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Gravitational-wave versus binary-pulsar tests of strong-field gravity
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Binary systems comprising at least one neutron star contain strong gravitational field regions and thereby
provide a testing ground for strong-field gravity. Two types of data can be used to test the law of gravity in
compact binaries: binary pulsar observations, or forthcoming gravitational-wave observations of inspiralling
binaries. We compare the probing power of these two types of observations within a generic two-parameter
family of tensor-scalar gravitational theories. Our analysis generalizes previouglwous on binary-pulsar
tests by using a sample of realistic equations of state for nuclear nimiséead of a polytrope and goes
beyond a previous studypy C. M. Will) of gravitational-wave tests by considering more general tensor-scalar
theories than the one-parameter Jordan-Fierz-Brans-Dicke one. Finite-size effects in tensor-scalar gravity are
also discussed S0556-282(198)08616-0

PACS numbsg(s): 04.80.Cc, 04.36-w, 97.60.Gb

I. INTRODUCTION has studied the quantitative constraints on the coupling pa-
rameteraq of Jordan-Fierz-Brans-Dicke theories that could
The detection of gravitational waves by kilometric-size be brought by gravitational-wave observations. His result is
laser-interferometer systems such as the Laser Interferomeghat in most cases the bounds coming from gravity-wave
ric Gravitational Wave Observatof.IGO) in the US and observations will be comparable to presently known bounds
VIRGO in Europe will initiate a new era in astronomy. One coming from solar-system experimeritamely,a5<10"%).
of the most promising sources of gravitational waves is thel his result of Ref[8] seems to suggest that gravitational-
inspiralling compact binary, a binary system made of neutroryvave-basedtrong-fieldtests of gravity do not go really be-
stars or black holes whose orbit decays under gravitationafond the solar-systerweak-fieldtests of gravity. We wish,
radiation reaction. The observation of these systems will probOWever, to emphasize that this seemingly pessimistic con-
vide important astrophysical information, e.g. masses of neuclusion is mainly due to having restricted one’s attention to
tron stars, and direct distance measurements up to hundreHEe spec!al, one-parameter Jordan-F|erz—Brans—D_|cke theory.
of Mpc [1]. It is also said that detecting gravitational waveslndeed’ in this theory the strength of the coupling of the

from inspiralling binaries should provide rich tests of the Iaw_scalar fielde to matter is given by the constant quantity

N AT . . independently of the state of condensation of the gravita-
of relativistic gravity in situations comprising strong-field .. o
tional source. As a consequence, the predictions of the theory

reglons(hk'e near a neutron §tar or a black hbleiqwever, _ differ from those of Einstein’s theory by a fraction of order
present binary-pulsar experiments already provide us with >

) : ag in all situations: weak-field ones or strong-field ones,
deep and accurate tests of strong-field grayiy4]. It is alike. By contrast, it has been emphasized in REgs.10]
therefore interesting to compare and contrast the probingqat .the more ge,neric tensor-scalar theories in wﬁich the
power of presentand foreseeablepulsar tests with that of strength of the coupling of to matter, namely
future gravity-wave observations. '

A convenient quantitative way of doing this comparison is 9 1n A(e)
to work within a multi-parameter family of physically moti- a(@)=
vated (and physically consistentheories of gravity which
differ from Einstein’s theory in their radiative and strong-

. . ) " depended on the value af, allowed for the existence of
field predictions. The most natural framework of this type 'Sgenuinestrong-field effectsby which the presence of a

the general class of tensor-scalar theories in which gravity i ighly condensed source, such as a neutron star, could gen-
mediated both by a tensor fieyff,, (“Einstein metric”) and  grate order-unity deviations from general relativity even if
by a scalar fieldp. These theories contain one arbitrary the weak-field limit ofa(g) is arbitrarily small.[More pre-
“coupling function” A(¢) defining the conformal factor re- ¢isely, these non-perturbative strong-field effects take place
lating the pure spin-2 Einstein metrg;, to the “physical  wheng(¢)=da(¢)/d¢ is negative} This led us to consider,
metric” §Mv=A2(<p)gZV measured by laboratory clocks and instead of the Jordan-Fierz-Brans-Dicke modal¢)

rods. The usual Jordan-Fierz-Brans-Dicke thd&ry7] isthe  =explagep), the class of theories defined by

one parameter class of theories defined by a coupling func-
tion A(¢) =explage). [The coupling strengtly, is related to

the often used parametear by a§=(2w+ 3)~L.] will [8]

PP 1.9

1
Alg)= eXD(gBquZ) : (1.2
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This class of theories contains two arbitrgdimension-  neutron star. In Sec. Il we generalize RE] in discussing
lesg parameters;3, appearing in Eq(1.2), and ¢y, the  how gravitational wave observations can give quantitative
asymptotic value ofe at spatial infinity.[By contrast, in tests of tensor-scalar gravity. In Sec. IV we combine and
Jordan-Fierz-Brans-Dicke theory, has no observable ef- compare gravitational-wave tests with binary-pulsar tests and
fects] Equivalently, the two parameters in these theories casolar-system ones. Our conclusions are presented in Sec. V,
be defined as being the strength of the linear coupling@wf  while an Appendix discusses finite-size effects in tensor-

matter in the weak-field limit ¢~ ¢,), scalar gravity.
ag=a(pg)= M: 0%0, (1.3 II. GRAVITATIONAL FORM FACTORS OF NEUTRON
deo STARS DESCRIBED BY REALISTIC EQUATIONS

. . OF STATE
and the non-linear coupling parameter

The orbital dynamics of a binary system depends, besides

_da(eo) _ % In A(eo) the Einstein masses of the two objentg, mg, on the effec-

o ey &pé (1.4 tive coupling constanta, ,ag, defined as
A convenient feature of the two-parameter family of theo- dInmy
ries (1.2) is that they have just the amount of generality ap= dgg 2.9
needed both to parametrize the most general boost-invariant
weak-field (“post-Newtonian”) deviations from Einstein’s 5 well as on their scalar-field derivatives
theory, and to encompass nonperturbative strong-field ef-
fects. Indeed, on the one hand, the two theory-parameters dan
(ag,Bp) determine the two well-known Eddington- ,BAE[?—. (2.2
Nordtvedt-Will parameters, ®o

The derivatives in Eqiz.l),(Z.Z) are taken for fixed values

of the baryonic massn,. In the limit of negligible self-

o 1 gravity aa— ag and Ba— Bp, but it was shown in Refg9,

B=Beddingtori~ 1= Eﬁoagl(1+ a3)?, (1.6  10] that(when B, is negative enougtthe effective coupling
constanta, of a neutron star can reach values of order unity

which measure the most general, boost-invariant, deviation§'€" if the weak-field coupling constan, is extremely

from general relativity at the first post-Newtonian lev&@ee small. By contrast, in Jordan-Fierz-Brans-Dicke theaty
[11,12 for the generalization of the Eddington parameters totenEIS to zero with,. Let us also note that for a black hole
the second post-Newtonian leyeDn the other hand, when @a=0 because of the no-scalar-hair theorems.

