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We consider the evolution of relativistic perturbations in the Einstein—de Sitter cosmological model, includ-
ing second-order effects. The perturbations are considered in two different settings: the widely used synchro-
nous gauge and the Poiss@eneralized longitudinalone. Since, in general, perturbations are gauge depen-
dent, we start by considering gauge transformations at second order. Next, we give the evolution of
perturbations in the synchronous gauge, taking into account both scalar and tensor modes in the initial condi-
tions. Using the second-order gauge transformation previously defined, we are then able to transform these
perturbations to the Poisson gauge. The most important feature of second-order perturbation theory is mode
mixing, which here also means, for instance, that primordial density perturbations act as a source for gravita-
tional waves, while primordial gravitational waves give rise to second-order density fluctuations. Possible
applications of our formalism range from the study of the evolution of perturbations in the mildly nonlinear
regime to the analysis of secondary anisotropies of the cosmic microwave background.
[S0556-282198)03314-1

PACS numbd(s): 98.80.Hw, 04.25.Nx

I. INTRODUCTION results of linear general relativistic perturbation theory in the
so-called longitudinal gauge2]. To second order, however,
The study of the evolution of cosmological perturbationsthe comparison is made nontrivial by the occurrence of non-
is of primary importance for understanding the present proplinear post-Newtoniartand higher order in &) terms in the
erties of the large-scale structure of the Universe and its orirelativistic theory(see also Ref43,4]). Some, but not all, of
gin. This study is usually performed with different tech- the aspects of the relativistic treatment can be accounted for
niques and approximations, depending on the specific rangsy adding an extra post-Newtonian perturbatioBe,/c? to
of scales under analysis. So for scales well within the Hubbléhe conformal spatial metric, an extension that leads to the
radius, the analysis of the gravitational instability of colli- so-called weak-field approximatiqsee, e.g., Ref5]). This
sionless matter is usually restricted to the Newtonian apimprovement allows, for instance, a rather accurate treatment
proximation. As seen in the Eulerian picture, this approxima-of photon trajectories in the geometry produced by matter
tion basically consists in adding a first-order lapseinhomogeneities, as required in the study of gravitational
perturbation 24/c® to the line element of a matter- |ensing by cosmic structuresee, e.g., Ref(6]) and other
dominated Friedmann-Robertson-WalkéFRW) model,  applications. It is worth mentioning that the full post-
while keeping nonlinear density and velocity perturbationsNewtonian line element in Eulerian coordinates would also
around the background solution. The peculiar gravitationalnclude nonvanishing shift componertsee, e.g., Ref.7)).
potential ¢, is determined by the dimensionless matter-A second-order perturbative expansion starting from this
density contrasty via the cosmological Poisson equation, metric would lead to the same result of our Poisson-gauge
V2¢g=47-rGaZQb5, with ¢, the background matter density approach discussed below, with the obvious exception of
anda the FRW scale factor. The fluid dynamics is then stud-those terms which are post-post-Newtonian or higher irca 1/
ied by accounting for mass and momentum conservation, texpansion.
close the systen(see, e.g., Ref[1]). This procedure is From the point of view of the Lagrangian frame of the
thought to produce accurate results on scales much largematter, corresponding to our synchronous and comoving
than the Schwarzschild radius of collapsing bodies but muclyauge below, the Newtonian approach is quite different: the
smaller than the Hubble horizon, wheqzz(g,/c2 stays much “Newtonian Lagrangian metric” can be cast in a simple
less than unity, while the peculiar matter flows never becoméorm, where the spatial metric tensor is written in terms of
relativistic. The first-order matter perturbations obtained withthe Jacobian matrix connecting Lagrangian to Eulerian coor-
this Newtonian treatment can be shown to coincide with thelinates. According to this approach, post-Newtonian terms
of any order appear as spatial metric perturbations over this
“Newtonian background”[4]. Without discussing the long
*Present address: Departamento dsdai, U.N.L.P., c.c. 67, 1900 list of cosmological approximation schemes which have been
La Plata, Argentina. proposed to follow the nonlinear dynamics of collisionless
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matter in the Newtonian framework, let us only mention thenomena. The advantage of such a treatment is precisely that
celebrated Zel'dovich approximatiof8], which is strictly it enables one to treat a large variety of phenomena and
related to the Lagrangian Newtonian approach. Various exscales within the same computational technique.
tensions of Zel'dovich theory to the relativistic case have The literature on relativistic second-order perturbation
been proposed in the literature; all of them, however, requiréheory in a cosmological framework is not so vast. The pio-
either global or local symmetries, thereby preventing theifeering work in this field is by Tomitgl7], who, back in
application to the cosmological structure formation problem 1967, performed a synchronous-gauge calculation of the
A relativistic formulation of the Zel'dovich approximation, Second-order terms produced by the mildly nonlinear evolu-
assuming no limitations on the initial conditions, is insteadtion of scalar perturbations in the Einstein—de Sitter uni-
introduced in Ref[9]. verse. Matarrese3 Panta_mo, ane 58] _obtalr_1ed an equiva-
So far the list basically covers all those methods which'ent result, but with a different technique, in comoving and

have been devised to follow nonlinear structure formation bysYnchronous coordinates. Using a tetrad formalism, Russ
gravitational instability in the Universe, with the only pos- €t @l.[18] recently extended these calculations to include the

sible exception of a few relevant exact solutions of Einstein’ssécond-order terms generated by the mixing of growing and
field equations, such as the Tolman-Bondi one and some &€€aying linear scalar modes. Salopek, Stewart, and Crou-
the Bianchi and Szekeres solutiofsee, e.g., Ref.10] and dace_[19] applied a gradient expansion te_chmque to the cal-
references therein for a reviewrhese exact solutions, how- culation of second-order metric perturbations. The inclusion
ever, have only limited application to realistic cosmological©f vector and tensor modes at the linear level, acting as fur-
problems. ther seeds for the origin of second-order perturbations of any

The study of small perturbations giving rise to large-scalekind (scalar, vector, and tengowas, once again, first con-
temperature anisotropies of the cosmic microwave backSidered by Tomitd20]. .
ground is instead usually treated with the full technology of !N this paper we study the second-order perturbations of
first-order relativistic perturbation theory, either in a gauge-2n irrotational collisionless fluid in the Einstein—de Sitter
invariant fashion or by specifying a suitable gauge. On smalPackground, including both growing-mode scalar perturba-

and intermediate angular scales, however, where the descriF‘?nS and gravitational waves at the linear level. The plan of

tion in terms of first-order perturbation theory is no longerthe pPaper is as follows. In the next section we summarize the
accurate, second-order metric perturbations can play a nofi¢Sults of Ref[15] regarding nonlinear gauge transforma-
trivial role and determine new contributions, such as thosdiOns for perturbations of any given background spacetime.
leading to the nonlinear Rees-Sciama effed]. In such a In Sec. lll we consider perturbathns of a generic flat
case a fully general relativistic treatment is needed, such g3obertson-Walker model, and we give the transformations
that recently put forward by Pyne and Carréll2] and beMeen any two given gauges, up to second order._Sec_tlon
implemented in second-order perturbation theory by Moller-V 1S dévoted to the study of the evolution of perturbations in
ach and MatarresgL3)]. the s.ynchron.ous gauge, in the specific case of irrotational
The aim of the present paper is to provide a completéj“St in the Emstem—de SltFer background. In Sec. V we ap-
account of second-order cosmological perturbations in tw@!Y the formulas obtained in Sec. Ill to obtain the transfor-
gauges: the synchronous and comoving gauge and the sB1tions between the synchrond@d] and Poissortgeneral-
called Poisson one, a generalization of the longitudinal gaug&®d longitudinal 2]) gauges. Using these transformations, in
discussed by BertschingE2] and Ma and Bertsching€i4]. Sec. VI the r_esults of Sec_. v are tran_sformgd to the P0|_sson
The former was chosen here because of the advantages9gU9€: Section VII contains a final discussion. Appendix A
presents in performing perturbative calculations. The latterf€views some mathematical results obtained in R and
on the other hand, being the closest to the Eulerian Newtor!S€d in Sec. II; Appendixes B and C contain useful formulas
ian picture, allows a simpler physical understanding of then the synchronous gauge, used in Sec. IV. Appendix D con-
various perturbation modes. The link between these gaugdgins formulas used to obtain some of the Poisson-gauge re-
is provided by a second-order gauge transformation of all th&Ults in Sec. VI.
geometrical and physical variables of the problem. The gen-

eral problem of nor_1|inear gauge transformations_in a given_ Il. GAUGE DEPENDENCE AT SECOND

background spacetime has been recently dealt with by Bruni AND HIGHER ORDER

et al.[15] (see als¢16]), and will be shortly reviewed in the

following section. The idea underlying the theory of spacetime perturbations

The range of applicability of our general relativistic is the same that we have in any perturbative formalism: we
second-order perturbative technique is that of small fluctuatry to find approximate solutions of some field equations,
tions around a FRW background, but with no extra limita-regarding them as “small” deviations from a known exact
tions. It basically allows one to describe perturbations dowrbackground solution. The basic difference arising in general
to scales which experience slight departures from a linearelativity, or in other spacetime theories, is that we have to
behavior, which, in present-day units, would include alldeal with perturbations not only of fields in a given geom-
scales above about 10 Mpc in any realistic scenario of strucetry, but of the geometry itself.
ture formation. Accounting for second-order effects gener- The perturbatiomAT in any relevant quantity, say, repre-
ally helps to follow the gravitational instability on a longer sented by a tensor field, is defined as the difference be-
time scale and to include new nonlinear and nonlocal phetween the valuel has in the physical spacetimée per-
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turbed ong¢ and the valueT, the same quantity has in the A. Gauge transformations: An exact point of view
given (unperturbegl background spacetime. However, it is a

basic fact of diff tial trv that. in order t ke th A basic assumption in perturbation theory is the existence
asic fact ot diterential geometry that, In order 1o make e, o parametric family of solutions of the field equations, to
comparison of tensors meaningful at all, one has to consid

them at the same point. SinGeand T, are defined in differ- Which the unperturbed background spacetime beld2gk

