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Relativistic hydrodynamics in close binary systems: Analysis of neutron-star collapse
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We discuss the underlying relativistic physics that causes neutron stars to compress and collapse in close
binary systems as has been recently observed in numerical (311)-dimensional general relativistic hydrody-
namic simulations. We show that compression is driven by velocity-dependent relativistic hydrodynamic terms
which increase the self-gravity of the stars. They also produce fluid motion with respect to the corotating frame
of the binary. We present numerical and analytic results that confirm that such terms are insignificant for
uniform translation or when the hydrodynamics are constrained to rigid corotation. However, when the hydro-
dynamics are unconstrained, the neutron star fluid relaxes to a compressed nonsynchronized state of almost no
net intrinsic spin with respect to a distant observer. We also show that tidal decompression effects are much
smaller than the velocity-dependent compression terms for stars with a realistic compaction ratio. We discuss
why several recent attempts to analyze this effect with constrained hydrodynamics or an analysis of tidal forces
do not observe compression. We argue that an independent test of this effect must include unconstrained
relativistic hydrodynamics to a sufficiently high order so that all relevant velocity-dependent terms and their
possible cancellations are included.@S0556-2821~98!05416-2#

PACS number~s!: 95.30.Lz, 04.25.Dm, 47.75.1f, 97.60.Jd
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I. INTRODUCTION

The physical processes occurring during the last orbits
a neutron-star binary are currently a subject of intense in
est @1–14#. In part, this recent surge in interest stems fro
relativistic numerical hydrodynamic simulations in which
has been noted@1–3# that as the stars approach each ot
their interior density increases. Indeed, for an appropr
equation of state, our numerical simulations indicate that
nary neutron stars collapse individually toward black ho
many seconds prior to the merger. This compression ef
would have a significant impact on the anticipated grav
wave signal from merging neutron stars. It could also p
vide an energy source for cosmological gamma-ray bu
@3#.

In view of the unexpected nature of this neutron star co
pression effect and its possible repercussions, as well as
extreme complexity of strong field general relativistic hydr
dynamics, it is of course imperative that there be an indep
dent confirmation of the existence of neutron star comp
sion before one can be convinced of its operation in bin
systems. In view of this it is of concern that the initial n
merical results reported in@1–3# have been called into ques
tion. A number of recent papers@4–14# have not observed
this effect in Newtonian tidal forces@4#, first post-Newtonian
~1PN! dynamics@5–9,14#, tidal expansions@10–12#, or in
binaries in which rigid corotation has been imposed@13#.
The purpose of this paper is to point out that none of th
recent studies could or should have observed the comp
sion effect which we observe in our calculations.

Moreover, this flurry of activity has caused some con
sion as to the physics to which we attribute the effects
served in the numerical calculations. The present pa
0556-2821/98/58~4!/043003~13!/$15.00 58 0430
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therefore, summarizes our derivation of the physics wh
drives the collapse. We illustrate how such terms have b
absent in some Newtonian or post-Newtonian approxim
tions to the dynamics of the binary system. We also pres
numerical results and analytic expressions which dem
strate how the compression forces result in an orbiting
namical system from the presence of fluid motion with
spect to the corotating frame. As such, they could not app
in an analysis of relativistic external tidal forces no mat
how many orders are included in the tidal expansion para
eter~e.g.@11,12#!, unless self gravity from internal hydrody
namic motion is explicitly accounted for. The effect cou
not also arise in systems with uniform translation or rig
corotation.

The implication of the present study is that any attemp
confirm or deny the compression driving force requires
unconstrained, untruncated relativistic hydrodynamic tre
ment. At present, ours is still the only existing such calcu
tion. Hence, despite claims to the contrary@4–14#, the neu-
tron star compression effect has not yet been independe
tested.

Another confusing aspect surrounding the numerical
sults has been our choice of a conformally flat spatial thr
metric for the solution of the field equations. Indeed, it h
been speculated that this approximate gauge choice~in
which the gravitational radiation is not explicitly manifeste!
may have somehow led to spurious results. A second p
pose of this paper, therefore, is to emphasize that the c
pression driving terms are a completely general result fr
the relativistic hydrodynamic equations of motion. The a
vantages of the conformally flat condition are that the al
braic form of the compression driving terms is easier to id
tify and that the solutions to the field equations obtain
© 1998 The American Physical Society03-1
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simple form. It does not appear to be the case, however,
the imposition of a conformally flat metric drives the com
pression. It has been nicely demonstrated in the work
Baumgarteet al. @13# that conformal flatness does not ne
essarily lead to neutron-star compression.

II. THE SPATIALLY CONFORMALLY FLAT CONDITION

There has been some confusion in the literature as to
uncertainties introduced by imposing a conformally flat co
dition ~henceforth abbreviated CFC! on the spatial three
metric. Therefore we summarize here some attempts w
we and others have made to quantify the nature of this
proximation.

The only existing strong field numerical relativistic h
drodynamics results in three unrestricted spatial dimens
to date have been derived in the context of the CFC as
scribed in detail in@1–3#.

We begin with the usual Arnowitt-Deser-Misner~ADM !
(311) metric @16,17# in which there is a slicing of the
spacetime into a one-parameter family of three-dimensio
hypersurfaces separated by differential displacements
timelike coordinate:

ds252~a22b ib
i !dt212b idxidt1g i j dxidxj , ~1!

where we take Latin indices to run over spatial coordina
and Greek indices to run over four coordinates. We a
utilize geometrized units (G5c51) unless otherwise noted
The scalara is called the lapse function,b i is the shift vec-
tor, andg i j is the spatial three metric.

In what follows, we make use of the general relation b
tween the determinant of the four metricgab and the ADM
metric coefficients

det~gab!52a2det~g i j ![a2g2, ~2!

whereg[A2det(g i j ).
The conformally flat metric condition simply express

the three metric of Eq.~1! as a position dependent conform
factor f4 times a flat-space Kronecker delta

g i j 5f4d i j . ~3!

It is common practice~e.g. @18–20#! to impose this con-
dition when solving the initial value problem in numeric
relativity. It is the natural choice for our three-dimension
quasiequilibrium orbit calculations@2# which in essence see
to identify a sequence of initial data configurations f
neutron-star binaries.

The reason conformal flatness is chosen most freque
for the initial value problem is that it simplifies the solutio
of the hydrodynamics and field equations. The six indep
dent components of the three metric are reduced to a si
position dependent conformal factor.

Since conformal flatness implies no transverse trace
part ofg i j it can minimize the amount of initial gravitationa
radiation apparent in the initial configuration. However,
general the physical data still contain a small amount of p
existing gravitational radiation. This has been clearly de
onstrated in numerical calculations of axisymmetric bla
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hole collisions @21#. In exact numerical simulations, th
gravitational radiation appears as the time derivatives of
spatial three metric (ġ i j ) and its conjugate~the extrinsic cur-
vature K̇ i j ) are evolved. The immediate evolution of th
fields from conformally flat initial data is characterized b
the development of a weak gravity wave exiting the syste

An estimate of the radiation content of initial data slic
for axisymmetric black hole collisions has been made
Abrahams@22#. Even for high values of momentum, the in
tial slice radiation is always less than about 10% of the ma
mum possible radiation energy~as estimated from the are
theorem!.