Bo=<—4 non-perturbative strong-field effects develop in the N Ref: [11] it was shown that the parameters
theories defined by Eq1.2). Ma,Mg,ap,ap,Ba,Bs Suffice to determine both the

All existing gravitational experiments can be interpreted(V/ c)?-accurate conservative orbital dynamigxluding pe-
as constraints on the two-dimensional space of theories d&iastron precession and other relativistic deformations of
fined by Eq.(1.2). In other words, we can work within the Keplerian motion and the radiation reaction effectano-
common ¢, 3,) plane, and consider each gravitational ex_nppolar, d_lpqlar and quadrupolar effects linked to the com-
periment(be it of weak-field or strong-field naturas defin- Pined emission of scalar and tensor waveSn the other
ing a certain exclusion plot within that plane. In some recenf!@nd, the relativistic timing of binary pulsar systems in-
work [10], we have constructed such exclusion plots, as de?0!Ves, besides the above effective coupling constants, a new
fined by considering both solar-system experiments an@qramgter descr|b|ng the possible field dependence of the
binary-pulsar experiments. The present work will generalize £instein-framg inertia momentl, of the pulsar[13,10.
these exclusion plots in several respetitswe shall plot the ~ T1iS new parameter, entering the timing formula, is of the
regions of the &g, 8,) plane probed by future gravitational- form Ka=Kkaag where
wave observations of neutron-star—neutron-star, and
neutron-star—black-hole systens, we shall improve our ko= — dInla
previous study of the probing power of binary-pulsar experi- A deg
ments by considering a sample of realistic nuclear equations
of states(instead of the polytropic one used by us before For a fixed value of the baryonic mass,, the quantities
and by using updated pulsar data, diid we shall consider m,  «,, B andk, depend on:(i) the value ¢, of the
the individual constraints or, and 8, brought by the main  scalar field at infinity and the theory of gravity uséence a
solar-system experimentgnstead of using published com- dependence on, and 3, in our casg and(ii) the equation
bined limits ony and g3). of state of nuclear matter used to describe the interior of the

This paper is organized as follows: In Sec. Il we summa-neutron star.
rize our(numerica) approach to computing the various form  In this work, we shall consider, in addition to the simple
factors that describe the coupling of the scalar figlth a  polytropic equation of state that we used before,

Y= Yeddingor~ 1= — 2a3/(1+ af), (1.5

2.3
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~ ~— Kngmy, [ n : -~~~
€=nmy+ T—1 = | P=Knomy| =—| , (2.9
No No
m,=1.66x10"%*g, Nng=0.1fm 3,
['=2.34, K=0.0195, (2.5

a sample of threémore or lesprealistic equations of state.
They describe the crust by the same equation of §tate to
Baym et al. [14]) but differ in their descriptions of the core
of the neutron star. One descriptiddue to Pandharipande
[15]) gives a rather soft equation of state, a second(doe

to Wiringa et al. [16)) is of intermediate stiffness, while the
third one(due to Haensedt al.[17]) corresponds to a some-
what stiff equation of state. This sample will allow us to see
the effect of the softness of the equation of state.

We have discussed in detail in R¢L0] the way to com-
pute the effective coupling constams,, aa, Ba. Ka in
tensor-scalar gravity. We shall not repeat this material her
Let us only mention a modification that we brought to the
procedure discussed in R¢L0] for more convenience when

dealing with equations of state given in tabular form. Start-
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configurations withpge.>0. Indeed, we have shown 0]
that the solutions withpye.<<O are energetically disfa-
vored] Having constructed a sufficiently dense giith

(Bc,goc) spacé of such numerically integrated models, we
can then comput@,, Eq. (2.2, andk,, Eq.(2.3), by nu-
merically approximating the-derivatives(with fixed mp,)

by finite differences constructed from four neighboring grid
points. The expressiofR.1) for a, is used as a test of our
numerical accuracjwe appropriately densify our grid so as
to ensure that Eq2.1) is satisfied to better than 5dJsing
finally some interpolation, we end up by generating a huge,
multi-entry table which is conveniently organized as giving,
for a grid of values ofeg and By, numerical values of
(ma,Ma, ap, Basl aKa). This is a numerical approximation
to givingmp, a@a, Ba, la, andk, as functions okyy, Bg
andm,. We should also mention that we keep only stable
models in our tables, i.e., we keep only configurations cor-
responding to masses increasing, when the central pressure

é'ncreases, betweeffiormally) zero and their first maximum

(corresponding to the usual concept of the maximum mass of
a neutron star, here quantitatively modified by scalar-field
effecty.

ing from such tables, we first interpolate them to define the

(proped physical energy density and the(prope) physical
baryon number density as functions of the physical pres-

sure p. [The tilde refers here to quantities expressed in

“physical units,” i.e., with respect to the metri@w
=Azgfw.] Then, we transform the field equations by using

the pressurep as a radial variable. More precisely, this

Ill. TESTING TENSOR-SCALAR GRAVITY FROM
GRAVITATIONAL-WAVE OBSERVATIONS
OF INSPIRALLING BINARIES

The gravitational wave signal from inspiralling binaries
will be deeply buried in the broadband noise of interferomet-
ric detectors. To detect it, one will have to correlate the out-