; In cosmology and in many other cases in general relativity,
ent spacetimes, they can thus be compared only after a pre- gy y 9 y

L >h . o . : 1er a PrEe deals with a one-parameter family of modgls ; \ is
scription for identifying points of these spacetimes is g|ven.rea|’ and\ =0 identifies the background,. On eachM,

A gauge choicgs precisely this, i.e., 8 one-to-one Comespon-y, oo oo tansor fields representing the physical and geo
. \ -
dence(a map between the background and the phySIcaImetrical guantitiege.g., the metric The parametex is used

spacetime. A change of this map is then a gauge transforma- . ) . .
tion, and the freedom one has in choosing it gives rise to a';f:or Taylor expanding thesg, ; the physical spacetima,

arbitrariness in the value of the perturbation Dfat any can eventuglly be identified by=1. The aim of perturba-
given spacetime point, unles§ is gauge invariant, tion theory is to construct an approximated soluthmtq.
This is the essence of the “gauge problem,” which has Each one-to-one correspondence between_pomtzk/l@f
been discussed—mainly in connection with Iinearand points ofM,, is thus a one-parameter function Jof we
perturbations—in many papef82-2¢ and review articles can represent two SU(.:h. point |d_ent|f|cat|on map@_i%] as
[27,28, following different approaches. ¥, and ¢, (for a depiction of this and the following, see

In order to discuss in depth higher-order perturbations amlj:'gs_' 1and 2i15)). Suppose that coord_mateé hav_e been
gauge transformations, and to define gauge invariance, Oﬁaesggned on the backgroundo, labeling the .d|fferent
needs to formalize the above ideas, giving a precise ge(p_omts_. A one-to-one corresp(_)ndence, ez/g carries these
metrical description of what perturbations and gauge choice oord_lr!ates oveiM, , and defines a choice (.Jf gaugf‘a: there;
are. In a previous papéi5] (see alsd16]) we have consid- ore, itis na_LturaI_ to call the correspondenqe itself a “gauge.
ered this problem in great detail, following in the main the A Ch?r‘ge m_thls _correspondence, keeping the background
approach used in Refi23,26,29. Instead of directly consid- co°rdinates fixed, is a gauge transformafiza]. Thus, letp
ering perturbations, we have first looked upon the geometr)?e any point inM,, with coordinates<(p), and let us use
of the problem in full generality, taking an exagte., non- 1€ gaugel, : O=,(p) is the point inM, corresponding
perturbativé point of view: after that, we have expanded all 0 P, to which ¢, assigns the same coordinate labels. How-
the geometrical quantities in appropriately defined Taylor se€Ver, we could as well use a different gauge and think of
ries, thus going beyond the usual linear treatment. O as the point ofM, corresponding ta different point gin

In this section we shall summarize the main results obthe background, with coordinateg: then O=y,(p)
tained in Ref[15]. Appendix A explains in some more detail =¢,(q). Thus, the change of the correspondence, i.e., the
how to proceed in the calculations. Here and in the followinggauge transformation, may actually be seen anexto-one
Greek indicesu, v, . . . take values from 0 to 3 and the Latin correspondence between different points in the background
onesi,j, ... from 1 to 3; units are such that=1. Since we start from a poirg in M, we carry it over toO

We finally recall here some basics about the Lie deriva= #,(p) in M, , and then we may come back ¢pin M,
tive along a vector field, which will be useful in the fol-  with ¢, !, i.e.,q= ¢, }(0); the overall gauge transformation
lowing. The Lie derivative of any tensdr of type (p,q) (a is also a function oh, which we may denote ab, , and is
tensor withp contravariant andj covariant indices, which given by composingp, * with ¢, , so that we can writey
we omit here and in the followingis also a tensor of the :@A(p);zgp;l(%(p)), We then have that the coordinates
same ty_pe;o,q). For a scalaf, a contravariar_ﬂ vectdf and _ ofq, 7<“(7\,q)=cl>§f(x‘”(p)), are one-parameter functions of
a cpvapant tensof of rank 2., the expressions of the Lie those ofp, x%(p). Such a transformation, which in one given
derivative alongt are, respectively, coordinate system moves each point to another, is often

called an “active coordinate transformation,” as opposed to
£.f=1 &, (2.1 passive ones, which change coordinate labels to each point
(see Appendix A

Now, consider the tensor fields on eachM, . With the
gaugesp, andy, we can define, in two different manners, a
representation oM, of eachT, : we can denote these sim-

ET =T+, Tot 0T o (2.3 ply by T(\) andT()\), respectively. These are tensor fields

defined onMj in such a way that each of them has, in the

Expressions for any other tensor can easily be derived frorf€lated gauge, the same componentsTof On the other
these. A second or higher Lie derivative is easily definedhand, T(\) andT(\) are related byb, , which gives rise to
from these formulas; e.g., for a vector we havéZ£ @ relation between their components given by EA13).
=£.(£,Z): since one clearly sees from E@.2) that £Z is ~ Since in each gauge we now have a field represertingn
itself a contravariant vector, one needs only to apply Eq/Mo, at each point of the background we can compare these
(2.2) two times to obtain the components 0?25 Similarly, fields with T a_nd (_jefme perturbations. In the first gauge the
one derives expressions for the second Lie derivative of an{Ptal perturbation iAT(A):=T(A) —To, and in the second
tensor. one isAT(N):=T(\) —Ty. This nonunigueness is the gauge

£,ZH=7M¢"— ¢h7, (2.2
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dependence of the perturbations. Going to second order, it should be clear by the very defini-
It should be noted at this point that we have not so fartion of a Taylor expansion tha,, itself cannot depend on
made any approximation: the definitions given above are exx, and its contribution to second order is built from what we

act, and hold in general, to any perturbative order. already know at first order; i.e., it can only give a quadratic
contribution. On the other hand, since at second order in both
B. Gauge transformations: Second-order expansion gauges we have new degrees of freedom in any quantity

In order to proceed and compute at the desired order o?g”th respect to first ordgy it is clear that the gauge trans-

: ; rmation itself must contain new degrees of freedom: these
accuracy in\ the effects of a gauge transformation, we need .
are given by¢ ;).

Taylor expansions. In this respect, a crucial point is that Since in the two gauges we can write, respectiély,
gauge choices such as, and ¢, form one-parameters

groups with respect ta, while the gauge transformations A2

@, form a one-parameter family that in general is not a T(N)=To+NOT+ ?§2T+ O\3), (2.6)
group (see Appendix A andl15,16 for more details Only

in linear theory is the action ab, approximated by that of 2

the element of a one-parameter group of transformations. A T()\)=T0+)\5T+ 752'~I'+ O\, (2.7

one-parameter group of transformations is associated with a
vector field¢ and the congruence it generates, and therefore . . :
at first order in\ the effect of®, on the coordinatez*(p) we can subsptute Ep(Z.G) and Eq.(2.7) mtg Eq. (2.5).|n
) ) ~ order to obtain, at first and second orderninthe required
is approximated by*#=x*+ \ &, whereas for a tensdr we gauge transformations fafT and &°T:

haveT=T+ NET, as is well known. However, the fact that

®, does not form a group comes into play with nonlinearity, ST= 5T+£§(1)TO, (2.9
and one can show that at second order two vector figlds

a_nd &(2) are involved, and so on. That is, the Ta_lylor expan- 52T = 52T+2£§ 5T+£§ To+£¢_To. 2.9
sion of a one-parameter family of transformatiobs in- @ @ @

volves, at a given ordem, n vector fields§,, k=1, ... n.

] - Equation (2.8) is the well-known result mentioned above.
At second order, the expansion of the transformakb(\)  Equation (2.9 gives the general gauge transformation for

=®{(x*) between the coordinates of any pair of points ofsecond-order perturbations, and shows that this is made up of

the background mapped into one anotherdby gives three parts: the first couples the first-order generator of the
X transformationé () with the first-order perturbatioaT; the
XH(N) = XM+ NEY )+ ?(ff‘l),vfflﬁgf%)ﬁo(?\g)- second part couples the zeroth-order backgroligdwith

terms quadratic ir(;; and the last part couplé, with the
(2.4 second order generatdj,) of the transformation, in the

This is often called an “infinitesimal point transformation.” same manner than the terr@(lgl'o does at first order, in Eq.

