus a few more terms involving
d0. Next, we have to solve these equations for the mo
fS

(2) and xSi j
(2) in terms of the initial peculiar gravitationa

potentialw and the linear tensor modesx i j
(1)Á .

Let us now give the equations which govern the evolut
of the second-order metric perturbations.

Raychaudhuri equation:
fS
~2!91

2

t
fS

~2!82
6

t2 fS
~2!52

1

6
gS

~1!i j 8S gSi j
~1!82

4

t
gSi j

~1!D1
1

6
@2gS

~1!i j ~2gSi ,k j
~1!k 2¹2gSi j

~1!2gSk,i j
~1!k !2gSk

~1!k~gS,i j
~1!i j 2¹2gSi

~1!i !#

2
2

t2 F2
1

4
~gSi

~1!i2gS0i
~1!i !22

1

2
~gS

~1!i j gSi j
~1!2gS0

~1!i j gS0i j
~1! !1d0~gSi

~1!i2gS0i
~1!i !G . ~4.27!

Energy constraint:

2

t
fS

~2!82
1

3
¹2fS

~2!1
6

t2
fS

~2!2
1

12
xS,i j

~2!i j 52
2

3t
gS

~1!i j gSi j
~1!82

1

24
~gS

~1!i j 8gSi j
~1!82gSi

~1!i 8gSj
~1! j 8!

1
1

6 FgS
~1!i j ~¹2gSi j

~1!1gSk,i j
~1!k 22gSi , jk

~1!k !1gS,k
~1!ki~gSj ,i

~1! j2gSi , j
~1! j !

1
3

4
gS

~1!i j
,kgSi j

~1!,k2
1

2
gS

~1!i j
,kgSi , j

~1!k2
1

4
gSi

~1!i ,kgSj
~1! j

,kG
1

2

t2 F2
1

4
~gSi

~1!i2gS0i
~1!i !22

1

2
~gS

~1!i j gSi j
~1!2gS0

~1!i j gS0i j
~1! !1d0~gSi

~1!i2gS0i
~1!i !G .

~4.28!

Momentum constraint:

2fS,j
~2!81

1

2
xSj ,i

~2!i 85gS
~1!ik~gSjk,i

~1!8 2gSik, j
~1!8 !1gS

~1!ik
,igSjk

~1!82
1

2
gS

~1!ik
, jgSik

~1!82
1

2
gSi

~1!i
,kgSj

~1!k8. ~4.29!
4-9
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Evolution equation:

2S fS
~2!91

4

t
fS

~2!8D d j
i 1

1

2 S xSj
~2!i 91

4

t
xSj

~2!i 8D1fS,j
~2!,i2

1

4
xS

~2!kl
,kl d j

i 1
1

2
xS,k j

~2!ki1
1

2
xSj ,k

~2!k,i2
1

2
¹2xSj

~2!i

5gS
~1!ik8gSk j

~1!82
1

2
gSk

~1!k8gSj
~1!i 81

1

8
@~gSk

~1!k8!22gSl
~1!k8gSk

~1!l 8#d j
i 2

1

2 F2gSj
~1!i~gSl ,k

~1!k,l2¹2gSk
~1!k!

12gS
~1!kl~gSj ,kl

~1!i 1gSkl, j
~1!,i 2gSl , jk

~1!i 2gSl j ,k
~1!,i !12gS,k

~1!kl~gSj ,l
~1!i2gSl , j

~1!i2gSj l
~1!,i !

12gS
~1!ki

,lgSjk
~1!,l22gS ,l

~1!ki gSj ,k
~1!l 1gS ,j

~1!kl gSkl
~1!,i

1gSl ,k
~1!l~gS,j

~1!ki1gSj
~1!k,i2gSj

~1!i ,k!2gS
~1!kl~¹2gSkl

~1!1gSm,kl
~1!m 22gSk,ml

~1!m !d j
i 2gS,l

~1!lk~gSm,k
~1!m2gSk,m

~1!m!d j
i

2
3

4
gS ,m

~1!kl gSkl
~1!,md j

i 1
1

2
gS ,m

~1!kl gSk ,l
~1!m d j

i 1
1

4
gSk

~1!k,mgS
~1!l

,md j
i . ~4.30!

The next step is to solve these equations. In these calculations, we can make the simplifying assumption that t
conditions are taken at conformal timet050 ~implying alsod050). One can start from the Raychaudhuri equation, to ob
the trace of the second-order metric tensor.~Actually, in order to obtain the subleading mode generated by linear scalar m
we also need the energy constraint.! The resulting expression forfS

(2) is

fS
~2!5

t4

252S 2
10

3
w ,kiw ,ki1~¹2w!2D1

5t2

18 S w ,kw ,k1
4

3
w¹2w D1fS~ t!

~2! , ~4.31!

wherefS(t)
(2) , which is the part offS

(2) generated by the presence of tensor modes at the linear level, reads

fS~ t!
~2! 5

t2

5 E0

tdt8

t8
Q~t8!2

1

5t3E0

t

dt8t84Q~t8!, ~4.32!

with Q(x,t) a source term whose explicit form is reported in Appendix C.
The expression forxSi j

(2) is obtained by first replacingfS
(2) into the remaining equations and solving them in the followi

order: energy constraint→ momentum constraint→ ~traceless part of the! evolution equation. We obtain

xSi j
~2!5

t4

126S 19w ,i
,kw ,k j212w ,i j ¹

2w14~¹2w!2d i j 2
19

3
w ,klw ,kld i j D

1
5t2

9 S 26w ,iw , j24ww ,i j 12w ,kw ,kd i j 1
4

3
w¹2wd i j D1pSi j 1xS~ t!i j

~2! , ~4.33!
i
co
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we
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wherexS(t)i j
(2) is the part of the traceless tensorxSi j

(2) generated
by the presence of tensor modes at the linear level and
cludes the effects of scalar-tensor and tensor-tensor
plings; its expression can be derived from the equati
given in Appendix C. The transverse and traceless contr
tion pSi j , which represents the second-order tensor m
generated by scalar initial perturbations, is determined by
inhomogeneous wave equation

pSi j9 1
4

t
pSi j8 2¹2pSi j 52

t4

21
¹2Si j , ~4.34!

with

Si j 5¹2C0d i j 1C0,i j 12~w ,i j ¹
2w2w ,ikw , j

,k!, ~4.35!

where
04350
n-
u-
s

u-
e
e

¹2C052
1

2
@~¹2w!22w ,ikw ,ik#. ~4.36!