. X ; -_put of the detector with a “template wave form,” i.e., an
meang that we con_s@er a_EEt of 8 flrst-order dlfferentlaﬁopefully faithful copy of the actual time evolution of the
equations for the variation witp of the variableM, v, ¢, ¢, signal. As hundreds to tens of thousands of cycles may be
p, M, w andw. The symboldM,...,& have the same mean- usefully registered in the output of the detector, this method
ing as in Ref[10]. In particular,p is the Schwarzschild-like of matched filtering will allow one to dig deeply into the
radial coordinate used in E43.1) of [10]. Note that the broadband noise, under the condition that the used template
quantity «q is constructed at the end of the numerical workwave form be an accurate representation of the signal over
from the asymptotic value obp by using ag=Be¢o, EQ. that many cycles. This means that gravitational wave obser-
(1.3. The right-hand side of the equation givimp/dp is  vations will be very sensitive to the evolution of the fre-
the inverse of the right-hand side of E8.66 of [10], while ~ quency and the phase of the wave.

the right-hand sides of the 7 other equations is simply ob- In tepsorl-scalar gf_ﬁvti)ty Ejhgf evolu]fion ththe_ Pfllze_lse of the
tained [from dO/dp=(dO/dp)/(dD/do)] by dividing the 9dravitational wave will be different from that in Einstein’s
right-hgnd side(g oprq($3(?Gali)(3(.6ﬁ) bg)/)t]he):ight—har?d side Pure tensor grgvity bepaqse this_ phase evolution is driven by
of Eq. (3.68. A bonus of this modified approach is that we radiation reaction, which is modified b_ecause_ f[he system can
can numerically integrate these differential equations on &0W 100se energy to scalar waves, in addition to loosing
knownrange: namely, we start integration at the center of th&@N€rgy to tensor waves. More precisely, the energy lost to

. . ~ ~ scalar or tensor radiation at infinity now reads, with suffi-

sta~r with some given central value fpr sayp., and we stop cient approximation,
at p=0 (surface of the star The value ofp at the end of
integration gives the radiur of the star. We have discussed
in Refs.[9,10] how to obtain the quantities,, ms, aa,
andl 5 from the other results of the integration.

Actually, having chosen some nuclear equation of stat
the above numerical integration yields, for each valuggf

and for each initial valuep, (central pressujeand ¢, (cen-
tral value of the scalar fie)jd an output which consists of
(mp, Ma, a@a, la, @g), Wheregg is the value ofp at spa-
tial infinity. [We keep only the “positively scalar-polarized”

E: Egonopole_i_ E?Dipole+ Eguadrupole_i_ Eﬂuadrupole’ (3.1)

where the subscript denotes the field being radiated, and
Swhere the superscript refers to the multipolar structure of the
emitted radiation. The explicit expressions for the various
energy losses have been derived for general tensor-
(multi-)scalar gravity theories in Rdf11] (see alsd18]). As

said above, they depend on tti&nstei) massesn, ,mg and

on the effective scalar coupling parameters of the two stars,
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ap,ap,BaPe. Denoting M=ma+mg, Xa=ma/M, Xg . 96 . o5 o3 s 13
=mg/M=1-X,, v=X,Xg, and assuming that the orbit Mu=zu" 1+br™um "+ O(by™ "u™)
is circularized(eccentricitye=0), we find from Eq.(6.52
of Ref.[11] the following evolution law for the orbital fre- 743 11 o5 o) )
quencyn=27/P g ~\gzet 7| U ¥1+0(a?)]
n v 96 [v)\® v\?3 v\® Amy-35UM 1+ O a®) ]+ O(u*3 3
_2:1 EK_ +(aA_aB)2_ +0ol|l = +47v U[ + (a)]+ (U ) , (7)
n +apap c c/ /I
(3.2  where we defined
where 5
bzg—GK*3’5(1+aAaB)*2’5(aA— ag)?. (3.9
v=[G, (1+ apag)Mn]*? (3.3

The zeroth-order termxu''®in Eq. (3.7) represent the fre-
[in which G, denotes the “bare” gravitational constant en- quency evolution due to the emission of tensor quadrupolar
tering the action of the Einstein  metric. waves. The other terms represent corrections to this zeroth-
fd“xgi/ZR(g*)/l&TG*], and order result. The terms containing a factoor a symbolic
factor «? represent the effects of the radiation of scalar
1 , 1 waves. The main term due to the radiation of scalar waves is
k=1+z(apXpgt agXp)+ z(aa—as) the b»?%u~2? term. It is important to note that this term

(coming from dipolar waves contains the large factor
—2/3

ap—ag u 2P~y ~2>1. This term is the main source of the con-
X(apXat apXp)(Xa—Xp) + 481+ apag straints on tensor-scalar gravity coming from gravity-wave
5 observations because it has a different dependencetioan
X (BeaaXa— BaasXp) +do(an—ap)”. (3.4  the usual general relativistic terms. Indeed, the usual general

relativistic frequency evolution is given by the terms without
The term @a— ap)?(v/c)® in Eq. (3.2) is associated to the b or o2 factors, i.e., symbolically, Mu~utd 1+ u??
emission of scalar dipolar waved3,19,18,2Q The first 4 3834 y4B34. .,
term (equal to ongin « comes from the emission of tensor  Assuming that future gravity-wave observations from in-
quadrupolar waves, the second term is due to the emission ghjralling binaries will be well matched by filters constructed
scalar quadrupolar waves, the remaining terms come frofftom the standard general relativistic orbital phase evolution,
O((v/c)®) contributions to the scalar dipolar wavgespon- e wish to quantify what constraints they could bring on the
sible for theO((v/c)®) term in Eq.(3.2]. The numerical modifications to the frequency evolution equatith?) by
coefficientd, has not been computed, but this is not impor-the terms proportional td or 2. This problem has been
tant in the present context as it multiplies the same termackled by Will [8] using a matched-filter analysis. His
(aa— ag)? which will be more strongly constrained by the analysis can be applied to our case, if we follow fpau-
O((v/c)®) dipolar radiation term in Eq3.2). [Let us note in  sjble) assumption that the final bounds will restrict scalar-
passing that our parameterdiffers by a certain factor from  field effects to be more or less uniformly small compared to
the one used by WIll[8], namely, kyi=(1+aaras)’(1  general relativistic ones. This means that the only essential
+ad) 3 kpere] scalar-field term that we should consider in E8.7) is the

