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We discuss the underlying relativistic physics that causes neutron stars to compress and collapse in close
binary systems as has been recently observed in nhumerigal J@limensional general relativistic hydrody-
namic simulations. We show that compression is driven by velocity-dependent relativistic hydrodynamic terms
which increase the self-gravity of the stars. They also produce fluid motion with respect to the corotating frame
of the binary. We present numerical and analytic results that confirm that such terms are insignificant for
uniform translation or when the hydrodynamics are constrained to rigid corotation. However, when the hydro-
dynamics are unconstrained, the neutron star fluid relaxes to a compressed nonsynchronized state of almost no
net intrinsic spin with respect to a distant observer. We also show that tidal decompression effects are much
smaller than the velocity-dependent compression terms for stars with a realistic compaction ratio. We discuss
why several recent attempts to analyze this effect with constrained hydrodynamics or an analysis of tidal forces
do not observe compression. We argue that an independent test of this effect must include unconstrained
relativistic hydrodynamics to a sufficiently high order so that all relevant velocity-dependent terms and their
possible cancellations are includ¢&0556-282(98)05416-3

PACS numbse(s): 95.30.Lz, 04.25.Dm, 47.75f, 97.60.Jd

I. INTRODUCTION therefore, summarizes our derivation of the physics which
drives the collapse. We illustrate how such terms have been
The physical processes occurring during the last orbits odbsent in some Newtonian or post-Newtonian approxima-
a neutron-star binary are currently a subject of intense intertions to the dynamics of the binary system. We also present
est[1-14]. In part, this recent surge in interest stems fromnumerical results and analytic expressions which demon-
relativistic numerical hydrodynamic simulations in which it strate how the compression forces result in an orbiting dy-
has been notefil—3] that as the stars approach each othemamical system from the presence of fluid motion with re-
their interior density increases. Indeed, for an appropriataspect to the corotating frame. As such, they could not appear
equation of state, our numerical simulations indicate that biin an analysis of relativistic external tidal forces no matter
nary neutron stars collapse individually toward black holeshow many orders are included in the tidal expansion param-
many seconds prior to the merger. This compression effeater(e.g.[11,17), unless self gravity from internal hydrody-
would have a significant impact on the anticipated gravity-namic motion is explicitly accounted for. The effect could
wave signal from merging neutron stars. It could also pronot also arise in systems with uniform translation or rigid
vide an energy source for cosmological gamma-ray burstsorotation.
[3]. The implication of the present study is that any attempt to
In view of the unexpected nature of this neutron star comconfirm or deny the compression driving force requires an
pression effect and its possible repercussions, as well as thmconstrained, untruncated relativistic hydrodynamic treat-
extreme complexity of strong field general relativistic hydro-ment. At present, ours is still the only existing such calcula-
dynamics, it is of course imperative that there be an indepertion. Hence, despite claims to the contraf-14], the neu-
dent confirmation of the existence of neutron star comprestron star compression effect has not yet been independently
sion before one can be convinced of its operation in binaryested.
systems. In view of this it is of concern that the initial nu-  Another confusing aspect surrounding the numerical re-
merical results reported iii—3] have been called into ques- sults has been our choice of a conformally flat spatial three-
tion. A number of recent papefg—14] have not observed metric for the solution of the field equations. Indeed, it has
this effect in Newtonian tidal forcdgl], first post-Newtonian been speculated that this approximate gauge chéice
(1PN dynamics[5-9,14, tidal expansiong10-12, or in  which the gravitational radiation is not explicitly manifested
binaries in which rigid corotation has been impogéd]. may have somehow led to spurious results. A second pur-
The purpose of this paper is to point out that none of thes@ose of this paper, therefore, is to emphasize that the com-
recent studies could or should have observed the comprepression driving terms are a completely general result from
sion effect which we observe in our calculations. the relativistic hydrodynamic equations of motion. The ad-
Moreover, this flurry of activity has caused some confu-vantages of the conformally flat condition are that the alge-
sion as to the physics to which we attribute the effects obbraic form of the compression driving terms is easier to iden-
served in the numerical calculations. The present papetify and that the solutions to the field equations obtain a
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simple form. It does not appear to be the case, however, thaible collisions[21]. In exact numerical simulations, the
the imposition of a conformally flat metric drives the com- gravitational radiation appears as the time derivatives of the

pression. It has been nicely demonstrated in the work ofpatial three metricy;) and its conjugatéthe extrinsic cur-
Baumgarteet al. [13] that conformal flatness does not nec- vature Kij) are evolved. The immediate evolution of the

essarily lead to neutron-star compression. fields from conformally flat initial data is characterized by
the development of a weak gravity wave exiting the system.
Il. THE SPATIALLY CONFORMALLY FLAT CONDITION An estimate of the radiation content of initial data slices

There has been some confusion in the literature as to thfo" @xisymmetric black hole collisions has been made by
uncertainties introduced by imposing a conformally flat con-~Prahams22]. Even for high values of momentum, the ini-
dition (henceforth abbreviated CF®n the spatial three- tial slice radiation is always less than about 10% of the maxi-

metric. Therefore we summarize here some attempts whicjlum Possible radiation enerdps estimated from the area

we and others have made to quantify the nature of this ap€orem. o
Two questions then are relevant to our application of the

proximation. . . . ; : s
The only existing strong field numerical relativistic hy- CFC. One is the validity of this metric choice for the initial

drodynamics results in three unrestricted spatial dimension§2/ue problem, and the other is the effect on the system of

to date have been derived in the context of the CFC as ddl€ “hidden” gravitational radiation in the physical data.
scribed in detail if1—3]. Regarding the validity of the CFC one has a great deal of

We begin with the usual Armowitt-Deser-MisngkDM) freedom in choosing coordinates and initial conditions as
(3+1) metric [16,17] in which there is a slicing of the long as the initial space is Riemannian and the metric coef-

spacetime into a one-parameter family of three-dimensionﬁiems satisfy the constraint equations of general relativity

hypersurfaces separated by differential displacements in @3- Indeed, we have shown {i2] that exact solutions for
timelike coordinate: the CFC metric coefficients can be obtained by imposing the

ADM Hamiltonian and momentum constraint conditions.
ds’=—(a?—B;B)dt?+2B,dxX dt+ yijdxidxi, (1)  Nevertheless, in three dimensions a physical space is confor-

mally flat if and only if the Cotton-York tensor vanishes

where we take Latin indices to run over spatial coordinate$25,26:

and Greek indices to run over four coordinates. We also

utilize geometrized unitsG=c=1) unless otherwise noted. - ) 1

The scalar is called the lapse functiorg; is the shift vec- cY 226'“( R~ 15'kR> : (4)

tor, andvy;; is the spatial three metric. il

In what follows, we make use of the general relation be- . o ] o
tween the determinant of the four metdg, and the ADM whereR/\ is the Ricci tensor anR is the Ricci scalar for the

metric coefficients three space.
Equation(4) vanishes by fiat for the three-space metric
det(g,pz) = —adet(y;))=a?y? (20  we have chosen. However, conformally flat solutions for
physical problems have only been proJé&,26| for spaces
wherey=y—det(y;). of special symmetrye.g. constant curvature, spherical sym-