This equation can be solved using the Green method;
obtain forpSi j that

p i j ~x,t!5
t4

21
Si j ~x!1

4t2

3
Ti j ~x!1p̃ i j ~x,t!, ~4.37!

where¹2Ti j 5Si j and the remaining piecep̃ i j , containing a
term that is constant in time and another one that oscilla
with decreasing amplitude, can be written as

p̃ i j ~x,t!5
1

~2p!3E d3k exp~ ik–x!
40

k4
Si j ~k!S 1

3
2

j 1~kt!

kt D ,

~4.38!

with Si j (k)5*d3x exp(2ik–x)Si j (x).
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The second-order density contrast reads

dS
~2!5

t4

252
@5~¹2w!212w ,i j w ,i j #

1
t2

36
~15w ,iw ,i140w¹2w26w ,i j x i j

~1!Á!

1
1

4
~x~1!Á i j x i j

~1!Á2x0
~1!Á i j x0i j

~1!Á!1
3

2
fS~ t!

~2! .

~4.39!

An important aspect of our results is that linear ten
modes~gravitational waves! can generate second-order pe
turbations of any kind~scalars, vectors, and tensors!. This
interesting fact, which was first noticed by Tomita@20#, is
nicely displayed by the above formula for the mass-den
contrast, which even in the absence of initial density fluct
tions takes a contribution from primordial gravitation
waves. More in general, we should stress that our exp
sions completely determine the rate of growth of pertur
tions up to second order.

V. FROM THE SYNCHRONOUS TO THE POISSON
GAUGE

In this section we are going to obtain the metric pertur
tions in the Poisson gauge by transforming the results
tained in the synchronous gauge in the previous section.
Poisson gauge, recently discussed by Bertschinger@2# and
Ma and Bertschinger@14#, is defined byv i

(r ),i5x i j
(r ), j50.

Then, one scalar degree of freedom is eliminated fromg0i

(v (r )i50) and one scalar and two vector degrees of freed
from gi j (x (r )i5x i

(r )'50). This gauge generalizes the we
known longitudinal gauge to include vector and tenso
modes. The latter gauge, in whichv i

(r )5x i j
(r )50, has been

widely used in the literature to investigate the evolution
scalar perturbations@28#. Since the vector and tensor mod
are set to zero by hand, the longitudinal gauge canno
used to study perturbations beyond the linear regime,
cause in the nonlinear case the scalar, vector, and te
modes are dynamically coupled. In other words, even if o
starts with purely scalar linear perturbations as initial con
tions for the second-order theory, vector and tensor mo
are dynamically generated@3#.
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A. First-order transformations

Given the perturbation of the metric in one gauge, it
easy to obtain, from Eqs.~3.15!–~3.18!, the gauge transfor-
mation to the other one, hence the perturbations in the n
gauge. In the particular case of the synchronous and Poi
gauges, we have

cP
~1!5a~1!81

a8

a
a~1!, ~5.1!

a~1!5b~1!8, ~5.2!

vP i
~1!5di

~1!8 , ~5.3!

fP
~1!5fS

~1!2
1

3
¹2b~1!2

a8

a
a~1!, ~5.4!

Di j ~xS
~1!i

12b~1!!50, ~5.5!

xS ~ i , j !
~1!' 1d~ i , j !

~1! 50, ~5.6!

xP i j
~1!Á5xS i j

~1!Á . ~5.7!

The parametersb (1), a (1), anddi
(1) of the gauge transfor-

mation can be obtained from Eqs.~5.5!, ~5.2!, and ~5.6!,
respectively, while the transformed metric perturbations f
low from Eqs.~5.1!, ~5.3!, ~5.4!, and~5.7!.

Once these parameters are known, the transforma
rules for the energy density% or any other scalar, and thos
for the four-velocityum, follow trivially from Eqs. ~3.19!,
~3.21!, and~3.22!. In the irrotational case studied in the la
sectionxS i j

(1)'5v (1)'
i 50 and thusdi

(1)5vP i
(1)5xP i j

(1)'50.

B. Second-order transformations

The more general transformation expressions foll
straightforwardly from Eqs. ~3.24!–~3.27!, ~3.29!, and
~3.32!.

Transforming from the synchronous to the Poisson gau
the expression forcP

(2) can be easily obtained from Eq
~3.24!, using Eq.~5.2! and the conditiondi

(1)50 to express
all the first-order quantities in terms ofb (1):
cP
~2!5b~1!8 Fb~1!- 15

a8

a
b~1!9 1S a9

a
1

a82

a2 D b~1!8 G1b~1!
,i S b ,i

~1!91
a8

a
b ,i

~1!8D12b~1!92 1a~2!81
a8

a
a~2!. ~5.8!

For vP i
(2) andfP

(2) we get

vP i
~2!522S 2fS

~1!1b~1!9 2
2

3
¹2b~1!Db ,i

~1!822b , j
~1!8b ,i

~1!, j12x i j
~1!Áb~1!8,i 2a ,i

~2!1b ,i
~2!81di

~2!8 , ~5.9!
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fP
~2!5fS

~2!1b~1!8 F2S fS
~1!812

a8

a
fS

~1!D2S a9

a
1

a82

a2 D b~1!8 2
a8

a
b~1!9 G

2
1

3 S 24fS
~1!1b~1!8 ]01b~1!

,i ] i14
a8

a
b~1!8 1

4

3
¹2b~1!D¹2b~1!

1b~1!
,i S 2fS,i

~1!2
a8

a
b ,i

~1!8D1
2

3
b ,i j

~1!b~1!
,i j 2

2

3
x i j

~1!Áb~1!
,i j 2

a8

a
a~2!2

1

3
¹2b~2! . ~5.10!

