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Renormalization group approach in Newtonian cosmology
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We apply the renormalization group~RG! method to examine the observable scaling properties in Newton-
ian cosmology. The original scaling properties of the equations of motion in our model are modified for
averaged observables on constant time slices. In the RG flow diagram, we find three robust fixed points:
Einstein–de Sitter, Milne, and quiescent fixed points. Their stability~or instability! property does not change
under the effect of fluctuations. Inspired by the inflationary scenario in the early Universe, we set the
Einstein–de Sitter fixed point with small fluctuations as the boundary condition at the horizon scale. Solving
the RG equations under this boundary condition toward the smaller scales, we find a generic behavior of
observables such that the density parameterV decreases, while the Hubble parameterH increases for a smaller
averaging volume. The quantitative scaling properties are analyzed by calculating the characteristic exponents
around each fixed point. Finally we argue the possible fractal structure of the Universe beyond the horizon
scale.@S0556-2821~98!05714-2#

PACS number~s!: 98.80.Hw, 11.10.Hi
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I. INTRODUCTION

Several pieces of observational evidence imply sca
properties in the present Universe. For example,~a! de Vau-
couleurs compiled data of a density-size relation for galax
and clusters of galaxies, and pointed out the scaling rela
of ln r521.7lnL, whereL is the linear scale of each astro
physical object andr is the mass density averaged at th
scale@1#. This relation asserts the systematic decrease of
density at a larger scale.~b! It is widely known that the
observed two-point correlation functionj(r ) for galaxies or
for clusters has the scaling propertyj(r )}r 21.8 @2#. ~c! Pi-
etronero and his collaborators discuss a fractal structur
the Universe and claim that the fractal dimension is ab
two up to the scale of 1000 Mpc@3#. ~d! The observations o
the mass-luminosity ratio for the various astronomical o
jects linearly increases toward the larger scale up to a s
of about 10 Mpc@4#.

Motivated by the above pieces of observational eviden
we explore systematic underlying physics which may gov
the scaling properties of observables in the present Unive
Usually the above scaling properties are understood as
sult of an interplay of the scale invariant initial conditio
~Harrison-Zel’dovich spectrum! and the gravitational insta
bility @2#. In this usual approach, a global uniform bac
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ground is assumed. In our approach, we donot assume such
uniform backgrounda priori but consider general inhomoge
neous distributions.

Let us consider the scaling properties carefully. We s
our analysis with the equations of motion for fluid in th
Newtonian Universe neglecting the pressure term for s
plicity. This set of equations admits a naive scale invarian
a scaling of space-time coordinates as well as an approp
scaling of observables leaves the set of equations unchan
We define this naive scaling transformation as the opera
S. Such a naive scaling property is, however, not necessa
reflected in the actual observations in a direct form. This
because in general the physically measurable quantities
strongly affected by the actual method of observatio
Therefore the above naive scaling should be modified w
we apply it to the actual observations. There are at least
important factors for the modification:~1! An observable re-
gion is limited by causality,~2! we may merely observe av
eraged quantities in a certain region in space.

We first consider the factor~1!. Actually, we can only
observe a light signal from a galaxy located on our past li
cone. In Newtonian cosmology, the observable quantities
located on a hyperslice of constant time. Because in gen
the above naive scale transformation also requires a cha
of the time variable, we have to adjust it so that we c
compare the observable quantities with different scales
the same time slice. This adjustment can be implemented
the time evolution of the observables by using the equati
of motion for them. We define this adjustment as the ope
tion T. In this context, we have to reconsider exactly wh
we are measuring. In this paper we consider scaling beha
of the cosmological parameters. For example, the den
parameterV is a dimensionless quantity and therefore it
© 1998 The American Physical Society02-1
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YASUHIDE SOTA et al. PHYSICAL REVIEW D 58 043502
invariant under the naive scale transformation. Howeve
many cases, we can directly measure the matter densir
and separately the cosmic expansion parameterH @5#. The
combination of these observationsinducesthe value of the
density parameterV @6# which depends on the scale. In th
case, the scale transformation and the necessary time ad
ment are nontrivial. Thus we have to carefully distingui
the direct observables and the secondaryinduced observ-
ables.

Next we consider factor~2!. What we observe is neces
sarily an averaged quantity on some region of space-t
because there are always spatial fluctuations and the re
tion of our observation is limited. Therefore the observab
are most generally dependent on the scale of averaging
define this averaging as the operationA. However, it would
be very difficult to consider the invariant averaging proc
dure in the full general relativity and to make connecti
with observables@7#. Therefore, mainly because of this re
son it would be better to restrict our considerations to
Newtonian cosmology, in which an averaging procedure
properly defined and is explicitly calculated@8#.

After the above adjustments~1! the operationT and ~2!
the operationA on the original naive scaling properties of th
underlying equations of motion, we would obtain the r
evant information for actually observable quantities. Thus
general, the difference of two observables at different sc
would be related with each other by the naive scaling~op-
eration S) compensating time evolution~operationT) and
the inevitable averaging procedure~operationA).

In order to unify the above operationsS, T, and A, we
need to introduce one more ingredient in our consideratio
The most sophisticated method so far to deal with such m
tiple operations would be the renormalization group~RG!
method@9#. This is a very general method to obtain the o
servable response of the system against the scale chang
is widely used in various fields in physics including quantu
field theory, statistical mechanics, fluid mechanics, etc.
example, in quantum field theory, a naive scaling in class
theory should be modified by the quantum fluctuations.
statistical physics, the scaling property is used with the
eraging operation to yield critical exponents.

In this paper, we try to apply this RG method to Newto
ian cosmology. In this model, the scaling invariance holds
the time. Thanks to the averaging procedure, we can de
classical fluctuations of the observables. Then, naive sca
behaviors of the observables are modified by renormaliza
of the classical fluctuations. This is conceptually the same
RG methods in other fields of physics.

The RG equations we obtain give the effective sc
change of averaged observables, and the effect of sp
fluctuations on observables. The flow diagram generated
the RG equations in the parameter space of observables
resents how the observables actually change under the
transformation. Each flow line represents a single phys
system, in which the averaged variable at different scale
responds to each point on the flow. Thus the RG flow gi
a whole set of possible cosmological models. The fix
points, i.e., the stagnation points in the flow diagram, of
RG equations represent the possible ‘‘uniform’’ structure
04350
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observables, that is, the averaged variables do not depen
the scale and characterize diversities of the system.

There have been some applications of the RG metho
cosmology@10#. The RG method is an effective tool to ex
amine the asymptotic behavior of a dynamical system.
fact, Koike, Hara, and Adachi succeeded in explaining
critical behavior of a self-similar solution during the gravit
tional collapse of a radiation fluid using the RG method@11#.
Subsequent series of studies are in this line of study@12#. In
their cases, the aspects of (S) and (T) are reflected in their
method. Thus their RG method does not necessarily con
an averaging procedure (A). On the other hand, Carfora an
Marzuoli @13# and Carfora and Piotrkowska@14# explicitly
accounted for the spatial fluctuation of physical quantities
general relativity and derived the RG equation reflecting
aspects (S) and (A). Since they concentrated on the scali
in the spatial direction, the aspect (T) has not been mani
festly reflected in their approach. Here in this paper, to
amine the scale dependence of the observables on a con
hyperslice, we apply the RG method from the full aspects
(S), (T), and (A) altogether, assuming some scaling pro
erty in averaging observables.

This paper is constructed as follows. In Sec. II, we der
the RG equation for the averaged Newtonian fluid. Sect
III is the main part of our analysis. Here we examine the R
flow in the parameter space and show that there appear t
robust fixed points including the Einstein–de Sitter univer
We examine the effects of shear, tidal force, and fluctuatio
and derive the scale dependence of the physical varia
such asV andH around the Einstein–de Sitter universe.
Sec. IV, we summarize our results. We also present the
RG equations including fluctuations up to the second or
cumulants in the Appendix.