The conformally flat metric cpndition simply expressesmetry, time symmetry, Robertson-Walker, €t25]). Hence,
the three metric of E¢(1) as a position dependent conformal the invocation of the CFC here and in other applications is an

factor ¢* times a flat-space Kronecker delta assumption. That is, it is a valid solution to the Einstein
—hs 3) constraint equations, but does not necessarily describe a
Yij= 75 physical configuration to which two neutron stars will

It is common practicée.g.[18—20) to impose this con- evolve. Nevertheless, this is a valid app_roximati_on as long as
dition when solving the initial value problem in numerical the nonconformal contributions from thg; andK;; equa-
relativity. It is the natural choice for our three-dimensionaltions in the exact two-neutron star problem remain small.
quasiequilibrium orbit calculationg] which in essence seek Indeed, numerical tests for an axisymmetric rotating neutron
to identify a sequence of initial data configurations forstar[27] and a comparison of the CFC vs an exact metric
neutron-star binaries. expansion for an equal-mass bindB] have indicated that

The reason conformal flatness is chosen most frequentlgonformal flatness is a good approximation when it can be
for the initial value problem is that it simplifies the solution tested.
of the hydrodynamics and field equations. The six indepen- As a related illustration, consider the Kerr solution for a
dent components of the three metric are reduced to a singl®tating black hole. It is well known that the Kerr metric is
position dependent conformal factor. not conformally flat. The close binaries we study have spe-

Since conformal flatness implies no transverse tracelessific angular momentum only slightly greater than that of an
part of ;; it can minimize the amount of initial gravitational extreme Kerr black hole. Also, they ultimately merge and
radiation apparent in the initial configuration. However, incollapse to a single Kerr black hole. Hence, an analysis of
general the physical data still contain a small amount of prethe Cotton-York tensor for a Kerr black hole is another in-
existing gravitational radiation. This has been clearly demdicator of the degree to which conformal flatness is a valid
onstrated in numerical calculations of axisymmetric black-approximation for neutron-star binaries.
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0.04 - ‘ whereS are spatial components of the contravariant four-
momentum density.

The producﬂ<¥KTij is @ measure of the hidden radiation
0.03 1 energy density. To then find} from our numerical calcu-
lations, we first findK;; by choosing maximal slicing
[Tr(Kj;)=0] and requiring that the trace free part of thqz
equation vanish. This givd®]

c*m®

2aK;;=(D;iB;+D;Bi— 54 *5;DiB). ()

0.01 |

We then determing! from the equilibrium momentum den-

sity [Eq. (7)] and subtracK} from K"/,

0.00 10 20 We find that this measure of the “hidden” gravitational
t/m radiation energy density is a small fraction of the total gravi-

tational mass energy of the system:

FIG. 1. The scaled Cotton-York tensor compon€itm?® as a
function of the proper radius/m for a maximally rotatinga=m . dv
Kerr black hole. This quantity is a measure of the deviation from f K'11KTH 8—~2>< 10°° Mg. 9
conformal flatness. m
Figure 1 gives the dimensionless scaled Cotton-York paﬁenge, ;I.VG ?or][ﬁluc_je_t_thlaé tthe CFC is probably a good ap-
rameterC?®m? for a maximally rotating Kerr black hole as a pro_|>_<r|]ma |r(])n Ig be inita ?Ia-t imation for the det
function of proper distance. For illustration, consider the de- 'S should ve an excefient approximation for the deter-

crease of this quantity as one moves awav from the horizomination of stellar structure and stability. However, an un-
q y away ) Rnown uncertainty enters if one attempts to reconstruct the
atm=r as a measure of the rate at which the metric becom

St lution of the syst th itational -
conformally flat. The maximally rotatinga(=m) black hole me evolution of the systente.g. the gravitational wave

X : form) from this sequence of quasistatic initial conditions. At
of this example, however, is an extreme example of com-

" d | locity relative £ th t resent we make this connection approximately via a multi-
pactn€ss and anguiar velocily reiative to any ot the neu rOIgole expansior{24] for the gravitational radiation as de-
stars in our simulations.

P . scribed in[2].
It can be seen in Fig. 1 that, even for this extreme case, [2]

the dimensionless tensor coefficiedf?m?® diminishes rap-
idly away from the black hole. At the separation of interest
for binary neutron stars approaching their final orbitsng The meaning of imposing a conformally flat spatial metric
~25 wherem is the total binary mass andthe separation can, perhaps, be qualitatively understood in an electromag-
between staps this coefficient has already diminished to netic analogy. Both the ADM formulation of relativity and
~10"2 of the value at the event horizon. Thus, the effect ofMaxwell’s equations can be written as two constraint equa-
either star on its companion is probably well approximatedions plus two dynamical equations. In electromagnetism the
by conformal flatness. Regarding the interior of the neutrorconstraint equations for electric and magnetic fields are em-
stars themselves, in our studies the stars are rotating dwodied in theV-E andV-B equations, while the dynamical
slowly (even when corotatingthat the deviation from con- equations are contained in Ampere’s law and Faraday's law.
formal flatness is probably negligible. Thus, it seems plaudin relativity the analogous constraint equations are the ADM
sible that conformal flatness is a reasonable approximatiomomentum and Hamiltonian constraints. The dynamical
for most physical aspects involving the spatial three-metrieequations are the ADI\K” and '7”. equations. In either elec-
of binary neutron-star systems. tromagnetism or gravity, any field configuration which satis-
The next issue concerns the “hidden” radiation in the fies the constraint equations alone represents a valid initial
physical data. To address this we decompose the extrinsigalue solution. However, one must analyze its physical
curvature into longitudinaK)! and transvers&! compo- meaning.

A. An electromagnetic analogy

nents as proposed by YofR8]: For example, consider two orbiting charges. One could
i i construct an electric field that satisfies the constraint by sim-
KP=K[{+K7. (5 ply summing over the electrostatic field from two point

charges. Similarly, one can construct a static magnetic field

from the charge current by imposir§=B=0 in the dy-
D;Ki=0, ()  namical equations. However, by forcing the dynamical equa-
tions to vanish, one has precluded the existence of electro-
whereD; are covariant derivatives. The longitudinal part canmagnetic radiation. In this field configuration, therefore one
be derived from a properly symmetrized vector potential. Wehas unknowingly imposed ingoing radiation to cancel the
find outgoing electromagnetic waves.
4. . Similarly, enforcingK;; = y;; =0 might in part be thought
DiK/=8n9, (7)  of as implying the existence of ingoing gravitational radia-