For xP i j
(2) we obtain

xP i j
~2! 5xS i j

~2! 12S 4

3
¹2b~1!24fS

~1!2b~1!8 ]02b~1!
,k ]kDDi j b~1!24S b ,ik

~1!b~1!, j
,k 2

1

3
d i j b ,lk

~1!b~1!
,lk D

12S x i j
~1!Á812

a8

a
x i j

~1!ÁDb~1!812x i j ,k
~1!Áb~1!,k12x ik

~1!Áb , j
~1!,k12x jk

~1!Áb ,i
~1!,k2

4

3
d i j x lk

~1!Áb~1!,lk12~d~ i , j !
~2! 1Di j b

~2!!.

~5.11!

Given the metric perturbations in the synchronous gauge, these constitute a set of coupled equations for the sec
parameters of the transformation,a (2), b (2), anddi

(2) and the second-order metric perturbations in the Poisson gauge,cP
(2) ,

vP i
(2) , fP

(2) , andxP i j
(2) . This system can be solved in the following way. Since in the Poisson gauge] ixP i j

(2) 50, we can use the
fact that] i] jxP i j

(2) 50 and the property] idi
(1)50, together with Eq.~5.11!, to obtain an expression for¹2¹2b (2), from which

b (2) can be computed:

¹2¹2b~2!52
3

4
xS i j

~2!,i j 16fS
~1!,i j b ,i j

~1!22¹2fS
~1!¹2b~1!18fS

~1!,i¹2b ,i
~1!14fS

~1!¹2¹2b~1!14¹2b ,i j
~1!b~1!

,i j

2
1

6
¹2b~1!

,i ¹2b ,i
~1!1

5

2
b~1!

,i jkb ,i jk
~1! 2

2

3
¹2b~1!¹

2¹2b~1!1
3

2
b~1!

,i j 8b ,i j
~1!8

2
1

2
¹2b~1!8 ¹2b~1!8 12b~1!

,i8¹2b ,i
~1!81b~1!8 ¹2¹2b~1!8

1b~1!
,i ¹2¹2b ,i

~1!2
3

2 S x i j
~1!Á812

a8

a
x i j

~1!ÁDb~1!8,i j 2
5

2
x i j ,k

~1!Áb~1!,i jk22x i j
~1!Á¹2b~1!

,i j 1¹2x i j
~1!Áb~1!

,i j . ~5.12!

Then, using the condition] ixP i j
(2) 50 and substitutingb (2) we obtain an equation fordi

(2) :

¹2di
~2!52

4

3
¹2b ,i

~2!2xS i j
~2!, j18fS

~1!, jDi j b~1!1
16

3
fS

~1!¹2b ,i
~1!1

2

3
¹2b~1!

, j b ,i j
~1!1

10

3
b~1!

, jk b ,i jk
~1!

2
8

9
¹2b~1!¹

2b ,i
~1!12b~1!

, j8Di j b~1!8 1
4

3
b~1!8 ¹2b ,i

~1!81
4

3
b~1!

, j ¹2b ,i j
~1!24x i j ,k

~1!Áb~1!, jk

22S x i j
~1!Á812

a8

a
x i j

~1!ÁDb~1!8, j22x i j
~1!Á¹2b~1!

, j 2
2

3
x ik

~1!Áb ,i
~1!, jk1

4

3
x jk,i

~1!Áb~1!, jk. ~5.13!

Finally, using] ivPi
(2)50 and substitutingb (2), we get an equation fora (2):

¹2a~2!5¹2b~2!8 22S 2fS
~1!,i1b~1!9,i 1

1

3
¹2b~1!

,i Db ,i
~1!822b~1!

,i j b ,i j
~1!822S 2fS

~1!1b~1!9 2
2

3
¹2b~1!D¹2b~1!8 12x i j

~1!Áb~1!8,i j .

~5.14!
043504-12
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Having obtained, at least implicitly, all the parameters of
gauge transformation to second order, one can in princ
compute the metric perturbations in the Poisson gauge f
Eqs.~5.8!–~5.11!.

Similarly, once the parameters are known, the pertur
tions in any scalar and four-vector, and in particular those
the energy density and in the four-velocity of matter, follo
trivially from Eqs. ~3.29!–~3.32!.

VI. EVOLUTION IN THE POISSON GAUGE

We have obtained in the previous section the gen
gauge transformation to go from the synchronous to the P
son gauge up to second order in metric perturbations. We
now apply it to the case of cosmological perturbations in
dust universe and compute the perturbed metric in the P
son gauge from the solutions obtained in Sec. IV using
synchronous gauge.

A. First-order perturbations

For first order, replacing Eq.~4.21! in Eq. ~5.5! and using
Eq. ~5.2!, we obtain that the parameters of the transformat
are

a~1!5
t

3
w,

b~1!5
t2

6
w,

~6.1!

and d(1)i50, in the absence of vector modes in the init
conditions.

For the metric perturbations we obtain, from Eqs.~5.1!,
~5.3!, ~5.4!, and~5.7!,

cP
~1!5fP

~1!5w,

xPi j
~1!5x i j

Á~1! . ~6.2!

These equations show the well-known result for scalar p
turbations in the longitudinal gauge and the gauge invaria
for tensor modes at the linear level.

The linear density contrast reads

dP
~1!522w1

t2

6
¹2w, ~6.3!

while the first-order four-velocity perturbation has comp
nents

vP
~1!052w, ~6.4!

vP
~1!i52

t

3
w ,i . ~6.5!

B. Second-order perturbations

For the second-order parameters of the gauge transfo
tion, replacing the second-order perturbed metric obtaine
Sec. IV in Eqs.~5.12!–~5.14! we obtain
04350
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a~2!52
2

21
t3C01tS 10

9
w214Q0D1a~ t!

~2! ,

b~2!5
t4

6 S 1

12
w ,iw ,i2

1

7
C0D1

t2

3 S 7

2
w216Q0D1b~ t!