The expressioii3.2) is similar to the frequency evolution term br?®u~22 All the scalar-field effects that simply

equations used by Will8]. Our results are, however, more modify usual einsteinian effects can be neglected. Further-
general because they apply in a generic tensor-gravitynore, this means also that we can approximalg one, and
theory, while his were restricted to the Jordan-Fierz-Bransthe chirp masg3.5) by its einsteinian limitG, ¢~ 3M »%5,
Dicke case. On the other hand, starting from &2) we can  Finally, we can translate Will's final bound on the Jordan-

follow his analysis in discussing the constraints that can bejerz-Brans-Dicke coupling parameteﬁ [his Eq.(1.5)], in
derived from(future) gravitational wave observations. Let Us the following bound orb or (as— ag)?:
define a tensor-scalar “chirp massih time unit9 by
48 1 MR _2/5( 10)
v |

a5 5 b~ 5(aa- ap)?<1.46x10°° T N
(3.5 (3.9

VK

G,
ME—3

c

(1+ aAaB)I\/I m

_ _ _ _ _ whereT, =G, myc™ 2 is the gravitational time associated to
and the corresponding adimensionalized orbital frequency a solar mass. This bound can also be rewritten in terms of
M=m,+mg and v=mamg/(m+mg)?:

us=Mn. (3.6 s

©

. —ag)?<2. S
In terms of these variables, E.2) reads (aa—ag)®<2.92<10°7 0
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In Egs.(3.9) and(3.10, S/N denotes the signal-to-noise ratio and an excluded onéat some fixed confidence leyeMWe
(after applying a matched filteof a LIGO-VIRGO-type de- can therefore compare the probing power of various experi-
tector. (The analysis of Refl8] assumes the noise spectral mental tests by drawing a combined exclusion plot in the
density of a LIGO “advanced detecton.” (ag,Bo) plane.

We have focussed above on the indirect effect of scalar- We shall consider three solar-system tests of weak-field
wave emission on the phase evolution of tensor waves fogravity. The measurement of the Shapiro time delay by the
the following reason. Relatively to the main tensor-Viking mission[22] as well a some very long baseline inter-
quadrupolar contribution, this effect is of ordera{ ferometry(VLBI) measurement®3,24 yield the 1o bound
— ag)*(c/v)?>(ap— ag)®. Moreover, because of possible ||<2x1073, which[in view of Eq.(1.5)] gives
nonperturbative scalar-field effects associated to the strong
self-gravity of neutron starsa(y— ag)? can reach values of a3<107° (1o). (4.1
order unity, even if the weak-field scalar coupliag<1. By o
contrast, the more direct effect of scalar-wave emission of e measurement of the perihelion advance of Mer¢as}
the differential forces acting on arfiocal) detector of gravi-  gives 3|2 y—8|<10~3 which, using Egs(1.5 and (1.6),
tational waves can be described by the transverse projectidranslates into

of the physical metrig,,,

1
as+ g,@oag <75x10°* (10). 4.2)

0= (A%(po+ $)g5) =TT+ 2a008],  (3.11)

where&ﬁz5ijfninj is the projection ofj; transversally to Finally, the Lunar Laser Ranging experimej6] yields
the directionn’ of propagation of the wavésee, e.g.[11]), ~—1.7X10 °<48—y<3X10 * which translates into
and where we choose units such tidipy)=1. The main

direct effect of scalar-wave emission, associated, to scalar
dipolar emission, is thefsee Eq(6.33 of [11]]

—8.5X 10 *<af+ Boai<1.5x10°* (lo). (4.3

These three constraints, taken together, exclude the region
. 2 above the solid line labeled “1PN(first-post-Newtoniahin
20095 = — —arg(ap— ap) Figs. 1-5. Concerning binary-pulsar experiments we shall
r take into account three of them.
MaMg The PSR 191316 experiment uses the values of three

xTni(ziA—ziB). (3.12  well-measured phenomenological timing observables

(“post-Keplerian parameters[4]) »°® y°*>andP2™. (We
Compared to the standard tensor-quadrupolar wave, this is ofeglect the low-precision measurement of the post-Keplerian
order aq(as—ag)(c/v)®. Even when nonperturbative parameters ands.) Here P denotes the observed secular
strong-field effects generate,— ag=0(1), we sedhat the rate of advance of the periastrop® denotes the observed
direct effects of scalar-wave emission are down by a factoyalue of the “Einstein” time-dilation parameteentering
ap<<1 compared to the indirect ones. One therefoigriori Ag=1y sinu[4]), and pgbs denotes the secular change of the

expects that these direct effects will be less sensitive probespiia| period. The values we shall take for these observed
of strong-field deviations from general relativity than the in- parameters arg27]

direct ones considered above. This qualitative-argument-

based conclusion is confirmed by the results of \8kc. IV ©°5=4.226 62111)° yr (4.49

of [8]) who quantified the lower sensitivity of matched fil-

tering to amplitudes, as compared to phases. y°oP=4.2952)x 10 3 s, (4.4b
Let us also note that Ref§9,10] have emphasized that

gravitational collapse and neutron-star binary coalescence pgbs_ pgm:_z 410185)x 10712, (4.40

(by contrast with inspiralmight exhibit observably signifi-

cant direct and indirect scalar-wave effects due to the compnere figures in parentheses represeealistio 1o uncer-
bined possibilities of strong-scalar-field effects andnopo- tainties in the last quoted digits. In Ee.40, Pga' represents

lar radiation.(However, the recent investigation of RE21] the sum of various galactic effects which must be subtracted
suggests that these effects will be too small to be of obser-

vational interes}. from P**to be able to compare it to theoretical predictions
[28]. [We will take into account below the small modifica-
tions brought to it by tensor-scalar gravity, E@.22 of

IV. COMBINING GRAVITY-WAVE, PULSAR .
[11].] We need also the values of the Keplerian parameters

AND SOLAR-SYSTEM TESTS
P,=27 906.980 78046) s, (4.53
Thanks to our consideration of a two-dimensional “mini-
space” of alternative gravity theories, we can combine vari- e=0.617 13084). (4.5b
ous experimental tests of relativistic gravity, and compare
their probing power. Indeed, each experimental constrainfs explained in detail in Ref[10] one converts the three
separates then(y, Bp) plane into two regions: an allowed one phenomenological (theory-independent measurements
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E0.075 1913+16 22 NS-BH:. ; F
% o L 0655+64
0655464 St o,
£0.025 1PN =7
1PN By
Bo .
-6 -4 ) 0 2 4 6 -6 -4 -2 0 2 4 6 Bo
FIG. 1. Region of the ¢¢,8,) theory plane allowed by solar- FIG. 2. Same plot as Fig. 1 in the case of a soft equation of state

system tests, binary-pulsar experiments, and future gravity-wavéPandharipande The region possibly excluded by the LIGO-
detections, in the case where nuclear matter is described by thglRGO detection of a (1) neutron star—(1f,) black hole
polytrope (2.4),(2.5). In view of the reflection symmetryr,— system lies above the dotted line. The bubble-like region at the left
—ayp, we plot only the upper half plane. The region allowed by of Fig. 1 (binary-neutron-star system detected by LIGO-VIRGO
solar-system tests is below the thin line labeled “1PN.” The PSRdoes not exist in the case of this soft equation of state.