II. DERIVATION OF RENORMALIZATION GROUP
EQUATIONS

In Newtonian cosmology, the following equations d
scribe the evolution of a self-gravitating fluid in the Euleria
coordinate system:

]r

]t
52¹•~rv!,

]v
]t

52~v•¹!v1g,

¹•g524pGr, ~2.1!

wherer, v, and g([2¹f), respectively, denote the mas
density, the velocity of the fluid, and the gravitational acc
eration. Now we transform these equations into the Lagra
ian coordinate system. In order to eliminate the gravitatio
accelerationg, we introduce the spatial derivative of the v
locity field and decompose it into a trace part~expansionu
5¹•v), a symmetric traceless part~shears j

i ), and an anti-
symmetric part~rotationv i

j ) @8#. Then the above equation
become
2-2
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RENORMALIZATION GROUP APPROACH IN NEWTONIAN . . . PHYSICAL REVIEW D58 043502
dr

dt
52ru, ~2.2!

du

dt
52

1

3
u212~v22s2!24pGr, ~2.3!

ds j
i

dt
52

2

3
us i

j2s i
ks

k
j2v i

kv
k

j1
2

3
~s22v2!d i

j

2Ej
i , ~2.4!

dv i
j

dt
52

2

3
uv i

j2s i
kv

k
j2v i

ks
k

j , ~2.5!

where the Lagrange full time derivative

d

dt
[

]

]t
1v•¹ ~2.6!

is used on the left-hand side. In these equations,s and v
denote the magnitudes of shear and rotation, respectiv
defined by

s25
1

2
s i

js
i
j and v25

1

2
v j

iv
i
j . ~2.7!

The tensorEj
i5¹ i¹ jf2d j

i¹
2f/3 denotes the tidal force

which comes from the spatial difference of the gravitatio
acceleration. In pure Newtonian dynamics, this is a slav
variable and there is no equation of motion for it. Fort
nately, several excellent approximation schemes have b
developed to deal with this highly nonlocal quantity. In th
paper, we mainly follow the local tidal approximation~LTA !
@15–17# in which the equation of motion for the tensorEj

i is
given by

dEj
i

dt
52uEj

i24pGrs j
i . ~2.8!

Hereafter we neglect the rotation for simplicity (v j
i50).

Actually the initial assumption ofv j
i50 is sufficient to

guarantee this condition all the time as is seen from
above equation. Thus irrotational motions form a closed s
class of the full dynamics. Then, we can simultaneously
agonalize both the matricess j

i and Ej
i . We work in the

frame where they are diagonalized ass i andEi ( i 51,2,3),
respectively. Sinces j

i and Ej
i are traceless, only the tw

components of each are independent. Then it may somet
be more convenient to introduce the following variabless6

andE6 :

~s1 ,s2 ,s3!5~s11A3s2 ,s12A3s2 ,22s1!,

~E1 ,E2 ,E3!5~E11A3E2 ,E12A3E2 ,22E1!.
~2.9!

At a glance, we observe a scaling property in the ab
set of equations of motion~2.2!–~2.5!, ~2.8!. They are invari-
ant under the following scaling transformation:
04350
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t→t8[esDtt,

x→x8[eDtx,

u→u8[e2sDtu,

s6→s68 [e2sDts6 ,

E6→E68 [e2sDtE6 ,

r→r8[e22sDtr, ~2.10!

wheres is a constant free parameter andDt5t82t mea-
sures a change of scale.

Now, based on these scaling properties, we derive re
malization group equations for spatially averaged obse
ables on a constant time slice. To analyze the structure of
Universe, we adopt a scaling solution of our basic equatio
Such a scaling solution could be realized as a result o
self-gravitating dynamical system with a scale invariant d
sity fluctuation @2#, although here we do not specify an
models to give such a scaling solution. If, however, we co
sider a scaling solution such as Eq.~2.10! as it is, we find
either a homogeneous Universe or inhomogeneous Univ
with a ‘‘center,’’ which is not consistent with the cosmolog
cal principle. We are interested in the inhomogeneous U
verse model consistent with the cosmological principle su
as a fractal universe. If we have a fractal universe, we exp
that some averaged values around an observer may sh
scaling property. Such a scaling property will be always o
served anywhere because of a fractal structure of the U
verse, which is consistent with the cosmological princip
This is why we consider spatially averaged observables h
We assume a scaling property such as Eq.~2.10! not only for
averaged values of the variables in the above equations
also for those of the fluctuations such as a second order
mulant.

We define a spatial average^•••& of an observablef (t,x)
at time t as

^ f &D~ t !5
1

V~ t !ED~ t !
d3x f~ t,x!, ~2.11!

whereD(t) is a spatial domain at timet and V(t) is its
volume defined byV(t)5*D(t)d

3x. The observablef (t,x)
can be any function ofu,r,s6 ,E6 . We would like to derive
the expression for the infinitesimal scale change of the a
aged observable on the same time slice, i.e.,

D^ f &D~ t !

D l
5

^ f &D8~ t !2^ f &D~ t !

D l
, ~2.12!

where the parameterl measures the true scale change on t
time slice, which is defined by

eD l[el 82 l5S V8~ t !

V~ t ! D 1/3

, ~2.13!

and is different from the naive scaling parametert. D8(t)
andV8(t) denote the domain and volume transformed ba
2-3
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YASUHIDE SOTA et al. PHYSICAL REVIEW D 58 043502
to the original timet slice by time evolution fromD8(t8) and
V8(t8), which are obtained by a scale transformation~2.10!.
The above Eq.~2.12! can be decomposed into two parts:~i!
a changeDS^ f & associated with a scale transformation fro
D(t) to D8(t8), ~ii ! a changeDT^ f & associated with a time
evolution fromD8(t8) to D8(t). That is,

D^ f &D~ t !

D l
5

1

D l
@~^ f &D8~ t8!2^ f &D~ t !!1~^ f &D8~ t !2^ f &D8~ t8!!#

[
1

D l
~DS^ f &1DT^ f &!. ~2.14!

As for part ~i!, we use the scaling law of the observab
^ f &D(t) , which is

^ f &D~ t !→^ f &D8~ t8!5easDt^ f &D~ t ! . ~2.15!

The second part~ii ! is given by the Taylor expansion o
f (t8,x8) andD8(t8) with respect to time:

^ f &D8~ t8!5
1

~11^u&D8~ t !Dt !V8~ t !ED8~ t8!

3~11uDt !d3x8F f ~ t,x8!1
d f

dt
~ t,x8!Dt G

1O@~Dt !2#5^ f &D8~ t !1Dt

3S 2^u&D8~ t !^ f &D8~ t !1^u f &D8~ t !1 K d f

dt L D8~ t !
D

1O@~Dt !2#, ~2.16!

whereDt5t82t.
The true scale changeD l on a constant time slice is give

as follows. In the scale transformation~i!, the volume change
is V8(t8)/V(t)5e3Dt5113Dt, but it includes the expan
sion effect of the Universe because time is also transform
To obtain the true scale change on the same time slice
have to transform it back to the original time slice by t
time evolution ~ii !, which givesV8(t8)/V8(t)511^u&Dt.
Then we have

S V8~ t !

V~ t ! D 1/3

511Dt2
^u&
3

Dt511D l . ~2.17!

Thus we obtain

D l 5Dt2
^u&
3

Dt. ~2.18!

The time intervalDt5t82t is given by the scale transfor
mation ~2.10! as

Dt

Dt
5st. ~2.19!

Hereafter we identify this fixed timet as the present cosmi
time t0, when we observe cosmological quantities.
04350
d.
e

Thus, combining Eqs.~2.14!–~2.19!, we obtain the differ-
ential equation for the averaged observable^ f &D(t) :

d^ f &D~ t !

dl
5SS a

t0
^ f &D~ t !1^u&D~ t !^ f &D~ t !2^u f &D~ t !

2K d f

dt L
D~ t !

D , ~2.20!

where

S5
s

12s^u&D~ t !t0/3
. ~2.21!

The parameters dependence appears solely through this f
tor S.