~2! ,

~6.6!

with ¹2Q05C02 1
3 w ,iw ,i and

¹2dj
~2!5

4t2

3
~2w , j¹

2w1w ,iw ,i j 22C0,j !1¹2d~ t! j
~2! ,

~6.7!

where the quantities indicated by the subscript (t) stand
the contributions arising from the presence of tensor mo
at the linear level and are discussed in greater detail in
pendix D.

For the perturbed metric we obtain

cP
~2!5t2S 1

6
w ,iw ,i2

10

21
C0D1

16

3
w2112Q0 ,1cP~ t!

~2! ,

fP
~2!5t2S 1

6
w ,iw ,i2

10

21
C0D1

4

3
w228Q0,1fP~ t!

~2! ,

~6.8!

¹2vP
~2!i52

8

3
t~w ,i¹2w2w ,i j w , j12C0

,i !1¹2vP~ t!
~2!i ,

xPi j
~2!5p̃ i j 1xP~ t!i j

~2! .

The equations determining the contribution from line
tensor modes are given in Appendix D. Note that the con
bution to cP

(2) and fP
(2) from linear scalar modes can b

recovered, except for the subleading time-independent te
by taking the weak-field limit of Einstein’s theory~see, e.g.,
Ref. @5#! and then expanding in powers of the perturbati
amplitude.

Also interesting is the way in which the second-order te
sor modes, generated by the nonlinear growth of scalar
turbations, appear in this gauge: the transformation from
synchronous to the Poisson gauge has in fact dropped
Newtonian and post-Newtonian contributions, whose phy
cal interpretation in terms of gravitational waves is high
nontrivial ~see the discussion in Ref.@4#!; what remains is
the tensorp̃ i j , whose evolution is governed by the equati

p̃ i j9 1
4

t
p̃ i j8 2¹2p̃ i j 52

40

3
Ti j . ~6.9!

Its solution, Eq.~4.38!, contains a constant term, derivin
from the vanishing initial conditions, plus a wavelike piec
having exactly the same form as linear tensor modes@cf. Eq.
~4.13!#, whose amplitude is fixed by the source termTi j ~a
quadratic combination of linear scalar modes!. A more ex-
tended discussion of these tensor modes is given in Ref.@33#.

Finally, let us give the Poisson-gauge expressions for
second-order density and four-velocity perturbations. O
has
4-13
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dP
~2!5

t4

252
„5~¹2w!212w ,i j w ,i j 114w ,i¹2w ,i…

1
t2

36S 221w ,iw ,i124w¹2w1
144

7
C026w ,i j x i j

~1!ÁD
1

1

4
~x~1!Á i j x i j

~1!Á2x0
~1!Á i j x0i j

~1!Á!

2
8

3
w2224Q01

3

2
fS~ t!

~2! 2
6

t
a~ t!

~2! ~6.10!

and

vP
~2!05

t2

3 S 2
1

6
w ,iw ,i1

10

7
C0D2

7

3
w2212Q02cP~ t!

~2! ,

~6.11!

vP
~2!i5

t3

9 S 2w ,i j w , j1
6

7
C0

,i D
22tS 16

9
ww ,i12Q0

,i D2d~2!i82b~ t!
~2!8,i ,

~6.12!

with the vectorsd(2)i defined in Eq.~6.7!.
In concluding this section, let us emphasize that all

second-order Poisson-gauge expressions obtained her
new. Only a few terms in these expressions were alre
known in the literature, based on the weak-field limit of ge
eral relativity ~e.g., Ref.@5#!.

VII. CONCLUSIONS

In this paper we considered relativistic perturbations o
collisionless and irrotational fluid up to second order arou
the Einstein–de Sitter cosmological model. The most imp
tant phenomenon of second-order perturbation theory
mode mixing. An interesting consequence of this pheno
enon is that primordial density fluctuations act as seeds
second-order gravitational waves. The specific form of th
waves is gauge dependent, as tensor modes are no lo
gauge invariant beyond the linear level. A second interes
effect is the generation of density fluctuations from prim
dial tensor modes. One can even figure out a scenari
which no scalar perturbations were initially present, but th
were later generated, as a second-order effect, by the no
ear evolution of a primordial gravitational-wave backgroun

The first effect, which is discussed in some detail in R
@33#, in the synchronous and comoving gauge also contai
term growing liket4 and a second one growing liket2: the
first accounts for the Newtonian tidal induction of the en
ronment on the nonlinear evolution of fluid elements; t
second is a post-Newtonian tensor mode induced by
growth of the shear field. The remaining parts of this seco
order tensor mode~excluding a constant term required by th
vanishing initial conditions! oscillate with decaying ampli-
tude inside the horizon and describe true gravitationalwaves.
Quite interesting is the fact that these are the only parts
04350
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these second-order tensor modes which survive to the tr
formation leading to the Poisson gauge.

The second effect is less known, and was only previou
considered by Tomita back in the early 1970s@20#.

One may naturally wonder whether there is any hope
detect the cosmological stochastic gravitational-wave ba
ground produced at second order by scalar fluctuations. I
of course, the oscillating part ofp i j which is relevant for
Earth or space detectors. The problem for these wave
modes is that their energy density suffers the usuala24 di-
lution caused by free-streaming inside the Hubble rad
while at the horizon crossing their closure density is alrea
extremely small,Vgw;dH

4 ~wheredH is the rms density con-
trast at the horizon crossing!, because of their secondary or
gin. More promising is the possibility that a non-negligib
amount of gravitational radiation can be produced during
strongly nonlinear stages of the collapse of protostructu
an issue which would, however, require a fully nonperturb
tive approach.