By definition the transverse part obeys
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tion to cancel the outgoing gravity waves. Nevertheless, ibecomes important as the orbit decays deeper into the gravi-
both cases, this remains a good approximation to the phystational potential and the orbital kinetic energy of the binary
cal system(with no ingoing wave as long as the energy increases.
density contained in the radiation is small compared to the It was pointed out in the Appendix ¢8] that in analogy
energy in orbital motion. to the velocity-dependent enhancement of the source for
Gravity waves enter in two ways: as estimated aboveEq. (10), the Poisson source for thé post-Newtonian cor-
there is an insignificant amount of “hidden” radiation in- rection to the effective potential also exhibits velocity-
duced by our choice of the CFC; there is also the emission alependence. This appendix has been misinterpreted as a
gravitational radiation by the orbiting binary system. Thestatement that we attribute the compression to a first post-
binary gravity-wave emission is estimated in our calculationdNewtonian effect. We therefore wish to state clearly that the
by evaluating the multipole moments and using the appropriAppendix in that paper was merely an illustration of how the
ate formulag 2]. The fractional energy and angular momen- effective gravity begins to show velocity dependence even in
tum loss rate as determined by the multipole expansiom post-Newtonian expansion. The velocity dependence of the
method is quite small, e.g/ wJ~10"* in all of our calcu-  Post-Newtonian source is not the main compression driving
lations[2,3]. Hence, it can be concluded that the energy inforce. The compression derives mostly from the hydrody-
gravitational radiation is indeed small compared to the enhamic terms described herein. It is not obvious, however, at
ergy in orbital motion. what post-Newtonian order the compression effect should be
The emission of gravity waves also induces a reactiorfounted, since different authors have treated these terms dif-
force which we have incorporated into our hydrodynamicferently. We return to this point below.
equations by the quadrupole formula. The radiation reaction In @ similar mannef2], the Hamiltonian constraint, to-
force is so small, however, that it is difficult to discern it in gether with the maximal slicing condition, provides an equa-
the numerical results. In most of our calculations we simplytion for the lapse function:
neglect the back reaction terms and thereby obtain quasi-
sta%ic orbit solutions. Vi(ag)=2mad?®

7 N
B. Solutions to field equations X|3(U?+1)o—2p(1+€)+3P+ 167 KijK"

With a conformally flat metric, the constraint equations (13)
for the field variablesp, @, andg' reduce to simple Poisson-
like equations in flat space. The Hamiltonian constraint equaHere again, the source is strengthened when the fluid is in

tion [17] for the conformal factokp becomeg?2,18| motion through the presence of @?+1 factor and the
1 KiK' term.
V2¢=—2m¢% (1+U2)o—P+ —K.:Ki| (10 The momentum constrainfd 7] provide an elliptic equa-
¢ T ( Jo 167 Y (10 tion [2] for the shift vector:
whereo is the inertial mass-energy densit o0 (1 .
o oy y VZ,B'ZW §V,8 +4mpy, (19
o=p(l+¢€)+P, (11
, , o . . 1 9 In(al$®)
and p is the local proper baryon density which is simply ps=(4ad*S—48(U?+1)0) Y P

related to the baryon number density p=um,n/Ny,

where u is the mean molecular weighty,, the atomic mass

unit, andN, is Avogadro’s numbere denotes the internal X
energy per unit mass of the fluid, aflis the pressure. In

analogy with special relativity we have also introduced ayhere we have introduced 5] the Lorentz contracted coor-
Lorentz-like variable dinate covariant momentum density

J . J
By pl__5. k
ax! B+ X' B 3 9ij z9XRB ' (15

[1+U%]Y2=aU'=[1+UIU ]"?=[1+yIU;U ]2, S=oWU;. (16)

12

(12 As noted previously and in Ref2], we only solve Eq.
where U; is the spatial part of the covariant four velocity. (14) for the small residual frame drag after the dominant
Here we explicitly writeU? (in place of W—1 used in 5 xr contribution toj has been subtracted.
[1-3]) because it emphasizes the extra velocity dependence
here and in the equations of motion.

In the Newtonian limit, the right-hand side of EQ.0) is
dominated 2] by the proper matter densigy, but in relativ- The techniques of general relativistic hydrodynamics have
istic neutron stars there are also contributions from the interbeen in place and well studied for over 25 yeHtS]. The
nal energy density, pressureP, and extrinsic curvature. basic physical processes which induce compression can be
This Poisson source is also enhanced by the generalizéthced to completely general terms in the hydrodynamic
curved-space Lorentz factor ¢1U?). This velocity factor equations of motion. To illustrate this we first summarize the

[ll. RELATIVISTIC HYDRODYNAMICS
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completely general derivation of the relativistic covariant The term containingla/Jdx' comes from the time-time
momentum equation in Eulerian form and identify the termscomponent of the covariant derivative. It is of course the
that we believe to be the dominant contributors to the relawell-known analogue of the Newtonian gravitational force as

tivistic compression effect. can easily be seen in the Newtonian limit-1—-Gnvr.
For hydrodynamic simulations it is convenient to explic-  The termS;(d'/dx') comes from the space-time covari-
itly consider two different spatial velocity fields. Onel, ant derivative. In an orbiting system it is convenient to allow

the spatial components of the covariant four velocity. Theg! to follow the orbital motion of the stars. In our specific

other isV', the contravariant matter three velocity, which is application2] we let 3= w X R+ 439, wherew is chosen to

related to the four velocity minimize matter motion on the grid. Hence X R includes
ULV . the major part of rotation plus frame drag. The quantity
VI:W: Tj—ﬁ'- (17 gY%ag is the residual frame drag after subtraction of the ro-

tation and is very small for the almost nonrotating stars that

It is convenient to select the shift vect@ such that the result from our calculations. Wit{! dominated byw xR,
coordinate three velocity vanishes when averaged over thiae termS;(98'/dx') is predominantly a centrifugal force.
star, (V')=0. This minimizes the coordinate fluid motion ~ The U?J In a/oX term arises from the time-time compo-

with respect to the shifting ADM grid. nent of the affine connection piece of the covariant deriva-
The perfect fluid energy-momentum tensor is tive. The (UjUk/Z)ﬁ’ka/(?X' term similarly arises from the
space-space components. They do not have a Newtonian
Tu=0U,U,+Pg,,. (18)  analogue. As we shall see, these terms cancel when a frame

o ) _ ) can be chosen such that the whole fluid is at rest with respect
However, it is convenient to derive the hydrodynamic equayg the observefor in the flat space limjt However, for a star
tions of motion using the mixed form with fluid motion in curved space, they describe additional
velocity-dependent forces.

T, =97 Tye=0U,U"+P5,", (19 Weyideﬁtify the nonvanishing combination of these
éﬂ-dependent force terms and tBdB'/ox') term as the
major contributors to the net compression driving force.