Equation~2.20! is not yet sufficient to obtain a closed s
of RG equations because of the nonlinearity of the ba
equations. Differential equations for thenth order averaged
quantities are not closed up to thenth order. They necessar
ily contain (n11)th order averaged quantities. This is th
famous Bogoliubov-Born-Green-Kirkwood-Yvon~BBGKY!
hierarchy in statistical physics. The ordinary method to o
tain the closed set of equations is to truncate this hierarch
some order. In our case, we include the effect of fluctuati
at the lowest nontrivial level, i.e., the second order cum
lants. Then we will neglect all intrinsic fluctuations~cumu-
lants! higher than the second order, finding the followin
truncation formula:

^ f gh&→^ f &^gh&1^g&^ f h&1^h&^ f g&22^ f &^g&^h&.
~2.22!

To write down the basic equations, we shall use the sec
order cumulant̂ f g&c instead of the averaged quadratic qua
tity ^ f g&, where^ f g&c[^ f g&2^ f &^g&. Applying this reduc-
tion, we obtain a closed set of 27 differential equations
averaged variables and their second order cumulants.
will present the complete expression in the Appendix. H
we only show a reduced set of equations to the first or
~the averaged variables! by setting^ f g&c50:

d^r&
dl

5S @^u&22#^r&, ~2.23!

d^u&
dl

5S F S ^u&
3

21D ^u&14pG^r&

16~^s1&21^s2&2!G , ~2.24!

d^s1&
dl

5S F S 2

3
^u&21D ^s1&2^s1&21^s2&21^E1&G ,

~2.25!

d^s2&
dl

5S F S 2

3
^u&21D ^s2&12^s1&^s2&1^E2&G ,

~2.26!
2-4
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RENORMALIZATION GROUP APPROACH IN NEWTONIAN . . . PHYSICAL REVIEW D58 043502
d^E1&
dl

5S @~^u&22!^E1&14pG^r&^s1&#, ~2.27!

d^E2&
dl

5S @~^u&22!^E2&14pG^r&^s2&#. ~2.28!

These also form a closed set of equations at this order.
call these first order RG equations, while those in the App
dix we call second order RG equations.

Here and in the Appendix, we have sett051 and dropped
the suffix of integration domain for averaged values just
simplicity. Hence, in these units, the expansionu and the
density r for Einstein–de Sitter universe turn out to b
uEdS52 andrEdS51/6pG.

III. ANALYSIS OF RG EQUATIONS:
FIXED POINTS AND RG FLOW

We now examine the RG equations obtained in Sec
First, we analyze the first order RG equations~2.23!–~2.28!.
Although this may not be realistic because the structure
the Universe could be highly inhomogeneous in our mode
shows that it is naive to understand the RG flow and g
three important fixed points~including the Einstein–de Sitte
spacetime!, which will be also most relevant even in the ca
with fluctuations. We then examine the stability of the
fixed points @18#. Next, introducing fluctuations, we stud
the second order RG equations~A1!–~A27! and analyze the
stability of those fixed points in a much wider parame
space. Finally in this section, we set the Einstein–de S
fixed point with a small amount of fluctuation, as the boun
ary condition at the horizon scale in our present Unive
and examine a scale dependence of averaged variable
ward smaller scale.

A. Fixed points of the RG equations and stability

First we analyze the structure of our RG equations. Fr
Eqs. ~A1!–~A27!, we find that they are written in a vecto
form as

d^F&
dl

5S~A@^F&#1C^FF&c! ~3.1!

d^FF&c

dl
5SB@^F&#^FF&c , ~3.2!

where^F& and^FF&c are 6- and 21-dimensional vectors d
fined as^F&[(^ f i&) and ^FF&c[(^ f i f j&c) with f i ’s ( i 51
;6) denoting r, u, s1 , s2 , E1 , and E2 . A@^F&#,
B@^F&#, and C are six-dimensional vectors of quadrat
functions of^ f i&, 21321 matrix of linear functions of̂ f i&,
and 6321 constant matrix, respectively. Setting^FF&c50,
we have

d^F&
dl

5SA@^F&#, ~3.3!

which is exactly the first order RG equations~2.23!–~2.28!.
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To analyze the structure of the RG equations,
first need to know the fixed point (^F&,^FF&)
5(^F&* ,^FF&c* ), which is defined by

d^F&
dl U^F&5^F&* ,^FF&c5^FF&c*

5
d^FF&c

dl U
^F&5^F&* ,^FF&c5^FF&c*

50.

~3.4!

As for the first order RG equations, the fixed point^F&
5^F&* is given by

A@^F&* #50. ~3.5!

The above Eqs.~3.1!, ~3.2!, with ~3.5! guarantee that the
fixed points^F&* in the first order RG equations are alwa
those for the second order RG equations with^FF&c* 50,
although new additional fixed points appear in second ord

The stability analysis is very important to kno
asymptotic behaviors near the fixed points. The stability
examined by linearizing the RG equations around the fix
point ^F&* , ^FF&c* as

^F&5^F&* 1F, ~3.6!

^FF&c5^FF&c* 1~FF!c , ~3.7!

where bothF and (FF)c are small enough to make the line
perturbation treatment effective around^F&* , ^FF&c* . Then,
we find the perturbation equations in the form

d

dlS F
~FF!c

D 5SW11 W12

W21 W22
D S F

~FF!c
D , ~3.8!

where the perturbation matrixW [2]5(WAB) is given as

SW11 W12

W21 W22
D

5S ](SA[ ^F&])

]^F&
U
^F&5^F&*

S* C

](SB[ ^F&])

]^F&
U
^F&5^F&*

^FF&c* S* B@^F&* #
D ,

~3.9!

with S* 5Su^F&5^F&* . For the first order RG equations,
turns out to be

dF
dl

5W [1] , ~3.10!

whereW [1] is given as

W [1]5S*
]A@^F&#

]^F&
U
^F&5^F&*

, ~3.11!

because of Eq.~3.5!. For the fixed points in the first orde
RG equations, we find the following important results. As w
2-5
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YASUHIDE SOTA et al. PHYSICAL REVIEW D 58 043502
mentioned, they are also the fixed points in the second o
with ^FF&c* 50. Then the perturbation matrixW [2] becomes

W [2]5SW [1] S* C

0 S* B@^F&* #
D . ~3.12!

This form guarantees that the eigenvalues of the first o
matrix W [1] are always those of the second order mat
W [2] . As we will show later, the other eigenvalues of t
second order matrix are constructed by a sum of any
eigenvalues of the first order matrix@see Eqs.~3.20!, ~3.23!#.

The positive~negative! eigenvalue of the matrixW [2] ~or
W [1] ) shows the instability~stability! of the fixed point
(^F&* ,^FF&c* ) ~or ^F&* ) toward the larger scale, i.e., in th
large l direction. The stability and the instability are e
changed if we follow the RG flow in the opposite directio
i.e., toward the smaller scale.

The eigenvalues fully characterize the scale depende
of all physical variables in the vicinity of each fixed poin
Although each observable is scaled according to its dim
sion, the effect of dynamics changes the scaling prop
from the original bare scaling law~2.10!, so that the scaling
of each observable is determined by the superposition of
eral eigenfunctions as follows:

^ f i&5^ f i&* 1 (
m51

N

e i ,melml

lmin5l1<l2<•••<lN5lmax, ~3.13!

where^ f i&* is the value of̂ f i& at a fixed point,e i ,m is some
small constant, andlm (m51;N) are eigenvalues.N
5n(n13)/2 for the second order RG equations, whileN
5n for the first order RG equations, withn being the num-
ber of observables. Since the maximum~minimum! eigen-
value lmax(lmin) becomes the most relevant toward larg
~smaller! scale, the scaling property of each observa
around fixed point is determined bylmax(lmin).

The fixed points themselves are independent of the s
ing parameters, but the matrixW [2] ~or W [1] ) and its ei-
genvalues depend ons. For the sake of the explicit argumen
below, we restrict the range of the parameters to 0,s,1
where the topology of the RG flow is not changed@19#.

