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We apply the renormalization groyRG) method to examine the observable scaling properties in Newton-
ian cosmology. The original scaling properties of the equations of motion in our model are modified for
averaged observables on constant time slices. In the RG flow diagram, we find three robust fixed points:
Einstein—de Sitter, Milne, and quiescent fixed points. Their stakitityinstability) property does not change
under the effect of fluctuations. Inspired by the inflationary scenario in the early Universe, we set the
Einstein—de Sitter fixed point with small fluctuations as the boundary condition at the horizon scale. Solving
the RG equations under this boundary condition toward the smaller scales, we find a generic behavior of
observables such that the density param@telecreases, while the Hubble paraméteincreases for a smaller
averaging volume. The quantitative scaling properties are analyzed by calculating the characteristic exponents
around each fixed point. Finally we argue the possible fractal structure of the Universe beyond the horizon
scale.[S0556-282(98)05714-3

PACS numbed(s): 98.80.Hw, 11.10.Hi

[. INTRODUCTION ground is assumed. In our approach, wendbassume such
uniform background priori but consider general inhomoge-
Several pieces of observational evidence imply scalingheous distributions.
properties in the present Universe. For exam(@gde Vau- Let us consider the scaling properties carefully. We start
couleurs compiled data of a density-size relation for galaxiegur analysis with the equations of motion for fluid in the
and clusters of galaxies, and pointed out the scaling relatioNlewtonian Universe neglecting the pressure term for sim-
of In p=—1.7InL, whereL is the linear scale of each astro- plicity. This set of equations admits a naive scale invariance;
physical object ang is the mass density averaged at thisa scaling of space-time coordinates as well as an appropriate
scale[1]. This relation asserts the systematic decrease of thecaling of observables leaves the set of equations unchanged.
density at a larger scaléb) It is widely known that the We define this naive scaling transformation as the operation
observed two-point correlation functigf{r) for galaxies or S. Such a naive scaling property is, however, not necessarily
for clusters has the scaling propegr)or 8 [2]. (c) Pi- reflected in the actual observations in a direct form. This is
etronero and his collaborators discuss a fractal structure dfecause in general the physically measurable quantities are
the Universe and claim that the fractal dimension is aboustrongly affected by the actual method of observations.
two up to the scale of 1000 Md8]. (d) The observations of Therefore the above naive scaling should be modified when
the mass-luminosity ratio for the various astronomical ob-we apply it to the actual observations. There are at least two
jects linearly increases toward the larger scale up to a scalenportant factors for the modificatioil) An observable re-
of about 10 Mpd4]. gion is limited by causality(2) we may merely observe av-
Motivated by the above pieces of observational evidencegraged quantities in a certain region in space.
we explore systematic underlying physics which may govern We first consider the factofl). Actually, we can only
the scaling properties of observables in the present Universebserve a light signal from a galaxy located on our past light
Usually the above scaling properties are understood as a reene. In Newtonian cosmology, the observable quantities are
sult of an interplay of the scale invariant initial condition located on a hyperslice of constant time. Because in general
(Harrison-Zel'dovich spectrumand the gravitational insta- the above naive scale transformation also requires a change
bility [2]. In this usual approach, a global uniform back- of the time variable, we have to adjust it so that we can
compare the observable quantities with different scales on
the same time slice. This adjustment can be implemented by
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invariant under the naive scale transformation. However irobservables, that is, the averaged variables do not depend on
many cases, we can directly measure the matter depsity the scale and characterize diversities of the system.
and separately the cosmic expansion paramdtéb]. The There have been some applications of the RG method in
combination of these observatioirglucesthe value of the cosmology[10]. The RG method is an effective tool to ex-
density parametef) [6] which depends on the scale. In this @mine the asymptotic behavior of a dynamical system. In
case, the scale transformation and the necessary time adjufict, Koike, Hara, and Adachi succeeded in explaining the
ment are nontrivial. Thus we have to carefully distinguishcfitical behavior of a self-similar solution during the gravita-
the direct observables and the secondajuced obsery-  tional collapse of a radiation fluid using the RG metlibd].
ables. Subsequent series of studies are in this line of sfd@. In

Next we consider factof2). What we observe is neces- their cases, the aspects @)(and (T) are reflected in their
sarily an averaged quantity on some region of space-timg‘ethOd- T_hus their RG method does not necessarily contain
because there are always spatial fluctuations and the resol@d averaging procedurdj. On the other hand, Carfora and
tion of our observation is limited. Therefore the observabledWarzuoli [13] and Carfora and PiotrkowsKd4] explicitly
are most generally dependent on the scale of averaging. Waecounted for the spatial fluctuation of physical quantities in
define this averaging as the operatianHowever, it would general relativity and _derlved the RG equation reflectlng_the
be very difficult to consider the invariant averaging proce-aspects §) and (A). Since they concentrated on the scaling
dure in the full general relativity and to make connectionin the spatial direction, the aspect)(has not been mani-
with observable§7]. Therefore, mainly because of this rea- festly reflected in their approach. Here in this paper, to ex-
son it would be better to restrict our considerations to themMine the scale dependence of the observables on a constant
Newtonian cosmology, in which an averaging procedure idlyperslice, we apply the RG method from the full aspects of
properly defined and is explicitly calculat¢8]. (9), (T), and ) altogether, assuming some scaling prop-

After the above adjustmentd) the operatioriT and (2)  erty in averaging observables. _
the operatiorA on the original naive scaling properties of the ~ This paper is constructed as follows. In Sec. Il, we derive
underlying equations of motion, we would obtain the rel-th‘? RG equ.atlon for the averaged Newtonian flq|d. Section
evant information for actually observable quantities. Thus in!l is the main part of our analysis. Here we examine the RG
general, the difference of two observables at different scale80W in the parameter space and show that there appear three
would be related with each other by the naive scaliog-  robust flx_ed points including the El_nstem—de Sitter universe.
erationS) compensating time evolutiofoperationT) and ~ \We examine the effects of shear, tidal force, and fluctuations,

the inevitable averaging proceduf@perationA). and derive the scale depend_ence' of the .physicgl variables
In order to unify the above operatior® T, and A, we such as) andH aroqnd the Einstein—de Sitter universe. In

need to introduce one more ingredient in our considerations>€¢- IV, we summarize our results. We also present the full

The most sophisticated method so far to deal with such mulRG €equations including fluctuations up to the second order

tiple operations would be the renormalization gro@Gc)  cumulants in the Appendix.

method[9]. This is a very general method to obtain the ob-

servable response of the system against the scale change andil. DERIVATION OF RENORMALIZATION GROUP

is widely used in various fields in physics including quantum EQUATIONS

field theory, statistical mechanics, fluid mechanics, etc. For ] ) )

example, in quantum field theory, a naive scaling in classical N Newtonian cosmology, the following equations de-

theory should be modified by the quantum fluctuations. mscnbe_ the evolution of a self-gravitating fluid in the Eulerian

statistical physics, the scaling property is used with the ay¢oordinate system:

eraging operation to yield critical exponents.