This suggests some useful test problems for our hydrody-
(Ti").,=0, (200  Namic simulations. For example, in simple uniform transla-
’ tion the effects of these terms must cancel to leave the stellar

leads to an evolution equation for the spatial components g$tructure unchanged. Similarly, as discussed below, for any

The vanishing of the spatial components of the divergenc
of the energy momentum tensor,

the covariant four momentum: fluid motion, such that the four velocity can be taken as
_ proportional to a corotating Killing vector, these force terms

1 4Sy 1 aSViy P 1g%F S.Sgs must cancel13,25. However, for more general states of
ay dt * ay X + X 2 o o motion, e.g. noncorotating stars, differential rotation, meridi-

(21)  onal circulation, turbulent flow, etc., these forces do not ob-
viously cancel, but must be evaluated numerically.
The covariant momentum equation is used because of its Indeed, as discussed below, the sign of these terms is such
close similarity with Newtonian hydrodynamics. The first that a lower energy configuration for the stars than that of
two terms are advection terms familiar from Newtonian fluidrigid corotation can be obtained by allowing the fluid to re-
mechanics. The latter two terms are the pressure and gravdpond to these forces. As we shall see, the numerical relax-

tational forces, respectively. ation of binary stars from corotatidier any other initial spin
Expanding the gravitational acceleration into individual configuration produces a nonsynchronotegpproximately ir-
terms we have rotationa) state of almost no intrinsic neutron-star spin in
which the central density and gravitational binding energy
sy 19 Vi) 4 adP s B N da increase.
SHS L SV T G TS T
2(9 In « U;Uy ayjk A. Conformally flat relativistic hydrodynamics
+ U =0. 22 L .
e ox' 2 X 22 The practical implementation of conformal flatness means

that, given a distribution of mass and momentum, we first

Similar forms can be derived for the condition of baryonsolve the constraint equations of general relativity at each
conservation and the evolution of internal eneff@y15. time for a given distribution of mass-energy. We then evolve
However, the above momentum equation is sufficient for thehe hydrodynamic equations to the next time step. Thus, at
present discussion. each time slice we obtain a solution to the relativistic field

It is now worthwhile to consider the “gravitational” equations and then can study the hydrodynamic response of
forces embedded in the expanded terms of @8). These the matter to these fieldg)].
result from the affine connection terriET;*,ij/M in the cova- For the CFC metric, the relativistic momentum equation
riant differentiation ofT#". is derived by simply replacing!*— ¢ *5* in Eq. (22):
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40 ; ; ther increased by about twice that from thén /X contri-
bution alone.[The factor of 2 in front of the derivative
comes from the requirement thaf~ (1/«) in the Newton-
30 ¢ 1 ian limit [2].] )

A further increase of binding arises from tK&¢ K;; terms
in the field sources, but these terms are much smaller than

20 | e 2 - ;
the U< contributions for a binary system.

15

p. (10° gom®)

o—
— hd hd

Uniform Translation L . .
10| ] B. Comment on the relativistic Bernoulli equation

For comparison with other work in the literature it is in-
structive to discuss the derivation of the relativistic Bernoulli
0.0 00 0.02 .08 .06 equation from Eq(22). It has been pointed oue.g.[13])

v that the hydrodynamics reduce to a simple equation for a
fluid in which the velocity field can be represented by a
corotating Killing vector. In our notation this equation can be

FIG. 2. Numerically evaluated central density for a uniformly
translating staflower curvé as a function ofu?=U'U;. This is

compared with the central density for binary stémpper curve writien
with the same averagd? value. These calculations utilized the dpP
EOS of Ref.[2]. dIn(UYHY= - (24)
d dIn 1 4 . ap
—Si +6S —¢ + —5 —(°SV)+a——S; —ﬂ— The demonstration that the relativistic Bernoulli equation
ot ot P® oxd ax T ox , :
(24) is exactly reproduced from E@22) when a corotating
a dna  dlng Killing vector can be imposed, was recently brought to our
+0’(9—X|—+0'a ( o _ZT =0. (23 attention by Nakamur§29]. We summarize the derivation

here in the conformally flat metric both for clarity and to
Here as in Eq(22), the first term withda/dx' is the relativ- show that conformal flatness does not violate this important
istic analogue of the Newtonian gravitational force. constraint. , ,

In Eq. (23) there are two ways in which the effective 10 Pegin with, note that in the ADM formalism, the ex-
gravitational force might increase for finité2. One is that iSténce of a Killing vector is equivalent to being able to
the matter contribution to the source densitiesdar ¢ are ~ choose the ADM shift vector such thdt=0 everywhere for
increased by factors of 1+ U2 [cf. Eqs.(10) and(13)]. The  the fluid. Next use Eq(17) to solve fors' and divide byo.
more dominant effect, however, is from the combination of The resulting equation for stationary motion is
the §;98'/ox' term and theJ?[ 9 In alax —20In ¢lox'] terms

in Eq. (23). ié_P,: t _(9_ i )_(aut)zﬁlna+zuzaln¢
As noted previously, these compression driving terms re- o dx' Tox! | ¢*U! ax' ox'
sult from the affine connection part;, T“* of the covariant (29

differentiation of T#”. These terms have no Newtonian ana- L , i i
logue but describe a general relativistic increase in the gravil '€ récovery of the relativistic Bernoutlh ?qua'glon requires
tational force a&J? increases. As noted [2,3] (see also Fig. hat the right-hand side (RHS)J In UYox. With some
2 below for a binary,U? is approximately uniform over the straightforward algebraic manipulation it is possible to show
stars, and the increase in central density due to these addfat all of the terms on thiRZHS cargce_l except for one term
tional forces scales asU*. This scaling, however, is the net 1om the B derivative, — ¢ ~"U%d In Uax. The completion
result from a nontrivial cancellation of terms and must be®f thet proof is simply to note that this term is equal to
treated carefully. We shall return to this point below. d In UYox by Eq.(12). The result is Eq(24). ,
The proper way to determine the post-Newtonian order at 'It is mstrgctlve tp consider the.chang('e.m the relqt|v-
which the compression driving terms enter would be to counls;“C Bernoulli equation when there is no Killing vector, i.e.
the powers ofc? that appear in the denominator of a term. ¥ #0- Along the same lines of the derivation of Bg5), it
For example, if we divide the last two terms in E83) by can be .showri29] t_hat the momentum equation can be re-
the gradient of thex term (the analogue of the Newtonian Wrtten in our notation as
gravitational forcg we would obtain a ratio of orded?/c?

which would be manifestly first post Newtonian. However, 1. Y d i t %

in the first post-Newtonian treatment of Wiseni#j, these ao Si+$;+ Y ax (SVin) [FUU; oor
velocity terms were explicitly disregarded. Thus, the effects

of these terms could not have been present in that calcula- __ Lo dInu' (26)
tion. It is no surprise, therefore that no effect was observed in o X X!

Ref.[6].

Also note that the @ In ¢/ox term in Eq.(23) enters with  The RHS is just the relativistic Bernoulli equation in the
a sign such that the total)?-dependent contribution is fur- limit that the left-hand sidéLHS) vanishes. In general fluid
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flow, however, the LHS contains not only the advection TABLE I. Central density for rg=1.625M, stars in various

terms(in bracket$, but also an additional surviving part of conditions using d"=2 EOS.

the B! derivative.
It can be seen from this that imposing a corotating Killing Environment Constraints pc(104 g cm™)

vector (V'=0) means that only simple hydrostatic equilib-

. . . . Single star Hydrostatic 5.84
rium is obtained fo_r stathna(y systems. However, when non- Single star Uniform translation 590
trivial hydrodynamic motion is allowed, the extra forces em- Binary Tidal only 582
bodied in the LHS of Eq(26) are manifested. This leads to Binar Rigid corotation 5;90
a deviation from the simple relativistic Bernoulli solution. inary gid i '
Any attempt to model this deviation requires a careful treat- B!nary Rigid no spin . 6.56
ment of the dynamical properties of the fluid described by BN Full hydrodynamics 6.68
the LHS of Eq.(26).
IV. CONSTRAINED HYDRODYNAMICS the maximum stable mass allowed by the Tolman-