B. Fixed points and the flow of RG equations
without fluctuations

Here we analyze the first order RG equations~2.23!–
~2.28! in detail. First, by neglecting both shear and tidal for
terms, we have simple RG equations~3.3! with

A@^F&#5S 2^u&1 1
3 ^u&214pG^r&

~^u&22!^r&
D ~3.14!

for two averaged variableŝF&5(^r&,^u&). We easily find
three fixed points^F& (k)* (k51,2,3), which are listed in
Table I.

The stability at each fixed point̂F& (k)* is examined by
linearizing the RG equations around the fixed point@Eq.
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~3.10!#. All eigenvalues ofW [1] for three fixed points are
also given in Table I. For the first fixed point~1! where both
^u& (1)* and^r& (1)* vanish, the dynamical termDT^F& does not
affect the scaling, so that the eigenvector points the direc
of each observable. On the other hand, for other fixed poi
the effect of dynamics changes a scaling property from
original bare scaling law~2.10!.

As seen from Table I, the fixed point~1! is stable toward
larger scale. For increasing scale, the Universe approa
this fixed point, at which both the energy density and exp
sion vanish. Therefore we shall call it the fixed pointQ as
the Universe is quiescent. The second fixed point~2! is a
saddle point. It represents the Einstein–de Sitter Unive
becausê u& (2)* 5uEdS and ^r& (2)* 5rEdS. We thus call it the
fixed point E. The third fixed point~3! is unstable in any
direction. At first sight, it might look strange since the e
pansion of the Universe is finite in spite of vanishing ener
density. This corresponds to the ‘‘Milne’’ universe in whic
the expansion rate is apparently finite because of a spe
choice of the time slice. We call it the fixed pointM . This
Universe is reduced to the ‘‘Minkowski’’ space by adjustin
the time slice appropriately.

In Fig. 1, to see more precisely those fixed points and
behaviors of global structure of the RG equations, we de
the RG flow on theH-V plane, where the Hubble paramet
H and the density parameterV are defined by

H[
^u&
3

, ~3.15!

V[
8pG^r&

3H2 . ~3.16!

The RG flow either approaches fixed pointQ or escapes to
infinity toward larger scale. These two kinds of flows a
clearly separated by the divide which passes through
fixed pointsE andM ~Fig. 1!. The flow escaping to infinity
seems unphysical since bothH andV blow up to infinity at
large scale.

Next we include shear and tidal force, which leads
Eqs.~2.23!–~2.28!. The three fixed pointsQ, M , andE found
in the case without shear and tidal force survive, and th
stabilities also remain unchanged~see Table II!. In this
sense, the three fixed pointsQ, M , andE are robust. Four
new fixed points appear in addition to those three fix

TABLE I. The list of three fixed points and their eigenvalues
the case with neither shear and tidal force nor fluctuations.

6pG^r&* ^u&* S* Two eigenvalues

~1! Q 0 0 s $22S* ,2S* %

~2! E 1 2 3s

322s
$2

2
3S* ,S* %

~3! M 0 3 s

12s
$S* ,S* %
2-6
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RENORMALIZATION GROUP APPROACH IN NEWTONIAN . . . PHYSICAL REVIEW D58 043502
points, which are listed in Table II. Since all new fixed poin
are saddle points, any RG flow still approaches the fix
point Q or escapes to infinity toward larger scale, or it a
proaches the fixed pointM toward smaller scale.

FIG. 1. The RG flow toward larger scale on theH-V plane in
the case with neither shear nor fluctuations. Here we define
Hubble parameterH and the density parameterV asH[^u&/3 and
V[8pG^r&/3H2, respectively. The three important fixed poin
exist: ~1! fixed point Q ~quiescent Universe!, ~2! fixed point E
~Einstein–de Sitter Universe!, ~3! fixed pointM ~Milne Universe!.
The RG flow converges to the fixed pointQ or escapes to infinity.
The fixed point seems to be a line in theH-V plane, but it is a point
that all physical variables vanish in the ‘‘phase’’ space of^F&
5(^r&,^u&). V turns out to be some finite value, which depends
the limit of ^r&→0 and^u&→0.
04350
d
-

C. Fixed points and the flow and of RG equations
with fluctuations

Since our model of the Universe may be quite inhomo
neous and could be fractal in a microscopic point of view,
inclusion of fluctuations of the physical variables is inevit
bly important when we compare our results with those
the real Universe. In fact, if we do not include fluctuations
is mathematically equivalent to a self-similar solution on
fixed time slice@20–22# although the physical meaning i
quite different. Then, we shall add fluctuations and see h
the fluctuations affect the RG flow diagram. We just inclu
second order cumulants to the RG equations and truncate
hierarchy there by ignoring all intrinsic fluctuations~cumu-
lants! higher than the second order, although we may h
another choice of higher-order cumulants@23#.

There are 27 independent variables in this case an
becomes more difficult to find a full list of fixed points. Thu
we first reduce the number of variables and start our st
from the shear-free case. Since independent observable
just r and u in this case, the total number of variables i
cluding second order cumulants is just 5:^r&, ^u&, ^r2&c ,
^u2&c , ^ru&c . We list all fixed points and show their stabil
ties in Table III. The three important fixed points~1!–~3! in
the first order RG equations still remain and their stabilit
are also unchanged. They are quite robust. Since all of
new fixed points~8!–~10! are saddle points, global propertie
of RG flows toward both larger and smaller scales are so
determined by the fixed pointsQ and M , respectively. The
fixed pointE remains as a saddle point.

As we mentioned, the fixed points found in the first ord
equations are also those of second order with zero cu
lants. For the eigenvalues at those fixed points, we find
genvalues of first order are also those of second order. To
more detail, we explicitly write down the perturbation matr
W [2] ~3.12! as

he
TA.
TABLE II. The list of seven fixed points and their eigenvalues in the case without fluctuations in L
The seventh fixed point~7! is not an isolated point but a closed loop parametrized by one parameterh as
s1* 5

1
3 cosh, s2* 5

1
3 sinh, E1* 5

1
9 (cos 2h23 cosh), E2* 52

1
9 (sin 2h13 sinh), where 0<h,2p.

l̄1 ,l̄2 ,l̄3 are three real solutions (21<l̄1,l̄2<0, l̄3>1) of l̄32l̄24(12cos 3h)/2750.

6pG^r&* ^u&* ^s1&* ^s2&* ^E1&* ^E2&* S* Six eigenvalues

Q 0 0 0 0 0 0 s $22S* ,22S* ,22S* ,2S* ,2S* ,2S* %

~2! E 1 2 0 0 0 0 3s

322s
$2

2
3S* ,2 2

3S* ,2 2
3S* ,S* ,S* ,S* %

~3! M 0 3 0 0 0 0 s

12s
$S* ,S* ,S* ,S* ,S* ,S* %

~4! 0 1 2
1
3 0 0 0 3s

32s
$2S* ,2S* ,2S* ,2S* ,2S* ,S* %

~5! 0 1 1
6

1

2A3
0 0 3s

32s
$2S* ,2S* ,2S* ,2S* ,2S* ,S* %

~6! 0 1 1
6 2

1

2A3
0 0 3s

32s
$2S* ,2S* ,2S* ,2S* ,2S* ,S* %

~7! 0 2 s1* s2* E1* E2*
3s

322s
$l̄1S* ,l̄2S* ,0,0,S* ,l̄3S* %
2-7



points

YASUHIDE SOTA et al. PHYSICAL REVIEW D 58 043502
TABLE III. The list of fixed points and their eigenvalues in the case without shear and tidal force including fluctuations. New fixed
~8!–~10! are unphysical because^r2&c* and/or^u2&c* are negative.