0655+ 64 data constrain the values @f and 3, to be between the
two solid lines. The regions allowed by the PSR 1918 and PSR
1534+12 tests lie respectively to the right of the bold line and of
the the dashed line. The horn-shaped region at the top-left of the

Xz(piObS;mAvaiaA!BAv"-)

. — obs, —2
dashed line is removed if the observaBIg*®is taken into account _Ei (‘Tpis)
for PSR 1534-12. Each of these curves determines the leyel
=1 for the corresponding test. We have also plotted the Ig¥el X (PO mu, Mg, an,Ba,-..) — P2 4.7

=2 for PSR 191316 to underline that the precise value f is

not very significant in the region where binary-pulsar experimentsHere, we neglect the correlations between the measurements
are more constraining than solar-system tegig<(—3). The re-  of the various post-Keplerian parameters.

gions excluded by the gravity-wave observation lig8itl0, with a In principle, when considering one or more pulsar experi-
signal-to-noise rati® N= 10, lie on the hatched sides of the curves ments simultaneously, one can associate a confidence level
labeled “LIGO-VIRGO.” The case of a 1M-neutron-star and @  (jn the bayesian senséo any regionR in the theory-plane

10me-black-hole binary system is labeled “NS-BH,” whereas the py jntegrating ovefR the normalizedh posterioriprobability
case of a 191816-like binary-neutron-star system is labeled “NS- density

NS.” The region simultaneously allowed by all the tests is shaded.
da’OdIBOWpos( @g,Bo)
(4.4a—¢ into constraints on alternative gravity theories by ob
using the predictions that, say, tensor-scalar gravity make for = dagd BoN Tpriorl @0, Bo) Wa (P10, Bo)
,7,Py, as functions of the twda priori unknown masses X Wa(pS* arg, Bo).. . (4.9
ma,.Mg and of the parameteréere a,By) defining each
tensor-scalar theory. As already mentioned above, the depehere the probabilitydensity W, to observe, in the first
dence on the theory-parame’Fer§,/30 goes through _the de- pulsar experiment, the multiplep®® [e.g. (@ y°°S
pendence of the post-Keplerian parametarsy and P, on
the effective coupling constants,,ag,Ba,Bs.Ka. The
explicit expressions of @™ ma, Mg, @a, BaKa, - . .),
theoryy Htheory,
YO (M, Mg, @p, BaKa, - - . ) and Pp="(ma,mg, aa, Ba, ob _ _ = 2/ nobs.
Ka, ... ) have been written down in Refgl1] and[10]. We Wia(pi™ o, Bo) = ex 2 X (P15 @0,Bo) 4.9
shall not reproduce them here. Using these expressions, we o _
then define a goodness-of-fit statistics by minimizing ovewith the definition(4.6) above. In Eq(4.8), N is a normal-
the physicallya priori undetermined masses: ization constanfsuch thatf J dad Bomyes{ @0, B80) = 1] and
oo @0,B0) IS somea priori probability density for the
values of the theory parameters. A comngand convenient

Pg“)] of post-Keplerian parameters can be approximated by
the Gaussian

2/ ~0bs.
X“(p @0, Bo) way of choosing some confidence regioRsis to define
:mmmA,mBXz(pio S Ma, Mg, aa,Ba Kas-..), them from the varioug“. One can consider either the over

lap (assumed to existof the various individualy? contour
(4.6)  levels x2(p2"S ag, Bo) = K1, x2(PS*S arg, Bo) = ko, etc., or the
combined x? contour levels: x2(aq Bo)=kon With x2,

where, for the simultaneous measurement of any number @EEa)(Z(png: ag,Bo). To each choice ofR, we associate a
post-Keplerian parametefs, one would define bayesian probability‘probability of causes;” the causes be-
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g LIGO .- LIGO
NS-NS; NS-BH, Ol

I \foos 1913+16

of:
of - oos} 1913+16

FIG. 3. Same plot as Fig. 2 for a medium equation of state
(Wiringa et al). Dotted lines indicate the regions excluded by fu-  FIG. 4. Same plot as Fig. 3 for a stiff equation of stataensel
ture gravitational-wave observations, respectively inside the bubbl8t @l). Note that the bubble excluded by the detection of a binary-
for the NS-NS case, and above the straight line for the NS-BH casdleutron-star system by LIGO-VIRGO is much larger when the
equation of state is stiff.

ing here the unknown theory parametess B,) by integrat-

ing Eq. (4.8) over R. Here, we shall not try to quantify Pp,=36 351.702 658R5) s, (4.123
confidence levels in this way. We shall content ourselves by

plotting individual y2=1 contours. If several independent e=0.27367775), (4.12b
so-defined pulsar contours overlap, it is clear that the overlap

region will define a rather high confidence level region for X=3.729 4683) s. (4.129
the total experiment combining these independent puls

measurements. aﬁeference{Sg)]sglves also the observed value of the radiative

As discussed in Sec. Il above, it is essential in this disParameterP,™. However, it underlines that the theoretical
cussion to decide upon some equation of state for nucledgignificance of this measurement(& presenthighly uncer-
matter. Each choice of nuclear equation of state defines it&in because of the lack of an independent, reliable measure-
own corresponding exclusion plot. For example, we expectnent of the distance to PSR 15842. Indeed, as discussed
soft equations of statéike Pandharipandejgo yield stron-  in [28], several galactic effects have to be subtracted from
ger constraints on the theory parametesg,(8,). Indeed, Pgbs before equating it to the theoretical predicti@ﬁ‘eow.
they lead to more highly condensed neutron star models, arithese corrections are relatively small and sufficiently well
thereby to generically higher values of the effective cou-known in the case of PSR 19436, while they are relatively
plings ., Ba.Ka for given (aq,Bo) [11]. We shall consider large and insufficiently known in the case of PSR 1532.
successively the following equations of stdigin Fig. 1 the  Because of this insufficient knowledge of the theoretically
polytrope(2.4),(2.9) (as used in our previous wof0)), (i) relevant combinatioP2®~ Pg2', we shall not take into ac-
in Fig. 2 the(sofy Pandharipande equation of sta#,) N count this observable in our exclusion plots belAn al-
Fig. 3 the(medium Wiringa et al. equation of state, an@)  temative choice would be to take it into account but to en-
in Fig. 4 the(stiff) Haenselket al. equation of state. large the errors induced by the uncertainty on the distance. In