Two questions then are relevant to our application of
CFC. One is the validity of this metric choice for the initia
value problem, and the other is the effect on the system
the ‘‘hidden’’ gravitational radiation in the physical data.

Regarding the validity of the CFC one has a great dea
freedom in choosing coordinates and initial conditions
long as the initial space is Riemannian and the metric co
ficients satisfy the constraint equations of general relativ
@23#. Indeed, we have shown in@2# that exact solutions for
the CFC metric coefficients can be obtained by imposing
ADM Hamiltonian and momentum constraint condition
Nevertheless, in three dimensions a physical space is con
mally flat if and only if the Cotton-York tensor vanishe
@25,26#:

Ci j 52e ikl S Rj
k2

1

4
d j

kRD
; l

, ~4!

whereRj
k is the Ricci tensor andR is the Ricci scalar for the

three space.
Equation~4! vanishes by fiat for the three-space met

we have chosen. However, conformally flat solutions
physical problems have only been proven@25,26# for spaces
of special symmetry~e.g. constant curvature, spherical sym
metry, time symmetry, Robertson-Walker, etc.@25#!. Hence,
the invocation of the CFC here and in other applications is
assumption. That is, it is a valid solution to the Einste
constraint equations, but does not necessarily describ
physical configuration to which two neutron stars w
evolve. Nevertheless, this is a valid approximation as long
the nonconformal contributions from theġ i j and K̇ i j equa-
tions in the exact two-neutron star problem remain sm
Indeed, numerical tests for an axisymmetric rotating neut
star @27# and a comparison of the CFC vs an exact me
expansion for an equal-mass binary@5# have indicated that
conformal flatness is a good approximation when it can
tested.

As a related illustration, consider the Kerr solution for
rotating black hole. It is well known that the Kerr metric
not conformally flat. The close binaries we study have s
cific angular momentum only slightly greater than that of
extreme Kerr black hole. Also, they ultimately merge a
collapse to a single Kerr black hole. Hence, an analysis
the Cotton-York tensor for a Kerr black hole is another
dicator of the degree to which conformal flatness is a va
approximation for neutron-star binaries.
3-2
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Figure 1 gives the dimensionless scaled Cotton-York
rameterCufm3 for a maximally rotating Kerr black hole as
function of proper distance. For illustration, consider the
crease of this quantity as one moves away from the hori
at m5r as a measure of the rate at which the metric beco
conformally flat. The maximally rotating (a5m) black hole
of this example, however, is an extreme example of co
pactness and angular velocity relative to any of the neu
stars in our simulations.

It can be seen in Fig. 1 that, even for this extreme ca
the dimensionless tensor coefficientCufm3 diminishes rap-
idly away from the black hole. At the separation of intere
for binary neutron stars approaching their final orbits (r /m
;25 wherem is the total binary mass andr the separation
between stars!, this coefficient has already diminished
;1023 of the value at the event horizon. Thus, the effect
either star on its companion is probably well approxima
by conformal flatness. Regarding the interior of the neut
stars themselves, in our studies the stars are rotating
slowly ~even when corotating! that the deviation from con
formal flatness is probably negligible. Thus, it seems pl
sible that conformal flatness is a reasonable approxima
for most physical aspects involving the spatial three-me
of binary neutron-star systems.

The next issue concerns the ‘‘hidden’’ radiation in t
physical data. To address this we decompose the extri
curvature into longitudinalKL

i j and transverseKT
i j compo-

nents as proposed by York@28#:

Ki j 5KL
i j 1KT

i j . ~5!

By definition the transverse part obeys

DiKT
i j 50, ~6!

whereDi are covariant derivatives. The longitudinal part c
be derived from a properly symmetrized vector potential. W
find

DiKL
i j 58pSj , ~7!

FIG. 1. The scaled Cotton-York tensor componentCufm3 as a
function of the proper radiusr /m for a maximally rotatinga5m
Kerr black hole. This quantity is a measure of the deviation fr
conformal flatness.
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whereSj are spatial components of the contravariant fo
momentum density.

The productKT
i j KTi j is a measure of the hidden radiatio

energy density. To then findKT
i j from our numerical calcu-

lations, we first find Ki j by choosing maximal slicing

@Tr(Ki j )50# and requiring that the trace free part of theġ i j
equation vanish. This gives@2#

2aKi j 5~Dib j1D jb i2
2
3 f24d i j Dkb

k!. ~8!

We then determineKL
i j from the equilibrium momentum den

sity @Eq. ~7!# and subtractKL
i j from Ki j .

We find that this measure of the ‘‘hidden’’ gravitation
radiation energy density is a small fraction of the total gra
tational mass energy of the system:

E KT
i j KTi j

dV

8p
'231025 MG. ~9!

Hence, we conclude that the CFC is probably a good
proximation to the initial data.

This should be an excellent approximation for the det
mination of stellar structure and stability. However, an u
known uncertainty enters if one attempts to reconstruct
time evolution of the system~e.g. the gravitational wave
form! from this sequence of quasistatic initial conditions.
present we make this connection approximately via a mu
pole expansion@24# for the gravitational radiation as de
scribed in@2#.

A. An electromagnetic analogy

The meaning of imposing a conformally flat spatial met
can, perhaps, be qualitatively understood in an electrom
netic analogy. Both the ADM formulation of relativity an
Maxwell’s equations can be written as two constraint eq
tions plus two dynamical equations. In electromagnetism
constraint equations for electric and magnetic fields are
bodied in the¹•E and¹•B equations, while the dynamica
equations are contained in Ampere’s law and Faraday‘s l
In relativity the analogous constraint equations are the AD
momentum and Hamiltonian constraints. The dynami
equations are the ADMK̇ i j andġ i j equations. In either elec
tromagnetism or gravity, any field configuration which sat
fies the constraint equations alone represents a valid in
value solution. However, one must analyze its physi
meaning.

For example, consider two orbiting charges. One co
construct an electric field that satisfies the constraint by s
ply summing over the electrostatic field from two poi
charges. Similarly, one can construct a static magnetic fi
from the charge current by imposingĖ5Ḃ50 in the dy-
namical equations. However, by forcing the dynamical eq
tions to vanish, one has precluded the existence of elec
magnetic radiation. In this field configuration, therefore o
has unknowingly imposed ingoing radiation to cancel t
outgoing electromagnetic waves.

Similarly, enforcingK̇ i j 5ġ i j 50 might in part be thought
of as implying the existence of ingoing gravitational rad
3-3
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tion to cancel the outgoing gravity waves. Nevertheless
both cases, this remains a good approximation to the ph
cal system~with no ingoing wave! as long as the energ
density contained in the radiation is small compared to
energy in orbital motion.

Gravity waves enter in two ways: as estimated abo
there is an insignificant amount of ‘‘hidden’’ radiation in
duced by our choice of the CFC; there is also the emissio
gravitational radiation by the orbiting binary system. T
binary gravity-wave emission is estimated in our calculatio
by evaluating the multipole moments and using the appro
ate formulas@2#. The fractional energy and angular mome
tum loss rate as determined by the multipole expans
method is quite small, e.g.J̇/vJ;1024 in all of our calcu-
lations @2,3#. Hence, it can be concluded that the energy
gravitational radiation is indeed small compared to the
ergy in orbital motion.