6pG^r&* ^u&* 36p2G2^r2&c* ^u2&c* 6pG^ru&c* S* Five eigenvalues

~1! Q 0 0 0 0 0 s $24S* ,23S* ,22S* ,22S* ,2S* %

~2! E 1 2 0 0 0 3s

322s
H2 4

3
S* ,2

2

3
S* ,

1

3
S* ,S* ,2S* J

~3! M 0 3 0 0 0 s

12s
$S* ,S* ,2S* ,2S* ,2S* %

~8! 0 3
2 0 2

9
8 0 2s

22s
$2S* ,2S* ,2 1

2S* ,2 1
2S* ,S* %

~9! 0 9
5 0 2

27
25

81
250

5s

523s
H2 11A13

5
S* ,2 2

5S* ,2 1
5S* ,

211A13

5
S* ,S* J

~10! 0 2 2
1
4 21 1

2
3s

322s
H2 11A17

6
S* ,0,

211A17

6
S* ,

2

3
S* ,S* J
rb

rst

6
and
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d
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W [1][S w11 w12

w21 w22
D 5S* S ^u&* 22 ^r&*

4pG 2
3 ^u&* 21

D ,

S* C5S* S 0 0 0

0 2 2
3 0D ,

S* B@^F&* #

5S* S 2~^u&* 22! 0 2^r&*

0 2~ 2
3 ^u&* 21! 8pG

4pG ^r&* 5
3 ^u&* 23

D
5S 2w11 0 2w12

0 2w22 2w21

w21 w12 w111w22

D . ~3.17!

Then the eigenvalue equation for the second order pertu
tion matrixW [2] is

~l22trW [1]l1detW [1] !~l2trW [1] !~l222 trW [1]l

14 detW [1] !50. ~3.18!

Since the eigenvalue equation for the first order matrixW [1]

is

l22trW [1]l1detW [1]50, ~3.19!

supposing thatl1
[1] andl2

[1] are its two solutions, we find the
solutions of Eq.~3.18!, l i

[2] ( i 51;5), to be

l1
[2]5l1

[1] , l2
[2]5l2

[1] ,

l3
[2]52l1

[1] , l4
[2]5trW [1]5l1

[1]1l2
[1] ,

l5
[2]52l2

[1] . ~3.20!
04350
a-

Therefore the minimum eigenvalues at fixed points of fi
order, in particular the fixed pointsQ, E, andM , are given
by

lmin
[2] 52lmin

[1] , ~3.21!

if lmin
[1] ,0 ~this is the case for the fixed pointsQ and E),

otherwise,

lmin
[2] 5lmin

[1] ~3.22!

~this is the case for the fixed pointM ).
Finally, we study a full model with 27 RG equations for

independent variables including shear and tidal force
their second order cumulants. Though it is very difficult
find all fixed points, all seven fixed points in the first ord
RG equations~listed in Table II! remain fixed points, as we
mentioned. As for their eigenvalues, we also find the sa
result as that in the case without shear and tidal force, tha
the eigenvalue in the second order RG equations$lm

[2] um
51, . . . ,n(n13)/2% are constructed by those in the first o
der $lm

[1] um51, . . . ,n% as

lm
[2]5lm

[1] for m51, . . . ,n

lm
[2]5l l

[1]1l l 8
[1] for m5n11, . . . ,n~n13!/2

with l ,l 851, . . . ,n, ~3.23!

wheren is the number of observables. This result is und
stood from some special relation between the perturba
matricesW [1] andS* B@^F&* # @24#:

S* Bi j ,kl@^F&* #5
1

2
@d ikwjl 1d i l wjk1d jkwil 1d j l wik#,

~3.24!

wherei , j ,k,l denote the observablesr,u,s6 ,E6 .
In Table IV, we have only listed three important fixe

points Q, E, andM with their stabilities. These three fixe
2-8
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TABLE IV. Three important fixed points and their eigenvalues in the case with shear and tidal fo
LTA as well as fluctuations.

6pG^r&* ^u&* ^others&* S* 27 eigenvalues

~1! Q 0 0 0 s $(24S* )36,(23S* )39,(22S* )39,(2S* )33%
~2! E 1 2 0 3s

322s
$(2

4
3S* )36,(2 2

3S* )33,(1
3S* )39,

(S* )33,(2S* )36%
~3! M 0 3 0 s

12s
$(S* )36,(2S* )321%
e
id

s
fo
In

o
-

in
c

in
o
h
rd
x

in

y
.
e
le
tid

vi
ly
a-
al

a
n
s

zo

d
ch
ar

n
io
ll

y
e
of
l
ow
the
ed

or
xed

en
at
a-

ss

les
ned

e,

e’’

c-

ed

ect

we
points still survive and their stabilities remain unchang
even after including fluctuations as well as shear and t
forces.

Let us just mention how our results change if we u
another approximation scheme for the equation of motion
Ei j . We mainly use the LTA approximation in this paper.
the case of other local approximations such as NMA@25#,
the RG equations become more complicated and it is m
difficult to look for all fixed points and eigenvalues. How
ever, it is still easy to show that the above three fixed po
Q, M , andE survive since the RG equations exactly redu
to the shear-free case when we setE65s650. The stabili-
ties of these fixed points can also be checked by examin
the RG flow around them. We show that the stabilities
these fixed points remain unchanged even in the NMA. T
minimum eigenvalue, which is the most relevant towa
smaller scale, is also invariant irrespective of local appro
mation scheme ofEi j , because the eigendirection forlmin

[2]

~or lmin
[1] ) is orthogonal to both shear and tidal directions

27-dimensional ‘‘phase’’ space of (^F&,^FF&c) ~or in six-
dimensional ‘‘phase’’ space of̂F&). Hence the effect of
shear or tidal force seems irrelevant to the scaling propert
observables around fixed pointE or M toward smaller scale

The three fixed pointsE, M , andQ are robust and chang
neither their stability nor the scaling property of observab
around them toward smaller scale, regardless of shear,
force, and the approximation scheme of the tidal force.

D. The flow of our Universe

The RG flow and the fixed points we argued in the pre
ous subsections describe the diversity of our system. On
part of them, i.e., a particular integral line in the flow di
gram which satisfies a certain boundary condition, actu
describes our real Universe. In order to elucidate such
integral flow, we need a plausible boundary condition a
we need to examine the global and local scaling propertie
the observables.

One plausible boundary condition at the present hori
scale and beyond could be the fixed pointE ~Einstein–de
Sitter Universe!. This boundary condition would be inferre
from the inflationary scenario in the early Universe, whi
predicts the flat FRW Universe with tiny fluctuations simil
to our real Universe.

With this boundary condition, we solve the RG equatio
toward smaller scale and study the scale change of var
observables. In solving the RG equations toward the sma
scale, we must remember that~i! the positive~negative! ei-
04350
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genvalue of the matrixW [2] at a fixed point denotes stabilit
~instability!. ~ii ! The direction of the integration is opposit
to that of flow indicated in Fig. 1. It is clear that the choice
the exact values of pointE as a boundary condition is trivia
and not interesting because it is the fixed point and the fl
stays there forever. To find more interesting model of
Universe, we need to start from the close vicinity of the fix
point E.

Here we choose the boundary condition as follows. F
the averaged variables, we use the exact value of the fi
point E:

^u&5uEdS52, ^r&5rEdS51/6pG, ^s6&5^E6&50,
~3.25!

which givesV51. Since we expect some fluctuations ev
in an inflationary model, we set small finite fluctuations
the fixedE point. We assume that the off-diagonal fluctu
tions have initially no intrinsic fluctuations@26#, i.e.,

^ f i f j&c50~ iÞ j ! ~at l 50!. ~3.26!

Before going to show our numerical result, we shall discu
the asymptotic behaviors near three robust fixed pointsQ, E,
andM . We showed that the scaling property of observab
around those fixed points toward smaller scale is determi
by the minimum eigenvaluelmin

[2] . This is always true for the
second order cumulants^ f i f j&c . The scaling property of the
averaged variablêf i& may, however, depend on the cas
because the eigenvector with the eigenvaluelmin

[1] is perpen-
dicular to the hypersurface of the cumulants in the ‘‘phas
space (̂F&,^FF&c). If we have fluctuations initially rather
than a deviation from the fixed point, i.e.,^ f i

2&c* Þ0, then

^ f i&;^ f i&* 1e ie
lmin

[2] l , ~3.27!

as l decreases, unless^ f i
2&c* *(^ f i&* )2. This is just because

how to leave from the fixed point is determined by the flu
tuations^ f i

2&c* , which scaling property is fixed bylmin
[2] . On

the other hand, if we have an initial deviation from the fix
point such as^ f i&Þ^ f i&* without the initial cumulant
(^ f i

2&c* 50), then ^ f i&2^ f i&* behaves first as exp(lmin
[1] l ).