In this paper, we try to apply this RG method to Newton- f9_P: ~V.(pv)
ian cosmology. In this model, the scaling invariance holds all at pvl:
the time. Thanks to the averaging procedure, we can define
classical fluctuations of the observables. Then, naive scaling v
behaviors of the observables are modified by renormalization =—(v-V)v+g,

of the classical fluctuations. This is conceptually the same as o
RG methods in other fields of physics.

The RG equations we obtain give the effective scale V-g=—-47Gp, 2.0
change of averaged observables, and the effect of spatial
fluctuations on observables. The flow diagram generated byherep, v, andg(=—V ¢), respectively, denote the mass
the RG equations in the parameter space of observables re@ensity, the velocity of the fluid, and the gravitational accel-
resents how the observables actually change under the scateation. Now we transform these equations into the Lagrang-
transformation. Each flow line represents a single physicalan coordinate system. In order to eliminate the gravitational
system, in which the averaged variable at different scale coracceleratiorg, we introduce the spatial derivative of the ve-
responds to each point on the flow. Thus the RG flow givedocity field and decompose it into a trace pékpansiond
a whole set of possible cosmological models. The fixed=V-v), a symmetric traceless pa(shearo'j), and an anti-
points, i.e., the stagnation points in the flow diagram, of thesymmetric pari(rotation';) [8]. Then the above equations
RG equations represent the possible “uniform” structure ofbecome
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dp t—t'=e%"7,
——=—pb, (2.2
dt ’ AT
x—X'=e?7x,
de 1 _
Ji= — 302+ 2(wP— o) —4mGp, 2.3 60— 0'=e"*470,
i o.—oh=e" g,
doj 2 ik kL2 o o R
W:—56?0']-—0'“)'j—a)kcuj-i- §(0’ —w)d E. -El=e “E,
—E}, (24) p_>pr5672sA~rp7 (21@
dwij_ 2 . K ik wheres is a constant free parameter and= 7' — 7 mea-
dt §‘9“’ jTOkW T OO, 2.9 sures a change of scale.
Now, based on these scaling properties, we derive renor-
where the Lagrange full time derivative malization group equations for spatially averaged observ-
ables on a constant time slice. To analyze the structure of the
Ez ﬁ iV 2.6 Universe, we adopt a scaling solution of our basic equations.
dat_ ot U ' Such a scaling solution could be realized as a result of a

self-gravitating dynamical system with a scale invariant den-
is used on the left-hand side. In these equatiengnd sity fluctuation[2], although here we do not specify any
denote the magnitudes of shear and rotation, respectivelynodels to give such a scaling solution. If, however, we con-
defined by sider a scaling solution such as HG.10 as it is, we find
either a homogeneous Universe or inhomogeneous Universe
with a “center,” which is not consistent with the cosmologi-
cal principle. We are interested in the inhomogeneous Uni-
, , , verse model consistent with the cosmological principle such
The tensorE!;=V'V;¢— &8 V?#/3 denotes the tidal force as a fractal universe. If we have a fractal universe, we expect
which comes from the spatial difference of the gravitationalhat some averaged values around an observer may show a
acceleration. In pure Newtonian dynamics, this is a slavingcaling property. Such a scaling property will be always ob-
variable and there is no equation of motion for it. Fortu-served anywhere because of a fractal structure of the Uni-
nately, several excellent approximation schemes have beegrse, which is consistent with the cosmological principle.
developed to deal with this highly nonlocal quantity. In this This is why we consider spatially averaged observables here.
paper, we mainly follow the local tidal approximatidliTA)  \We assume a scaling property such as®dL0 not only for
[15-17 in which the equation of motion for the tensBf is  averaged values of the variables in the above equations but

2 L d 2_1j i 2
o'=500; and =zl (2.7

given by also for those of the fluctuations such as a second order cu-
e mulant.
| 9Bl —4nGpo . 2.9 We define a spatial average- -) of an observablé(t,x)
dt at timet as

Hereafter we neglect the rotation for simplicitywl{=0). 1 3

Actually the initial assumption ofw!;=0 is sufficient to <f>”“>:WL>md xf(t,x), (211
guarantee this condition all the time as is seen from the

above equation. Thus irrotational motions form a closed subwhere D(t) is a spatial domain at timé and V(t) is its
class of the full dynamics. Then, we can simultaneously divolume defined bW(t)sz(t)d3x. The observabld (t,x)
agonalize both the matrices'; and E!;. We work in the can be any function of,p,o. ,E. . We would like to derive
frame where they are diagonalized @sandE; (i=1,2,3), the expression for the infinitesimal scale change of the aver-
respectively. Sincer!; and E!; are traceless, only the two aged observable on the same time slice, i.e.,

components of each are independent. Then it may sometimes

be more convenient to introduce the following variabdes Ao _ o= (Ho (2.12
andE. : Al Al ' ‘
(01,05,03)=(0,+ J3o_ Oy — V3o, — 20,), where the parametémeasures the true scale change on this

time slice, which is defined by

_ |/|_<V’(t)
—¢ TV

(E1,E»,E5)=(E,+3E_,E, —\3E_,—2E,).
(2.9

1/3

: (2.13

eAI

At a glance, we observe a scaling property in the above
set of equations of motio(2.2)—(2.5), (2.9). They are invari- and is different from the naive scaling parameterD’(t)
ant under the following scaling transformation: andV’(t) denote the domain and volume transformed back
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to the original timet slice by time evolution fronD’ (t') and Thus, combining Eq42.14—(2.19, we obtain the differ-

V'(t'), which are obtained by a scale transformatigrig.  ential equation for the averaged observalfley, :
The above Eq(2.12 can be decomposed into two parts:

. ; : d{f) a
a changeA g(f) associated with a scale transformation from DO ol Zify 4 (p A
D(t) to D' ('), (ii) a changeA(f) associated with a time di to {120 (D)oo = (0o
evolution fromD’(t") to D’ (t). That is, di
—{ == 2.20
A(fypy 1 <dt> ; (
Al :H[(<f>D’(t’)_<f>D(t))+(<f>D’(t)_<f>D’(t'))] D(1)
1 where
EH(AS<f>+AT<f>)- (2.14 S
S=—— 17 2.2
1=S(0) i tol3 .29