The emission of gravity waves also induces a react
force which we have incorporated into our hydrodynam
equations by the quadrupole formula. The radiation reac
force is so small, however, that it is difficult to discern it
the numerical results. In most of our calculations we sim
neglect the back reaction terms and thereby obtain qu
static orbit solutions.

B. Solutions to field equations

With a conformally flat metric, the constraint equatio
for the field variablesf, a, andb i reduce to simple Poisson
like equations in flat space. The Hamiltonian constraint eq
tion @17# for the conformal factorf becomes@2,18#

¹2f522pf5F ~11U2!s2P1
1

16p
Ki j K

i j G , ~10!

wheres is the inertial mass-energy density

s[r~11e!1P, ~11!

and r is the local proper baryon density which is simp
related to the baryon number densityn, r5mmmn/NA ,
wherem is the mean molecular weight,mm the atomic mass
unit, andNA is Avogadro’s number.e denotes the interna
energy per unit mass of the fluid, andP is the pressure. In
analogy with special relativity we have also introduced
Lorentz-like variable

@11U2#1/2[aUt5@11U jU j #
1/25@11g i j UiU j #

1/2,
~12!

whereUi is the spatial part of the covariant four velocit
Here we explicitly writeU2 ~in place of W221 used in
@1–3#! because it emphasizes the extra velocity depende
here and in the equations of motion.

In the Newtonian limit, the right-hand side of Eq.~10! is
dominated@2# by the proper matter densityr, but in relativ-
istic neutron stars there are also contributions from the in
nal energy densitye, pressureP, and extrinsic curvature
This Poisson source is also enhanced by the genera
curved-space Lorentz factor (11U2). This velocity factor
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becomes important as the orbit decays deeper into the g
tational potential and the orbital kinetic energy of the bina
increases.

It was pointed out in the Appendix of@3# that in analogy
to the velocity-dependent enhancement of the source
Eq. ~10!, the Poisson source for thev4 post-Newtonian cor-
rection to the effective potential also exhibits velocit
dependence. This appendix has been misinterpreted
statement that we attribute the compression to a first p
Newtonian effect. We therefore wish to state clearly that
Appendix in that paper was merely an illustration of how t
effective gravity begins to show velocity dependence even
a post-Newtonian expansion. The velocity dependence of
post-Newtonian source is not the main compression driv
force. The compression derives mostly from the hydrod
namic terms described herein. It is not obvious, however
what post-Newtonian order the compression effect should
counted, since different authors have treated these terms
ferently. We return to this point below.

In a similar manner@2#, the Hamiltonian constraint, to
gether with the maximal slicing condition, provides an equ
tion for the lapse function:

¹2~af!52paf5

3F3~U211!s22r~11e!13P1
7

16p
Ki j K

i j G .
~13!

Here again, the source is strengthened when the fluid i
motion through the presence of aU211 factor and the
Ki j K

i j term.
The momentum constraints@17# provide an elliptic equa-

tion @2# for the shift vector:

¹2b i5
]

]xi S 1

3
¹•b D14pr3

i , ~14!

r3
i 5„4af4Si24b i~U211!s…

1

4p

] ln~a/f6!

]xj

3S ]

]xj b i1
]

]xi b j2
2

3
d i j

]

]xk bkD , ~15!

where we have introduced@15# the Lorentz contracted coor
dinate covariant momentum density

Si5sWUi . ~16!

As noted previously and in Ref.@2#, we only solve Eq.
~14! for the small residual frame drag after the domina
vW 3rW contribution tobW has been subtracted.

III. RELATIVISTIC HYDRODYNAMICS

The techniques of general relativistic hydrodynamics ha
been in place and well studied for over 25 years@15#. The
basic physical processes which induce compression ca
traced to completely general terms in the hydrodynam
equations of motion. To illustrate this we first summarize t
3-4
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completely general derivation of the relativistic covaria
momentum equation in Eulerian form and identify the ter
that we believe to be the dominant contributors to the re
tivistic compression effect.

For hydrodynamic simulations it is convenient to expl
itly consider two different spatial velocity fields. One isUi ,
the spatial components of the covariant four velocity. T
other isVi , the contravariant matter three velocity, which
related to the four velocity

Vi5
Ui

Ut 5
g i j U j

Ut 2b i . ~17!

It is convenient to select the shift vectorb i such that the
coordinate three velocity vanishes when averaged over
star, ^Vi&50. This minimizes the coordinate fluid motio
with respect to the shifting ADM grid.

The perfect fluid energy-momentum tensor is

Tms5sUmUs1Pgms . ~18!

However, it is convenient to derive the hydrodynamic eq
tions of motion using the mixed form

Tm
n5gsnTms5sUmUn1Pdm

m , ~19!

The vanishing of the spatial components of the diverge
of the energy momentum tensor,

~Ti
m! ;m50, ~20!

leads to an evolution equation for the spatial component
the covariant four momentum:

1

ag

]~Sig!

]t
1

1

ag

]~SiV
jg!

]xj 1
]P

]xi 1
1

2

]gab

]xi

SaSb

St 50.

~21!

The covariant momentum equation is used because o
close similarity with Newtonian hydrodynamics. The fir
two terms are advection terms familiar from Newtonian flu
mechanics. The latter two terms are the pressure and g
tational forces, respectively.

Expanding the gravitational acceleration into individu
terms we have

Ṡi1Si

ġ

g
1

1

g

]

]xj ~SiV
jg!1

a]P

]xi 2Sj

]b j

]xi 1s
]a

]xi

1saS U2
] ln a

]xi 1
U jUk

2

]g jk

]xi D50. ~22!

Similar forms can be derived for the condition of bary
conservation and the evolution of internal energy@2,15#.
However, the above momentum equation is sufficient for
present discussion.

It is now worthwhile to consider the ‘‘gravitational’
forces embedded in the expanded terms of Eq.~22!. These
result from the affine connection termsGml

m Tml in the cova-
riant differentiation ofTmn.
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The term containing]a/]xi comes from the time-time
component of the covariant derivative. It is of course t
well-known analogue of the Newtonian gravitational force
can easily be seen in the Newtonian limita→12Gm/r .

The termSj (]b j /]xi) comes from the space-time covar
ant derivative. In an orbiting system it is convenient to allo
b j to follow the orbital motion of the stars. In our specifi
application@2# we letbW 5vW 3RW 1bW resid

drag wherev is chosen to

minimize matter motion on the grid. Hence,vW 3RW includes
the major part of rotation plus frame drag. The quant
bW resid

drag is the residual frame drag after subtraction of the
tation and is very small for the almost nonrotating stars t
result from our calculations. Withb j dominated byvW 3RW ,
the termSj (]b j /]xi) is predominantly a centrifugal force.

The U2] ln a/]xi term arises from the time-time compo
nent of the affine connection piece of the covariant deri
tive. The (U jUk/2)]g jk/]xi term similarly arises from the
space-space components. They do not have a Newto
analogue. As we shall see, these terms cancel when a fr
can be chosen such that the whole fluid is at rest with res
to the observer~or in the flat space limit!. However, for a star
with fluid motion in curved space, they describe addition
velocity-dependent forces.