Since our boundary condition is the former case, we exp
an asymptotic behavior similar to Eq.~3.27!.

It may be more comprehensive to show our results if
introduce the ‘‘dispersions’’D i j instead of the cumulants
^ f i f j&c . For the diagonal cumulants^ f i

2&c , we define them as
2-9
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FIG. 2. The scale dependence of~a! ln V, ~b! H, ~c! Dr , and ~d! Du in the shear-free case withs50.5 and D0

5(1)1021, (2)1021.5, (3)1022, (4)1022.5. We solve the RG flows from the fixed pointE toward smaller scale.L[exp l represents the
ratio of the scale of averaged region to the horizon scale. Every flow monotonically converges toM asH becomes larger (H↗) andV gets
smaller (V↘) toward smaller scale. The critical scale whereV andH deviate from the EdS values depends on the magnitude ofD0.
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25^r2&c /^r&2, Du

25^u2&c /^u&2,

D̄s6

2 5^s6
2 &c /^u&2, D̄E6

2 5^E6
2 &c /^u&4, ~3.28!

where for shear and tidal force,D̄s6
and D̄E6

, which are

normalized bŷ u&, have been used rather than the conv
tional dispersions because those averaged variables s
times vanish even if their cumulants are finite, resulting i
divergence of the dispersions. The dispersion parame
Dr ,Du , D̄s6 , D̄E6 are assumed to be sufficiently small
the boundaryl 50. In what follows, just for simplicity, we
also setDr5Du[D0 at l 50, which may be plausible be
causer and u may be closely connected with each oth
through the fluid equations and are expected to have
same order of fluctuations.

1. The case without shear and tidal force

First we consider the case without shear and tidal force
Fig. 2, we depict the scale dependence ofV,H,Dr ,Du in
terms ofL[el , which is the ratio of the averaging scale
the horizon scale~or the scale at our boundary!. Since we
have chosenl 50 as the horizon scale~or beyond!, our ob-
servable Universe is described by negativel . As seen from
Fig. 2, the integrated flow line always converges to the v
ues at fixed pointM , i.e., VMilne50 and HMilne51. This
means that the Milne Universe is the unique stable fix
point toward smaller scale. Once it comes close to fix
04350
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point M , the behavior of the RG flow at small scale is dete
mined by the minimum eigenvalue atM , i.e., lmin

[2] 5s/(1
2s).

To see the role of the scaling parameters, in Fig. 3 we
plot the scale dependence of the density parameterV, the
expansionH, and the fluctuationsDr ,Du for several values
of s with fixed initial fluctuationsD051022. We find that
the observables show the following universal behavior:~i! H
increases toward smaller scale from 2/3 to 1;~ii ! V reduces
from 1 to 0 toward smaller scale. There is a plateau near
fixed pointE, while a constant slope is found near the fix
point M .

The asymptotic values are given by those at the fix
points E and M . We can also explain the constant slope
the smaller scale and the plateau at the larger scale in thV
diagram. Sincêr&;O(exp$@s/(12s)#l%) and^u&;3 near the
fixed pointM , V at smaller scale behaves as

V;O~exp$@s/~12s!# l %!, ~3.29!

wheres/(12s) is the minimum eigenvalue evaluated at t
fixed pointM . Then the slope of theV curve nearM turns
out to be

d ln V

d ln L
;

s

12s
. ~3.30!
2-10
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FIG. 3. Thes dependence of the RG flows of~a! ln V, ~b! H, ~c! Dr , and~d! Du from the fixed pointE at horizon scale in the shear-fre
case. Here we depict the cases ofD051022 ands5(1) 0.3, (2) 0.5, (3) 0.7, (4) 0.9.V begins to decline beyond a critical scale, a fe
decades smaller than horizon scale, which depends on the magnitude ofD0. The slope at smaller scale is determined bylmin

[2] 5s/(12s) at
the fixed pointM . The slope for the case~2! is equal to 1.H also changes from the value atE to the value atM beyond the above critica
scale. As the value ofs increases, the critical scale shifts toward smaller scale.
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On the other hand, the plateau appears near the fixed poiE,
because

^r&/rEdS;11erexp$2@2s/~322s!# l %,

^u&/uEdS;11euexp$2@2s/~322s!# l %, ~3.31!

and then

V;11~er22eu!exp$2@2s/~322s!# l %'1, ~3.32!

where we have usedlmin
[2] 522s/(322s) evaluated atE.

The turning pointLcr of the slope into the plateau is est
mated easily, since the deviations from the EdS values
due to the fluctuationsD0, er , eu;O(D0). Then, when
D0exp$2@2s/(322s)#lcr%;O(1), i.e.,

ln Lcr5 l cr;@~322s!/2s# ln D0 , ~3.33!

we find a large deviation from the EdS values. Thus
minima of the eigenvalues at two fixed pointsE andM de-
termine the asymptotic structure of our Universe.
04350
re

e

Is there any observational data which may suggest a s
dependence of eitherV or density? In discussions of dar
matter, when we plot the mass-luminosity ratio in terms
the scale of the objects, we find a curve similar to Fig. 3~a!.
If we assume that the mass-luminosity ratio curve is what
are discussing here, we find some constraint ofs, such as
0.3&s&0.7.

2. The case with shear and tidal forces

Next, we examine the effect of shear and tidal forces. J
for simplicity we assume thats25E250, which is consis-
tent with the RG equations. As we assumed,^s1& and^E1&
vanish at l 50. Then the initial free parameters a
D0 , D̄s2 ,0, andD̄E2 ,0, which are fluctuations atl 50. Our
numerical calculations, shown in Figs. 4 and 5, reveal t
they tend to preventH andV from converging to the fixed
point M though the Milne Universe is still a stable fixe
point. More precisely, we observe three qualitatively diffe
ent behaviors of the RG flow of our Universe.

~i! The RG flow monotonically converges to fixed poi
M . H and V approach the value determined by fixed po
M toward a smaller scale.

~ii ! Initially the Universe comes near the fixedM point,
resulting in an increase ofH and a decrease ofV toward
smaller scale. However, it turns around before reaching
2-11
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fixed pointM and eventually diverges to infinity in the flow
diagram asH→2` andV→`.

~iii ! The RG flow monotonically diverges to infinity in th
flow diagram asH→2` andV→`.

We can classify the parameter space (D0 ,D̄s1,0 ,D̄E1,0)
of fluctuations at the boundary~near the horizon! into three
regions according to the above asymptotic behaviors of
RG flow. Class~i! is realized if the fluctuations of shear an
tidal forces are sufficiently smaller than those of the den
and the expansion, i.e.,D̄s1,0 /D0;D̄E1,0 /D0,Rcr . Other-

wise, i.e., ifD̄s1,0 /D0;D̄E1,0 /D0.Rcr , class~iii ! will hap-
pen. The critical valueRcr is almost independent ofD0 and
approximatelyRcr'0.15. Class~ii ! is a narrow boundary be
tween them. Hence, class~i! @or ~ii !# naturally occurs as long
as the shear and tidal force are sufficiently smaller than
density fluctuations at the horizon scale. This situation
strongly suggested by recent observations@27#, i.e., the shear
is strictly restricted to arounds/H,1029 by CMB data.
Hence we expect that our Universe belongs to class~i! and
its flow line converges into the fixed pointM in smaller
scale. Thes dependence ofV or H is quite similar to the
case without shear and tidal forces@Figs. 6~a! and 6~b!#.