As for part (i), we use the scaling law of the observable
(), which is The parametes dependence appears solely through this fac-

e —(Fprery = €3 F) pry 215 Ors
(Do = (Mo =X fow 219 Equation(2.20 is not yet sufficient to obtain a closed set

f(t’,x') andD’(t') with respect to time: equations. Differential equations for tim¢h order averaged
quantities are not closed up to théh order. They necessar-
1 ily contain (n+1)th order averaged quantities. This is the
<f>D'<t'):(1+<0>Dl(t)m)\,,(t)JD,(I,) famous Bogoliubov-Born-Green-Kirkwood-YvdBBGKY)

hierarchy in statistical physics. The ordinary method to ob-

3 , f ) tain the closed set of equations is to truncate this hierarchy at
X(1+0ADAX F(1x")+ G (LX) At some order. In our case, we include the effect of fluctuations
at the lowest nontrivial level, i.e., the second order cumu-

+O[(At)2]=(f>D/(t)+At lants. Then we will neglect all intrinsic fluctuatiofisumu-

df lantg higher than the second order, finding the following
x —<0>Drm<f>prm+<ef>pr<t>+<a> ) fruncation formula
D' (1)
(fghy—(f)(gh)+(g){fh)+(h)(fg) —2(f)(g)(h).

+O[(At)?], (2.16 (2.22

whereAt=t'—t. To write down the basic equations, we shall use the second

The true scale changkl on a constant time slice is given order cumulan{fg). instead of the averaged quadratic quan-
as follows. In the scale transformaticin, the volume change tity (fg), where(fg).=(fg)—(f){g). Applying this reduc-
is V'(t")/V(t)=e3*"=1+3Ar, but it includes the expan- tion, we obtain a closed set of 27 differential equations for
sion effect of the Universe because time is also transformediveraged variables and their second order cumulants. We
To obtain the true scale change on the same time slice, wwill present the complete expression in the Appendix. Here
have to transform it back to the original time slice by thewe only show a reduced set of equations to the first order
time evolution (i), which givesV'(t')/V'(t)=1+(6)At. (the averaged variablgby setting(fg).=0:
Then we have

d{p)
V'(t) 1’3_1 A (6>A N - —ar =S 2K, (2.23
W =1+ 7'_? t=1+ . ( . 7)
. d(e) _ .|((0)
Thus we obtain T_S ?—1 (0)+47G(p)
A'ZAT—@A': (2.18 2 2
3 °" ' +6((o )+ (o)) |, (2.249
The time intervalAt=t’—t is given by the scale transfor- Ao,y [[2
mation(2.10 as sl B -tonrr o e
At '
- (2.19 (225
AT
do-) _[[2
Hereafter we identify this fixed timeas the present cosmic dl _S_ §<0>_1 (o )+ 2o o) +(E)),
time tg, when we observe cosmological quantities. (2.26
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d(E.) To analyze the structure of the RG equations, we
gr =~ SLKO)—2)(E+)+4mG(p)(os)], (227  first need to know the fixed point (F)(FF))
=((F)* (FF)¥), which is defined by

d({E_
u:5[(<¢9>—2)<E_>+47T(3<p>(a_>]. (228 «F) _d(FF). B
d| T K G A A M T =0.
dl e c dl
(Fy=(F)* (FF).=(FF)%

These also form a closed set of equations at this order. We (3.9
call these first order RG equations, while those in the Appen-
dix we call second order RG equations. As for the first order RG equations, the fixed poifi)

Here and in the Appendix, we have $gt 1 and dropped =(F)* is given by
the suffix of integration domain for averaged values just for .
simplicity. Hence, in these units, the expansiérand the A[(F)*]=0. (3.5

Zens_ng gnfg ' E|islt(/eé?TGd.e Sitter universe turn out to be The above Egs(3.1), (3.2), with (3.5 guarantee that the
EdS™ Peds fixed points(F)* in the first order RG equations are always

those for the second order RG equations WilF): =0,

although new additional fixed points appear in second order.
The stability analysis is very important to know
We now examine the RG equations obtained in Sec. llasymptotic behaviors near the fixed points. The stability is

First, we analyze the first order RG equatid@23—(2.29.  examined by linearizing the RG equations around the fixed

Although this may not be realistic because the structure opoint(F)*, (FF)% as

the Universe could be highly inhomogeneous in our model, it

IIl. ANALYSIS OF RG EQUATIONS:
FIXED POINTS AND RG FLOW

shows that it is naive to understand the RG flow and give (FYy=(F)*+7F, (3.9
three important fixed pointéncluding the Einstein—de Sitter
spacetimg which will be also most relevant even in the case (FF)c=(FF) +(FF)e, 3.7

with fluctuations. We then examine the stability of these )
fixed points[18]. Next, introducing fluctuations, we study Where both#and (F7). are small enough to make the linear
the second order RG equatiofsl)—(A27) and analyze the perturbation treatment effective arouffe)*, (FF)g. Then,
stability of those fixed points in a much wider parameterwe find the perturbation equations in the form

space. Finally in this section, we set the Einstein—de Sitter

fixed point with a small amount of fluctuation, as the bound- i F _ Wi Wi F 3.9
ary condition at the horizon scale in our present Universe di\ (FF), Wo1 W) \(FF)e)’ '
and examine a scale dependence of averaged variables to-
ward smaller scale. where the perturbation matri¥/[?1=(W,g) is given as
A. Fixed points of the RG equations and stability Wi WlZ)
First we analyze the structure of our RG equations. Fro War Wa,
Egs. (A1)-(A27), we find that they are written in a vector I(SAL(F)])
form as —_— S*C
o BRI
an REC:E |
g = SAL(F)I+C(FF)o) (3.1 ASBLED FEYY S'BLF)]
(F) (F)=(F)*
d{FF) 3.9
= SBI(F)I(FF).. 32 39

with S*=S|<F>=<F>*. For the first order RG equations, it

where(F) and(FF), are 6- and 21-dimensional vectors de- turns out to be

fined as(F)=((f;)) and (FF).=((fif;)c) with fi’s (i=1

~6) denotingp, 6, o,, o_, E,, and E_. A[(F)], d_7::W[1] (3.10
B[(F)], and C are six-dimensional vectors of quadratic dl ’ '
functions of(f;), 21X 21 matrix of linear functions off;), .

and 6x 21 constant matrix, respectively. Setti(igF).=0, where W is given as

we have IN(F)]
Wwhl=g* ) , (3.11)

(Fr=(F*

d(F
%zSA[(F)], (3.3

because of Eq(3.5). For the fixed points in the first order
which is exactly the first order RG equatio(&23—(2.28. RG equations, we find the following important results. As we
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mentioned, they are also the fixed points in the second order TABLE I. The list of three fixed points and their eigenvalues in
with <|:|:>: =0. Then the perturbation matriw[?l becomes the case with neither shear and tidal force nor fluctuations.