We identify the nonvanishing combination of the
U2-dependent force terms and theSj (]b j /]xi) term as the
major contributors to the net compression driving force.

This suggests some useful test problems for our hydro
namic simulations. For example, in simple uniform trans
tion the effects of these terms must cancel to leave the st
structure unchanged. Similarly, as discussed below, for
fluid motion, such that the four velocity can be taken
proportional to a corotating Killing vector, these force term
must cancel@13,25#. However, for more general states
motion, e.g. noncorotating stars, differential rotation, meri
onal circulation, turbulent flow, etc., these forces do not o
viously cancel, but must be evaluated numerically.

Indeed, as discussed below, the sign of these terms is
that a lower energy configuration for the stars than that
rigid corotation can be obtained by allowing the fluid to r
spond to these forces. As we shall see, the numerical re
ation of binary stars from corotation~or any other initial spin
configuration! produces a nonsynchronous~approximately ir-
rotational! state of almost no intrinsic neutron-star spin
which the central density and gravitational binding ener
increase.

A. Conformally flat relativistic hydrodynamics

The practical implementation of conformal flatness mea
that, given a distribution of mass and momentum, we fi
solve the constraint equations of general relativity at e
time for a given distribution of mass-energy. We then evo
the hydrodynamic equations to the next time step. Thus
each time slice we obtain a solution to the relativistic fie
equations and then can study the hydrodynamic respons
the matter to these fields@2#.

For the CFC metric, the relativistic momentum equati
is derived by simply replacingg jk→f24d jk in Eq. ~22!:
3-5
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]Si

]t
16Si

] ln f

]t
1

1

f6

]

]xj ~f6SiV
j !1a

]P

]xi2Sj

]b j

]xi

1s
]a

]xi 1saU2S ] ln a

]xi 22
] ln f

]xi D50. ~23!

Here as in Eq.~22!, the first term with]a/]xi is the relativ-
istic analogue of the Newtonian gravitational force.

In Eq. ~23! there are two ways in which the effectiv
gravitational force might increase for finiteU2. One is that
the matter contribution to the source densities fora or f are
increased by factors of;11U2 @cf. Eqs.~10! and~13!#. The
more dominant effect, however, is from the combination
theSj]b j /]xi term and theU2@] ln a/]xi22] ln f/]xi# terms
in Eq. ~23!.

As noted previously, these compression driving terms
sult from the affine connection partGml

m Tml of the covariant
differentiation ofTmn. These terms have no Newtonian an
logue but describe a general relativistic increase in the gr
tational force asU2 increases. As noted in@2,3# ~see also Fig.
2 below! for a binary,U2 is approximately uniform over the
stars, and the increase in central density due to these a
tional forces scales as'U4. This scaling, however, is the ne
result from a nontrivial cancellation of terms and must
treated carefully. We shall return to this point below.

The proper way to determine the post-Newtonian orde
which the compression driving terms enter would be to co
the powers ofc2 that appear in the denominator of a term
For example, if we divide the last two terms in Eq.~23! by
the gradient of thea term ~the analogue of the Newtonia
gravitational force! we would obtain a ratio of orderU2/c2

which would be manifestly first post Newtonian. Howeve
in the first post-Newtonian treatment of Wiseman@6#, these
velocity terms were explicitly disregarded. Thus, the effe
of these terms could not have been present in that calc
tion. It is no surprise, therefore that no effect was observe
Ref. @6#.

Also note that the 2] ln f/]xi term in Eq.~23! enters with
a sign such that the totalU2-dependent contribution is fur

FIG. 2. Numerically evaluated central density for a uniform
translating star~lower curve! as a function ofU2[UiUi . This is
compared with the central density for binary stars~upper curve!
with the same averageU2 value. These calculations utilized th
EOS of Ref.@2#.
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ther increased by about twice that from the] ln a/]xi contri-
bution alone.@The factor of 2 in front of the derivative
comes from the requirement thatf2;(1/a) in the Newton-
ian limit @2#.#

A further increase of binding arises from theKi j Ki j terms
in the field sources, but these terms are much smaller t
the U2 contributions for a binary system.

B. Comment on the relativistic Bernoulli equation

For comparison with other work in the literature it is in
structive to discuss the derivation of the relativistic Bernou
equation from Eq.~22!. It has been pointed out~e.g. @13#!
that the hydrodynamics reduce to a simple equation fo
fluid in which the velocity field can be represented by
corotating Killing vector. In our notation this equation can
written

d ln~Ut!5
dP

s
. ~24!

The demonstration that the relativistic Bernoulli equati
~24! is exactly reproduced from Eq.~22! when a corotating
Killing vector can be imposed, was recently brought to o
attention by Nakamura@29#. We summarize the derivation
here in the conformally flat metric both for clarity and
show that conformal flatness does not violate this import
constraint.

To begin with, note that in the ADM formalism, the ex
istence of a Killing vector is equivalent to being able
choose the ADM shift vector such thatVi50 everywhere for
the fluid. Next use Eq.~17! to solve forb i and divide bys.
The resulting equation for stationary motion is

1

s

]P

]xi 5UtU j

]

]xi S U j

f4UtD2~aUt!2
] lna

]xi 12U2
] ln f

]xi .

~25!

The recovery of the relativistic Bernoulli equation requir
that the right-hand side (RHS)5] ln Ut/]xi. With some
straightforward algebraic manipulation it is possible to sh
that all of the terms on the RHS cancel except for one te
from the b derivative,2f24U2] ln Ut/]xi. The completion
of the proof is simply to note that this term is equal
] ln Ut/]x by Eq. ~12!. The result is Eq.~24!.

It is instructive to consider the change in the relat
istic Bernoulli equation when there is no Killing vector, i.
ViÞ0. Along the same lines of the derivation of Eq.~25!, it
can be shown@29# that the momentum equation can be r
written in our notation as

1

as
F Ṡi1Si

ġ

g
1

1

g

]

]xj ~SiV
jg!G1UtU j

]Vj

]xi

52
1

s

]P

]xi 1
] lnUt

]xi . ~26!

The RHS is just the relativistic Bernoulli equation in th
limit that the left-hand side~LHS! vanishes. In general fluid
3-6
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flow, however, the LHS contains not only the advecti
terms~in brackets!, but also an additional surviving part o
the b j derivative.

It can be seen from this that imposing a corotating Killi
vector (Vi50) means that only simple hydrostatic equili
rium is obtained for stationary systems. However, when n
trivial hydrodynamic motion is allowed, the extra forces e
bodied in the LHS of Eq.~26! are manifested. This leads t
a deviation from the simple relativistic Bernoulli solutio
Any attempt to model this deviation requires a careful tre
ment of the dynamical properties of the fluid described
the LHS of Eq.~26!.