From this, one can always defif@gain, see Appendix yan (2.8. Equation (2.9 also shows that there are special
associated ordinarfpassive coordinate transformation, Eq. S€cond-order gauge transformations, purely dueédg,
(A19). Substitution of this into EqA13) gives—after prop- Whené)=0; on the other hand, a nonvanishigg, always
erly collecting terms—the gauge transformation for a tenso@ffects second-order perturbaticies. [31]). Finally, in some

T specific problems in which only effects quadratic in first-
order perturbations are important, one can consigge=0:
_ A2 ) for instance, this is the case of back-reaction effécfisRef.
TOO=TO)+NEg T+ = (£ +E¢,) T+HON). [32)).
(2.9

C. Gauge invariance
If T is a tensor of typef,q), the components of each term in
this formula havep contravariant andj covariant indices, hvariance to a given perturbative order even without

appropriately given by the rule2.1)—(2.3). knowledge of the gauge transformation rules holding at that

A simple heuristic argument that may help to understancbrder; seq15]. However, we shall focus here on gauge in-
why two vector fields are involved in the second-order gauge 4 riance to second order using E@.8), (2.9).

transformationgandn vectors anth orde) is the following. We need to state a clear definition of gauge invariance

In practice, we usually consider the gauge transformatiofyefore giving a condition. The most natural definition is that
between two given gauges, e.g., in this paper, the synchro-t T . iant to ordar if and onlv if 55
nous and the Poisson ones. Therefore, having the conditioris ;knsor IS gauge<|nvar|an 0 or(soen.l_an on.y_| 1
that fix the two gauges, the unknowns of the problem are the_ T for every .k\n (we_ defl_ne T:=To, oT:=57T).
degrees of freedom that allow us to pass from one gauge thnUS, & tensofl is gauge invariant to second orderdfT
another. Then, consider the usual first-order gauge transfor=6°T and 5T=T. Then, from Egs(2.8) and(2.9) we see
mation, i.e., the first-order part of EqR.4), (2.9): itis clear  that, sinceé(,y and §(,) are arbitrary, this condition implies

that this fully determineg ;) as a field in the background. that £T,=0 and £6T=0, for every vector field in the

It is logically possible to establish a condition for gauge
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backgroundM,. Therefore, apart from trivial cases—i.e., )

constant scalars and combinations of Kroneker deltas with Dij:=di0; = §5ijV : (3.6
constant coefficients—gauge invariance to second order re-

quires thatT,=0 and §T=0 in any gauge. This condition Now, consider the energy densigy, or any other scalar
generalizes to second order the results for first-order gaug@at depends only om at zero order: this can be written as
invariance that can be found in the literature and is easily

extended to orden; see Ref[15]. M| .
0=+ 2 e 3.7
Ill. GAUGE TRANSFORMATION IN A FLAT
COSMOLOGY UP TO SECOND ORDER For the four-velocityu# of matter we can write

In view of the application that will follow in Sec. V, we 1 +oo
shall now use the formulas obtained in the previous section uM:_( S+ E _Uﬁ>)- (3.9
to show how the perturbations on a spatially flat Robertson- a =1 r!
Walker background in two different gauges are related, up to . ) ) L .
second order. This will also introduce the notation used in alf" ayddmon, u* is subject to the normalization condition
the following sections. Here and in the following Latin indi- ugu.gw: —1; therefore at any order the time component
ces are raised and lowered usifiyand§;; , respectively. As V(1) S related to the lapse perturbatigg, . For the first- and
discussed before, we set=1 to describe the physical space- Second-order perturbations we obtain, in any gauge,
time. U?1>: . 3.9

A. Pe-rturbed fl-at Robertson Walker unlv§rse U?z): B ¢(2)+3¢(21)+ 2wf1>v'(1)+vi(l)v'(1) . (3.10

We shall first consider the metric perturbations, then those _

in the energy density and four-velocity of the matter. The velocity perturbatiom;'(r) can also be split into a scalar

The components of a perturbed spatially flat Robertsonand vector(solenoidal part:
Walker metric can be written as

oo vi(,)Zﬁiv!r)—i-vi(r)L. (3.1)
Joo=—a%(7)| 1+ 221 ﬁlﬁ(”). (3.9 As we have seen in the last section, the gauge transfor-
mation is determined by the vectafg, . Splitting their time
£ and space parts, one can write
i=a’ — ", 3.2
gOI (T)Zl rl wj ( ) g?r)za(r) (313
+ oo + e
1 1 and
gi;=a2<r>H1—2(2 A ICIEDY r—,xi(,-”], - |
o BT o= BO+d, (3.13
with 9,d'=0.

where x{"'=0, andr is the conformal time. The functions
P, 0, ¢, andx represent theth-order perturbation
of the metric.

It is standard to use a nonlocal splitting of perturbations We begin by reviewing briefly some well-known results
into the so-called scalar, vector, and tensor parts, where scabout first-order gauge transformations, as we shall need
lar (or longitudina) parts are those related to a scalar potenthem in the following. As in Sec. Il, we simply denote quan-
tial, vector parts are those related to transvédieergence- tities in the new gauge by a tilde.
free or solenoidal vector fields, and tensor parts to  From Eq.(2.9), it follows that the first-order perturbations
transverse trace-free tensors. In our case, thesfiifitan be  of the metric transform as
decomposed as

B. First-order gauge transformations

89,,=69,,+£:; 9%, 3.1
wi(r):ﬁiw(r)”—l—wi(r)l , (3.4 Ou Ou f(l)guv (3.19
(L where gﬁfy) is the background metric. Therefore, using Eq.

. . . i (T)L _ . .
where w"’~ is a solenoidal vector, i.eq'w;”"=0. Simi- 5 3 & optain the following transformations for the first-
larly, the traceless part of the spatial metric can be decomg,yer quantities appearing in Eq8.1)—(3.3):
posed at any order as

!
X =Dyx""+axi" o™ X, (39 Yo=dwtent e, (3.19

wherex™! is a suitable functiony("* is a solenoidal vector D D D
. i —_ ! ’
field, andd'x{{) " =0; hereafter, o= —a 7+ B+, (3.19
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!

~ 1

¢(1):¢(1)——V2,8(1)——a'(1), (3.17
3 a

X =xP+2D; Y +dY+diY,

(3.18

where a prime denotes the derivative with respect.to
For a scalap, from Egs.(2.9), (3.7), and(2.1) we have

so=d0+0(gan) . (3.19
For the four-velocityu*, we have, from Eqs(2.8),
SUt= Sut+ Eg, Ulo) - (3.20
Using Eqgs.(2.2) and(3.8) this gives
~ a’
VLTV T F DT X (3.2

PHYSICAL REVIEW D58 043504

y=vin~BH—d)- 322
The four-velocity is, however, subject to the constr&8i9);
therefore Eq(3.21) reduces to Eq(3.15.

C. Second-order gauge transformations

We now extend these well-known transformation rules of
linear metric perturbations to second order.

Second-order perturbations of the metric transform, ac-
cording to Eq.(2.9), as

(0)
%

0
9l

(3.23

v
5 glw—& gu,,+2£§<1)5gw+£§(l)g +£ £

This leads to the following transformations in the second-
order quantities appearing in Eq8.1)—(3.3)
Lapse perturbation:

’ ’ " 12
~ ' a ” a ’ a i ’
P2=y P+t 2(‘/’<1>+2§i/f(1>)+a<1)+5§a(1)+(§+_ ) +§|(1)(2'r/’5i1)+a,(il) +al
a
, , i D) AL (1) , @
t2a00)( 241yt agy) HEp) (a7 — &7 — 20 )+a(2)+§a(2). (3.29
Shift perturbation:
0?=0@—4yVa M+ o 2( <1>/+2_ <1>> @D 4 gD - aa(afil)—&(l)') +& (20D — oD+ £V
+aly (oM =3a P+ eV )+ 81 (— 45+ 2x P20+ V) + 8 20V —a ) —aP+ P (3.25
Spatial metric, trace:
=@+ oW 2| ¢/ +2_,¢ x| — a_"+ - o _a_'a |+é ¢<_1>_a_'a<,1>
(1) a @ a a2 (RN (1) Ji a &
1 . a 1
_§(—4¢(1)+ C((l)a0+§l(1)(9|+4a )V ﬁ(l) (2(0(1) a(l)+§(l))a
_EZ (1) (1) Jl_a_’ V2 3.2
3( X +&T &N 3 22~ By - (3.26
Spatial metric, traceless part:
2) (1) (1) gk k a’ (1)
X” _Xl +2 Xij +2_X|J a(1)+2)(ij'k§(l)+2 —4¢(1)+a(1)60+§(1)&k+4€a(1) (d(|,])+DI]B(l))
2/ 2o —a'f+ &) ) - 5”(2(»( —a} 1) al
(1) (1) 4 1) (Lk 1 (1) (1) (1)
2| (2x(ij T ékat Eik) €y —§5ij(2)(|k & T EK )§(1) +2(d(|] +DijB2))- (3.27

For the energy densitg, or any other scalar, we have, from EQ.9),
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~_ 2
8%0=56%0+ (Eg,+EL,)0 0+ 2E¢, 50, (3.28
From this we obtain, using Eq2.1),

8%0=5%0+ (g @)t a1)( (o @)t (g a(y+280 )+ &) (e (g al +250 ). (3.29

For the four-velocityu*, we have, from Eq(2.9),
2T m_— 2 2
S°UH=§ u”+(£§(2)+£§(1))u{‘0)+2£§(1)5u“. (3.30

Using Eqgs.(3.8) and(2.2) this gives

! 12 n

~0 __.0 _ T —a + 2 O/_a_IO +2a__a_ _l__,/_//
V@7V F Y@ *oT ¥ A V)T Z V@ 2 a AT Y0 %
al
. o o . .
+én| 200, - el el | +afy(aly - 20h) ~2aPu) +alVE), (3.3D
- ) . . . a’ . ) a’ .
i 1 i ir 7 | fn T ir
V)=V~ By~ dip T an 2(“(1) a”(l)) 1”27 5(1)”
+ &10) (200 1= &) ~ €, (2000~ 1) €0 (28 T ), (3.32
|
for the time and the space components, respectively. Again, 1
the four-velocity u* is subject tou“u’g,,=—1, which 191257' Ykjo 4.2

gives Eq.(3.10; therefore Eq(3.3]) reduces to Eq(3.24).

with a prime denoting differentiation with respect to the con-
IV. EVOLUTION IN THE SYNCHRONOUS GAUGE formal time 7.
One can then write Einstein’s equations in a cosmologi-

cally convenient form. The energy constraint reads
In this section we will obtain the second-order perturba-

tions of the Einstein—de Sitter cosmological model in the g 24

synchronous gauge, including scalar and tensor modes in the B ﬂ'j Y+ =9+ R= — 0, 4.3

initial conditions. The synchronous gauge, which has been T

one of the most frequently used in cosmological perturbation _

theory, is defined by the conditiong,= —a(7)? andgy; =0 whereR'j(y) is the intrinsic curvature of constant time hy-

[21]. In this way the four degrees of freedom associated witlpersurfaces, i.e., the conformal Ricci curvature of the three-

the coordinate invariance of the theory are fixed. space with metricy;; , andR=R',. We also introduced the
We start by writing the Einstein’s equations for a perfectdensity contrastt=(o — 2(0)/ 0y, With o(x,7) the mass

fluid of irrotational dust in synchronous and comoving coor-density andg(o)(7)=3/27TGa2(r) 7 its background mean
dinates. The formalism outlined in this subsection is dis—gjye.