It should be stressed that, while many of our second-or
terms had already been computed in the synchronous ga
all our second-order Poisson-gauge expressions are
This is a relevant result, as the latter gauge is the one wh
allows the easiest interpretation of the various physical
fects. In particular, the second-order metric perturbations
tained by our method allow one to compute self-consisten
gravity-induced secondary anisotropies of the cosmic mic
wave background. This calculation has been recently p
formed by Mollerach and Matarrese@13#, implementing a
general scheme introduced by Pyne and Carroll@12#.
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APPENDIX A: TAYLOR EXPANSION
OF TENSOR FIELDS

In this appendix we present some mathematical res
used in Sec. II, concerning Taylor expansions of tensor fie
on a manifold. These results have already been presente
@15#, where analyticity of all relevant fields was assume
they have been generalized in@16# to the case ofCm fields.
The theorems obtained in@15,16# are very general, concern
ing perturbation theory at an arbitrary ordern. In order to
achieve these general results it is very useful, or perh
mandatory, to use a fully geometrical approach. Howev
for our purposes, it is useful to summarize them in terms
coordinates and tensor components, as we shall do in
following. We assume that all quantities are as smooth
necessary.

1. One-parameter groups of transformations

As disccused in Sec. II, gauge choices for perturbati
entail the comparison of the tensor field representing a
tain physical and/or geometrical quantity in the perturb
4-14
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spacetime with the tensor field representing the same q
tity in the background spacetime. Consequently, gauge tr
formations entail the comparison of tensors at differ
points in the background spacetime. A smallness param
l is involved, so that these comparisons are always car
out at the required order of accuracy inl, using Taylor ex-
pansions@34#. Differential geometry tells us that the com
parison of tensors is meaningful only when we consider th
at the same point. Therefore, supposing we want to com
a tensor fieldT at pointsp andq, we need to define a trans
port law fromq to p. This gives us two tensors atp, T, itself,
and the transported one, which can be directly compared

The simplest transport law we need to consider is the
dragging by a vector field, which allows us to compareT

with its pullbackT̃(l) ~the new tensor defined by this tran
port!. To fix ideas, let us first consider, on a manifoldM, the
comparison of tensors at first order inl ~which we shall
define shortly!. Suppose a coordinate systemxm has been
given on~an open set of! M, together with a vector fieldj.
From dxm/dl5jm, j generates onM a congruence of
curvesxm(l): thusl is the parameter along the congruenc
Given a pointp, this will always lie on one of these curve
and we can always takep to correspond tol50 on this. The
coordinates of a second pointq at a parameter distancel
from p on the same curve will be given by

x̃m~l!5xm1ljm1•••, ~A1!

where thexm are the coordinates ofp and thex̃m are those of
q, approximated here at first order inl. Equation~A1! is
usually called an ‘‘infinitesimal point transformation,’’ or a
‘‘active coordinate transformation’’~see, e.g., Ref.@35#, p.
70; Ref. @36#, p. 49; cf. also Ref.@37#, p. 291, and@29#,
Appendix C!. At the same time, we may think that a ne
coordinate systemym has been introduced onM, definedin
such a way that they coordinates of the pointq coincide
with the x coordinates of the pointp; using Eq.~A1! it then
follows from this definition that

ym~q!:5xm~p!5xm~q!2ljm
„x~p!…1•••

.xm~q!2ljm
„x~q!…1•••. ~A2!

In practice, we have in this way defined at every poin
‘‘passive coordinate transformation’’~i.e., just an ordinary
relabeling of point’s names!, which at first order reads

ym~l!5xm2ljm1•••. ~A3!

Suppose now that a tensor field has been given onM;
e.g., to fix ideas, consider the vector fieldZ with components
Zm in the x-coordinate system. In the same way that
defined a new coordinate systemym once a relation betwee
points was assigned through Eq.~A1! by the action ofj, so
we can now define a new vector fieldZ̃, with componentsZ̃m

in thex coordinates, such that these components at the c
dinate pointxm(p) are equal to the componentsZ8m the old
vector Z has in they coordinates at the coordinate poi
y(q):
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Z̃m
„x~p!…:5Z8m

„y~q!…5F ]ym

]xn G
x~q!

Zn
„x~q!…. ~A4!

The last equality in this equation is just the ordinary~pas-
sive! transformation between the components ofZ in the two
coordinate systems: we need it in order to relateZ̃ andZ in
a single system~thex frame here!, thus eventually obtaining
a covariant relation. Indeed, substitution of Eq.~A3! into Eq.
~A4! and a first-order expansion inl aboutx(p) in the right-
hand side~RHS! gives

Z̃m~l!5Zm1l£jZ
m1•••, ~A5!

£jZ
m:5Z,n

m jn2j ,n
m Zn, ~A6!

where, given that the pointp is arbitrary, the dependence o
all terms onx(p) has been omitted. The vector fieldZ̃ is
called the pullback ofZ, because it is defined by draggingZ
back fromq to p, an operation that gives atp a new vector
with componentsZ̃m, given by Eq.~A4!. In the particular
case of the transformation~A3! this is the Lie dragging.
Now, having at the same point two vectors, these can
directly compared: at first order,Z̃(l) andZ are related by
Eqs.~A5!, ~A6!. In fact, in the limitl→0, it is this compari-
son that allows us to define the Lie derivative, with comp
nents ~A6!; Eq. ~A15! below generalizes this to a gener
tensorT.

Although the story so far is a textbook one~cf. @29,35–
37#!, recalling it in some detail allows us to easily extend
to higher order. First, one has to realize that Eq.~A1! is just
the first-order Taylor expansion aboutx(p) of the solution of
the ordinary differential equation dxm/dl5jm defining the
congruencexm(l) associated withj. The exact solution of
this equation is the Taylor series~cf., e.g.,@38#, p. 43!

xm~q!5xm~p!1ljm
„x~p!…1

l2

2
jm

,njn
„x~p!…1•••,

~A7!

on using dxm/dl5jm, d2xm/dl25j ,n
m jn, etc. In practice,

sincep andq are arbitrary, we may simply write

x̃m~l!5xm1ljm1
l2

2
jm

,njn1•••, ~A8!

5exp@l£j#x
m. ~A9!