will S*C 67G(p)* (6)* S* Two eigenvalues
wlzl= el (3.12
0 S*B[(F)*] 1) Q 0 0 s {—28%, -5}

This form guarantees that the eigenvalues of the first order 3s )
matrix Wl are always those of the second order matrix(?) E 1 2 {—38".5%
WI2 As we will show later, the other eigenvalues of the S
second order matrix are constructed by a sum of any twce3) M
eigenvalues of the first order matfizee Eqs(3.20, (3.23]. 1—s
The positive(negativé eigenvalue of the matrixV[?! (or
W) shows the instability(stability) of the fixed point . . . .
((F)* (FF)¥) (or (F)*) toward the larger scale, i.e., in the (3.10]. All eigenvalues ofwl ] for three fixed points are
large | direction. The stability and the instability are ex- &lSC given in Table I. For the first fixed poit) where both

changed if we follow the RG flow in the opposite direction, {#)(1) and{p){y, vanish, the dynamical terdv(F) does not

i.e., toward the smaller scale. affect the scaling, so that the eigenvector points the direction
The eigenvalues fully characterize the scale dependenc¥ €ach observable. On the other hand, for other fixed points,

of all physical variables in the vicinity of each fixed point. the effect of dynamics changes a scaling property from the

Although each observable is scaled according to its dimenoriginal bare scaling law2.10.

sion, the effect of dynamics changes the scaling property As seen from Table I, the fixed poift) is stable toward

from the original bare scaling la2.10), so that the scaling larger scale. For increasing scale, the Universe approaches

of each observable is determined by the superposition of seybis fixed point, at which both the energy density and expan-
eral eigenfunctions as follows: sion vanish. Therefore we shall call it the fixed po{tas

the Universe is quiescent. The second fixed péfitis a

o
w
n

(5.5}

N . saddle point. It represents the Einstein—de Sitter Universe
(Fiy=(fi)x +m§=:1 EimE ™ because( 0) ()= Ogqs and (p){»)=pegs. We thus call it the
fixed pointE. The third fixed point(3) is unstable in any
Amin=N1=<A2=" - <AN=\max: (3.13  direction. At first sight, it might look strange since the ex-

pansion of the Universe is finite in spite of vanishing energy
where(f;), is the value of f;) at a fixed pointg; ., is some density. This corresponds to the “Milne” universe in which
small constant, and\,, (m=1~N) are eigenvaluesN the expansion rate is apparently finite because of a specific
=n(n+3)/2 for the second order RG equations, while choice of the time slice. We call it the fixed poikt. This
=n for the first order RG equations, with being the num-  Universe is reduced to the “Minkowski” space by adjusting
ber of observables. Since the maxim@minimum) eigen-  the time slice appropriately.
value N o Amin) becomes the most relevant toward larger In Fig. 1, to see more precisely those fixed points and the
(smalley scale, the scaling property of each observabldoehaviors of global structure of the RG equations, we depict
around fixed point is determined Byna,(\ min) - the RG flow on theH-() plane, where the Hubble parameter

The fixed points themselves are independent of the scaH and the density parameté) are defined by

ing parametes, but the matrixW? (or Wity and its ei-

genvalues depend an For the sake of the explicit argument (6
below, we restrict the range of the parameteio 0<s<<1 H= 3 3.19
where the topology of the RG flow is not chandd®].

B. Fixed points and the flow of RG equations Q= %Him (3.16

without fluctuations

Here we analyze the first order RG equatid2s23—
(2.28 in detail. First, by neglecting both shear and tidal force
terms, we have simple RG equatiof®3) with

The RG flow either approaches fixed pofptor escapes to
infinity toward larger scale. These two kinds of flows are
clearly separated by the divide which passes through two
102 fixed pointsE andM (Fig. 1). The flow escaping to infinity
A[(F)]= —(0)+3(6)"+4mC(p) (3.14  seems unphysical since bdthand{} blow up to infinity at
(6)—2)(p) large scale.

Next we include shear and tidal force, which leads to
for two averaged variable§=)=((p).(0)). We easily find  Eqs(2.23-(2.28. The three fixed point®, M, andE found
three fixed points(F)(, (k=1,2,3), which are listed in in the case without shear and tidal force survive, and their
Table I. stabilities also remain unchangddee Table ). In this

The stability at each fixed poir(tF)Z‘k) is examined by sense, the three fixed poing, M, andE are robust. Four
linearizing the RG equations around the fixed pdiEfj. new fixed points appear in addition to those three fixed
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C. Fixed points and the flow and of RG equations
with fluctuations

Since our model of the Universe may be quite inhomoge-
neous and could be fractal in a microscopic point of view, an
inclusion of fluctuations of the physical variables is inevita-
bly important when we compare our results with those for
the real Universe. In fact, if we do not include fluctuations, it
is mathematically equivalent to a self-similar solution on a
fixed time slice[20—27 although the physical meaning is
quite different. Then, we shall add fluctuations and see how
the fluctuations affect the RG flow diagram. We just include
second order cumulants to the RG equations and truncate this
hierarchy there by ignoring all intrinsic fluctuatiofsumu-
lantg higher than the second order, although we may have

another choice of higher-order cumulafs].

There are 27 independent variables in this case and it
becomes more difficult to find a full list of fixed points. Thus
we first reduce the number of variables and start our study
from the shear-free case. Since independent observables are

FIG. 1. The RG flow toward larger scale on theQ plane in  just p and 6 in this case, the total number of variables in-
the case with neither shear nor fluctuations. Here we define theluding second order cumulants is just(®), (), <P2>c:
Hubble parameted and the density paramet@rasH=(6)/3and (42 (p@).. We list all fixed points and show their stabili-
0=87G(p)/3H?, respectively. The three important fixed points ties in Table III. The three important fixed point®—(3) in
exist: (1) fixed pointQ (quiescent Universe (2) fixed pointE e first order RG equations still remain and their stabilities
(Einstein—de Sitter Universe(3) T'Xed pointM (Milne Umyer;e). are also unchanged. They are quite robust. Since all of the
The RG flow converges to the fixed poi@tor escapes to infinity. new fixed points8)—(10) are saddle points, global properties

The fixed point seems to be a line in tHeQ) plane, but it is a point
that all physical variables vanish in the “phase” space (B of RG ﬂows toward poth Iarger and smaller sca!es are solely
=((p).(6)). Q tums out to be some finite value, which depends ondetermined by the fixed poin@ andM, respectively. The

the limit of (p)—0 and(6)—0. fixed pointE remains as a saddle point.
As we mentioned, the fixed points found in the first order

points, which are listed in Table Il. Since all new fixed pointsequ"’Itlons are also those of second order with zero cumu-

e sl ponts, any RG flow sil pproaches the e P e e0eruaes 1 ose Tued ponts, we o o
point Q or escapes to infinity toward larger scale, or it ap-g ’

roaches the fixed poil toward smaller scale more detail, we explicitly write down the perturbation matrix
P P ' wi2l (312 as

L e S e

TABLE Il. The list of seven fixed points and their eigenvalues in the case without fluctuations in LTA.
The seventh fixed poinf7) is not an isolated point but a closed loop parametrized by one parameter
o*=3%cosy, o*=1siny, E*=3%(cos2—3cosy), E*=-3(sin2p+3siny), where 0<py<2.