A. General formalism

cussed in greater detail in Ref4]. With the purpose of The momentum constraint reads

studying gravitational instability in the Einstein—de Sitter

background, we first factor out the homogeneous and isotro- 9 =9, (4.4)
W .

pic expansion of the universe. il

The line element is written in the form . - . L
where the vertical bar indicates a covariant derivative in the

ds?=a?(7)[ —d 2+ ¥ij (X, mdxdx], (4.1 three-space with metrig;; .

Finally, after replacing the density from the energy con-
with the spatial coordinates representing Lagrangian coor- str_aint and s_,ubtracting the _bagkground contribution, the evo-
dinates for the fluid elements. The scale faciér)« 2 is lution equation for the extrinsic curvature reads
the solution of the Friedmann equations for a perfect fluid of
dust in the Einstein—de Sitter universe. 9+ fﬂi.-l—ﬁﬂi.-l- E(ﬂk 9 925 + R — ERéi:O

By subtracting the isotropic Hubble flow, one introduces ~ ! 7! 14t 77k ] g
the extrinsic curvature of constanthypersurfaces: (4.5
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Also useful is the Raychaudhuri equation for the evolu-with j, the spherical Bessel function of order 1 amdk) a
tion of the peculiar volume expansion scatarnamely, zero mean random variable with autocorrelation function
(ay(K)a, (k"))y=(2m)°k 38%(k+k')S,,.. The spectrum
of the gravitational wave background depends on the pro-
cesses by which it was generated, and, for example, in most
inflationary modelsA(k) is nearly scale invariant and pro-
An advantage of this gauge is that there are only geometriportional to the Hubble constant during inflation.
guantities in the equations, namely, the spatial metric tensor In the irrotational case the linear vector perturbations rep-
with its time and space derivatives. The only remaining vari-resent gauge modes which can be set to zgf8* =0.
able, the density contrast, can indeed be rewritten in terms of The two scalar modes are linked together via the momen-
¥ij » by solving the continuity equation. We have tum constraint, leading to the condition

2 . .6
9+~ 9+ 9+ 55=0. (4.6)

8(x,7)=(L+ S ¥(x, D yo(0] =1,  (4.7) 1 1
e e R
with y=dety;; . We denote by a subscript O without paren-
theses the initial condition of the referred quantity. The energy constraint gives

2 ;6 1 12
| . V2 x4 SO x 26+ 37 = o
We are now ready to deal with the equations above at the |7 T T
linear level. Let us then write the conformal spatial metric (4.19

tensor in the form

B. First-order perturbations

having consistently assumeid<1.

The evolution equation also gives an equation for the sca-
lar modes:
According to our general definitions we then write
X(Sl)ll"+ EX(Sl)H'+ EVZX(SI)H: _2¢(81) (4.16
1 1 1 1 1 1 : :
Ysj=—2¢5"8;+Dyxs" +aixg" +axg +xi T 3
(4.9 . i )
An equation only for the scalar moQéS can be obtained
with by combining together the evolution equation and the energy
constraint:
Ixg" =xP=dxPT=0. (4.10
Recall that at first order the tensor mocjxa‘%’T are gauge vz X(sl)‘| + —ngl)" - —2()((51)”—)((10)”) =- —250
invariant. T T T
As is well known, in linear theory, scalar, vector, and (4.17

tensor modes are independent. The equation of motion for
the tensor modes is obtained by linearizing the traceless paﬂ1

i . . |
of the ¥'; evolution equation. One has

On the other hand, by linearizing the solution of the con-
uity equation, we obtain

1
. 4 : 85 =60— = VA(x§" - xsg", (4.18
Xi(jl)T +;Xi(jl)T _Vin(jl)TZO’ (4.11) S 2 S S0

o ] ] _which replaced in the previous expression gives
which is the equation for the free propagation of gravita-

tional waves in the Einstein—de Sitter universe. The general , 2 ., 6
solution of this equation is 8¢+ -8 — 5 8d=o0. (4.19
T T
XiI(l)(X:T): 3f d3k exﬁik-x)xfrl)(k,r)eﬁ(lz), This is the equation for Iinear dgnsity fluctuati(mee, eg.
(2m) Ref.[1]), whose general solution is straightforward to obtain.
(4.12 The equations above have been obtained in whole gener-

R ality; one could have used instead the well-known residual
where€{i(K) is the polarization tensor, withr ranging over  gauge ambiguity of the synchronous coordinaeee, e.g.,

the polarization components, x, andx{!)(k,7) the ampli-  Refs.[4,18]) to simplify their form. For instance, one could
tudes of the two polarization states, whose time evolutiorfix x§' so thatV2x$y'= —26,, and thus the§"" evolution
can be represented as equation takes the same form as that &rWith such a
gauge fixing one obtains
Wk, 7)=A(k k 31a(k7) 4.1 1)l 2 -3
Xo (kn=Al)a, ()| = =), (413 X1 =x ()P (073, (420
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wherey. set the amplitudes of the growing-() and decay-

ing (—) modes. In what follows, we shall restrict ourselves

PHYSICAL REVIEW D 58 043504

C. Second-order perturbations

The conformal spatial metric tensor up to second order is

to the growing mode. The effect of the decaying mode ONexpanded as

second-order perturbations has been considered in[ RAf.

and in Ref[18] and will not be studied here. The amplitude

of the growing mode is related to the initipeculiar gravi-
tational potentia throughy . =— (3) ¢, Where, in turng is

related to §, through the cosmological Poisson equation

V2¢(x) = (6/73) 8o(x). Therefore,
2 1

Din(sl)H:_g <P,ij_§5ijvz¢)- (4.21)
The remaining scalar mode

I B ate (x) (4.22

S ’ 3 ¢ 18 ¢ .
immediately follows.
The linear metric perturbation therefore reads
10 .
Y(S,ilj):_§¢5ij_§¢,ij+Xi(jl)T (4.23

With purely growing-mode initial conditions, the linear
density contrast reads

7_2

5(Sl)=€V2<p. (4.24

v 2 L, 6 1 4
2 2 2) _ 1 1 1
¢S+ ) — 5 ¢ =— o ys (v(s-;)’—;y(su)

(2)

(1) 1
7ij:5ij+75ij+§'}’sjj : (4.2

with

7’(5'21')2 _2¢(82)5ij +X(Si2j> (4.206

and £ =0.

The technique of second-order perturbation theory is
straightforward: with the help of the relations reported in
Appendix B, we first substitute the expansion above in our
exact fluid-dynamical equationmomentum and energy
constraints plus evolution and Raychaudhuri equajjois-
taining equations fory(gzj) with source terms containing qua-
dratic combinations o) plus a few more terms involving
&y Next, we have to solve these equations for the modes
qsgz) and X(S_zj) in terms of the initial peculiar gravitational
potentiale and the linear tensor modeg" .

Let us now give the equations which govern the evolution
of the second-order metric perturbations.

Raychaudhuri equation:

1 - . )
K K K
+ g[Zggl)” (27(511,)kj_ Vz?’(s'lj)_ Y(Si),ij )= ¥ ('}’(Sl,i)j” —-V2ysh1]

2 1 . : 1 - - . 4
_?[_Z('}’(S:iL)I_'y(Sl())iI)Z_E(')’(Sl)” Y5~ 758" ¥sa;) + 678" — vsa) |- (4.27)
Energy constraint:
2 , 1 6 1 . . , 1 L, , . .
2 2 4(2 2 2)ij 1 1 1 1 1 1
798 -3V oS sl = 3,98 ] 5087 o) T )
1 (Dij g2, 4 Dk (Lk (Dkie (D _ (1)
t5lrs (Voys]+vsdii—2vs) + vsk (s —vsj)
3 . 1 . 1 . )
1 1),k 1 1)k 1)ik (1
+ 7787 ksl = S v s 708 sk
+E _1( ()i _ (1)i)2_3( (Dij (1) _ (D)ij (1) )+ 8o( ()i _ (l)i)
2| 4 Vs Ysoi 2 Ys Vs Yso Vs ol Vs Ysoi /|-
(4.28
Momentum constraint:
(2)’ 1 (2" — (Dik, (1) (1’ (Dik (1)’ 1 (Dik (1)’ 1 (Li (DK
2¢s] Toxsi = s (g™ Ysi) TS LiYSk T3 ¥s Ysk TS KYy - (4.29
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Evolution equation:

oA ) 4 1 1,1
2 2 2 2 2 2)kl 2)k 2)k,i 2
_(d’(s) + g 5|j+ X§" X G |+ 68— xS 8 Sx G SR - sz(s,)'
_ (DK’ (1) _1 (1)k’ i E (DHk'\2__ (DK (DI 5i _E _ (1)| (1)k| VZ (1)k
=S YsG T 5 Vs g +8[(73k )Ty vse 10575 (vs/ Ys<)

1)kl 1 1 1)kl 1 1 1
+2y8M(7g) |+7(a<)|] s 731 k)+27() (Y51 — 75— 751"
1)ki 1)1

1 i
+2ygK I'YSj —2y57" 1Y§k j75k|

(1)I(,y(1)k|+ ,y(l)kl (1)| k) ,y(l)kl(vz (l)|+ V(S:rlr:,rEI 1)m )5| (1)Ik( ,y(l)m V(Si)m)éij

3 ok _ma L X ok om 4 L Dkmol

TS mYsdt Ot SYsT myse a0 Tz vsc s md (4.30

The next step is to solve these equations. In these calculations, we can make the simplifying assumption that the initial
conditions are taken at conformal timg= 0 (implying alsod,=0). One can start from the Raychaudhuri equation, to obtain
the trace of the second-order metric tengActually, in order to obtain the subleading mode generated by linear scalar modes,
we also need the energy constraifithe resulting expression faﬁ(sz) is