IV. CONSTRAINED HYDRODYNAMICS

Further insight into the complexity of the physics co
tained in the relativistic equations of motion can be gain
by considering some simple examples of constrained hy
dynamics for which the answer is known. These pose us
tests of our numerical scheme. Since some have prop
that the effect we observe may be an artifact of numer
resolution or approximation, we present here a summar
various test problems designed to illustrate the stability
the numerics and also to compare with some of the calc
tions in the literature. These calculations also demonst
that the compression effect vanishes in the limiting cases
have been studied by others. Hence, they could not h
been observed. They highlight the fact that the effect
observe only appears in a strong field dynamic treatm
which accounts for internal motion of stellar material in r
sponse to the binary and its effect on the star’s self grav
At present, ours may be the only existing result. This
consistent with the conclusion of@30# based upon test par
ticle dynamics.

A. Bench mark calculations

To test for the presence of the compression driving for
we consider two bench-mark initial calculations. The ben
mark of no compression is that of an isolated star. In
three dimensional hydrodynamic calculations, the single
structure is derived from Eq.~22! in the limit

Si5Ui5Vi5b i50. ~27!

The condition of hydrostatic equilibrium in isotropic coord
nates is then trivially derived from Eq.~22!:

]P

]xi 52s
] ln ã

]xi , ~28!

where the tilde denotes that the metric coefficients are ev
ated in the fluid rest frame. The Newtonian limit of the rig
hand side is recovered asã→12Gm/r . Hence, we again
identify the ] ln ã/]xi term with the relativistic analogue o
the Newtonian gravitational force. Eq.~28! also trivially re-
duces to relativistic Bernoulli equation~24!.

We have of course tested our three-dimensional calc
tions for single isolated stars. A single star remains stable
the grid indefinitely, except when the baryon mass exce
04300
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the maximum stable mass allowed by the Tolma
Oppenheimer-Volkov~TOV! equations. Above the maxi
mum TOV mass the stars begin to collapse on a dynam
timescale as they should. We have also checked that the
resolution used in our binary calculations is adequate to p
duce the correct central density, stellar radius, and grav
tional mass of a single isolated star@3#. Hence, it seems
unlikely that the inadequate grid resolution is the source
the compression effect as some have proposed.

In order to facilitate comparisons with the literature, a
to avoid confusion over equation of state~EOS! issues, we
have employed a simplisticG52 polytropic EOS, P
5KrG, whereK51.83105 erg cm3 g22. This gives a maxi-
mum neutron-star mass of 1.82M ( . The gravitational mass
of a singlemB51.625M ( star in isolation is 1.51M ( and the
central density isrc55.8431014 g cm23. The compaction
ratio is m/R50.15, similar to one of the stars considered
@13#. Note that this EOS leads to stars with a lower comp
tion ratio than the stars we considered in@2,3# for which
m/R'0.2. Hence, the effects of tidal forces in the prese
calculations should be more evident.

The bench mark in which the compression is presen
that of two equal mass stars in a binary computed with
constrained hydrodynamics. The binary stars have the s
baryon mass (mB51.625M ( each!, the same EOS, and
fixed angular momentumJ52.531011 cm2 (J/MB

251.09
where MB52mB). For these conditions the binary stars ha
U250.025 and are at a coordinate separation of'100 km.
The stars are stable but close to the collapse instabi
Hence, they have experienced some compression that
increased their central density by 14% up torc56.68
31014 g cm23.

The central densities of these two bench marks are s
marized in the first and last entries of Table I. To compa
with these bench-mark calculations we have computed e
librium configurations for stars under the various conditio
outlined below. The test for the presence or absence of c
pression inducing forces will be the comparison of the n
merically computed central density with that of a single is
lated star or stars in a binary.

B. Stars in uniform translation

As a first nontrivial test, now consider a star as seen fr
an observer in an inertial frame which is in uniform trans

TABLE I. Central density for mB51.625M( stars in various
conditions using aG52 EOS.

Environment Constraints rc(1014 g cm23)

Single star Hydrostatic 5.84
Single star Uniform translation 5.90

Binary Tidal only 5.82
Binary Rigid corotation 5.90
Binary Rigid no spin 6.56
Binary Full hydrodynamics 6.68
3-7
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tion with respect to the fluid. Choosing the motion to
along thex coordinate, the fluid three velocity is

Ux

Ut 5Vx5const. ~29!

However, the observer is still free to choose the ADM sh
vector such that the computational grid remains centered
the star. That is, althoughSi ,Ui ,Þ0, we can still choose
Vi50. This gives a restriction onb i from Eq. ~17!:

bx5
gxxaUx

W
. ~30!

Note, that this is an ADM coordinate freedom. It is n
equivalent to a coordinate boost. It is in fact a Killing vect
which is convenient for numerical hydrodynamics. It allow
the matter to remain centered on the grid even though
equations of motion are being solved for fluid which is not
rest with respect to the observer.

With Vi50, thex component of the momentum equatio
~in equilibrium! becomes

]P

]x
5

Sx

a

]bx

]x
2s F ~U211!

] lna

]x
1

U jUk

2

]g jk

]x G . ~31!

With a CFC metric this becomes

]P

]x
5

Sx

a

]bx

]x
2s F ~U211!

] lna

]x
22U2

] ln f

]x G . ~32!

There are now several differences between this expres
and that for an observer in the fluid rest frame. For one, th
is the shift vector derivative]bx/]x. Even in uniform trans-
lation this derivative is nonzero due to the variations of
metric coefficients over the star@cf. Eq. ~30!#. Also, the ef-
fective gravity is enhanced by the (U211) velocity factor.
The U jUk /2]g jk/]xi term also appears. In addition, the e
fective source terms~10! and ~13! for the CFC metric coef-
ficients are enhanced both by (U211) factors and theKi j K

i j

term.
In spite of these differences, we nevertheless know

the locally determined pressure and inertial density mus
the same as those determined for a star at rest. Indeed,
we can choose a Killing vector (Vi50) these equations mus
reduce to the relativistic Bernoulli equation~24!.

Thus, this is an important numerical test problem. W
solve the full hydrodynamic equations explicitly, e.g. E
~23!, under the initial condition of nonzeroUx for a single
star. The cancellations embedded in the hydrodynamics
not obvious. Nevertheless, in the end, all of these effe
must cancel to leave the stellar central density unchan
~except for a Lorentz contraction factor!.

To solve the uniform translation problem numerically w
have applied the Hamiltonian and momentum constraint
determine the metric coefficients. We then evolved the
hydrodynamic equations to equilibrium. Figure 2 shows
numerically evaluated central density for such translat
stars as a function ofU2. These stars were calculated wi
the EOS of@2#. This is compared with the central density f
04300
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binary stars evolved at the sameU2 value using the same
EOS. One can see that the translating stars maintain a
stant central density~within numerical error! as they should.
In contrast, the central density of binary stars grows as'U4.
This growth is the nontrivial net result from the veloci
dependent terms in Eq.~23!. It is not obvious, however, to
what post-Newtonian order this dependence corresponds

As summarized in Table I, the central density for a u
formly translatingG52 star withU250.025 ~for compari-
son with the binary bench-mark calculation! is 5.90
31014 g cm23. Within numerical accuracy, this central de
sity is identical with that of an isolated star at rest.

This is at least indicative that our observed growth
central density may not be a numerical error as some h
suggested~e.g. @10,12,30#!. Such an error would likely be
apparent in this test case. We argue that the difference
tween simple translation and binary orbits relates to
physics of the binary system itself, in particular physi
which is not apparent in uniform translation, an analysis
tidal forces, or a truncated expansion that does not con
sufficient terms to adequately describe the dynamical
sponse of the fluid.