As for the shear and tidal forces, their averaged val
increase toward smaller scale, but eventually decrease i
flow converges to the fixed pointM @Figs. 6~c! and 6~d!#.
The scaling properties of the shear^s1& and the tidal force
^E1& are also determined bylmin

[2] at the fixed pointsE and
M . Both shear and tidal force are dumped off at smaller sc
along the flow converging to the fixed pointM .

The behaviors of fluctuationsDr , Du , D̄s1
, andD̄E1

are
shown in Figs. 6~e!–6~h!. We find similar behaviors to the
case without shear and tidal forces forDr andDu .

E. Beyond the horizon scale

In the previous subsections, we have integrated the
equations from the horizon scale (l 50) toward the smaller

FIG. 4. The RG flow toward smaller scale on theH-V plane in

the case thats50.5 andD̄s1,05D̄E1,051022. As for the density
perturbations, we chooseD05(1)1020.75, (2)1021, (3)1021.25,

(4)1021.5. If both D̄s1,0 /D0 and D̄E1,0 /D0 are less thanRcr

'0.1495 @~1!, ~2!#, every flow converges toM as H increases
(H↗) to 1 andV decreases (V↘) to 0 toward smaller scales. O

the other hand, ifD̄s1,0 or D̄E1,0 are larger than the above critica
value Rcr @~3!, ~4!#, the flow heading forM comes to turn around
and go away to infinity.
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scale. It is also possible to solve them toward the larger s
with the same boundary conditions. The structure beyond
horizon scale is not observable at present but may give s
relation with an inflationary scenario in the early Univers
In Fig. 7, we plot the scale dependence of^r&, H, and those
fluctuationsDr and Du in the shear-free case with initia
fluctuationD051022.5. In the finite scale 1025,L,105, the
flow stays in the vicinity of fixed pointE and the power law
behaviors ofDr and Du toward larger scale are determine
by lmax

[2] at fixed pointE, while in larger scaleL.105, the
flow converges to fixed pointQ after H becomes negative
and their power law behaviors are characterized by the
genvalues ofW [2] at the fixed pointQ. These eigenvalues
are the same ones naively determined from the original s
ing. This is consistent with the fact that the expansion cea
at the fixed pointQ and the RG transformation reduces to
pure scale transformation. This property makesDr constant
around fixed pointQ because of the cancellation betwe
numerator and denominator in the definition of Eq.~3.28!
@Fig. 7~c!#, while Du diverges at the scale whereH vanishes
and turns negative from the definition~3.28! @Fig. 7~d!#. The
declination of the slope in the ln^r&2 ln L diagram @Fig.
7~a!# is 22s which is the minimum eigenvalue ofW [2] as-
sociated with the fixed pointQ. If we assign a fractal dimen
sion D for this Universe,D5322s becausêr& reduces as
e(D23)l from a fractal structure whilêr&}e22sl by our scal-
ing law. If we assign the values50.5, the corresponding
fractal dimension becomesD52. Because our model is
Newtonian cosmology, further analysis beyond the horiz
scale would be irrelevant to the real Universe.

IV. CONCLUDING REMARKS

The renormalization group method has been applied
Newtonian cosmology in this paper and the scale dep
dence of the averaged observables on a fixed time slice
cluding effects of fluctuations has been studied. The sca
assumption we proposed for the averaged observables is
filled in the case of either homogeneous distribution
nonanalytic distribution such as a fractal, if we assume s
a scaling at any position and at fixed time. Actual obser
tion of the two point correlation function of galaxies ma
favor such a fractality at least in the finite scale range be
10 Mpc. Multifractality could be applied to explain the tran
sition from finite fractal range at smaller scale to homog
neous distribution at larger scale@28#. Our scaling analysis
of averaged observables here might give a hint to the beh
ior of observables in such a fractal matter distribution, if
exists.

To close our dynamical system and apply the RG meth
here we have adopted an approximation of tidal force~LTA !
and considered only fluctuations up to second order. T
higher order cumulants of averaged observables are igno
We have found three robust fixed points of the RG eq
tions: ~1! The fixed pointQ ~quiescent Universe! is stable in
any direction toward larger scale;~2! the fixed point E
~Einstein–de Sitter Universe! is a saddle point;~3! the fixed
point M ~Milne Universe! is unstable in any direction towar
larger scale.
2-12
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FIG. 5. The RG flow of~a! ln V, ~b! H, ~c! ln(^s6&/H), and~d! ln(^E6&/H2) from the fixed pointE toward smaller scale in the cas

that s50.5, D̄s1,05D̄E1,051022, andD05(1)1020.75, (2)1021, (3)1021.25, (4)1021.5. In the case of~1! or ~2! (D̄s1,0 /D0 ,D̄E1,0 /D0&

Rcr'0.1495), the RG flow converges toM toward smaller scales as the case without shear and tidal force~see Fig. 2!. In the case of~3! or

~4! (D̄s1,0 /D0 ,D̄E1,0 /D0*Rcr), however, the RG flow does not converge toM but rather diverges to infinity. We also depicted the flow

fluctuations;~e! ln Dr , ~f! ln Du , ~g! ln D̄s1 , and ~h! ln D̄E1
for the same initial values as the above. In the case of~1! or ~2!, all

fluctuations butDr damp off as the RG flow converges toM , while Dr approaches the finite value. In the case of~3! or ~4!, all of them
diverge to infinity.
w
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These fixed points do not change their stability even if
extend the ‘‘phase’’ space including fluctuations as well
shear and tidal forces. Any other fixed points are saddle,
therefore the scaling property of the global RG flow towa
larger ~smaller! scale is determined by fixed pointQ (M ).
We find that the Universe asymptotically approaches fix
point Q or diverges toward infinity regardless of the detail
the smaller scale.
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In order to find out the flow line which represents our re
Universe, we have imposed the boundary condition fix
point E with tiny fluctuations at the horizon scale. The infl
tionary scenario in the early Universe would imply such
boundary condition, i.e., the inflation predicts th
Einstein–de Sitter Universe at the horizon scale and beyo
We have solved the RG equation toward smaller scale fr
this boundary. Then we find that, toward smaller scale,
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FIG. 6. Thes dependence of the RG flows from fixed pointE of ~a! ln V, ~b! H, ~c! ln(^s6&/H), and~d! ln(^E6&/H2). Here we depict

the cases ofs5(1) 0.3, (2) 0.5, (3) 0.7, (4) 0.9 with the boundary conditions,D051021.5 and D̄s1 ,05D̄E1,051022.5 at horizon scale.
The results for lnV andH are quite similar to Fig. 3, if the flow converges to the fixed pointM . The slopes of̂s6& and^E6& at larger and
smaller scale are determined bylmin

[2] at fixed pointsE andM , i.e., 24s/(322s) and 2s/(12s), respectively. Ass increases, the turning
point of the slope shifts toward smaller scale and the slope becomes less steep. We also depicted the flow of fluctuations;~e! ln Dr , ~f!

ln Du , ~g! ln D̄s1
, and~h! ln D̄E1

for the same range ofs. D051021.5 andD̄s1 ,05D̄E1 ,051022.5 at horizon scale in the case of LTA. W
find thatDr

25const near the fixed pointM , while it decreases linearly near the fixed pointE, which behavior is determined by the eigenval
24s/(322s).
o
u

ce

ts:
as-
le
expansionH defined bŷ u&/3 monotonically increases from
2/3 to 1, and the density parameterV58pG^r&/3H2 mono-
tonically reduces from 1 to 0, provided the fluctuations
shear and tidal force are much smaller than the density fl
tuations, which would be supported by the inflationary s
04350
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nario @29# and observations of CMB.
We have two important free parameters,s andD0. These

values might be fixed by some of the following argumen
~i! The scale dependence of the mass-luminosity ratio of
trophysical objects;~ii ! a systematic decrease of the Hubb
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FIG. 7. The scale dependence of~a! ln^r&, ~b! H, ~c! ln Du , and~d! ln Dr beyond horizon scale fors50.5 with the boundary conditions
D051022.5 at horizon scale in the shear-free case. In the flow departing from the fixed pointE, ^r& approaches zero toward both smaller a
larger scales, for which the slopes at larger and smaller scale are determined bylmin

[2] at fixed points,Q and M , i.e., 22s and 2s/(1
22s), respectively.H also vanishes at larger scale, after it becomes negative aroundL5105, which causes the divergence ofDu around the
scale. The slope of bothDr and Du around the fixed pointE are determined bylmin

[2] 524s/(322s) toward smaller scale andlmax
[2]

56s/(322s) toward larger scale at the point.
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tidal
parameterH, if any, toward the larger scale;~iii ! the scale
dependence of the amplitude of the two point correlat
functions; ~iv! some of the inflationary models predict
fractal-like structure beyond the horizon scale@30#.