2

18

A

@-T | kg (v i3 V2o |+ 2! 4.3
s =35 3<P "o kit (V2e)? Xk 39 + st s (4.3D

wheregb(sz({), which is the part oiﬁ(sz’ generated by the presence of tensor modes at the linear level, reads

rd7’
5%2)——j T (1) ——J dr’' 7'49(7"), (4.32

with Q(x,7) a source term whose explicit form is reported in Appendix C.
The expression foy((z) is obtained by first replacingz(sz) into the remaining equations and solving them in the following
order: energy constram{» momentum constraint> (traceless part of thesvolution equation. We obtain

A

@——_|19 12¢ V2o +4(V?2 5—19 S
Xsij 126 QD|QDk1 PijvV @ ( GD) ij 3(P (Pkl ij

572

4
+ T( —6¢,i0,~40¢i+20%p 5+ §¢V2<P5ij + s+ XS] (4.33

WhereX(Sz({)ij is the part of the traceless tengdfj) generated _ V2P - irv2g "

by the presence of tensor modes at the linear level and in- 0=~ 5[(Ve)"— ¢ ixe™]. (4.36
cludes the effects of scalar-tensor and tensor-tensor cou-

plings; its expression can be derived from the equationdhis equation can be solved using the Green method; we
given in Appendix C. The transverse and traceless contribuebtain for 7g; that

tion mg;, which represents the second-order tensor mode 4 472
generated by scalar initial perturbations, is determined by the i (X, 7)= T—Si-(x) + —TTi-(x)+?ri-(x,r), (4.37)
inhomogeneous wave equation J 217" J J

4 4 whereVzTij =3&;; and the remaining piec%ij , containing a

e ] ~Virgj=— 2—V23”- , (4.34 term that is constant in time and another one that oscillates

T 1 with decreasing amplitude, can be written as

with - . 1 ] 1(k7)
mij (X, 7) = d°k explik- x) S,J(k) |
Sij:VZ‘I’o5ij+‘1’o,ij+2(<P,ijV2<P_<P,ik¢j}(), (4.39 & (4.39

where with Sij(k)=fd3x exp(=ik-x)Sij(x).
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The second-order density contrast reads A. First-order transformations
! Given the perturbation of the metric in one gauge, it is
5<82>:_[5(v2(p)2+ Zgo’ijcp'ij] easy to obtain, from Eq$3.15—(3.18), the gauge transfor-
252 mation to the other one, hence the perturbations in the new
2 . ) gauge. In the particular case of the synchronous and Poisson
+ 3—6(1590"90‘i+4O¢V290—6(p"JXi(jl)T) gauges, we have
DT WT_ Ty, S @) Y=o+ a—’a(l), (5.7)
+Z(X Xi' = xo X )+§¢s(t)- a
(4.39 al=p0r, (5.2
An important aspect of our results is that linear tensor b "
modes(gravitational wavescan generate second-order per- w(Pi =di( ) (5.3

turbations of any kindscalars, vectors, and tenspr3his

interesting fact, which was first noticed by Tomit20], is 1 a
nicely displayed by the above formula for the mass-density (pl)z ¢(sl)— §V2B<l)— gam, (5.9
contrast, which even in the absence of initial density fluctua-

tions takes a contribution from primordial gravitational

!

X DI —
waves. More in general, we should stress that our expres- Dij(xs”"+28%) =0, (5.9
sions completely determine the rate of growth of perturba-
. (1)1 (1) —
tions up to second order. XS, +di;,=0, (5.6)
V. FROM THE SYNCHRONOUS TO THE POISSON (LT _ (DT (5.7)
GAUGE XPij ~ Xsij :

In this section we are going to obtain the metric perturba- The parameterg®), oV, andd{* of the gauge transfor-
tions in the Poisson gauge by transforming the results obmation can be obtained from Eqé.5), (5.2, and (5.6),
tained in the synchronous gauge in the previous section. Thespectively, while the transformed metric perturbations fol-
Poisson gauge, recently discussed by Bertschifigeand  low from Egs.(5.1), (5.3), (5.4), and(5.7).

Ma and Bertschingef14], is defined byw;("'= x;;("1=0. Once these parameters are known, the transformation
Then, one scalar degree of freedom is eliminated fgyn rules for the energy density or any other scalar, and those
(w(M'=0) and one scalar and two vector degrees of freedonfor the four-velocityu*, follow trivially from Egs. (3.19,

from g;; (x'=x{"*=0). This gauge generalizes the well- (3.2, and(3.22. In the irrotational case studied in the last
known longitudinal gaugeto include vector and tensor sectiony§y-=v(;), =0 and thusd{V=w{)= x5} =0.

modes. The latter gauge, in Whi(zbf')=)(i(jr)=0, has been

widely used in the literature to investigate the evolution of B. Second-order transformations

scalar perturbationg28]. Since the vector and tensor modes ) .

are set to zero by hand, the longitudinal gauge cannot be The more general transformation expressions follow
used to study perturbations beyond the linear regime, bestraightforwardly from Egs.(3.24-(3.279, (3.29, and

cause in the nonlinear case the scalar, vector, and tensb3-32- ) )
modes are dynamically coupled. In other words, even if one Transforming from the synchronous to the Poisson gauge,

starts with purely scalar linear perturbations as initial condi{he expression fory® can be easily o?tamed from Eq.
tions for the second-order theory, vector and tensor mode.24), using Eq.(5.2) and the conditiord{*)=0 to express

are dynamically generatd@]. all the first-order quantities in terms @f%):
a’' "oa? . a’' a'
ve'=Bln| Bl HS Bl gt 7 | Bl | %( B+ B | T 2B a4 —al?, (5.9
For o) and ¢{?) we get
wpl=— 2( 268"+ By~ §v2ﬁm) B =27 B+ 22X T Bl — P+ B+ (5.9
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a’ a” a/2

2 2 1 1
¢p' =+ By 2| 8 2o |- | —+—
a az

a

B/ _a_,BH
L~ 7P

1 (1), o i a4, 2
-3 —4¢g +5(1)0"0+Bi1)0"i+4§:8(1)+§v By | VB

2 2 a
+ 3,[3(1)[3( 3X.(11)T,3(1)_ —ae) V B2) - (5.10

. a’
+ Bill)( 2¢(Sl,i) - Eﬁfil),
For x{Z) we obtain

2) 4

1
' K K Ik
X¥ =Xsijt _Vzﬂ(l)_4¢(sl)_,3(1)ao_,3(1)<3’k) Dijﬂ(l)_‘l(ﬂfilk)ﬁu),j_ §5ij,3f|lk)ﬂ(1))

+2

a’
1 1 1 1T p(1)k 1T p(1).k 1 , 2
X )T'+2§Xi(j )T),B(l)'+2Xi(j,)kT,8(l)’k+2Xi(k)Tﬂ,<j) +2xji " B _§5in|(k)T:8(l) "+2(d(7)) + Dy 8.

(5.11

Given the metric perturbations in the synchronous gauge, these constitute a set of coupled equations for the second-order
parameters of the transformatiomn(®, B2, anddi(z) and the second-order metric perturbations in the Poisson gm,(fde,
o), ¢, andy) . This system can be solved in the following way. Since in the Poisson géyffg =0, we can use the
fact thatd' o (&) 0 and the property'd¥)=0, together with Eq(5.11), to obtain an expression far°V23(), from which
B?) can be computed:

3 .
Zv2ﬁ(2)_ _ ZX )i +6¢(1) IJﬁ(l) 2V2¢(1>V2B 1) +8¢(l) Iv2l[))(l)+4¢ 2V2B(1)+4V2ﬁ,(|1i)ﬁiljj_)
2 2n(1) Jjk (1 2 2 2v2 Jijr p(L)r
_—V B(l)vﬁ +5 ,3 Bljk Vﬁ(l)vvﬁ +5 3 ) Blij
1 2 At 2! drw2 (1) ’ 2w 2!
_EV ByVBuy+t2B1)VBi" +B1)V VB
2u2 (1) _ 3 (LT a' WT | (L)1 S (DT 5(1),ijk (DT o2 o 2 (DT o]
+ﬁ \WVevegs SlXxip 22X | BT T S X B 2] VB, +Vaxi” Biy- (5.12
Then, using the condition’y; =0 and substitutings® we obtain an equation fa®:
24(2) 4 2n(2) _ | (2),] (1),] 16 ()2 (1) 2 200 g4 (1)
Ved; :_§V B~ xsij T 8¢s DijB(l)""? ' VB +§V BB t B( Buk
8 2 25(1) iy a2 w2 A i w2 XL g
_§V B1)VB; +2:B(1)Dij:8(1)+§:8(1)v Bi +§l3(1)v Biij B
W1 22 T (1)1 (DT g2 2 (DT )k y 4 (1).jk
-2 Xij +2EXij B ' _2X| v :8(1 _§X| IB,i ’ 3X B (5.13
Finally, usingd'o®)=0 and substituting3‘®), we get an equation fa(?):

2 -
Vza(2)=V2B{z)—2<2¢(sl)'+B”'+3V2B 1>)B 2B\ B 2| 2087+ By~ 3 V2B | V2B +2xi) B
(5.19
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Having obtained, at least implicitly, all the parameters of the ) 2
gauge transformation to second order, one can in principle al?=— 217 Vot
compute the metric perturbations in the Poisson gauge from

Egs.(5.9—(5.11). 7-4( 1 1 )
0

10 )
g(p +4®0

(2)
+ a(t) ’