_The PSR 153412 experiment consists mainly of the at case, we found that its main effect is to forbid the horn-
high-precision measurements of three post-Keplerian Paran¥naped region at the top-left of Fig. 1, which is anyway al-
eters(which have to deal with strong-field effects without reaqy ruled out by solar-system experiments as well as other
mixing of radiative one$3]): w° y° ands®S Heres®™  binary-pulsar tests.
denotes a phenomenological parameter measuring the shapeFinally, we follow Ref.[10] in taking also into account
of the gravitational time dela§29,4]. The values we shall the data on PSR 065%4. This binary pulsar is composed of

take for these three observable parameterd 20p a neutron star of mags,~1.4mg and a white dwarf com-
) panion of massng~0.8mg, moving around each other on a
w®5=1.755 764)° yr 1, (4.108  nearly circular orbit in a period of about one day. This dis-
symmetric system is, potentially, a strong emitter of scalar
y°P5=2.06610) X 10 3 s, (4.10bh dipolar waves. Indeed, we saw above that dipolar radiation
losses are proportional taxf — ag)?(v/c)®. Here ag does
s°P$=0.9827). (4.100 not differ significantly from the weak-field coupling, be-

cause the self-gravity of a white dwarf is very small, while
We shall also take into account the lower-precision measurex, can reach values of order unity. We refer to R&D] for

ment of the range-of-time-delay paramet&?® the discussion of the constraints obtainable from this system.
The end result is that we get the followiigonservative 1o
roP=6.7(1.3)x10 ° s, (4.1)  constraint
and we shall need the Keplerian observables [aa(my) — ap]?<3x 1074, (4.13

042001-7



THIBAULT DAMOUR AND GILLES ESPOSITO-FAREE PHYSICAL REVIEW D58 042001

We use the correspondingsss, .= 1 level in our exclusion %GN(; %
plots. (S/N=100) 0655+64

For all the equations of state that we consider, we see on
the exclusion plots Fig. 1-4 that the most stringent con-
straints coming from pulsar experiments are obtained by
combining the 1913 16 exclusion region foBy=<+1 with
that from 0655-64 for By=+ 1. The resulting theoretical
bounds are somewhat less stringémy a factor of a few
than solar-system bounds wh@qa= 8., while for By=< S,
pulsar experiments essentially exclude an infinite domain of
the (aq,By) plane which remained allowed by solar-system
experiments. Herg3, denotes thénegative critical value of 6 4 2 0 2 i s Bo
Bo below which nonperturbative strong-field effects develop,
thereby exhibiting the unique strong-field probing power of ~FIG. 5. Same plot as Fig. 1, assuming the same polytropic equa-
pulsar experiments. As we see on Figs. 1—4, the valye,of tion of state, but a signa_ll-to-noise ratEll\_lleO for the _LIGO
depends on the equation of state. In particular, a soft equébatched curves. For clarity, the dashed line corresponding to the
tion of state leads to highly condensed neutron star configu? SR 1534-12 test has been suppressed.

rations and, thereby, develop nonperturbative effects earlier . . . .
y P b sot ~ sented in Fig. 1. The corresponding excluded regions for

i]a_nﬂsﬁftf'ﬁ Tﬁ?su?sm\)/inssiblgfor?tgitge- er;ar?(;:zrripggéﬁﬁ (cere realistic equations of state can be recognized on Figs. 2—4 as
c . o deformations of the just described regions for the polytropic
the pulsar bound is more stringent than the solar-system ongSge Note that the bubble excluded by 1918-like sys-
for Bo=—1, while for stiffer equation of state it becomes o5 i) is smaller when the EOS is softer, and that it even
more stringent only whego= —3. . . disappears for Pandharipande’s equation of &g 2). In
Finally, we have added, for comparison, the exclusiony,a¢ case, the detection of such a system by a gravitational-
regions defined by the gravity-wave observation li8il0,  \ave interferometer would not constrain at all the space of
assuming a signal-to-noise rat&N=10. In absence of i aqries.
gravity-wave observations telling us about the precise The valueS/N=10 chosen for Figs. 14 corresponds to
masses of real inspiralling binaries, we have considered tW@,. ~onventional event rate of 3 binary-neutron-star coales-
fiducial cases{(i) a two-neutron-star system with I_Einstein cences per year in a radius of 200 Mpc, and to a probably
massesn,=1.44Imgy, mg=1.388n (as measured in PSR g 4j1er event rate for neutron-star-black-hole coalescences.
1913+16 when interpreted in general'relatl\al,t)and (i) a However, as pointed out by WilB31], the event rate is only
neutron star—black hole system witma=1.4mo, Mg gjightly relevant to our discussion since a single system can
=10mg . In case(i) neither the precise numerical values of g fice to constrain the space of gravity theories. It is there-
the masses nor the fact that we fix Einstein masses instead gf;o interesting to consider also the lucky discovery of an
baryonic masses is crucial. What is crucial in our deﬁ”itionexceptionally near system, with a signal-to-noise ratio as
of the fiducial casdi) is that we assume #actional mass  |rge asS/N=100. The corresponding exclusion plots are
difference Am/m~Am/m~4%, as large as in PSR 1913 displayed in Fig. 5, for the same polytropic equation of state
+16. Indeed, the over important dipolar radiation is propor-as in Fig. 1. The bubble excluded by the 1911%-like sys-
tional to [ aa(ma) — ag(Mg) ] (Am/m)2 asAm/m—0. In tem is much larger, but still not competitive with present
case(ii), the no-scalar-hair theorems guarantee #gt0  binary-pulsar tests. Similarly, the neutron-star-black-hole
for a black hole(see, e.g.[11]), so that neutron-star-black- system is more constraining than in Fig. 1, but the slope of
hole systems are always goadpriori probes of possible the corresponding line is only reduced by a factex/10,