M1,N2, A3 are three real solutions{1<\;<\,<0, \3=1) of A3~ X —4(1—cos 3;)/27=0.

67G(pY* ()% (o,)* (o )* (E.)* (EL)* & Six eigenvalues

Q 0 0o o0 0 0 0 s {—28%,—28%,-28%, -8, —S& —8)
@ E 1 2 0 0 0 o _3s (—25%, —285% —25% & 5 S}
3-2s
BM 0 3 0 0 0 o _S_ {5,885 S 5%}
1-s
4 0 1 -} o 0 0 33_3 [—8*, -8, — 8 -5, -8 5}
—S
®) 0 1 L0 0 3 s s s -s5)
2\3 3-s
®) 0 1t Y 0 0 3 Lsos s o5 -580
2\3 3-s

@) 0 {N18* A,S8*,0,05% \3S*}

w
I
7
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TABLE lll. The list of fixed points and their eigenvalues in the case without shear and tidal force including fluctuations. New fixed points
(8)—(10) are unphysical becaugp?)¥ and/or(#%)* are negative.

6mG(p)*  (0)*  36m°GXpdE (6D  67G(ph)* S Five eigenvalues
1Q 0 0 0 0 0 s {—48%,—38%,—28%,—285*,— S}
@E 1 2 0 0 0 3 [—fy,—zs*,fs*,s*,zs*]
3-2s 3 373
B M 0 3 0 0 0 S (5,8 ,25%,28% 25}
1-s
® 0 g 0 -3 0 22_5 (-8 -5, — 15 —1s s
—S
9 0 % 0 —§—Z, % oS _1+_\/1—33k _2g% _lgx L\/ﬁgkgc
5-3s 5 R '
1+17 . —1+17 _ 2
(10 0 2 -4 -1 3 3s [‘ s ° % % '55*'5*]
3—-2s
Wi Wi ()*—2 (p)* Therefore the minimum eigenvalues at fixed points of first
W[“E( ): ) , order, in particular the fixed poin®, E, andM, are given
Wo1 W 4G 5(0)* -1 by
oegl® O 0> Nah=2nGh (3.21)
C: 1
0 -5 0 if \[X1<0 (this is the case for the fixed poin@ and E),
otherwise,
S*B[(F)*]
AE =L (3.22
2((6)*~2) 0 2(p)* e
2 (this is the case for the fixed poiM).
=S 0 2( 5(0)" - 1) 8mG Finally, we study a full model with 27 RG equations for 6
A47G (p)* $(0)* -3 independent variables including shear and tidal force and
their second order cumulants. Though it is very difficult to
2wy, O 2w, find all fixed points, all seven fixed points in the first order
| o Wy, 2wy | (3.17 RG equationglisted in Table 1) remain fixed points, as we

mentioned. As for their eigenvalues, we also find the same
Wop  Wip Wit Wpp result as that in the case without shear and tidal force, that is,

_ _ the eigenvalue in the second order RG equatifi&’|m
Then the eigenvalue equation for the second order perturba_;1 ... n(n+3)/2} are constructed by those in the first or-

tion matrix W' is der{)\wlm:l, ... N} as
(=t WIIN+detW ) (N —tr W) (N2 =2 trw iy NN
m m

+4 detwth=0. (3.18

for m=1,...)n

AN\ for  m=n+1,... n(n+3)/2
Since the eigenvalue equation for the first order makiX! " ! '

is with 1,1’=1,...n, (3.23

A2—tr W\ +detw!tl =0, (3.19  Wheren is the number of observables. This result is under-
stood from some special relation between the perturbation

supposing thax [ and\ [ are its two solutions, we find the matricesW!!l and S*B[(F)*] [24];
solutions of Eq.(3.18), )\i[2] (i=1~5), to be 1
NG NN O S*Bjj wl(F)* 1= §[5iij| + 8 Wi+ 9wy + 9 Wi ],

(3.29
[2] — 9y [1] [2] - 1]y [1] [1] .
=2, NP =trwl=n G, wherei, j,k,| denote the observablgsé,o . ,E. .
(2] [ In Table IV, we have only listed three important fixed
A5 =2N5". (320  pointsQ, E, andM with their stabilities. These three fixed
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TABLE IV. Three important fixed points and their eigenvalues in the case with shear and tidal force in
LTA as well as fluctuations.

67G(p)* (6)*  (others* S* 27 eigenvalues
(1) Q 0 0 0 s {(—45*)X6,(—38*) X 9,(—28*) X 9,(~ S*) X 3}
(@ E 1 2 0 3 {(=55%)x6,(- §5) x3,(35) x9,
3-2s (S8%) % 3,(25*) X 6}
3M 0 3 0 s {(8*)x6,(25*)x 21}
1-s

points still survive and their stabilities remain unchangedgenvalue of the matrixV?! at a fixed point denotes stability
even after including fluctuations as well as shear and tidafinstability). (ii) The direction of the integration is opposite
forces. to that of flow indicated in Fig. 1. It is clear that the choice of
Let us just mention how our results change if we usethe exact values of poirE as a boundary condition is trivial
another approximation scheme for the equation of motion foand not interesting because it is the fixed point and the flow
Ei; . We mainly use the LTA approximation in this paper. In stays there forever. To find more interesting model of the
the case of other local approximations such as N\28],  Universe, we need to start from the close vicinity of the fixed
the RG equations become more complicated and it is morgoint E.
difficult to look for all fixed points and eigenvalues. How- Here we choose the boundary condition as follows. For
ever, it is still easy to show that the above three fixed pointshe averaged variables, we use the exact value of the fixed
Q, M, andE survive since the RG equations exactly reducepoint E:
to the shear-free case when we Bet= o =0. The stabili-
ties of these fixed points can also be checked by examining (0) = 0gqs=2, (p)=pess=1/67G, (o.)=(E.)=0,
the RG flow around them. We show that the stabilities of (3.29
these fixed points remain unchanged even in the NMA. The
minimum eigenvalue, which is the most relevant towardwhich givesQ=1. Since we expect some fluctuations even
smaller scale, is also invariant irrespective of local approxiin an inflationary model, we set small finite fluctuations at
mation scheme of;;, because the eigendirection faf2l  the fixedE point. We assume that the off-diagonal fluctua-