Similarly, once the parameters are known, the perturba- B?=—

=@ -V +f Z<p2+6® +B2
61127 7' 7 312 o) "M

tions in any scalar and four-vector, and in particular those in

the energy density and in the four-velocity of matter, follow (6.6
trivially from Egs. (3.29—(3.32. with V20,=¥,—1¢'¢; and
VI. EVOLUTION IN THE POI N GAUGE 47 .
OLUTIO OISSON GAUG Vzd]@):?(_ QD,jVZ(P_}_(P’I(P,ij _2‘1’0,1)+V2d212))j ,
We have obtained in the previous section the general 6.7

gauge transformation to go from the synchronous to the Pois-
son gauge up to second order in metric perturbations. We caghere the quantities indicated by the subscript (t) stand for
now apply it to the case of cosmological perturbations in a&he contributions arising from the presence of tensor modes
dust universe and compute the perturbed metric in the Poiggt the linear level and are discussed in greater detail in Ap-
son gauge from the solutions obtained in Sec. IV using theyendix D.

synchronous gauge. For the perturbed metric we obtain

1 10

A. First-order perturbations i
Y= Tz(g@"@,i - 2—1‘1'0

- 1—6¢2+ 1204, + 2
3 0 P(t)

For first order, replacing Eq4.21) in Eq. (5.5 and using
Eq. (5.2), we obtain that the parameters of the transformation

1 10 4
are @)_ 2| — .. — — 02—86 (2)
op’ =1 (6¢I¢'i 21‘1’0 +3(p 800, + )
r
D=_
T (6.2) 8 ©9
2 . Vzw(PZ)I:_§T(Cp’iV2(,D_(P’ij(P1j+2‘P6)+V2wE3§2)I ,
H=__
g 6 v (2) "~ (2)
, Xpij = Tij T Xpij -
andd®'=0, in the absence of vector modes in the initial . o o _
conditions. The equations determining the contribution from linear
For the metric perturbations we obtain, from E¢s.1), t€nsor modes are given in Appendix D. Note that the contri-
(5.3), (5.4), and(5.7), bution to {2 and ¢?) from linear scalar modes can be
Y =gL = recovered, except for the subleading time-independent terms,
P P by taking the weak-field limit of Einstein’s theorgee, e.g.,
(1) _ . T(1) 6.2 Ref. [5]) and then expanding in powers of the perturbation
Xpij = Xij - (6.2

amplitude.

These equations show the well-known result for scalar per- AlSO interesting is the way in which the second-order ten-
turbations in the longitudinal gauge and the gauge invarianc&0" modes, generated by the nonlinear growth of scalar per-

for tensor modes at the linear level. turbations, appear in this gauge: the transformation from the
The linear density contrast reads synchronous to the Poisson gauge has in fact dropped the
Newtonian and post-Newtonian contributions, whose physi-
1) ' 5 cal interpretation in terms of gravitational waves is highly
Sp'=—2¢+ Ve (6.3 nontrivial (see the discussion in Refi4]); what remains is

the tensoﬁrij , whose evolution is governed by the equation
while the first-order four-velocity perturbation has compo-
nents 4.

”;’T:IJ + ;ﬂ-i,j - V27Tij = - ?’T” . (69)
o= ¢, (6.9
Its solution, Eq.(4.38, contains a constant term, deriving
Wi T from the vanishing initial conditions, plus a wavelike piece,
Up T T3¢ (6.5 having exactly the same form as linear tensor mgdé<Eq.

(4.13], whose amplitude is fixed by the source tefi (a
guadratic combination of linear scalar mogde& more ex-
tended discussion of these tensor modes is given in[B&.

For the second-order parameters of the gauge transforma- Finally, let us give the Poisson-gauge expressions for the
tion, replacing the second-order perturbed metric obtained isecond-order density and four-velocity perturbations. One
Sec. IV in Egs.(5.12—(5.14 we obtain has

B. Second-order perturbations
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4 - ) these second-order tensor modes which survive to the trans-
5(F>2):2—52(5(V2€0)2+ 20 @ i+ 14¢0"'V20 ) formation leading to the Poisson gauge.
The second effect is less known, and was only previously
7 : 5 144 DT considered by Tomita back in the early 197@§).
+ 36| 721070+ 240Vt W= 6o ) One may naturally wonder whether there is any hope to

detect the cosmological stochastic gravitational-wave back-

N E(Xumix,(l)T_ W T ground produced at second order by scalar fluctuations. It is,
I

4 i Xo " Xoij of course, the oscillating part of;; which is relevant for
Earth or space detectors. The problem for these wavelike
8 3 6 modes is that their energy density suffers the usudl di-
02— 2UA ot —pD _ Z (D) X A .
3% 2400+ 24’5(0 () (6.10 lution caused by free-streaming inside the Hubble radius,

while at the horizon crossing their closure density is already
and extremely small()4,,~ 6,‘1, (whereé,, is the rms density con-
) trast at the horizon crossijigoecause of their secondary ori-
_ E i E)\If ) gin. More promising is the possibility that a non-negligible
¥ PiT T T0 amount of gravitational radiation can be produced during the
(6.1  strongly nonlinear stages of the collapse of protostructures,
an issue which would, however, require a fully nonperturba-
T i E\P'i tive approach.
vp T | et 7 Vo It should be stressed that, while many of our second-order
terms had already been computed in the synchronous gauge,
—27<—¢>go’i+2®'i)—d(2>"—ﬂ<2>"i all our second-order Poisson-gauge expressions are new.
9 0 ® This is a relevant result, as the latter gauge is the one which
6.12 allows the easiest interpretation of the various physical ef-
' fects. In particular, the second-order metric perturbations ob-
with the vectorsd®' defined in Eq/(6.7). tained by our method allow one to compute self-consistently

In concluding this section, let us emphasize that all thedravity-induced secondary anisotropies of the cosmic micro-

second-order Poisson-gauge expressions obtained here df@ve background. This calculation has been recently per-
new. Only a few terms in these expressions were alread{Prmed by Mollerach and Matarredd3], implementing a

known in the literature, based on the weak-field limit of gen-9€neral scheme introduced by Pyne and Cafad].
eral relativity (e.g., Ref[5]).

(2)0_

T 7
o=~ — 392120, yi3)),
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the Einstein—de Sitter cosmological model. The most impor
tant phenomenon of second-order perturbation theory is

mode mixing. An interesting consequence of this phenom- APPENDIX A: TAYLOR EXPANSION
enon is that primordial density fluctuations act as seeds for OF TENSOR FIELDS

second-order gravitational waves. The specific form of these | this appendix we present some mathematical results

waves is gauge dependent, as tensor modes are no 10Ngglaq in Sec. 11, concerning Taylor expansions of tensor fields
gauge invariant beyond the linear level. A second interesting, 5 manifold. These results have already been presented in
effect is the generation of density fluctuations from primor-[15]1 where analyticity of all relevant fields was assumed:
dial tensor modes. One can even figure out a scenario i{hey have been generalized|[it6] to the case of™ fields.
which no scalar perturbations were initially present, but theyr o theorems obtained [15,16 are very general, concern-
were later generated, as a second-order effect, by the nonlilﬂig perturbation theory at an arbitrary order In order to

ear evolution of a primordial gravitational-wave background. hieve these general results it is very useful, or perhaps

The first effect, which is discussed in some detail in Ref'mandatory to use a fully geometrical approach. However
[33], in the synchronous and comoving gauge also contains gy o purposes, it is useful to summarize them in terms of

. - 4 . . .
term growing like7* and a second one growing liké: the o4 rginates and tensor components, as we shall do in the
first accounts for the Newtonian tidal induction of the enV|-f0"Ong_ We assume that all quantities are as smooth as

ronment on the nonlinear evolution of fluid elements; thenecessary.
second is a post-Newtonian tensor mode induced by the
growth of the shear field. The remaining parts of this second-
order tensor modéxcluding a constant term required by the

vanishing initial conditions oscillate with decaying ampli- As disccused in Sec. Il, gauge choices for perturbations
tude inside the horizon and describe true gravitatiovales  entail the comparison of the tensor field representing a cer-
Quite interesting is the fact that these are the only parts ofain physical and/or geometrical quantity in the perturbed

1. One-parameter groups of transformations
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spacetime with the tensor field representing the same quan-
tity in the background spacetime. Consequently, gauge trans- ZH(x(p)):=Z"*(y(q))=
formations entail the comparison of tensors at different
points in the background spacetime. A smallness parameter o o .
\ is involved, so that these comparisons are always carriedin€ last equality in this equation is just the ordindpas-
out at the required order of accuracy)n using Taylor ex- sive) transformation between the componentzgh the two
pansiong 34]. Differential geometry tells us that the com- coordinate systems: we need it in order to relatendZ in
parison of tensors is meaningful only when we consider thena single systen(the x frame herg, thus eventually obtaining
at the same point. Therefore, supposing we want to compara covariant relation. Indeed, substitution of E43) into Eq.
a tensor fieldT at pointsp andq, we need to define a trans- (A4) and a first-order expansion Maboutx(p) in the right-
port law fromq to p. This gives us two tensors pt T, itself, ~ hand side(RHS) gives
and the transported one, which can be directly compared. _

The simplest transport law we need to consider is the Lie ZMN)=ZF+NEZF A - - -, (A5)
dragging by a vector field, which allows us to compdre

with its pullbackT(\) (the new tensor defined by this trans-
port). To fix ideas, let us first consider, on a manifold, the
comparison of tensors at first order i (which we shall

define shortly. Suppose a coordinate systetti has been e 3 ,
given on(an open set 9fM, together with a vector field. called the pullback oZ, because it is defined by draggi#g

From &*“/d\=&*, ¢ generates onM a congruence of back fromq to p, an operation that gives @ta new vector
curvesx#(\): thus\ is the parameter along the congruence With componentsZ*, given by Eq.(A4). In the particular
Given a pointp, this will always lie on one of these curves, case of the transformatiofA3) this is the Lie dragging.
and we can always taketo correspond ta =0 on this. The ~ Now, having at the same point two vectors, these can be
coordinates of a second poigtat a parameter distande  directly compared: at first ordeZ(\) andZ are related by

ay*

v

Z'(x(q)).  (A4)
x(a)