C. Tidal forces

It has been pointed out@4,11,12# that tidal forces are in
the opposite sense to the compression driving forces
cussed here. That is, tidal forces distort the stars and decr
the central density and therefore render the stars less sus
tible to collapse. We have argued@3# that although such sta
bilizing forces are present in our calculations they are mu
smaller in magnitude than the velocity-dependent comp
sion driving terms. Nevertheless, the evolution of the ma
fields in a calculation in which only tidal forces are prese
still represents a useful test of our numerical results. Star
which only tidal forces act, should be stable and the cen
density should decrease rather than increase as the star
proach.

To test the effects of tidal forces alone we have co
structed an artificial test calculation in which we place st
on the grid in a binary, but with no initial angular or linea
momentum, i.e.J50 and U250. This initial condition
would normally evolve to an axisymmetric collision betwe
the stars. However, after updating the matter fields, we a
ficially return the center of mass of the stars to the same fi
separation after each time step. We also reset to zero
mean velocity component directed along the line betwe
centers. This sequence is repeated until the matter fi
come to equilibrium. Since the velocity dependent forc
eventually vanish, the only remaining forces are the press
and static gravitational~including tidal! forces.

Results as a function of separation distance are show
Table II for theG52 EOS and Table III for the realistic EOS
used in@2#. For the realistic EOS the central density inde
decreases as the stars approach, consistent with the exp
tions from Newtonian and relativistic tidal analyses@4,12#.
For the G52 polytropic EOS, the central density also d
creases as the stars approach and remain below the ce
density of an isolated star. The fact that this table is
3-8



to
s

rs

b
s
es

r
s
-
e
o-
y
ig
rte
m
ha
gu

tifi
th
le
f
o

y
ng
e
s

is

the
q.

y of

ery
cen-
hat
re-
on-

hat

s
ar-
ty
ose
ease

st
y-
so-

an
if-
nt
ed
e-
sts
l re-
o

h
ta-
nd

ns

nt
d

of

en

RELATIVISTIC HYDRODYNAMICS IN CLOSE BINARY . . . PHYSICAL REVIEW D 58 043003
monotonic at the innermost point, however, may be due
limitation of this numerical approximation for tidal forces a
the ratio of separation to neutron-star radius diminishes.

Although the tidal forces do indeed stabilize the sta
their effect on the central density is quite small (;0.2%
decrease! compared to the net increase in density caused
the compression forces present for the binary. This is con
tent with the relative order-of-magnitude estimates for th
effects described in@3#.

D. Stars in rigid corotation

As a next nontrivial example, consider stars in a bina
system that are restricted to rigid corotation. In a recent
ries of papers, Baumgarteet al. @13# have studied neutron
star binaries using the same conformally flat metric. Th
work differs from ours in that rather than solving the hydr
dynamic equations, they describe the four velocity field b
Killing vector whereby the stars are forced to corotate r
idly. They also impose spatial symmetry in the three Ca
sian coordinate planes so that they can solve the proble
only one octant. One should keep in mind, however, t
rigid corotation is not necessarily the lowest energy confi
ration or the most natural@32# final state for two neutron
stars near their final orbits. This assumption, though ar
cial, is nevertheless a means to constrain and simplify
fluid motion degrees of freedom. It is much easier to imp
ment and therefore becomes an interesting test problem
codes seeking to explore the true hydrodynamic evolution
close binaries.

Indeed, it is possible to show@25# that in this limit, the
neutron star hydrostatic equilibrium can be described b
simple Bernoulli equation in which the compression drivi
force terms are absent except for a weak velocity dep
dence. Analytically, the reason for this is trivially obviou
from Eq.~26!. The existence of a corotating Killing vector

TABLE II. Central density vs coordinate separation betwe
centers for mB51.625 M( (G52) stars in which only tidal forces
are included. The neutron star radius~in isotropic coordinates! is 12
km.

Separation~km! rc(1014 g cm23)

41.8 5.821
50.6 5.816
81.8 5.821
` 5.837

TABLE III. Same as Table II but for the EOS of Ref.@2#. The
neutron star radius~in isotropic coordinates! is 6 km.

Separation~km! rc(1014 g cm23)

31.2 14.15
37.4 14.16
64.8 14.20

103.8 14.25
` 14.30
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equivalent to settingVi50 globally. Choosing the ADM co-
ordinates to remain centered on the stars, in steady state
time derivatives vanish along with the rest of the LHS of E
~26!. Only the relativistic Bernoulli equation~24! survives.

It is not surprising, therefore that in@13# it has been dem-
onstrated that in this special symmetry, the central densit
the stars does not increase~within numerical error! as the
stars approach the inner most stable circular orbit. In v
close orbits the density actually decreases relative to the
tral density of stars at large separation. They also find t
the orbit frequency remains close to the Newtonian f
quency. Both of these results are interesting in that they c
firm that the compression effect does not occur~as it should
not! in this special symmetry. They also demonstrate t
conformal flatness is not the source of the compression.

Accepting the results of@13# as correct, this then become
another important test of our calculations. That is, if we
tificially impose rigid corotation, then the central densi
should remain nearly constant until the stars are cl
enough that tidal effects cause the central density to decr
rather than increase.

Imposing rigid corotation, however, is not a trivial te
problem to implement without completely replacing the h
drodynamic equations with the corresponding Bernoulli
lution of @13,25#. ~Indeed, we have done this@31# and repro-
duce the results of@13# quite well.! Moreover, we have found
that directly modifying the hydrodynamic equations in
attempt to mimic a dynamically unstable configuration is d
ficult. One might think that the simplest way to impleme
corotation would be to impose a high fluid viscosity. Inde
high viscosity would resist the hydrodynamic forces d
scribed herein. However, a high fluid viscosity also resi
the much weaker tidal forces and prevents the numerica
laxation to quasistatic equilibrium. It is thus difficult t
achieve tidal locking by simply increasing the viscosity.

Instead, we introduce artificial forces on the fluid whic
continually drive the system toward a state of rigid coro
tion while allowing the system to at least somewhat respo
hydrodynamically. To do this we define acceleratio
(U̇ i)Rigid necessary to achieve rigid rotation by

~U̇ i !Rigid[
~Ũ i2Ui !

Dt
~33!

whereŨ i are components of the rigidly corotating covaria
four velocity in thex2y orbit plane. These are determine
by requiring thatb i5(v3r ) i and settingVi50 in Eq. ~17!:

Ũy5
vxf4

aA12v2R2f4/a2
, ~34!

Ũx5
2vyf4

aA12v2R2f4/a2
, ~35!

whereR is the coordinate distance from the center of mass
the binary.
3-9
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At each time step we then update the momentum den
using a combination of the hydrodynamic and corotating
celeration terms,

U̇ i5 f ~U̇ i !Rigid1~12 f !~U̇ i !Hydro, ~36!

where (U̇ i)Hydro is the acceleration from the full hydrody
namic equation of motion@Eq. ~23!#.