The latter exponential notation is useful, in that it allows
to see the coordinate functionsx̃m as the pullbacks of the
functions xm given by the exponential pullback operat
exp@l£j#. Furthermore, it is clearly seen by exp@(l11l2)£j#
5exp@l1£j#exp@l2£j# that the point transformations~A8!
form a one-parameter group of transformations. Using ag
the definitionym(q):5xm(p) for the y coordinates, we get
from Eq. ~A7!,

ym~l!5xm2ljm1
l2

2
jm

,njn1•••, ~A10!
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on expanding all terms aboutx(q), eventually omitting again
the x(q) dependence, sinceq is arbitrary. Finally, using Eq.
~A10! into Eq.~A4! and expanding all the terms aboutx(p),
we get thex componentsZ̃m(l) of the pullbackZ̃(l), which
reads@39#

Z̃m~l!5@exp@l£j#Z#m ~A11!

5Zm1l£jZ
m1

l2

2
£j

2Zm1•••.

~A12!

Equation~A4! is readily generalized to more general te
sors thanZ: we simply have to add to the RHS of Eq.~A4!
the right number of transformation matrices. Thus, the p
backT̃ of a tensor fieldT of type (p,q) is defined by having
x components given by

T̃m1•••mp
n1•••nq

„x~p!…

:5T8m1•••mp
n1•••nq

„y~q!…

5F ]ym1

]xa1
•••

]ymp

]xap

]xb1

]yn1
•••

]xbq

]ynq
G

x~q!

3Ta1•••ap
b1•••bq

„x~q!…. ~A13!

Using Eq. ~A10! as above then gives, omitting indices f
brevity,

T̃~l!5T1l£jT1
l2

2
£j

2T1•••. ~A14!

To summarize, each of the diffeomorphisms forming
one-parameter group, as mathematicians call the transfo
tions generated by a vector fieldj and represented in coor
dinates by Eq.~A9!, gives rise to a new field, the pullbac
T̃(l), from any given tensor fieldT and for any given value
of l. Thus T̃(l) and T may be compared at every poin
which allows one to define the Lie derivative alongj as the
limit l→0 of the differenceT̃(l)2T:

£jT:5F d

dlG
l50

T̃~l!5 lim
l→0

1

l
@ T̃~l!2T#. ~A15!

At higher order we have

£j
kT:5F dk

dlkG
l50

T̃~l!. ~A16!

On the other hand, the relation at each point between
tensor fieldT and its pullbackT̃(l) is expressed at the re
quired order of accuracy by the Taylor expansion~A14!.
04350
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2. One-parameter families of transformations

In order to proceed, considering more general point tra
formations than Eq.~A8! and more general Taylor expan
sions than Eq.~A14!, some general remarks are in orde
First, it should be noticed that the definitionym(q)
:5xm(p) for the y-coordinate system is completely gener
given a first coordinate system~the x frame here! and any
suitable association between pairs of points~more precisely,
any diffeomorphism!, of which the one-parameter group o
transformations~A8! is a particular example. Second, th
same generality is present in the definition of the pullba
Eq. ~A13!, which is also independent from the specific ty
of transformation chosen.

As we said in Sec. II, exact gauge transformations do
form a one-parameter group, but a one-parameter fam
@15,16#. However, the consequences of this fact show
only with nonlinearity, which is why at first order gaug
transformations are approximated by Eq.~A1!, ~A3! ~cf.
@29,35–37#!. Therefore, having in mind a second-order tre
ment of perturbations, the question we now have to deal w
is twofold: ~i! which is the general form of families of trans
formations that depend on one parameter~one-parameter
families of diffeomorphisms!, but do not form a group;~ii !
which is the form of the Taylor expansion of the pullba
T̃(l) of a tensorT generated by one such one-parame
family of transformations.

In @15,16# ~cf. also@40#! we have shown that the action o
any given one-parameter family of transformations can
represented by the successive action of one-param
groups, in a fashion that, to orderl2, reminds us the motion
of the knight on the chessboard:

x̃m~l!5xm1lj~1!
m 1

l2

2
~j~1!

m
,nj~1!

n 1j~2!
m !1•••.

~A17!

A vector field j (k) is associated with thekth one-parameter
group of transformations, with parameterlk ~we denotel1
5l). Similarly to the knight, the action of the transformatio
~A17! first moves from pointp ~with coordinatesxm) by an
amountl along the integral curve ofj (1) @i.e., according to
Eq. ~A8!#; then, it moves along the integral curve ofj (2) by
an amountl25l2/2. At eachkth higher order, a new vecto
field j (k) is involved, generating a motion bylk5lk/k!.
Thus, the action of a one-parameter family of transform
tions is approximated, at orderk, by a ‘‘knight transforma-
tion’’ of order k ~see@15#, Theorem 2!, of which Eq.~A17! is
the second-order example.

Given the ‘‘knight transformation’’~A17!, we can now
use it to define they coordinates, which will be given by

ym~q!:5xm~p!5xm~q!2lj~1!
m
„x~p!…

2
l2

2
@j~1!

m
,n„x~p!…j~1!

n
„x~p!…1j~2!

m
„x~p!…#

1•••. ~A18!
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Expanding the various quantities on the RHS aroundq, and
omitting thex(q) dependence, Eq.~A18! becomes, finally,

ym~l!5xm2lj~1!
m 1

l2

2
~j~1!

m
,nj~1!

n 2j~2!
m !1•••.

~A19!

Using again the case of the vector fieldZ as our paradigmatic
example, we can now derive the pullbackZ̃(l) generated by
a one-parameter family of transformations. Substituting
~A19! into Eq. ~A4!, and expanding again every term abo
x(p), we obtain thex componentsZ̃m(l) of Z̃(l), which
~after properly collecting terms! at second order read

Z̃m~l!5Zm1l£j~1!
Zm1

l2

2
~£j~1!

2 1£j~2!
!Zm1•••.

~A20!

For a generic tensorT, again omitting indices for brevity, us
of Eq. ~A19! in Eq. ~A13! obviously gives

T̃5T1l£j~1!
T1

l2

2
~£j~1!

2 1£j~2!
!T1•••. ~A21!

APPENDIX B: SECOND-ORDER PERTURBATIONS OF
USEFUL QUANTITIES IN THE SYNCHRONOUS

GAUGE

In this appendix we report the expansions up to sec
order of a number of tensors, which have been used in
riving the results of Sec. IV. All calculations are perform
in the synchronous and comoving gauge, assuming
04350
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Einstein–de Sitter background. No subscripts S
synchronous-gauge quantities will be used in this appen

The covariant conformal spatial metric tensor is expand
as follows:

g i j 5d i j 1g i j
~1!1

1

2
g i j

~2! . ~B1!