£ ZM=ZhE" —E1Z, (A6)

where, given that the poirg is arbitrary, the dependence of
all terms onx(p) has been omitted. The vector fiel is

from p on the same curve will be given by Egs.(A5), (A6). In fact, in the limit\ — 0, it is this compari-
_ son that allows us to define the Lie derivative, with compo-
XE(N)=XFHNER+ - (Al) nents(A6); Eq. (A15) below generalizes this to a generic
tensorT.
where thex* are the coordinates @f and thex* are those of Although the story so far is a textbook okef. [29,35—

q, approximated here at first order u Equation(A1) is  37]), recalling it in some detail allows us to easily extend it
usually called an “infinitesimal point transformation,” or an to higher order. First, one has to realize that E&f) is just
“active coordinate transformation(see, e.g., Refl35], p.  the first-order Taylor expansion aboufp) of the solution of
70; Ref.[36], p. 49; cf. also Ref[37], p. 291, and[29], the ordinary differential equationxd/dx=¢&* defining the
Appendix Q. At the same time, we may think that a new congruencex*(\) associated witt. The exact solution of
coordinate systerg* has been introduced o, definedin  this equation is the Taylor seriésf., e.g.,[38], p. 43

such a way that thg coordinates of the poing coincide \2
with the x coordinates of the poir; using Eq.(Al) it then B(q) = (D) + \ 4 2D gy +. ..
follows from this definition that xH(q)=x*(p)+ A (x(p))+ 5 & ,€"(X(P)) :

(A7)

M T= XM = XM —NEH(X + ...
yH(a (P)=x(Q) ~A&"(x(p)) on using dx“/d\=¢*, dPx“/d\?=¢"&", etc. In practice,

=x*(q)—NE*(x(q))+---.  (A2)  sincep andq are arbitrary, we may simply write
In practice, we have in this way defined at every point a ~ _ A2 )
“passive coordinate transformation(i.e., just an ordinary XE(N) =X+ A gH+ 75’%5 oo (A8)
relabeling of point's nameswhich at first order reads
=exd NEg]|x*. (A9)

YEON)=XF=NEF+ -, (A3)
The latter exponential notation is useful, in that it allows us
Suppose now that a tensor field has been give’Mn o see the coordinate function® as the pullbacks of the
e.g., to fix ideas, consider the vector fidldvith components  functions x* given by the exponential pullback operator
Z* in the x-coordinate system. In the same way that Weex\£,]. Furthermore, it is clearly seen by €K +M\o)E,]
defined a new coordinate systagri once a relation between =ex\EJexpN,£,] that the point transformationgA8)
points was assigned through Hé1) by the action of¢, SO form a one-parameter group of transformations. Using again
we can now define a new vector fiedd with componentg*  the definitiony*(q): =x*(p) for they coordinates, we get,
in the x coordinates, such that these components at the coofrom Eq. (A7),
dinate pointx*(p) are equal to the componer#s* the old )
vector Z has in they coordinates at the coordinate point R
YHON)=XEo N o e (ALD)

y(Q):
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on expanding all terms abox(q), eventually omitting again 2. One-parameter families of transformations

thex(q) dependence, sinagis arbitrary. Finally, using Eg. In order to proceed, considering more general point trans-
(A10) into Eq.(A4) and expanding all the terms aboup),  formations than Eq(A8) and more general Taylor expan-
we get thex componentZ*(\) of the pullbackZ(\), which  sions than Eq(A14), some general remarks are in order.
reads[39] First, it should be noticed that the definitiog*(q)
:=x*(p) for the y-coordinate system is completely general,
2u()\):[exm\£§]z]u (A11) given a first coordinate systefthe x frame herg and any
suitable association between pairs of poifmore precisely,
A2 any diffeomorphism of which the one-parameter group of
=ZH+ NEZF+ —£§Z“+ - transformations(A8) is a particular example. Second, the
2 same generality is present in the definition of the pullback,
(A12) Eqg. (A13), which is also independent from the specific type
) i , , of transformation chosen.

Equation(A4) is readily generalized to more general ten-  aq we said in Sec. I, exact gauge transformations do not
sors tharZ: we simply have to add to the RHS of Bh4)  form a one-parameter group, but a one-parameter family
the right number of transformation matrices. Thus, the puIIT15,1a_ However, the consequences of this fact show up
backT of a tensor fieldT of type (p,q) is defined by having only with nonlinearity, which is why at first order gauge

X components given by transformations are approximated by EH@1), (A3) (cf.
[29,35-37). Therefore, having in mind a second-order treat-
Tr1 - mp x(p)) ment of perturbations, the question we now have to deal with
vy

is twofold: (i) which is the general form of families of trans-
formations that depend on one parametene-parameter
=T, L (@) families of diffeomorphismjs but do not form a groupii)
which is the form of the Taylor expansion of the pullback
T(\) of a tensorT generated by one such one-parameter
(@) family of transformations.
In [15,16 (cf. also[40]) we have shown that the action of
XT % g, (X(Q)). (A13)  any given one-parameter family of transformations can be
represented by the successive action of one-parameter

Using Eq.(A10) as above then gives, omitting indices for 9roups, in a fashion that, to ordef, reminds us the motion
brevity, of the knight on the chessboard:

é}yﬂl (le’«p &Xﬁl aX,Bq

ox“1 B X% gy o dy’a

~ A2
~ A2 XE(N) = XM+ NER 4+ — (&5 0+ - Y+
TOO=THNET+ £+ . (A14) (A) Syt 5 () .dn T )

(A17)
To summarize, each of the diffeomorphisms forming a

one-parameter group, as mathematicians call the transformar vector field &, is associated with thith one-parameter

tions generated by a vector fiefdand represented in coor- group of transformations, with paramefey (we denote\ ;

dinates by Eq(A9), gives rise to a new field, the pullback =X\). Similarly to the knight, the action of the transformation

T(\), from any given tensor field@ and for any given value (A17) first moves from poinp (with coordinates<*) by an

of \. ThusT(\) and T may be compared at every point, amounth along the integral curve df;) [i.e., according to

which allows one to define the Lie derivative aloags the Ed- (A8)]; Kle_n,)\izt/?c')a\\/es alr?I?% thhehintegrdal curve &t by
fimit A0 of the differenceF(x)—T: an amounh ,=\?/2. At eachkth higher order, a new vector

field &, is involved, generating a motion by, = \*/k!.
Thus, the action of a one-parameter family of transforma-
i} T(n) = lim %[TF()\)—T]. (A15) tions is approximated, at ordé&; by a “knight transforma-

A=

£ .=
¢ dn tion” of order k (se€[15], Theorem 2, of which Eq.(A17) is

the second-order example.
Given the “knight transformation”(A17), we can now
use it to define thg coordinates, which will be given by

0 A—0

At higher order we have

d“ ~
ETi=|—| T\ (A16)
ol yH(q):=x*(p) =x*(q) — N &l (X(p))
)\2
On the other hand, the relation at each point between any - 7[§ﬁ)yv(x(p))§(”l)(x(p))+ gf‘z)(x(p))]
tensor fieldT and its pullbackT(\) is expressed at the re-
quired order of accuracy by the Taylor expansi@i4). +.- (A18)
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Expanding the various quantities on the RHS arogndnd  Einstein—de Sitter background. No subscripts S on
omitting thex(q) dependence, E4A18) becomes, finally,  synchronous-gauge quantities will be used in this appendix.
The covariant conformal spatial metric tensor is expanded

\? :
YHON) =X = NE + 5 (8l b€l = Elp) + as follows:

A19 1
A1 Y=+ + 5 f (B1)
Using again the case of the vector fi@ldas our paradigmatic

example, we can now derive the pullbatk) generated by The corresponding contravariant metric takes the form

a one-parameter family of transformations. Substituting Eq.

(A19) into Eq.(A4), and expanding again every term about Y= 81— 4Dii Ey<2>'1 + ik DT (B2)
X(p), we obtain thex componentsZ#(\) of Z(\), which
(after properly collecting termsat second order read where the indices of the perturbatiops-? are raised by'.
A2 The extrinsic curvature tensoﬂ' up to second order
TH(N)=ZH u J R reads
ZH(N)=ZF+ NEg ZH+ — (£§( FEg, )20
(A20) 1 1 o
For a generic tensdr, again omitting indices for brevity, use
of Eq. (A19) in Eq. (A13) obviously gives The square root of the metric determinant is
T=T+NE; T+ — N £2 £, )T+ A21 yH2=1 Lo Lo w2 L owinm
= i) T 5 By TE)TH - (A2D) TSVt gYitg (7 e RANRP IR
(B4)
APPENDIX B: SECOND-ORDER PERTURBATIONS OF with inverse
USEFUL QUANTITIES IN THE SYNCHRONOUS
GAUGE _ 1 1 RS
v 2_1__ 5 ,y(ll)l_ Z,yl i Z (7(1)')24- Z,y(l)ll ,yi(jl) )
In this appendix we report the expansions up to second (B5)

order of a number of tensors, which have been used in de-
riving the results of Sec. IV. All calculations are performed From these quantities we can easily get the density con-
in the synchronous and comoving gauge, assuming atrast

1 1 ) 1 1 . 1 1 1
o=—s¥V Sy +6o— ¥+ 3 (7(”')2+ (7'“)')2 Y+ YV = 27 e 5 A Sot 596 o
(B6)
having assumed as initial condition;)=0 ands{?=0 (i.e., 5p= 8§").
The Christoffel symbols up to second order read
i 1 (1)| (1), (2)| (2)| (2),i 1 Wl _ (1),
jk_z('y] Y~ Yik )t g (7 Y Vi —5% AT Y = e, (B7)

from which, after a lengthy but straightforward calculation, the conformal Ricci tensor of the spatial hypersurface,
(1)ik (1)k| 2, (Li _ (1)k,i 1 ( 2, (2)i _ (2)kii
(7 Y VY g ) 7 (v oy PR W2y 20—y ()
1 kg2 DI _ (Dl ()l (1)K (D (Di _ ()i
YTV T Y T Y T Y Y O R R AT I Ay B Ui

. ) 1 1 ) .
1)1k 1 1 1),k 1)k 1 1 I, il
PO AT = 7D+ YDy Dy T Sy R Sy TP+ P =y
(B8)
and its trace
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1
Ik K, 2)lk _ 2k| 1k
R=7%" =yl + SR = A GD + /DM + o =29 P+ AP = o)

3 1, 1
| k | k_ A k
+ 27 A S - 2R (B9)

follow.