(or A2y is orthogonal to both shear and tidal directions intions have initially no intrinsic fluctuation6], i.e.,
27-dimensional “phase” space ofK),(FF).) (or in six-
dimensional “phase” space ofF)). Hence the effect of
shear or tidal force seems irrelevant to the scaling property of _ _ )
observables around fixed poifitor M toward smaller scale. Before going to show our numerical result, we shall discuss
The three fixed point&, M, andQ are robust and change the asymptotic behaviors near three robust fixed pdnhig,
neither their stability nor the scaling property of observables?ndM. We showed that the scaling property of observables
around them toward smaller scale, regardless of shear, tigground those fixed points toward smaller scale is determined

force, and the approximation scheme of the tidal force. by the minimum eigenvalukly),. This is always true for the
second order cumulantd;f;).. The scaling property of the

averaged variabléf;) may, however, depend on the case,
because the eigenvector with the eigenvauh?;%1 is perpen-
The RG flow and the fixed points we argued in the previ-dicular to the hypersurface of the cumulants in the “phase”
ous subsections describe the diversity of our system. Only gpace (F),(FF).). If we have fluctuations initially rather
part of them, i.e., a particular integral line in the flow dia- than a deviation from the fixed point, i.¢£2)* #0, then
gram which satisfies a certain boundary condition, actually
describes our real Universe. In order to elucidate such an
integral flow, we need a plausible boundary condition and

we need to examine the global and local scaling properties of o ) L
the observables. as| decreases, unleg$ )y =((f;)*)*. This is just because

One plausible boundary condition at the present horizoi'OW t0 leave from the fixed point is determined by the fluc-
scale and beyond could be the fixed pot(Einstein—de tuations(f?)¥ , which scaling property is fixed byfl,. On
Sitter Universe This boundary condition would be inferred the other hand, if we have an initial deviation from the fixed
from the inflationary scenario in the early Universe, whichPoint such as(f;)#(f;)* without the initial cumulant
predicts the flat FRW Universe with tiny fiuctuations similar ((f?)& =0), then (f;)—(f;)* behaves first as expifll).
to our real Universe. Since our boundary condition is the former case, we expect

With this boundary condition, we solve the RG equationsan asymptotic behavior similar to E(B.27).
toward smaller scale and study the scale change of various It may be more comprehensive to show our results if we
observables. In solving the RG equations toward the smallgntroduce the “dispersions”;; instead of the cumulants

scale, we must remember th@} the positive(negative ei-  (f;f;).. For the diagonal cumulan($i2>c, we define them as

(fif)e=0(i#]) (at 1=0). (3.26

D. The flow of our Universe

(fi)~(fi>*+eiek£§i]nl, (327)
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FIG. 2. The scale dependence ¢& InQ, (b) H, () A,, and (d A, in the shear-free case witls=0.5 and Aq
=(1)10"%, (2)10°%5 (3)10°2, (4)10 25 We solve the RG flows from the fixed poiBttoward smaller scald.=expl represents the
ratio of the scale of averaged region to the horizon scale. Every flow monotonically conveldesstd becomes larger{ ) and() gets
smaller (0\,) toward smaller scale. The critical scale whéteandH deviate from the EdS values depends on the magnitudg, of

Ai:<92>c/<p>2' A§:<92>C/<9>2, point M, the behavior of the RG flow at small s?gle is deter-
— mined by the minimum eigenvalue M, i.e., \jnin=5/(1
A2 =(o2)(0 BB =(ED)K0), (328 Tl . mo—slt

To see the role of the scaling parameseiin Fig. 3 we

where for shear and tidal forca_g and KE , Which are plot thg scale dependence O_f the density paramitethe

, x * expansiorH, and the fluctuationa ,,A, for several values
normalized by(6), have been used rather than the conveny's with fixed initial fluctuationsA,=10-2. We find that
. ; . . A €S SOMBa observables show the following universal behavion
“F"es vanish even if t_helr cymulants are f|n|tef resulting in 3ncreases toward smaller scale from 2/3 tdiil); Q) reduces
divergence of the dispersions. The dispersion paramete{s, ;1 15 o toward smaller scale. There is a plateau near the
A, Ay, A,. Ag. are assumed to be sufficiently small at fixed pointE, while a constant slope is found near the fixed
the boundary =0. In what follows, just for simplicity, we point M.
also setA,=A,=A, at =0, which may be plausible be- The asymptotic values are given by those at the fixed
causep and § may be closely connected with each otherpgints E and M. We can also explain the constant slope at
through the fluid equations and are expected to have thghe smaller scale and the plateau at the larger scale iftthe
same order of fluctuations. diagram. Sincép)~ O(exp{[¢/(1-9)]I}) and( #)~3 near the

] ) fixed pointM, Q) at smaller scale behaves as
1. The case without shear and tidal force
First we consider the case without shear and tidal force. In

Fig. 2, we depict the scale dependence(bH,A,,A, in
terms ofL=e', which is the ratio of the averaging scale to
the horizon scaldor the scale at our boundarySince we
have chosen_1=0 as the hOF'ZO” scaleor b.eyond, our ob- fixed pointM. Then the slope of th€ curve neaM turns
servable Universe is described by negafivéds seen from out to be
Fig. 2, the integrated flow line always converges to the val-
ues at fixed pointM, i.e., Qyine=0 and Hyine=21. This
means that the Milne Universe is the unique stable fixed dinQ s
point toward smaller scale. Once it comes close to fixed dinL 1-s’

Q~0(exp[s/(1—9)]1}), (3.29

wheres/(1—s) is the minimum eigenvalue evaluated at the

(3.30
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, and(d) A, from the fixed poinE at horizon scale in the shear-free

(3) 0.7, (4) 0.92 begins to decline beyond a critical scale, a few

decades smaller than horizon scale, which depends on the magnitdge Tfie slope at smaller scale is determinedhkwﬁs/(l—s) at
the fixed pointM. The slope for the cas®) is equal to 1H also changes from the value &tto the value atM beyond the above critical
scale. As the value of increases, the critical scale shifts toward smaller scale.

On the other hand, the plateau appears near the fixedppint
because

(p) peas~ 1+ €,exp{—[2s/(3—29) ]I},
(0)] Ozas~ 1+ egexp{—[25/(3—-25)]I},  (3.3D)
and then

Q~1+(e,—2¢,)exp(—[2s/(3—29)]1}~1, (3.32

where we have usedl[?] =—2s/(3—2s) evaluated atE.