The corresponding contravariant metric takes the form

g i j 5d i j 2g~1!i j 2
1

2
g~2!i j 1g~1!ikgk

~1! j , ~B2!

where the indices of the perturbationsg i j
(1,2) are raised byd i j .

The extrinsic curvature tensorq j
i up to second order

reads

q j
i 5

1

2S g j
~1!i 81

1

2
g j

~2!i 82g~1!ikgk j
~1!8D . ~B3!

The square root of the metric determinant is

g1/2511
1

2
g i

~1!i1
1

4
g i

~2!i1
1

8
~g i

~1!i !22
1

4
g~1!i j g i j

~1! ,

~B4!

with inverse

g21/2512
1

2
g i

~1!i2
1

4
g i

~2!i1
1

8
~g i

~1!i !21
1

4
g~1!i j g i j

~1! .

~B5!

From these quantities we can easily get the density c
trast
d52
1

2
g i

~1!i1
1

2
g0i

~1!i1d02
1

4
g i

~2!i1
1

8
~g i

~1!i !21
1

8
~g0i

~1!i !22
1

4
g i

~1!ig0 j
~1! j1

1

4
g~1!i j g i j

~1!2
1

4
g0

~1!i j g0i j
~1!2

1

2
g i

~1!id01
1

2
g0i

~1!id0 ,

~B6!

having assumed as initial conditionsg0i j
(2)50 andd0

(2)50 ~i.e., d05d0
(1)).

The Christoffel symbols up to second order read

G jk
i 5

1

2
~g j ,k

~1!i1g k, j
~1!i2g jk

~1!,i !1
1

4
~g j ,k

~2!i1g k, j
~2!i2g jk

~2!,i !2
1

2
g l

~1!i~g j ,k
~1!l1g k, j

~1!l2g jk
~1!,l !, ~B7!

from which, after a lengthy but straightforward calculation, the conformal Ricci tensor of the spatial hypersurface,

R j
i 5

1

2
~g , jk

~1!ik1g j ,k
~1!k,i2¹2g j

~1!i2g k, j
~1!k,i !1

1

4
~g , jk

~2!ik1g j ,k
~2!k,i2¹2g j

~2!i2g k, j
~2!k,i !

1
1

2 Fg~1!ik~¹2gk j
~1!1g l , jk

~1!l 2g k,l j
~1!l 2g j ,lk

~1!l !1g~1!lk~g j ,kl
~1!i 1g lk, j

~1!,i2g k, j l
~1!i 2g j l ,k

~1!,i !

1g ,l
~1!lk~g j ,k

~1!i1g k, j
~1!i2g jk

~1!,i !1g~1!l i
,kg l j

~1!,k2g~1!l i
,kg j ,l

~1!k1
1

2
g~1!lk

, jg lk
~1!,i1

1

2
g m,l

~1!m~g , j
~1!l i 1g j

~1!l ,i2g j
~1!i ,l !G ,

~B8!

and its trace
4-17
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R5g ,lk
~1!lk2g k,l

~1!k,l1
1

2
~g ,lk

~2!lk2g k,l
~2!k,l !1g~1! jk~¹2g jk

~1!1g l , jk
~1!l 22g j ,lk

~1!l !1g ,l
~1!lk~g j ,k

~1! j2g jk
~1!, j !

1
3

4
g ,k

~1!l j g l j
~1!,k2

1

2
g ,k

~1!l j g j ,l
~1!k2

1

4
g j

~1! j ,lg k,l
~1!k ~B9!

follow.

APPENDIX C: SECOND-ORDER PERTURBATIONS GENERATED BY LINEAR TENSOR MODES

In this appendix we report the equations which allow one to determine the second-order perturbations which arise d
presence of tensor modes at the linear level: these are originated both by the coupling of scalar and tensor mode
tensor-tensor mode couplings. All calculations are performed in the synchronous and comoving gauge, assu
Einstein–de Sitter background.

The equations which follow refer only to those parts of the second-order metric perturbations which involve tensor
in the source terms@hence the subscript (t)].

Raychaudhuri equation:

fS~ t!
~2!91

2

t
fS~ t!

~2!82
6

t2 fS~ t!
~2! 5

t2

9
w ,i j ¹2x i j

~1!Á2
1

6
x~1!Á i j 8x i j

~1!Á81
2

3t
x~1!Á i j 8x i j

~1!Á

2
1

3
x~1!Á i j ¹2x i j

~1!Á1
1

t2 ~x~1!Á i j x i j
~1!Á2x0

~1!Á i j x0i j
~1!Á![Q~x,t!. ~C1!

Energy constraint:

2

t
fS~ t!

~2!82
1

3
¹2fS~ t!

~2! 1
6

t2 fS~ t!
~2! 2

1

12
xS~ t!,i j

~2!i j 5
5t

18
x~1!Á i j 8w ,i j 1

5

9
x~1!Á i j w ,i j 2

t2

18
¹2x~1!Á i j w ,i j 2

t2

36
x~1!Á i j ,kw ,i jk

2
1

24
x~1!Á i j 8x i j

~1!Á82
2

3t
x~1!Á i j 8x i j

~1!Á1
1

6
x~1!Á i j ¹2x i j

~1!Á1
1

8
x~1!Á i j ,kx i j ,k

~1!Á

2
1

12
x~1!Á i j ,kxk j ,i

~1!Á2
1

t2 ~x~1!Á i j x i j
~1!Á2x0

~1!Á i j x0i j
~1!Á!. ~C2!

Momentum constraint:

2fS~ t!, j
~2!8 1

1

2
xS~ t! j ,i

~2!i 8 5
t2

3 F ~x , j
~1!Á ik82x j

~1!Ák,i 8!w ,ik1
1

2
x~1!Á ik8w ,ik j2

1

2
x j

~1!Ák8¹2w ,kG
1

t

3
x , j

~1!Á ik w ,ik1
5

3
x j

~1!Á i 8w ,i1x~1!Á ik~xk j ,i
~1!Á82xki, j

~1!Á8!2
1

2
x , j

~1!Á ik x ik
~1!Á8. ~C3!