S _ ) Oppenheimer-Volkow(TOV) equations. Above the maxi-
_Further insight into the complexity of the physics con- mym TOV mass the stars begin to collapse on a dynamical
tained in the relativistic equations of motion can be gainedjmescale as they should. We have also checked that the grid

by considering some simple examples of constrained hydroeegg|ution used in our binary calculations is adequate to pro-

dynamics for which the answer is known. These pose USEfL&(ice the correct central density, stellar radius, and gravita-

tests of our numerical scheme. Since some have propoiiI nal mass of a single isolated stf8]. Hence, it seems
0

that th? effect we opsen_/e may be an artifact of numeric nlikely that the inadequate grid resolution is the source of
resolution or approximation, we present here a summary tthe compression effect as some have proposed

various test problems designed to illustrate the stability o In order to facilitate comparisons with the literature, and

the numerics and also to compare with some of the calcula- : . . .
tions in the literature. These calculations also demonstrat avoid confusion over equgtlon of ste(EOS_ ISSues, we
that the compression effect vanishes in the limiting cases thé'taveF employed a simplistid’=2 72polyt.rop|_c EOS, P
have been studied by others. Hence, they could not have Kp'» whereK=1.8x 10° erg cnt g2 This gives a maxi-
been observed. They highlight the fact that the effect wenum neutron-star mass of 1/82,. The gravitational mass
observe only appears in a strong field dynamic treatmen®f @ singlemg=1.628 ¢, star in isolation is 1.5¥ o and the
which accounts for internal motion of stellar material in re-central density isp,;=5.84< 10" g cm 2. The compaction
sponse to the binary and its effect on the star's self gravityratio is m/R=0.15, similar to one of the stars considered in
At present, ours may be the only existing result. This is[13]. Note that this EOS leads to stars with a lower compac-
consistent with the conclusion §80] based upon test par- tion ratio than the stars we considered[R3] for which
ticle dynamics. m/R~0.2. Hence, the effects of tidal forces in the present
calculations should be more evident.

A. Bench mark calculations The bench mark in which the compression is present is

To test for the presence of the compression driving forcethat of FWO equal mass s_tars na pmary computed with un-
Tonstrained hydrodynamics. The binary stars have the same

we consider two benc_h—mgrk initial calc_ulatlons. The bendbaryon mass rig=1.628, each, the same EOS, and a
mark of no compression is that of an isolated star. In our;

2
three dimensional hydrodynamic calculations, the single stafllxeOI angular momenturr = 2'5* .1011 cr? (.J/M 5=1.09
structure is derived from Eq22) in the limit wr21ere Ms=2mg). For these cond|t|ons the b_mary stars have
U<=0.025 and are at a coordinate separation=df00 km.
S=U,=V=8=0. (279  The stars are stable but close to the collapse instability.
Hence, they have experienced some compression that has

The condition of hydrostatic equilibrium in isotropic coordi- increased their central density by 14% up pe=6.68

nates is then trivially derived from Eq§22): X 10" gem 3,
_ The central densities of these two bench marks are sum-
JP dIna marized in the first and last entries of Table I. To compare
YA (28 With these bench-mark calculations we have computed equi-

librium configurations for stars under the various conditions
where the tilde denotes that the metric coefficients are evalwutlined below. The test for the presence or absence of com-
ated in the fluid rest frame. The Newtonian limit of the right pression inducing forces will be the comparison of the nu-
hand side is recovered as—1—Gm/r. Hence, we again Mmerically computed central density with that of a single iso-

identify the @ In @/dx term with the relativistic analogue of ated star or stars in a binary.
the Newtonian gravitational force. E(R8) also trivially re-
duces to relativistic Bernoulli equatid4).

We have of course tested our three-dimensional calcula-
tions for single isolated stars. A single star remains stable on As a first nontrivial test, now consider a star as seen from
the grid indefinitely, except when the baryon mass exceedan observer in an inertial frame which is in uniform transla-

B. Stars in uniform translation
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tion with respect to the fluid. Choosing the motion to bebinary stars evolved at the sar¥ value using the same
along thex coordinate, the fluid three velocity is EOS. One can see that the translating stars maintain a con-
stant central densitgwithin numerical erroras they should.
(29) In contrast, the central density of binary stars grows-a".
This growth is the nontrivial net result from the velocity
dependent terms in E@23). It is not obvious, however, to
HOWeVer, the observer is still free to choose the ADM Sh|ftwhat post-Newtonian order this dependence Corresponds_
vector such that the computational grid remains centered on As summarized in Table I, the central density for a uni-

the star. That is, althougB;,U;,#0, we can still choose formly translatingl’=2 star with U2=0.025 (for compari-

X

ot =V*=const.

V'=0. This gives a restriction op' from Eq. (17): son with the binary bench-mark calculatjoris 5.90
X x 10 g cm 3. Within numerical accuracy, this central den-
v alUy N . . .
lgsz_ (30)  sity is identical with that of an isolated star at rest.

This is at least indicative that our observed growth in
central density may not be a numerical error as some have
suggestede.g.[10,12,30Q). Such an error would likely be
apparent in this test case. We argue that the difference be-

h tter t . tered ih i thouah thtween simple translation and binary orbits relates to the
€ matler o remain centered on the grd even thoug Shysics of the binary system itself, in particular physics
equanpns of motion are being solved for fluid which is not atwhich is not apparent in uniform translation, an analysis of
res\sv\./\t/LthVire_sgetc; to the observter.f h i i tidal forces, or a truncated expansion that does not contain
(in ethuilibri_un%) bgéotr:ﬁénsponen ot the momentum equation ¢ fficient terms to adequately describe the dynamical re-

sponse of the fluid.

Note, that this is an ADM coordinate freedom. It is not
equivalent to a coordinate boost. It is in fact a Killing vector
which is convenient for numerical hydrodynamics. It allows

X r . iK1
RSB ey e UST gy
IX a X I IX 2 x| C. Tidal forces
With a CFC metric this becomes It has been pointed oy#,11,17 that tidal forces are in
) _ the opposite sense to the compression driving forces dis-
IP S, 9B* ) dlna ,d1In ¢ cussed here. That is, tidal forces distort the stars and decrease
X a ox ¢ (U+1) ax 2U ax | 32 the central density and therefore render the stars less suscep-