Numerically, we find that iff is small (,0.2) the hydro-
dynamic forces dominate and corotation is not obtained.
the other hand, forf .0.2 the system is not stable, i.e. th
stars deform and the velocities become erratic. We h
therefore run withf 50.2 that temporarily produces a velo
ity field which is close to rigid corotation. That is, the r
sidual three velocities are damped to a fraction of the o
speed. This is, perhaps, good enough to make qualita
comparisons with the expectations from a truly corotat
system.

Starting from the unconstrained initial configuration, w
find that when the stars have achieved approximate cor
tion, the central density has decreased from 6
31014 g cm23 to 5.9031014 g cm23 which is close to the
value for stars in isolation (5.8431014 g cm23). The calcu-
lated gravitational mass is slightly greater than that of
unconstrained binary. However, with the large artificial for
terms needed to approximate corotation, gravitational m
is not a well defined quantity in this simulation. Also, th
orbit frequency was not sufficiently converged for a mea
ingful comparison.

E. The spin of binary stars

As noted above our simulations indicate that neutron s
relax to a state of almost no intrinsic spin. In a separate pa
@33# we analyze the nature and formation of this state
more detail. For the present discussion, however, we sum
rize in Fig. 3 a study of the relaxation to this state from sta
of arbitrary initial rigid rotation~including corotation!.

As a means to distinguish the intrinsic spin motion of t
fluid with respect to a non-orbiting distant observer, we d
fine a quantity which is analogous to volume averaged int

FIG. 3. Intrinsic neutron star spinJS /mB
2 as a function of coor-

dinate time. The curves are labeled by the initial angular velo
vS ~in units of 100 rad sec21) relative to the corotating frame.
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sic stellar spin in the orbit plane,

JS5 (
i 51,2

E @~x2 x̃i !Sy2~y2 ỹi !Sx#
f2

a
dVi , ~37!

where (x̃i ,ỹi ,z̃i50) is the coordinate center of mass of ea
star.

In this study we have imposed an initial angular veloc
vS in the corotating frame to obtain various initial rigidl
rotating spin angular momenta~including corotation,vS

50), but for fixed totalJ/MB
251.4. We have considere

spin angular frequencies in the range2900,vS

,900 rad sec21, corresponding to20.03,JS /mB
2,0.17.

We then let the system evolve hydrodynamically with t
stars maintained at zero temperature.

In Ref. @3# we showed that the neutrino emission is suf
cient to radiate away the released gravitational energy
keep the stars at near zero temperature until just before
collapse. This is the reason that we have treated this a
relaxation problem. That is, unlike a true hydrodynamic c
culation, the relaxation calculation presented here, assu
that the stars radiate efficiently and stay at zero temperat
Therefore, this evolution does not need to conserve energ
circulation. This relaxation assumption is the reason the s
can evolve to a different spin~lower energy! state without
violating the circulation theorem.

Figure 3 shows the spinJS /mB
2 as a function of time for

each initial condition. In each case, the system relaxed
state of almost no net spin within about three sound cross
times (t;0.6 msec). These calculations suggest that rap
spinning neutron stars in close orbits are unstable. The
evolution time, however, would be much longer.

We also note that the quantity*s@A11U221#dV de-
creased as the system evolved from rigid rotation to hyd
dynamic equilibrium. Since this quantity is related to t
kinetic energy of the binary, this indicates that the hydrod
namic lowest energy state is one of lower kinetic energy~for
fixed total angular momentum! than that of rigid rotation.

As far as the compression effect is concerned, one wis
to know whether the response of the stars is simply due
that fact that they have no spin~and therefore no interna
centrifugal force to support them against the compress
forces!, or whether more complex fluid motion within th
star itself affects the stability. To test this, we have co
structed stars of no spin (JS50) by simply damping the
residual motion to that ofJS50 after each update of th
velocity fields.

Since this no-spin state is so close to the true hydro
namic equilibrium, this produced stableJS50 equilibrium
stars for the binary. For this case, the central density c
verges torc56.5631014 g cm23 which is very close to the
high value for the unconstrained hydrodynamics. This res
would seem to indicate that most of the increase in den
can be attributed to the velocity with respect to the corotat
frame generated by the fact that the stars have almos
spin.

y
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V. DISCUSSION

For clarity, we summarize in this section our conclusio
regarding why the neutron-star compression effect was
observed in some other recent works.

First consider post-Newtonian expansions. In the work
Wiseman@6# the force terms containingU2 were explicitly
deleted from the computation of the stellar structure@cf. Eq.
~8! in that paper#. Only thedlna/dx term was included. The
recovery of simple hydrostatic equilibrium was thus u
avoidable.

The PN orbiting ellipsoids of Shibataet al. @7# included
more terms. Indeed, it was noted that there are two effec
1PN order. One is the self gravity of each star of the bin
and the other is the gravity acting between the stars. In t
calculations the self gravity dominates causing the star
become more compact. This is consistent with the comp
sion effect described here in the sense that relativistic
rections can dominate over Newtonian tidal forces. Howev
the self gravity terms in@7# appear to only include the usua
1PN terms which would equally apply to stars in isolatio
Hence, the velocity-dependent compression driving terms
probably not present.

Their results for stars in corotation are consistent w
ours under the same constraint. They also note that
proaches in which PN corrections to the gravity between
stars are included without also including the corrections
the self gravity~as in @9#! can be misleading.

In the work of Lombardiet al. @8# both corotating and
irrotational equilibria were computed. However, in their c
culations it appears that the stars become less compa
they approach contrary to our results and the results of@7#. It
may be that the reason for this is that in Lombardiet al. the
post-Newtonian corrections to self gravity were only co
puted for stars ‘‘instantaneously at rest.’’ The authors ch
to ‘‘exclude the spin kinetic energy contribution to the s
energy.’’ It is such terms, however, that we identify with th
compression effect.

The conformally flat corotating equilibria computed b
Baumgarteet al. @13# are consistent with our results. Sinc
their stars were restricted to rigid corotation, only the hyd
static Bernoulli solution would result. They could not ha
observed the compression forces which result from fluid m
tion with respect to the corotating frame.

We have argued in this paper that if one wishes to exp
this effect, it would be best to apply a complete unco
strained strong-field relativistic hydrodynamic treatment
stars which are not in corotation. In this regard, a rec
paper@14# has come to our attention in which hydrodynam
simulations of both corotating and irrotational binaries ha
been studied in a first post-Newtonian approximation
conformally-flat gravity but using the full relativistic hydro
dynamics equation~22!. For both corotational and irrota
tional stars the central density is observed to oscillate abo
value which is less than that of isolated stars. Hence,
authors conclude that no compression effect is present.

Since this calculation contains many of the higher or
terms to which we attribute the compression effect, it is
immediately obvious why the compression effect was
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observed. This may indeed be a real contradiction. We s
gest, however, that this simulation did not observe the ef
because of their use of an unrealistically softG51.4 EOS.
The authors chose this EOS because the stars becom
extended that one can compute arbitrarily close bina
without encountering the relativistic inner orbit instabilit
For the irrotational stars~model Bc in @14#!, which is the
only simulation that might have observed the compress
effect, the compaction ratio is onlyM /R50.023. Hence, a
1.45 M( neutron star would have an unrealistic radius of
km.