Several comments related with our future work are in
der.

~a! We definitely need the general relativistic generaliz
tion of our work. This is because the large scale structure
high redshift and beyond the horizon scale would be
equately described only by general relativity.

~b! In our analysis, we assume a scaling property of
averaged observables and their fluctuations. However, w
not know whether such a solution is dynamically stable
not. To answer for this, we have to consider the dynam
stability of our system.

~c! So far we have considered fluctuations of variables
to second order. Though this would be sufficient when
consider the vicinity of the horizon scale, we ultimately ne
to incorporate higher order fluctuations as well for the co
sistency of the theory.

~d! We have used the local tidal approximation~LTA ! for
obtaining equations of motions for tidal force. By th
method, we could avoid directly solving the Poisson eq
tion. This approximation would be justified up to the mild
nonlinear regime. However, it may not be valid in the fu
nonlinear regime, especially at smaller scales, where
04350
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fluctuations growDr@1. In order to treat the smaller scale
properly, we need to improve LTA in our future study. W
would like to report the analysis on these issues in the n
future.
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APPENDIX A: THE BASIC EQUATIONS FOR THE CASE
WITH FLUCTUATIONS

To be complete, here, we present a full set of our ba
equations, which have been used in our renormaliza
analysis for Newtonian cosmology. Those include fluctu
tions up to second order cumulants as well as shear and
forces.
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1. The RG equations for averaged variables

d^r&
dl

5S @^u&22#^r&, ~A1!

d^u&
dl

5S F S 1

3
^u&21D ^u&14pG^r&16~^s1&21^s2&2!2

2

3
^u2&c16~^s1

2 &c1^s2
2 &c!G , ~A2!

d^s1&
dl

5S F S 2

3
^u&21D ^s1&2^s1&21^s2&21^E1&2

1

3
^us1&c2^s1

2 &c1^s2
2 &cG , ~A3!

d^s2&
dl

5S F S 2

3
^u&21D ^s2&12^s1&^s2&1^E2&2

1

3
^us2&c12^s1s2&cG , ~A4!

d^E1&
dl

5S @~^u&22!^E1&14pG^r&^s1&14pG^rs1&c#, ~A5!

d^E2&
dl

5S @~^u&22!^E2&14pG^r&^s2&14pG^rs2&c#. ~A6!

2. The RG equations for second order cumulants

d^r2&c

dl
52S @~^u&22!^r2&c1^r&^ru&c#, ~A7!

d^u2&c

dl
52S F S 2

3
^u&21D ^u2&c14pG^ru&c112~^s1&^us1&c1^s2&^us2&c!G , ~A8!

d^ru&c

dl
5S F S 5

3
^u&23D ^ru&c14pG^r2&c1^r&^u2&c112~^s1&^rs1&c1^s2&^rs2&c!G , ~A9!

d^rs1&c

dl
5S F S 5

3
^u&22^s1&23D ^rs1&c12^s2&^rs2&c1

2

3
^s1&^ru&c1^r&^us1&c1^rE1&cG , ~A10!

d^rs2&c

dl
5S F S 5

3
^u&12^s1&23D ^rs2&c12^s2&^rs1&c1

2

3
^s2&^ru&c1^r&^us2&c1^rE2&cG , ~A11!

d^rE1&c

dl
5S @2~^u&22!^rE1&c1^E1&^ru&c1^r&^uE1&c14pG~^s1&^r2&c1^r&^rs1&c!#, ~A12!

d^rE2&c

dl
5S @2~^u&22!^rE2&c1^E2&^ru&c1^r&^uE2&c14pG~^s2&^r2&c1^r&^rs2&c!#, ~A13!

d^us1&c

dl
5S F2S 2

3
^u&2^s1&21D ^us1&c12^s2&^us2&c1

2

3
^s1&^u2&c1^uE1&c14pG^rs1&c

112~^s1&^s1
2 &c1^s2&^s1s2&c!G , ~A14!

d^us2&c

dl
5S F2S 2

3
^u&1^s1&21D ^us2&c12^s2&^us1&c1

2

3
^s2&^u2&c1^uE2&c14pG^rs2&c

112~^s2&^s2
2 &c1^s1&^s1s2&c!G , ~A15!
043502-16
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d^uE1&c

dl
5S F S 5

3
^u&23D ^uE1&c1^E1&^u2&c14pG~^r&^us1&c1^s1&^ru&c1^rE1&c!

112~^s1&^s1E1&c1^s2&^s2E1&c!G , ~A16!

d^uE2&c

dl
5S F S 5

3
^u&23D ^uE2&c1^E2&^u2&c14pG~^r&^us2&c1^s2&^ru&c1^rE2&c!

112~^s1&^s1E2&c1^s2&^s2E2&c!G , ~A17!

d^s1
2 &c

dl
5S F2S 2

3
^u&22^s1&21D ^s1

2 &c1
4

3
^s1&^us1&c14^s2&^s1s2&c12^s1E1&cG , ~A18!

d^s2
2 &c

dl
5S F2S 2

3
^u&12^s1&21D ^s2

2 &c1
4

3
^s2&^us2&c14^s2&^s1s2&c12^s2E2&cG , ~A19!

d^s1s2&c

dl
5S F2S 2

3
^u&21D ^s1s2&c1

2

3
~^s1&^us2&c1^s2&^us1&c!12^s2&~^s1

2 &c1^s2
2 &c!

1^s1E2&c1^s2E1&cG , ~A20!

d^E1
2 &c

dl
52S @~^u&22!^E1

2 &c1^E1&^uE1&c14pG~^r&^s1E1&c1^s1&^rE1&c!#, ~A21!

d^E2
2 &c

dl
52S @~^u&22!^E2

2 &c1^E2&^uE2&c14pG~^r&^s2E2&c1^s2&^rE2&c!#, ~A22!

d^E1E2&c

dl
5S @2~^u&22!^E1E2&c1^E2&^uE1&c1^E1&^uE2&c14pG^r&~^s1E2&c1^s2E1&c!

14pG~^s1&^rE2&c1^s2&^rE1&c!#, ~A23!

d^s1E1&c

dl
5S F S 5

3
^u&22^s1&23D ^s1E1&c12^s2&^s2E1&c1^E1&^us1&c1^E1

2 &c1
2

3
^s1&^uE1&c

14pG~^r&^s1
2 &c1^s1&^rs1&c!G , ~A24!

d^s1E2&c

dl
5S F S 5

3
^u&22^s1&23D ^s1E2&c12^s2&^s2E2&c1^E2&^us1&c1^E1E2&c

1
2

3
^s1&^uE2&c14pG~^r&^s1s2&c1^s2&^rs1&c!G , ~A25!

d^s2E1&c

dl
5S F S 5

3
^u&12^s1&23D ^s2E1&c12^s2&^s1E1&c1^E1&^us2&c1^E1E2&c

1
2

3
^s2&^uE1&c14pG~^r&^s1s2&c1^s1&^rs2&c!G , ~A26!

d^s2E2&c

dl
5S F S 5

3
^u&12^s1&23D ^s2E2&c12^s2&^s1E2&c1^E2&^us2&c1^E2

2 &c1
2

3
^s2&^uE2&c

14pG~^r&^s2
2 &c1^s2&^rs2&c!G . ~A27!
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