tible to collapse. We have argug8l] that although such sta-
There are now several differences between this expressidsilizing forces are present in our calculations they are much
and that for an observer in the fluid rest frame. For one, theremaller in magnitude than the velocity-dependent compres-
is the shift vector derivative8*/dx. Even in uniform trans-  sion driving terms. Nevertheless, the evolution of the matter
lation this derivative is nonzero due to the variations of thefields in a calculation in which only tidal forces are present
metric coefficients over the stdef. Eq. (30)]. Also, the ef-  still represents a useful test of our numerical results. Stars in
fective gravity is enhanced by thé&J¢+1) velocity factor.  which only tidal forces act, should be stable and the central
The UjUk/Zaka/(?x' term also appears. In addition, the ef- density should decrease rather than increase as the stars ap-
fective source termgl0) and(13) for the CFC metric coef- proach.
ficients are enhanced both by{+ 1) factors and the(;; K" To test the effects of tidal forces alone we have con-
term. structed an artificial test calculation in which we place stars
In spite of these differences, we nevertheless know thabn the grid in a binary, but with no initial angular or linear
the locally determined pressure and inertial density must benomentum, i.e.J=0 and U2=0. This initial condition
the same as those determined for a star at rest. Indeed, sine@uld normally evolve to an axisymmetric collision between
we can choose a Killing vectoM{ =0) these equations must the stars. However, after updating the matter fields, we arti-
reduce to the relativistic Bernoulli equatig4). ficially return the center of mass of the stars to the same fixed
Thus, this is an important numerical test problem. Weseparation after each time step. We also reset to zero the
solve the full hydrodynamic equations explicitly, e.g. Eq. mean velocity component directed along the line between
(23), under the initial condition of nonzerd, for a single centers. This sequence is repeated until the matter fields
star. The cancellations embedded in the hydrodynamics amme to equilibrium. Since the velocity dependent forces
not obvious. Nevertheless, in the end, all of these effecteventually vanish, the only remaining forces are the pressure
must cancel to leave the stellar central density unchangeand static gravitationalincluding tida) forces.
(except for a Lorentz contraction factor Results as a function of separation distance are shown in
To solve the uniform translation problem numerically we Table Il for thel'=2 EOS and Table lll for the realistic EOS
have applied the Hamiltonian and momentum constraints tased in[2]. For the realistic EOS the central density indeed
determine the metric coefficients. We then evolved the fulldecreases as the stars approach, consistent with the expecta-
hydrodynamic equations to equilibrium. Figure 2 shows theions from Newtonian and relativistic tidal analyses12].
numerically evaluated central density for such translating=or thel’=2 polytropic EOS, the central density also de-
stars as a function dff2. These stars were calculated with creases as the stars approach and remain below the central
the EOS of 2]. This is compared with the central density for density of an isolated star. The fact that this table is not
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TABLE II. Central density vs coordinate separation betweenequivalent to settingy' =0 globally. Choosing the ADM co-
centers for rg=1.625 M (I'=2) stars in which only tidal forces  ordinates to remain centered on the stars, in steady state the
are included. The neutron star radiirsisotropic coordinateds 12 time derivatives vanish along with the rest of the LHS of Eq.

km. (26). Only the relativistic Bernoulli equatiof®4) survives.
_ 4 ~ It is not surprising, therefore that [d3] it has been dem-
Separatior(km) po(10 g em™) onstrated that in this special symmetry, the central density of
41.8 5.821 the stars does not increaseithin numerical error as the
50.6 5.816 stars approach the inner most stable circular orbit. In very

close orbits the density actually decreases relative to the cen-
tral density of stars at large separation. They also find that
the orbit frequency remains close to the Newtonian fre-

quency. Both of these results are interesting in that they con-

monotonic at the innermost point, however, may be due to M that the compression effect does not oc@s it should
limitation of this numerical approximation for tidal forces as NV in this special symmetry. They also demonstrate that
the ratio of separation to neutron-star radius diminishes. conformal flatness is not the source of the compression.
Although the tidal forces do indeed stabilize the stars, Accepting the results dfL3] as correct, this then becomes
their effect on the central density is quite smait@.2% another important test of our calculations. That is, if we ar-

decreasecompared to the net increase in density caused byficially impose rigid corotation, then the central density
the compression forces present for the binary. This is consighould remain nearly constant until the stars are close
tent with the relative order-of-magnitude estimates for thes€nough that tidal effects cause the central density to decrease

effects described ifi3]. rather than increase.
Imposing rigid corotation, however, is not a trivial test

problem to implement without completely replacing the hy-
drodynamic equations with the corresponding Bernoulli so-

As a next nontrivial example, consider stars in a binarylution of [13,25. (Indeed, we have done thi81] and repro-
system that are restricted to rigid corotation. In a recent seduce the results dfL3] quite well) Moreover, we have found
ries of papers, Baumgart al. [13] have studied neutron- that directly modifying the hydrodynamic equations in an
star binaries using the same conformally flat metric. Theirattempt to mimic a dynamically unstable configuration is dif-
work differs from ours in that rather than solving the hydro-ficult. One might think that the simplest way to implement
dynamic equations, they describe the four velocity field by aorotation would be to impose a high fluid viscosity. Indeed
Killing vector whereby the stars are forced to corotate rig-high viscosity would resist the hydrodynamic forces de-
idly. They also impose spatial symmetry in the three Cartescribed herein. However, a high fluid viscosity also resists
sian coordinate planes so that they can solve the problem ithe much weaker tidal forces and prevents the numerical re-
only one octant. One should keep in mind, however, thataxation to quasistatic equilibrium. It is thus difficult to
rigid corotation is not necessarily the lowest energy configuachieve tidal locking by simply increasing the viscosity.
ration or the most naturdl32] final state for two neutron Instead, we introduce artificial forces on the fluid which
stars near their final orbits. This assumption, though artificontinually drive the system toward a state of rigid corota-
cial, is nevertheless a means to constrain and simplify théion while allowing the system to at least somewhat respond
fluid motion degrees of freedom. It is much easier to imple-hydrodynamically. To do this we define accelerations
ment and therefore becomes an interesting test probl_em fi Ui)Rigid necessary to achieve rigid rotation by
codes seeking to explore the true hydrodynamic evolution o
close binaries. . (U;—U))

Indeed, it is possible to shoy25] that in this limit, the (U rigia= f
neutron star hydrostatic equilibrium can be described by a
simple Bernoulli equation in which the compression driving
force terms are absent except for a weak velocity depenwvhereU; are components of the rigidly corotating covariant
dence. Analytically, the reason for this is trivially obvious four velocity in thex—y orbit plane. These are determined
from Eq.(26). The existence of a corotating Killing vector is by requiring that8'=(w Xxr)" and settingy'=0 in Eq.(17):

81.8 5.821
el 5.837

D. Stars in rigid corotation

(33

TABLE Ill. Same as Table Il but for the EOS of R¢&]. The

4
neutron star radiugéin isotropic coordinatgsis 6 km. U.= wXé (34)
Y a\/l—sz§¢4/az’
Separationkm) pc(10 g cmi )
31.2 14.15 _ — oy
37.4 14.16 U,= \/W, (35
64.8 14.20 ayl- 'R a
103.8 14.25
0 14.30 whereR is the coordinate distance from the center of mass of
the binary.
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020 - - . - sic stellar spin in the orbit plane,
9 ¢2
o151 e ' = 2 f [(x=%)S,=(y=¥)S] —dV;,  (37)
\ :
0.10 |
“Em 0
> 005 | where §; ,y;,z;=0) is the coordinate center of mass of each
e star.
6 In this study we have imposed an initial angular velocity
0.00 - 1 ws in the corotating frame to obtain various initial rigidly
9 rotating spin angular momenténcluding corotation, wg
-0.05 . . : . =0), but for fixed totalJ/M3=1.4. We have considered
0.0 0.2 0.4 0.6 0.8 1.0 ) . .
time (msec) spin angular frequencies in the range-900<wg

<900 rad sec?, corresponding to—0.03<JS/m§<0.17.