However, since they have simulated very extended s
at very close separation, the tidal forces are much stron
relative to the relativistic compression driving terms than
any of the simulations which we have done.

The ratio of the stabilizing tidal correctionDEtidal to the
destabilizing energy from compressionDEcomp should scale
@3,4# as

DEtidal

DEcomp
}S R

r D 6

, ~38!

whereR is the neutron star radius andr is the orbital sepa-
ration. For model Bc in@14# we estimate that this ratio is
*200 times greater than any of the binary stars we h
considered. Hence, it is quite likely that the authors ha
simply chosen an unrealistically soft equation of state
which the tidal forces dominate over compression. It mig
be very interesting to see the results from a similar study
stars with a realistic compaction ratio and several radii ap

Concerning tidal expansions, in Brady and Hughes@10#
an attempt was made to analyze the stability of a central
perturbed by an orbiting point particle. The metric a
stress-energy were perturbed in terms of ordere5m/R
wherem is the point particle mass andR its coordinate dis-
tance from the central star. The Einstein equation was t
linearized to terms of ordere. The result of this linearization
was that the only possible correction to the central den
was a single monopole term of orderm/R;v2. However, in
our numerical results as shown in Fig. 3. the central den
is observed to increase asv4. Hence, it may be that the
expansion of Ref.@10# was truncated at a too low order t
observe the compression effect described here. The main
son that they could not observe the effect, however, is
the terms involving motion of the central star were d
carded. We attribute the compression effect to an enha
ment of the self gravity due to the motion of the stars w
respect to the corotating frame. Hence, the neglect of te
involving the motion of the central star precludes the pos
bility of observing the effect.

We believe that the same conclusion is true in the tre
ments by Refs.@11, 12#. The analysis of Flanagan@11# is
based upon the method of matched asymptotic expans
The metric is approximated

gmn5hmn1hmn
NS1hmn

B , ~39!
3-11
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where the superscriptNS refers to the self contribution from
one star andB refers to the contribution from a distant com
panion. The internal gravity of a static neutron starhmn

NS is
expanded to all orders. The binary tidal contributionhmn

B is
expanded in powers of the ratio of stellar radius to orb
separation.

First we suggest that such a decomposition may be q
tionable for a close neutron-star binary. In our metric one
write the metric perturbation as

hi j 5~f421!d i j . ~40!

The conformal factorf is a solution to a Poisson equatio
involving source terms from the two stars. Between the st
the only source of the fields arises from theKi j K

i j terms
which are quite small. Hence, neglectingKi j K

i j terms,f is
additive in the ‘‘vacuum’’ between the stars,

f5f11f2511
m1

2ur 2r 1u
1

m2

2ur 2r 2u
. ~41!

Expandinghi j around star 1 in the presence of a dista
companion 2 we have

hi j 5
4

2 S m1

ur 2r 1u
1

m2

ur 2r 2u D1
6

4 S m1

ur 2r 1u
1

m2

ur 2r 2u D
2

1¯

5hmn
NS1hmn

B 1cross terms. ~42!

However, for the binary systems we have considered,
cross terms are;15% to 20% of the sumhmn

NS1hmn
B . Hence,

they can not be neglected. The errors associated with
decomposition may be part of the reason that the comp
sion effects are not apparent in this work.

A related concern is with the expansion of the stre
energy tensor in@11#. We have noted that most of the com
pression arises from the net effect of velocity depend
terms in the covariant derivative of the stress-energy ten
In @11# the stress energy is expanded in powers of the c
vatureR2m. The author states@11# ‘‘We assume initial con-
ditions of vanishingTmn

(2) , so that the only source for pertu
bations is the external tidal field.’’ An analysis which on
considers perturbations from the external tidal field~and not
motions of the fluid! will not observe the compression effec
The result of@11# is that the central density is unchang
until tidal forces enter atO(R6). This is consistent with our
results in the limit of only tidal perturbations acting on th
stars. It is not clear to us, however, to what degree the
locity dependent terms are included or excluded by this
pansion. A more careful recent revision@E. Flanagan,~pri-
vate communication!# shows an effect coming in a lowe
order, but not necessarily as strong as we have noted.

In the paper of Thorne@12#, a similar tidal expansion is
applied. In that work only the stabilizing effect of tidal force
04300
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was considered along with the stabilizing effect of rotatio
However, the increased self gravity from velocity-depend
forces was not included. Hence, the conclusions of@12# are
consistent with our results based upon tidal forces. So are
Newtonian tidal effects computed in@4#.

VI. CONCLUSIONS

The results of this study~cf. Table I! are that we see
almost no difference between the central density of an
lated star and a binary star in which rigid corotation has b
artificially imposed, or one in which only tidal effects ar
included. Indeed, in the case of tidal forces alone, the cen
density in our simulations actually decreases as stars
proach, consistent with other works.

An increase in the central density is only apparent in o
binary simulations for stars with fluid motion with respect
the corotating frame.~Specifically we considered stars of lo
intrinsic spin in a binary.! In such cases there is no simp
Killing vector which can be imposed to cancel the compr
sion driving forces. We have argued here and in@3# that the
main compression effect arises from the net result
velocity-dependent hydrodynamic terms@34#. These terms
arise from the affine connection part of the covariant diff
entiation of the stress-energy tensor.

We show here that the compression effect would not h
been observed in a study of tidal forces or any model t
artificially imposes rigid corotation of the fluid. A prope
treatment must consider all of the force terms apparent in
momentum equation~22! to a sufficient order so that thei
effects on the fluid self gravity survive. A similar conclusio
has been reached in@30# based on test particle dynamics ne
a Schwarzschild black hole. In that work it is concluded th
at least 2.5 post-Newtonian particle dynamics is necess
before a dynamical collapse instability is manifested.

We argue that the results of this study are thus consis
with results in a number of recent papers@4–13# which have
analyzed the stability of binary stars in various approxim
tions and limits and see no effect. Since we do not disag
with the lack of a compression effect in the limits that th
have imposed, we conclude that the existence or absenc
the neutron-star compression effect has not yet been inde
dently tested.

Therefore, if one wishes to explore this effect, it would
best to apply a complete unconstrained strong-field relati
tic hydrodynamic treatment employing an EOS which p
duces realistically compact neutron stars. Another alter
tive, however, might be to study the quasi-equilibriu
structure of nonspinning irrotational binary stars at a su
ciently high order. In this regard a recently proposed form
ism @35# to compute quasi-equilibria for nonsynchronous
naries may be of some use. We have begun calculation
this independent formalism. The results will be reported i
forthcoming paper.

Regarding the existence of this low spin state, we find t
such a state represents the unconstrained hydrodynamic
librium for a close binary. In Newtonian theory, stars a
driven to corotation by tidal forces. However in@32# it has
been shown that Newtonian tidal forces are insufficient
3-12
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produce corotation before the neutron-stars merge unles
viscosity is unrealistically high. Nevertheless, in the abse
of strong tidal forces, neutron stars stars gradually s
down. Therefore, even apart from the hydrodynamic effe
described here, stars of low spin are likely to be member
close binaries. The hydrodynamic effects described her
however, could hasten the spin down as stars approach
final orbits and cause the stars to become more compac
. D
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ro
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