Evolution equation:
043504-18
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2S fS~ t!
~2!91

4

t
fS~ t!

~2!8D d j
i 1

1

2 S xS~ t! j
~2!i 91

4

t
xS~ t! j

~2!i 8D1fS~ t!, j
~2!,i 2

1

4
xS~ t!,kl

~2!kl d j
i 1

1

2
xS~ t!,k j

~2!ki 1
1

2
xS~ t! j ,k

~2!k ,i2
1

2
¹2xS~ t! j

~2!i

52
2t

3
xk j

~1!Á8w ,ik2
2t

3
x~1!Á ik8w ,k j1

t

3
x j

~1!Á i¹2w1
t

6
x~1!Ákl8w ,kld j

i

1
10

3
x j

~1!Á i¹2w1
25

3
x~1!Áklw ,kld j

i 2
10

3
x~1!Á ikw , jk2

10

3
x jk

~1!Áw ,ik1
10

3
¹2x j

~1!Á iw

1
t2

3
~x j

~1!Á i ,kl1x , j
~1!Ákl,i2x , j

~1!Áki,l2x j
~1!Ák,i l !w ,kl

1~x j
~1!Á i ,k2x , j

~1!Á ik2x j
~1!Ák,i !S 5

3
w ,k1

t2

6
¹2w ,kD

1
t2

6
~x~1!Ákl,iw ,kl j1x , j

~1!Áklw ,kli2¹2x~1!Áklw ,kld j
i !

2
t2

12
x~1!Ákl,mw ,klmd j

i 1x~1!Á ik8xk j
~1!Á82

1

8
x~1!Ákl8xkl

~1!Á8d j
i

1x~1!Ákl~x k , j l
~1!Á i 1x k j ,l

~1!Á,i2x j ,kl
~1!Á i 2x kl , j

~1!Á,i !1x ,l
~1!Áki~x j ,k

~1!Á l2x k j
~1!Á,l !

2
1

2
x , j

~1!Áklx kl
~1!Á,i1

1

2
x~1!Ákl¹2x kl

~1!Ád j
i 1

3

8
x ,l

~1!Ákmx km
~1!Á,ld j

i 2
1

4
x ,l

~1!Ákmx m ,k
~1!Á ld j

i . ~C4!

The Raychaudhuri equation can be easily solved forfS(t)
(2) by means of the Green method. The resulting expression has

given in Eq.~4.32! of the main text. By replacing it in the remaining equations one can in principle obtain the traceless
xS(t)i j

(2) by integration.

APPENDIX D: TENSOR CONTRIBUTION TO THE SECOND-ORDER GAUGE TRANSFORMATION

In this appendix we show how to compute the contribution from linear tensor modes to the perturbed metric in the
gauge by performing a gauge transformation from the synchronous gauge perturbed metric obtained from Appendi
equations for the gauge transformation parameters involved are obtained straightforwardly from Eqs.~5.12!–~5.14!:

¹2¹2b~ t!
~2!52

3

4
xS~ t!,i j

~2!i j 2
t

2 S x i j
~1!Á81

4

t
x i j

~1!ÁDw ,i j 2
5t2

12
x i j ,k

~1!Áw ,i jk2
t2

3
x i j

~1!Á¹2w ,i j 1
t2

6
¹2x i j

~1!Áw ,i j ,

¹2a~ t!
~2!5¹2b~ t!

~2!81
2t

3
x i j

~1!Áw ,i j ,

¹2d~ t!i
~2!52

4

3
¹2b~ t!,i

~2! 2xS~ t!i , j
~2! j 2

2t

3 S x i j
~1!Á81

4

t
x i j

~1!ÁDw , j2
2t2

3
x i j ,k

~1!Áw , jk2
t2

3
x i j

~1!Á¹2w , j2
t2

9
x jk

~1!Áw ,i
, jk1

2t2

9
x jk,i

~1!Áw , jk.

~D1!

The energy constraint~C2! can be used to replacexS(t) i j
(2),i j in terms offS(t)

(2) and products of first-order quantities.
On the other hand, we have from Eqs.~5.8!–~5.11! that the contributions to the perturbed metric that we are intereste

are

cP~ t!
~2! 5a~ t!

~2!81
2

t
a~ t!

~2! , ~D2!

vP~ t! i
~2! 5

2t

3
x i j

~1!Áw , j2a~ t!,i
~2! 1b~ t!,i

~2!81d~ t!i
~2!8 , ~D3!

fP~ t!
~2! 5fS~ t!

~2! 2
t2

9
x i j

~1!Áw ,i j 2
2

t
a~ t!

~2!2
1

3
¹2b~ t!

~2! , ~D4!
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xP~ t! i j
~2! 5xS~ t! i j

~2! 1
2t

3
wS x i j

~1!Á81
4

t
x i j

~1!Á8D1
t2

3
~x i j ,k

~1!Áw ,k1x ik
~1!Áw , j

,k1x jk
~1!Áw ,i

,k!2
2t2

9
d i j x lk

~1!Áw ,lk12~d~ t!~ i , j !
~2! 1Di j b~ t!

~2!!.

~D5!

We can obtain expressions in terms of the synchronous gauge perturbed metric as follows.

1. Lapse perturbation

Replacing the expression fora (t)
(2) into Eq. ~D2! we obtain an expression in terms offS(t)

(2) , its derivatives and products o
first-order quantities, which with the help of the Raychaudhuri equation~C1! can be written as
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2. Shift perturbation

From Eq.~D3! and using the momentum constraint~C3! and the Raychaudhuri equation~C1! we obtain
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3. Spatial metric, trace

From Eq.~D4! and using the Raychaudhuri equation~C1! we obtain
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4. Spatial metric, traceless part

Replacing from Eqs.~D1! the expressions fora (t)
(2) andd(t) i

(2) in Eq. ~D5! we obtain
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