FIG. 3. Intrinsic neutron star splﬂg/mé as a function of coor- : :
dinate time. The curves are labeled by the initial angular velocitywe then let the system evolve hydrodynamically with the

wg (in units of 100 rad sec) relative to the corotating frame. stars maintained at zero temperature. . L .
In Ref. [3] we showed that the neutrino emission is suffi-

At each time step we then update the momentum densit ient to radiate away the released gravitatio_n_al energy and
using a combination of the hydrodynamic and corotating ack€eP the stars at near zero temperature until just before the

celeration terms, collapse. This is the reason that we have treated this as a
relaxation problem. That is, unlike a true hydrodynamic cal-
Ui:f(Ui)Rigid+(1_f )(Ui)Hydm' (36)  culation, the relaxation calculation presented here, assumes

that the stars radiate efficiently and stay at zero temperature.

where (Ui)Hydm is the acceleration from the full hydrody- Therefore, this evolution does not need to conserve energy or
namic equation of motiofEq. (23)]. circulation. This relaxation assumption is the reason the stars

Numerically, we find that iff is small (<0.2) the hydro- can evolve to a different spiflower energy state without
dynamic forces dominate and corotation is not obtained. Owiolating the circulation theorem.
the other hand, fof >0.2 the system is not stable, i.e. the  Figure 3 shows the spimslmé as a function of time for
stars deform and the velocities become erratic. We haveach initial condition. In each case, the system relaxed to a
therefore run withf =0.2 that temporarily produces a veloc- state of almost no net spin within about three sound crossing
ity field which is close to rigid corotation. That is, the re- times ¢~0.6 msec). These calculations suggest that rapidly
sidual three velocities are damped to a fraction of the orbispinning neutron stars in close orbits are unstable. The true
speed. This is, perhaps, good enough to make qualitativg,o|ytion time, however, would be much longer.

comparisons with the expectations from a truly corotating We also note that the quantitjo] 1+ U2—1]dV de-

sysst(tamt.. f th trained initial f i creased as the system evolved from rigid rotation to hydro-
arting from the unconstrained initial contiguration, Wedynamic equilibrium. Since this quantity is related to the

find that when the stars have achieved approximate corota~ . ; L
tion, the central density has decreased from 6.6 inetic energy of the binary, this indicates that the hydrody-

X 104 g cmi 3 to 5.90x 10 g cm-3 which is close to the namic lowest energy state is one of lower kinetic endfgy
value for stars in iéolation (5.84104 g cm™3). The calcu- fixed total angular momentunthan that of rigid rotation.

lated gravitational mass is slightly greater than that of the[0 ﬁ\r?ofv?/rvax}ﬁé?hee(rxtjrr::a p::s'gr?szﬁgﬁriC;gfserigesdihor;e mzhi)s
unconstrained binary. However, with the large artificial force P Py

. : o that fact that they have no spiand therefore no internal
terms needed to approximate corotation, gravitational mass

is not a well defined quantity in this simulation. Also, the centrifugal force to support them against the compression
orbit frequency was not sufficiently converged for a mean_force_s), or whether more c_qmplex fluid ”?0“0” within the
ingful comparison. star itself affects the st_ablllty. To test this, we have con-
structed stars of no spinJ§=0) by simply damping the

residual motion to that oflgc=0 after each update of the
velocity fields.

As noted above our simulations indicate that neutron stars Since this no-spin state is so close to the true hydrody-
relax to a state of almost no intrinsic spin. In a separate paparamic equilibrium, this produced stablg=0 equilibrium
[33] we analyze the nature and formation of this state instars for the binary. For this case, the central density con-
more detail. For the present discussion, however, we summaerges top,=6.56x 10* g cm 3 which is very close to the
rize in Fig 3 a study of the relaxation to this state from stateshigh value for the unconstrained hydrodynamics. This result
of arbitrary initial rigid rotation(including corotation would seem to indicate that most of the increase in density

As a means to distinguish the intrinsic spin motion of thecan be attributed to the velocity with respect to the corotating
fluid with respect to a non-orbiting distant observer, we deframe generated by the fact that the stars have almost no
fine a quantity which is analogous to volume averaged intrinspin.

E. The spin of binary stars
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V. DISCUSSION observed. This may indeed be a real contradiction. We sug-

For clarity. we summarize in this section our concl S.Onsgest, however, that this simulation did not observe the effect
Iy, we su 1z€ In i : u USIONShacause of their use of an unrealistically sbft1.4 EOS.

regarding .why the neutron-star compression effect was NOthe authors chose this EOS because the stars become so
observed in some other recent works. extended that one can compute arbitrarily close binaries

First consider post-Newtonian €xpansions. In the work ofyithout encountering the relativistic inner orbit instability.
Wiseman[6] the force terms containing ® were explicitly  For the irrotational starémodel B¢ in [14]), which is the
deleted from the computation of the stellar structioe Eq.  only simulation that might have observed the compression
(8) in that pape}. Only thedIna/dx term was included. The effect, the compaction ratio is onlyi/R=0.023. Hence, a
recovery of simple hydrostatic equilibrium was thus un-1.45 M, neutron star would have an unrealistic radius of 93
avoidable. km.

The PN orbiting ellipsoids of Shibatet al. [7] included However, since they have simulated very extended stars
more terms. Indeed, it was noted that there are two effects @it very close separation, the tidal forces are much stronger
1PN order. One is the self gravity of each star of the binaryrelative to the relativistic compression driving terms than in
and the other is the gravity acting between the stars. In theiny of the simulations which we have done.
calculations the self gravity dominates causing the stars to The ratio of the stabilizing tidal correctiohE;q, to the
become more compact. This is consistent with the compreglestabilizing energy from compressiarE,m, should scale
sion effect described here in the sense that relativistic cor-3.4] as
rections can dominate over Newtonian tidal forces. However,
the self gravity terms in7] appear to only mclude_ the usqal AE. R\
1PN terms which would equally apply to stars in isolation. tidal OC(_) (39)
Hence, the velocity-dependent compression driving terms are ABcomp \1) '
probably not present.