The turning pointL., of the slope into the plateau is esti-

Is there any observational data which may suggest a scale
dependence of eithe® or density? In discussions of dark
matter, when we plot the mass-luminosity ratio in terms of
the scale of the objects, we find a curve similar to Fig).3
If we assume that the mass-luminosity ratio curve is what we
are discussing here, we find some constrains,oéuch as
0.3=s=<0.7.

2. The case with shear and tidal forces

Next, we examine the effect of shear and tidal forces. Just
for simplicity we assume that_=E_=0, which is consis-
tent with the RG equations. As we assumgd, ) and(E )
vanish at I=0. Then the initial free parameters are
Ag, A, o andAg ,, which are fluctuations dt=0. Our
numerical calculations, shown in Figs. 4 and 5, reveal that

mated easily, since the deviations from the EdS values arthey tend to preven and() from converging to the fixed

due to the fluctuationsdy, €,, €,~0O(Ag). Then, when
Agexp{—[29(3—29) ]I} ~0O(1), i.e.,

In Le=1~[(3—2s)/2s]In Ay, (3.33

point M though the Milne Universe is still a stable fixed
point. More precisely, we observe three qualitatively differ-
ent behaviors of the RG flow of our Universe.

(i) The RG flow monotonically converges to fixed point
M. H and () approach the value determined by fixed point
M toward a smaller scale.

we find a large deviation from the EdS values. Thus the (ii) Initially the Universe comes near the fixédd point,

minima of the eigenvalues at two fixed poifisandM de-
termine the asymptotic structure of our Universe.

resulting in an increase dfi and a decrease d? toward
smaller scale. However, it turns around before reaching the
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scale. It is also possible to solve them toward the larger scale
with the same boundary conditions. The structure beyond the
horizon scale is not observable at present but may give some
relation with an inflationary scenario in the early Universe.
In Fig. 7, we plot the scale dependence(pf, H, and those
fluctuationsA, and A, in the shear-free case with initial
fluctuationAo=10 25, In the finite scale 10°<L <10, the

flow stays in the vicinity of fixed poinE and the power law
behaviors ofA, and A, toward larger scale are determined
11 by [2] at fixed pointE, while in larger scale.>10°, the

flow converges to fixed poin® after H becomes negative

H and their power law behaviors are characterized by the ei-
genvalues ofV!?] at the fixed pointQ. These eigenvalues
are the same ones naively determined from the original scal-
, o % 075 N 125 ing. This is consistent with the fact that the expansion ceases
perturbations, we choosa=(1)10 ™% (2)107%, (3)10 % 46 fixed point) and the RG transformation reduces to a
(4)10°° 1f both A, /Ao and Ag o/Ao are less thamR.  pyre scale transformation. This property makesconstant
~0.1495[(1), (2)], every flow converges td as H increases around fixed pointQ because of the cancellation between
(H7) to 1 and() decreases(™,) to 0 toward smaller scales. On nymerator and denominator in the definition of E8.28

the other hand, iA, , or Ag o are larger than the above critical [Fig. 7(c)], while A , diverges at the scale wheke vanishes
valueR, [(3), (4)], the flow heading foM comes to turn around and turns negative from the definiti¢8.28 [Fig. 7(d)]. The

and go away to infinity. declination of the slope in the {p)—In L diagram[Fig.

. . . AP is — ich i ini i [2] gg5-
fixed pointM and eventually diverges to infinity in the flow 7(a)_] IS 2.3 Wh'Ch. Is the minimum elgt_anvalue oy as
diagram asH— —«~ and Q) — . sociated with the fixed poir®. If we assign a fractal dimen-

(iil) The RG flow monotonically diverges to infinity in the Sion D for this UniverseD =3-2s becausdp) reduces as
flow diagram asH— — and ) — . e(~3)! from a fractal structure whilép)e~2%' by our scal-
We can classify the parameter spade, (Ka+,o,KE+,o) ing Iaw._lf we assign the value=0.5, the correspond_lng
of fluctuations at the boundaiyear the horizoninto three  fractal dimension becomeS =2. Because our model is a
regions according to the above asymptotic behaviors of thdléwtonian cosmology, further analysis beyond the horizon
RG flow. Clasg(i) is realized if the fluctuations of shear and scale would be irrelevant to the real Universe.
tidal forces are sufficiently smaller than those of the density

and the expansion, i.ed, o/Ag~Ag, o/Ag<Rg. Other- IV. CONCLUDING REMARKS

wise, i.e., ifA, o/Ao~Ag, o/Ao>R, class(iii) will hap- The renormalization group method has been applied to
pen. The critical valudR,, is almost independent af, and ~ Newtonian cosmology in this paper and the scale depen-
approximatelyR,~0.15. Clasgii) is a narrow boundary be- dence of the averaged observables on a fixed time slice in-
tween them. Hence, clags [or (ii)] naturally occurs as long cluding effects of fluctuations has been studied. The scaling
as the shear and tidal force are sufficiently smaller than thassumption we proposed for the averaged observables is ful-
density fluctuations at the horizon scale. This situation idilled in the case of either homogeneous distribution or
strongly suggested by recent observati?ig, i.e., the shear nonanalytic distribution such as a fractal, if we assume such
is strictly restricted to arouna/H<10 ° by CMB data. a scaling at any position and at fixed time. Actual observa-
Hence we expect that our Universe belongs to cl@sand  tion of the two point correlation function of galaxies may
its flow line converges into the fixed poiM in smaller  favor such a fractality at least in the finite scale range below
scale. Thes dependence of) or H is quite similar to the 10 Mpc. Multifractality could be applied to explain the tran-
case without shear and tidal forcigSigs. §a) and Gb)]. sition from finite fractal range at smaller scale to homoge-
_As for the shear and tidal forces, their averaged valuegeoys distribution at larger scal2g]. Our scaling analysis
increase toward smaIIer_ scale, _but ev_entually decrease if t averaged observables here might give a hint to the behav-
flow converges to the fixed poirid [Figs. Gc) and 8d)].  jor of ohservables in such a fractal matter distribution, if it
The scaling properties of the shear, ) and the tidal force exists.
(E.) are also determined by, at the fixed point€ and To close our dynamical system and apply the RG method,
M. Both shear and tidal force are dumped off at smaller scal§ o e e have adopted an approximation of tidal fdtcBA )
along the flow converging to the fixed poikt. and considered only fluctuations up to second order. The

The behaviors of fluctuations,, Ay, A, , andAg, are  pigher order cumulants of averaged observables are ignored.
shown in Figs. G)—6(h). We find similar behaviors to the We have found three robust fixed points of the RG equa-
case without shear and tidal forces foy andA . tions: (1) The fixed pointQ (quiescent Universds stable in
any direction toward larger scald?) the fixed pointE
(Einstein—de Sitter Universés a saddle point{3) the fixed

In the previous subsections, we have integrated the R@ointM (Milne Universg is unstable in any direction toward
equations from the horizon scale={0) toward the smaller larger scale.