LIGO
F0.125 NS-BH
F (S/N = 100)

1913+16

scalar dipolar radiation. _ _ although the signal-to-noise ratio is 10 times larger. This is
Because of the complexity of the numerical calculation ofdue to the fact that the dominant dipolar radiation is propor-
the strong-field form factors of neutron staisee Sec. Il tional to the square af, . Therefore, the lucky discovery of

above, we could compute more precisely the exclusion re-3 nearby neutron-star-black-hole system would be slightly
gions for the polytropic equation of state, Eq2.4),(2.5.  more constraining than present binary-pulsar tests in the re-
Therefore, it is in Fig. 1 that one sees best the shape of tr@ion —35[80<0’ but not better than present So|ar-system
regions possibly excludédby future gravitational wave data. experiments. Moreover, one must keep in mind that solar-
The fiducial casei) (ala 1913+16) excludes an ellipsoidal system experiments will improve in the mean time. In par-
bubble which touches thg, axis aroundd,~ —5, while the  ticular, NASA’s Gravity Probe B missiofdue for launch in
fiducial case(ii) (neutron star—black holeexcludes the re- 2000 is expected to improve the probing af, down to the
gion abovethe nearly straight linero—0.038,~0.15 repre-  |gye| ag~+\10 °~3x10 3.
Since we are mentioning the possibility of lucky discov-
eries, like those of PSRs 19136 and 1534-12, let us also
We assume here that general relativity is thearly) exact de- ~ gquote the constraints which could be achieved if a binary
scription of gravity chosen by nature, and we discuss constraints opulsar with a black-hole companion were discovered. In that
deviations away from general relativity. case, the main dipolar radiation would be proportionaizio
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(since ag=0 for a black holg instead of the small factor tion of gravitational waves far in the wave zorf@hile
(ap— ag)?><(Am/m)2 appearing for binary-neutron-star binary pulsar experiments prove the reality of the propaga-
systems. The mass of the black hole is not a crucial parantion with finite velocity of the gravitational interaction in the
eter for this discussiofwe takemg=10my). Assuming an near zone of a binary systenSecond, they willhopefully)
orbital periodP,, and a measurement accuracy Ry similar ~ 1ead to superb additional confirmations of general relativity
ao would be tightened by a factor80, i.e, that the bold  inspiral and coalescence of neutron stars or black holes; see,
lines of Figs. 1-5 would cross the vertical axis around ~ ©-9-[1,33. .

~0.05/80~6x10"“. In terms of the Eddington parameter _ Independently of the comparison between LIGO-VIRGO
veasr EQ. (1.5), this corresponds to a levalygg— 1| tests and binary-pulsar tests, the present paper has provided

<1078, which is about a thousand times tighter than presenf€ first systematic study of the influence of the nuclear
solar-system limits, and ten times better than the probingduation of state on the theoretical probing power of binary-

level expected from Gravity Probe B. This underlines that, inPulSar tests. In particular, Fig. 2 shows that if the equation of
the future, binary-pulsar tests may become competitive withStateé were as soft as predicted by the simple Pandharipande

or even supersede, solar-system experiments even in the f@0del, binary-pulsar tests quantitatively supersede solar-
gion B,>—4 of the theory plane. system ones in gll the regiofp<=-—-1 of parameter space.
Even if we consider the less constraining stiff equations of

V. CONCLUSIONS states, the present work confirms the limit

The main conclusion of the comparison carried out in Bo>—4.5 (5.9

Figs. 1-5 is that, in all cases, future LIGO-VIRGO observa- . L
tions of inspiralling compact binaries turn out not to be Com_found (modulo 10% in [10]. We recall that this limit can be

petitive with present binary-pulsar tests in thdiscriminat- Eﬁr?sr?er'entei?z:miig?g on the ratio of the two weak-field post-
ing probing of the strong-field, and radiative, aspects of ! np

relativistic gravity. This conclusion may seem paradoxical. It Bea— 1 1
should not be interpreted negatively against LIGO-VIRGO Edd — - —Bo<1.l. (5.2
observations which, as shown in Figs. 1-5, will indepen- Yedd— 1 4

dently probe strong-field gravity and will exclude regions of

parameter space allowed by solar-system eXpe”ment?)'ulsar with a black-hole companion has the potential of pro-

Rather, it is simply a fem'”def that bmar_y-pulsar eXIpe.”'viding a superb new probe of relativistic gravity. The dis-
ments are superb tools for probing strong-field and rad'at'v%riminating power of this probe might supersede all its
aspects of gravity. It is also somewhat a good news for gravi-

tational wave data analys{gvhich promises to be already a fretzerllt anld zfirié?gable competitors in measuigiglown
very challenging task even if oreepriori assumes the valid- 0 the levelag :

ity of general relativity; see, e.g[32]). Indeed, our results

Figs. 1-5 indicate that our present experimental knowledge ACKNOWLEDGMENTS

of the law of relativistic gravity is sufficient to justify using

ggngral relativity as the standard theory of gravitational 3¢ data describing the realistic equations of state that we used
diation. . . - .. in our numerical calculations. We also thank Z. Arzouma-
. Note t_hat this con_clusmn_ex_phcnly refers to the qlﬂant'ta'nian, B. Datta, K. Nordtvedt, J. H. Taylor, S. E. Thorsett, and
tive probing of plausibgdeviationsfrom general relativity. C. M. Will for informative exchanges of ideas. Centre de

At the qualitative level, and also at tha@on-discriminating Phvsi Theri is UnifeP de Recherche 7061
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valuable advances in our experimental knowledge of relativ-
istic gravity. First, they will provide the first direct observa-

Finally, we pointed out that the discovery of a binary

We wish to thank P. Haensel for providing us with tables

APPENDIX A: FINITE-SIZE EFFECTS
IN TENSOR-SCALAR GRAVITY

In the text we have assumed that the leading modification,
2This improvement factor of 80 om, comes mainly from the 1IN tensor-scalar gravity, of the orbital motion of binary sys-
ratio |ans—agnl/|aa— agl~|cns—Ceul/lca—cg|, where the tems comes from the change in radiation reaction forces. In
“compactness” parametelfd 1] for neutron stars and black holes this appendix, we briefly discuss the modifications of the
are respectively c,~0.2Im,/my and cgy=1. (Here m,  orbital motion caused by the finite extension of the bodies.
=1.44Im;, mg=1.388ny, mys~1.4mq, and the value ofmgy Contrary to the pure spin 2 theory where such effects are
does not mattey. very small(because they are suppressed in spherical bpdies