Their results for stars in corotation are consistent with ) ) )
ours under the same constraint. They also note that apvhereR is the neutron star radius amds the orbital sepa-
proaches in which PN corrections to the gravity between théation. For model Bc if14] we estimate that this ratio is
stars are included without also including the corrections to=200 times greater than any of the binary stars we have
the self gravity(as in[9]) can be misleading. considered. Hence, it is quite likely that the authors have

In the work of Lombardiet al. [8] both corotating and simply chosen an unrealistically soft equation of state for
irrotational equilibria were computed. However, in their cal- Which the tidal forces dominate over compression. It might
culations it appears that the stars become less compact B8 very interesting to see the results from a similar study for
they approach contrary to our results and the resulfgjoft ~ sStars with a realistic compaction ratio and several radii apart.
may be that the reason for this is that in Lombaetlal. the Concerning tidal expansions, in Brady and Hughtg]
post-Newtonian corrections to self gravity were only com-an attempt was made to analyze the stability of a central star
puted for stars “instantaneously at rest.” The authors chos®erturbed by an orbiting point particle. The metric and
to “exclude the spin kinetic energy contribution to the self stress-energy were perturbed in terms of orderu/R
energy.” It is such terms, however, that we identify with the where w is the point particle mass arflits coordinate dis-
compression effect. tance from the central star. The Einstein equation was then

The conformally flat corotating equilibria computed by linearized to terms of ordes. The result of this linearization
Baumgarteet al. [13] are consistent with our results. Since was that the only possible correction to the central density
their stars were restricted to rigid corotation, only the hydro-Was a single monopole term of ordefR~v?2. However, in
static Bernoulli solution would result. They could not have our numerical results as shown in Fig. 3. the central density
observed the compression forces which result from fluid mois observed to increase a€. Hence, it may be that the
tion with respect to the corotating frame. expansion of Ref[10] was truncated at a too low order to

We have argued in this paper that if one wishes to explor@bserve the compression effect described here. The main rea-
this effect, it would be best to apply a complete uncon-son that they could not observe the effect, however, is that
strained strong-field relativistic hydrodynamic treatment forthe terms involving motion of the central star were dis-
stars which are not in corotation. In this regard, a recentarded. We attribute the compression effect to an enhance-
paper14] has come to our attention in which hydrodynamic ment of the self gravity due to the motion of the stars with
simulations of both corotating and irrotational binaries haverespect to the corotating frame. Hence, the neglect of terms
been studied in a first post-Newtonian approximation toinvolving the motion of the central star precludes the possi-
conformally-flat gravity but using the full relativistic hydro- bility of observing the effect.
dynamics equatior(22). For both corotational and irrota- We believe that the same conclusion is true in the treat-
tional stars the central density is observed to oscillate about@ents by Refs[11, 12. The analysis of Flanagail] is
value which is less than that of isolated stars. Hence, th&ased upon the method of matched asymptotic expansion.
authors conclude that no compression effect is present.  The metric is approximated

Since this calculation contains many of the higher order
terms to which we attribute the compression effect, it is not NS LB
immediately obvious why the compression effect was not 9puv= Nuwt iyt (39
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where the superscriN S refers to the self contribution from was considered along with the stabilizing effect of rotation.
one star and refers to the contribution from a distant com- However, the increased self gravity from velocity-dependent
panion. The internal gravity of a static neutron ~is  forces was not included. Hence, the conclusion§l@] are
expanded to all orders. The binary tidal contribut is  consistent with our results based upon tidal forces. So are the
expanded in powers of the ratio of stellar radius to orbitalNewtonian tidal effects computed [#].

separation.

First we suggest that such a decomposition may be ques-
tionable for a close neutron-star binary. In our metric one can
write the metric perturbation as The results of this studycf. Table ) are that we see

almost no difference between the central density of an iso-

lated star and a binary star in which rigid corotation has been
hij=(¢*-1)5; . (40)  artificially imposed, or one in which only tidal effects are

included. Indeed, in the case of tidal forces alone, the central

) ) ) ~density in our simulations actually decreases as stars ap-
The conformal factoip is a solution to a Poisson equation proach, consistent with other works.

inVOIVing source terms from the two stars. Between the StarS, An increase in the central density is 0n|y apparent in our

the only source of the fields arises from tHgK" terms  pinary simulations for stars with fluid motion with respect to
which are quite small. Hence, neglectiKgK" terms,¢is  the corotating frameSpecifically we considered stars of low
additive in the “vacuum” between the stars, intrinsic spin in a binary.In such cases there is no simple
Killing vector which can be imposed to cancel the compres-
o " sion driving forces. We have argued here an@i3hthat the
_ _ 1 2 main compression effect arises from the net result of
$=drt Po=14 2|r—r,] * 2|r—r,|" (1) velocity-dependent hydrodynamic terrfid4]. These terms
arise from the affine connection part of the covariant differ-
entiation of the stress-energy tensor.
Expandingh;; around star 1 in the presence of a distant We show here that the compression effect would not have

VI. CONCLUSIONS

companion 2 we have been observed in a study of tidal forces or any model that
artificially imposes rigid corotation of the fluid. A proper
40 m, m, 6/ m m, |2 treatment must co_nsider all of the_fprce terms apparent in_ the
hij=5 + + - + . momentum equatiofi22) to a sufficient order so that their
2\[r=rq| r=ral/  Al[r=rq] " [r=ry]

effects on the fluid self gravity survive. A similar conclusion
—hNS1hB 4 cross terms. (42) has been reached iB0] based on test particle dynamics near
py Ry a Schwarzschild black hole. In that work it is concluded that
at least 2.5 post-Newtonian particle dynamics is necessary
However, for the binary systems we have considered, thgefore a dynamical collapse instability is manifested.
cross terms are-15% to 20% of the surhj,>+h%,. Hence, We argue that the results of this study are thus consistent
they can not be neglected. The errors associated with thigith results in a number of recent pap@4s-13 which have
decomposition may be part of the reason that the compresmalyzed the stability of binary stars in various approxima-
sion effects are not apparent in this work. tions and limits and see no effect. Since we do not disagree
A related concern is with the expansion of the stresswith the lack of a compression effect in the limits that they
energy tensor ihll]. We have noted that most of the com- have imposed, we conclude that the existence or absence of
pression arises from the net effect of velocity dependenthe neutron-star compression effect has not yet been indepen-
terms in the covariant derivative of the stress-energy tensotlently tested.
In [11] the stress energy is expanded in powers of the cur- Therefore, if one wishes to explore this effect, it would be
vatureR™™. The author statelsl1] “We assume initial con-  best to apply a complete unconstrained strong-field relativis-
ditions of vanishingTEf,}, so that the only source for pertur- tic hydrodynamic treatment employing an EOS which pro-
bations is the external tidal field.” An analysis which only duces realistically compact neutron stars. Another alterna-
considers perturbations from the external tidal figldd not  tive, however, might be to study the quasi-equilibrium
motions of the fluidl will not observe the compression effect. structure of nonspinning irrotational binary stars at a suffi-
The result of[11] is that the central density is unchanged ciently high order. In this regard a recently proposed formal-
until tidal forces enter a®(R®). This is consistent with our ism[35] to compute quasi-equilibria for nonsynchronous bi-
results in the limit of only tidal perturbations acting on the naries may be of some use. We have begun calculations in
stars. It is not clear to us, however, to what degree the vethis independent formalism. The results will be reported in a
locity dependent terms are included or excluded by this exforthcoming paper.

pansion. A more careful recent revisipB. Flanagan(pri- Regarding the existence of this low spin state, we find that
vate communicatior] shows an effect coming in a lower such a state represents the unconstrained hydrodynamic equi-
order, but not necessarily as strong as we have noted. librium for a close binary. In Newtonian theory, stars are

In the paper of Thorn¢12], a similar tidal expansion is driven to corotation by tidal forces. However [i82] it has
applied. In that work only the stabilizing effect of tidal forces been shown that Newtonian tidal forces are insufficient to
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