FIG. 4. The RG flow toward smaller scale on tHeQ) plane in
the case thas=0.5 andA, o=Ag o= 1072, As for the density

E. Beyond the horizon scale
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FIG. 5. The RG flow of(@ In Q, (b) H, (¢) In({o~)/H), and(d) In((Ei)/Hz) from the fixed pointE toward smaller scale in the case
thats=0.5,A, o=Ag (=102 andA,=(1)10 %7 (2)10°%, (3)10 % (4)10 % In the case of1) or (2) (A, o/Ag.Ag o/Ag=
R.~0.1495), the RG flow converges k toward smaller scales as the case without shear and tidal feeeeFig. 2 In the case of3) or
(4) (X(,+’()/AO ,KE+,0/A0~>~ R.), however, the RG flow does not convergeMobut rather diverges to infinity. We also depicted the flow of
fluctuations;(e) In A, (f) In Ay, (9) In Ko+, and (h) In KE+ for the same initial values as the above. In the casé€lpfor (2), all
fluctuations butd , damp off as the RG flow converges kb, while A, approaches the finite value. In the casg3)for (4), all of them
diverge to infinity.

These fixed points do not change their stability even if we In order to find out the flow line which represents our real
extend the “phase” space including fluctuations as well asUniverse, we have imposed the boundary condition fixed
shear and tidal forces. Any other fixed points are saddle, angoint E with tiny fluctuations at the horizon scale. The infla-
therefore the scaling property of the global RG flow towardtionary scenario in the early Universe would imply such a
larger (smalle) scale is determined by fixed poi@ (M). boundary condition, i.e., the inflation predicts the
We find that the Universe asymptotically approaches fixedEinstein—de Sitter Universe at the horizon scale and beyond.
point Q or diverges toward infinity regardless of the detail atWe have solved the RG equation toward smaller scale from
the smaller scale. this boundary. Then we find that, toward smaller scale, the
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FIG. 6. Thes dependence of the RG flows from fixed pohbf (a) In Q, (b) H, (¢) In({o-)/H), and(d) In({E..)/H?). Here we depict
the cases 06=(1) 0.3, (2) 0.5, (3)0.7, (4) 0.9 with the boundary conditioAg=10"*° and Km ,O:KE#O: 10~2® at horizon scale.
The results for I} andH are quite similar to Fig. 3, if the flow converges to the fixed pdihtThe slopes ofo..) and(E_..) at larger and
smaller scale are determined bwn at fixed pointsE andM, i.e., —4s/(3—2s) and X/(1-s), respectively. Ass increases, the turning
point of the slope shifts toward smaller scale and the slope becomes less steep. We also depicted the flow of flu@ubtidns; (f)

In Ay, (@A, and(h) In Ag_ for the same range &f Ag=10 *andA, o=Ag =10 *°at horizon scale in the case of LTA. We
find thatAf):const near the fixed poiM, while it decreases linearly near the fixed pditwhich behavior is determined by the eigenvalue
—4s/(3—2s).

expansiorH defined by #)/3 monotonically increases from nario[29] and observations of CMB.

2/3 to 1, and the density paramefer=87G(p)/3H? mono- We have two important free parametesgndA,. These
tonically reduces from 1 to 0, provided the fluctuations ofvalues might be fixed by some of the following arguments:
shear and tidal force are much smaller than the density fludi) The scale dependence of the mass-luminosity ratio of as-
tuations, which would be supported by the inflationary scetrophysical objects(ii) a systematic decrease of the Hubble
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FIG. 7. The scale dependence(a¥In{p), (b) H, (c) In A,, and(d) In A, beyond horizon scale far=0.5 with the boundary conditions,
Ao=10"25at horizon scale in the shear-free case. In the flow departing from the fixedEdjpt approaches zero toward both smaller and
larger scales, for which the slopes at larger and smaller scale are determinéﬁlnhyt fixed points,Q and M, i.e., —2s and &/(1
—2s), respectivelyH also vanishes at larger scale, after it becomes negative atoad@®, which causes the divergence & around the
scale. The slope of bot#h, and A, around the fixed poinE are determined by!4 = —4s/(3—2s) toward smaller scale anilfZ],
=6s/(3—2s) toward larger scale at the point.

parameteH, if any, toward the larger scaléiii) the scale fluctuations growA ;> 1. In order to treat the smaller scales
dependence of the amplitude of the two point correlatiorproperly, we need to improve LTA in our future study. We
functions; (iv) some of the inflationary models predict a would like to report the analysis on these issues in the near
fractal-like structure beyond the horizon scf3€]. future.

Several comments related with our future work are in or-
der.

(a) We definitely need the general relativistic generaliza- ACKNOWLEDGMENTS
tion of our work. This is because the large scale structures at
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high redshift and beyond the horizon scale would be ad- . . . . ’ . !
equately described only by general relativity. milla Piotrkowska, Naoshi Sugiyama, Takayuki Tatekawa,

(b) In our analysis, we assume a scaling property of theand Kenji Tomita for many useful discussions. This work

averaged observables and their fluctuations. However, we dgas supported partially by a Grant-in-Aid for Scientific Re-

L . search Fund of the Ministry of Education, Science and Cul-
not know whether such a solution is dynamically stable or . ’
not. To answer for this, we have to consider the dynamica}ure (Specially Promotgd Research C?(rant NO'. ?8102'010h
stability of our system. and by a Waseda University Grant for Special Researc

(c) So far we have considered fluctuations of variables upPrOJeCtS'

to second order. Though this would be sufficient when we
consider the vicinity of the horizon scale, we ultimately need

to incorporate higher order fluctuations as well for the con- ,ppENDIX A: THE BASIC EQUATIONS FOR THE CASE

sistency of the theory. WITH ELUCTUATIONS
(d) We have used the local tidal approximatidTA) for

obtaining equations of motions for tidal force. By this To be complete, here, we present a full set of our basic
method, we could avoid directly solving the Poisson equaequations, which have been used in our renormalization
tion. This approximation would be justified up to the mildly analysis for Newtonian cosmology. Those include fluctua-

nonlinear regime. However, it may not be valid in the fully tions up to second order cumulants as well as shear and tidal
nonlinear regime, especially at smaller scales, where th#érces.
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1. The RG equations for averaged variables
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