APPENDIX C: SECOND-ORDER PERTURBATIONS GENERATED BY LINEAR TENSOR MODES

In this appendix we report the equations which allow one to determine the second-order perturbations which arise due to the
presence of tensor modes at the linear level: these are originated both by the coupling of scalar and tensor modes and by
tensor-tensor mode couplings. All calculations are performed in the synchronous and comoving gauge, assuming an
Einstein—de Sitter background.

The equations which follow refer only to those parts of the second-order metric perturbations which involve tensor modes
in the source termghence the subscript (t)].

Raychaudhuri equation:

w2 ., 6 7 1 2
2 2 2) 2.(HT 1 )T’ ()T
O+ - 5h — 2 dsh=g e VA T - XTI + oW Y
1 . 1
_§X(1)TIIV2Xi(J'l)T+?(X TI]XEIl)T X(l)TIJXg::.J)T) Q(X,T)- (Cl)
Energy constraint:
2 (2 V242 6 2 1 _5 Tij’ > (1) Tij 2V2 (1) Tij 7 (1)Tij K
;¢s<t>—— b5+ 2 P8~ XS0 18)( it gX i 1g i~ 3gX @ik
1 2 1 1
' 1 1 k(1
_24X<1>Tu X0 - i Tij’ XI(J)T+6X(1)TIJV2 <>T+8X<1>Tu XA
_i (LH)Tij,k (1)T_i( (DTij (DT _ (1)Tij ) (C2)
12X XKj,i 22X Xij X0 X IJ .
Momentum constraint:
2¢(2) ( (DHTiK' _ (l)Tk,i’) _ 1 Tik’ 1 (1)TK g2
ZXS(I)JI X X i (P,Ik 2X (P,IJ 2X j
T ()Tik S (T’ (1)Tik T’ 1 @WTik (DT
+t3x JPikt X eitx (i _Xklj )= 35X Xk (C3

Evolution equation:
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(2)i (2)ki 1 (2)k (2)i

_ (@i (2),i i Ji_ T2
XS(t)J+TXS(t>i)+¢’S(t),i ZXShHd i+ SXShK+ Z XS 5 VXS,

n 1
(2) (2)'

27 2T - . , )
—-3 Xkﬁ)T ok ?X(l)le ‘P,kj+_X(lj)T|V2‘P+6X )Tkl @18
10 . 25 .10 10 10
n 3)((11_)T|VzgoJr §X(1)Tk|¢yk|5|j = X(1>T|k¢ - XJ(l)T §V2X(1J)T
7 i kI Kl,i ki,| kil
+ ?(X(lj)—rl’ +X(1)T ,j’I_X(l)T |J _X(llgT N )(P,kl
. . 2
+(X(1J)T|,k_X(1)Tj|k (1)Tk|)(3(p " EV 0 k)
7'2 i 1)Tkl i
+€(X(1)Tkl'l¢’,klj+)(( M i = V2D Mg 4 6')
7'2 . o ' 1 ! [
12)( DTH, Me k|m5j+X(l)T'k XI%)T - g)((l)Tkl Xﬁ” 5Ij
1)TkI(X(1)TI X(l)T N X(l X(1k>|T |)+X(1>Tk|(X(1j)1|_X<1k)J_T,|)
1 1 (D)TKIE2 ()T 3 rkm. ()Tad L (1) Tkm (171 &
T5X JX EX Vex 5j+§)( 1 X'km 51'_1)( I Xmkoj- (C4)

The Raychaudhuri equation can be easily solvedﬂ@) by means of the Green method. The resulting expression has been
given in Eq.(4.32 of the main text. By replacing it in the remaining equations one can in principle obtain the traceless tensor
x&); by integration.

APPENDIX D: TENSOR CONTRIBUTION TO THE SECOND-ORDER GAUGE TRANSFORMATION

In this appendix we show how to compute the contribution from linear tensor modes to the perturbed metric in the Poisson
gauge by performing a gauge transformation from the synchronous gauge perturbed metric obtained from Appendix C. The
equations for the gauge transformation parameters involved are obtained straightforwardly fra@ Es(5.14):

572 72 72
IJ o T Xi(jl)TvZ(P,lj + EvZXI(JI)T

4
@i _ T T
12 XIJ k (p 3

3 ,
2
Vzvzﬁgt)) 2 XS, IJ_E(XIJ o+ 7 Xij

2T .
VZ ( VZB(Z) + == 3 Xl(Jl)T ,I’

4 2 4 . 2T T2 2 27-2 .
2) _ 2 2)j 1 1 k 1 1 Lk
Vzdgt))i___vzﬁﬁt))l X(S(t)lj 3 (X|(J)T X|(])T>QDJ_?X|J) (PJ _§XIJ TVZQDJ_EX} )T | 9 Xj )|T(;D] .

(D1)
The energy constraifC2) can be used to replage)’; in terms of ¢&)) and products of first-order quantities.

On the other hand, we have from E¢5.8)—(5. 11) that the contrlbutlons to the perturbed metric that we are interested in
are

2
2) _ (2 2
vy =el)) + ol b2
2T . ’
(2) DT pi_ o2 4 52 4 g2
@p() i =3 X el af +:32t)| digr (D3)
(2) 2 (1)T Jij 2 (2) 1 2n(2)
Prh=d5h— g X el - - -3 VA (D4)
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27

4 272
2 2 nT’ nT’ 1 1 1 K 1 2 (2
Xk i = XS04t 5 (x.ﬂ” x| —<x< W T el T ol — i T e 2(d) Dy A,

(GIN))
(D5)

We can obtain expressions in terms of the synchronous gauge perturbed metric as follows.

1. Lapse perturbation
Replacing the expression fw‘(t) into Eq.(D2) we obtain an expression in terms ¢§(t), its derivatives and products of
first-order quantities, which with the help of the Raychaudhuri equatin can be written as

6 6 . 5 ) 1
szw(Z) V ¢(S%t))+ X(l)T Ji 3V2 (1)T |J+§V2(X(1)T ij (1)T )+2 X )T’ ”VZXIJ

- o1 - 1
——V2 (l)TVZ T ”__VZXU X(l)T ”+§X(1)T |]V2V2Xi(j1) _Z_Xl(Jl)kT X 1)Tij,k

5 . 3 3 3 .
1 1 4 1
+ Z)((1)T |J,kV2Xi(j ,)kT 2)(” ) X(l)T kj, |+ X( )TX(l)T kj,i __ EX(l)T kJ,lVZXI(J )T
+ _(Zx(l)T IjVZ (1)T+2X(1)T ()T ij,k_ 2V2X(l|}TX(l)T ij ZX(lliTXE):L)T ij, k) (DG)

2. Shift perturbation

From Eqg.(D3) and using the momentum constra{@3) and the Raychaudhuri equati¢@l) we obtain

V2y24, (2) _Vz( 4X(1)T J 2X(1)T Tjk+2XJ(l1.’)iT'X(1)TJk+X(1)T X| Tjk)

+(4Xf<:]l)T k (l)T VZ nT kJ_ZX(l)T kjv2Xf(Z]l)T _3X(k2}.’)|T X(l)T kj,|+2Xf(ijl’)lT X(l)T Ij’k),i' (D?)

3. Spatial metric, trace

From Eq.(D4) and using the Raychaudhuri equati@il) we obtain

1 , ) 1 3 .
V2v2¢gt)) V2¢(2) + ng(X(l)T |in(j1)T )_ EVZ(Xi(J_ZI.)Tv2X(1)T Ij)_ ZXi(jl,)kTVZX(l)T ij,k

3 1 1 . N
1 1 1 1 1
_le(J)'er(l)le kl+2X( )TVZ (HT kJI+§Xi(j,)kTX( )T Kj,il VZ(X( >T§D'lj)_8‘P'|]V2Xi(j)T

1 o 6 12 -1 ,
! 1 1 ! 1 ! ! 1 ’
+Z-X(1)T IJVZXi<J_)T+ X( )T ”+_X(1)T X7 lJ_;X(l)T IJV2Xi(l_)T

1 , . 3 3 .
1 1 4 1 1 1
2TXI(J )T X(l)T ij kg ;Xi(j,)kTX(l)T kjii 4 _ZVZ(Xi(]_ )TX(l)T ij +XE) )T i ( )T)
T
24 48 72 , .
1 1 1 1
+_7_2Xi(j)TV2X(1)T - XJ) XTGP T Ty T XTI, (D8)
T
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4. Spatial metric, traceless part

Replacing from Eqs(D1) the expressions fax{;’ andd(3)

in Eq. (D5) we obtain

VaV R, VAVl 2Vl + 2Xsfs>k'k..,+;ajvzxgﬁzﬁ'k.—vz[% ol + 2 ,)
)
A T R i i o ek ol 2 ai o)~ T R
—Vzg-(ﬂﬁw 4)((1)T §¢KﬂﬂT ;&j%%ﬂ(wa+4XmT> i P
—%;Wwﬁw +1?@(XWWAX ﬁ+%;WWW§
b v 2 g ©9)
)]
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