SWithin the presently accepted framework for low-energy funda-the presence of a scalar field opens the possibility of cou-
mental physics, namely field theory, the only alternatileng-  Plings to the spherical inertia momefiti®xp(x)x?. In this
range gravity theories which(i) do not violate the basic tenets of appendix we use the general diagrammatic approach of Ref.
field theory, and(ii) are not already necessarily extremely con-[12] to confirm(and hopefully better understanthe results
strained by existing equivalence-principle tests, are the tensor-scal@f Nordtvedt[34—36 based on some explicit calculations
gravity theories. valid only for weakly-self-gravitating extended bodies. The
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final outcome is that finite-size effects can be neglected in &(¢) term can be eliminated by redefiningwithin body
matched-filter analysis of inspiralling compact binaries. E. TheLg(¢) term can be reabsorbed in thig(¢) one by
Following the indications given ifi12], we can formally, redefining the positiorzZ, and by neglecting second post-
but very generally, take extension effects into account bykeplerian (2PK) effects. Indeed, integrating by parts
considering that the effective action for each compact body- JedstLe(@)u* “u* sz(yy(p one finds anMg(¢)-like

is afunctionalof the fieldse andgfw which can be expanded term (contributing only at 2PK orderplus a term propor-

in terms of the values along some central worldline of theirtjional to U*MV;ut , which is equal to —ag(5"
spacetime derivativegderivative expansion Namely, we +Uu*ku*)d,e upon using the equations of motion. This

take the following action for the extended bodgbeledE)  shows that after the redefinition

extended_ __ eff * L
S Cf me[.9,,] 2tz =+ ==V hg, (A3)
Mg
X (—gp(zp)dztdz)", (A1)
. theLg(¢) contribution is, modulo 2PK, equivalent to chang-
with ing Ne(¢)—Ng(¢) =Ng+ agle . Similarly, thel ¢ term can
be absorbed in thé&g one by locally redefiningg®,. [In
eff * 7 * * * vk E v
Me[¢.9,,]1=Me(e(2) +1e(@)R* +Je(¢)ug “ue "R, fact, if one fixes the harmonic gauge before making this re-
+Ke(@)O* o+ Le(@)UEHUE'VEd,0 definition of g7, one also needs a shift of the positions of
the bodiesA#E to absorblg into Ng, namely, zy,—z,
+Me(@)UEHUE I, 03,0 =7, +4G, I g(Zy—zb)/(rE,cd) +O(1/c?).]
Y Finally, we end upimodulo 2PK with a generic, simpli-
+Ne(0)g* "3, 09,0. (A2) y M K with a g P

fied effective action containing only g-type two deriva-

This is the most general action, expanded up to two derivalVe rm:

tives of the fieldsp and/org},, , for a body which is spheri-
cally symmetric and static when unperturbgBierms which Spew= _CJ dst[me(@) + NP 0)g* 9, 0d,¢],
are first order in derivatives are excluded by spherical sym- g

metry or, for Hg(¢)ug”d, ¢, by time-reversal symmetry. (A4)
This form, being generic, is valid for strongly self- where

gravitating bodies. In this case, thedependent quantities

lg,Je,Kg,Lg,Mg,Ng, define some “scalar form factors” of NI Nt gL g+ 21 (AS)

body E which go beyond the basic effective coupling
ag(¢) =23 In mg(p)/dp associated with the point-like effec-
tive action SP°™=—cfmg(¢)dst. [For non-spherical
and/or non-static bodies many other new scalar form factor
could, in principle, appeal.

The conclusion is that, moduld(v*/c*) terms and higher-
rder terms in the radius of the extended bé&d{associated

0 higher-derivatives there is only one relativistic form fac-

Most of thea priori independent-looking terms in Eq. tor for, possibly compact, extended bodies in tensor-scalar

(A2) can be easily shown either not to contribute at (ible- gravity: Ngew‘z By  dimensional analyiﬁv [NE™
servationally most relevanfirst post-Keplerian leve[i.e, —Lmasgllength” and we therefore expectSie™ to be,
O(v?c?) beyond the Keplerian orbital motignor to be roughly, some spherical |n'erya moment. Using the diagram-
equivalent to other terms, modulo some redefinition of theMatic method of Ref[12], it is easy to compute the extra
dynamical variables. Let us first recall that any correctioncontribution to theN-body Lagrangian entailed by the pres-
term, in a Lagrangian, which is proportional to the zeroth-€nce OfNg:
order equations of motion can be redefined away by shifting

some of the dynamical variables. Technicall§[ ¢/] xiendeg B
+ el () 5y 5h=Sg[ ' ]+O(€2) with o' =+ el (). In O N-body= " | 2 2 2
our case, the dynamical variables can be eitffer, ¢ or zf . EA'EB (A6)
In all cases, the local redefinitions— ¢’ have no effects on

the observables at infinitisuch as the periastron advance or\hereng,=(zz—z,)/rga. Note that in a two-body system
the evolution of the orbital phase of an inspiralling binary the symmation will have two terms: one whdfe-1, A=B
Using such local redefinitions of the dynamical observables-> anq one wher€=2, A=B=1. (We denote here for
(and formally neglecting singular self-action terms, i&., clarity the two bodies by the labels 1 and 2.

function contributions tang¢]), one easily checks the fol-  The above considerations have the advantage of being
lowing simplifications: The Je(¢) contribution can be valid even when discussing strongly self-gravitating ex-
transformed(using thegy,, field equationsR};,=2d,¢d,¢  tended bodies. In the case ofweakly self-gravitating ex-

+ &-functions and a local redefinition gf;, within body E) tended body, Nordtved86] has obtained an effective action,
into the Mg(¢) contribution. TheMg(¢) term contributes  after some explicit calculations of the equations of motion,
only at the second post-Keplerian lev€l(v#/c*). The  of the form

2 new
Gy mamg(aaNg "ag)Nea- Neg
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1. ~
me(e) + 5 TeAA@)WUR,, |, (A7)

SE:_CJ dSE

whereTz= [d®xp(X)X? is the physical spherical inertia mo-

PHYSICAL REVIEW D 58 042001

+3ag(Te/mg)Ve,  with  @=@g—SAG, Maaal/r AC%,
to the unperturbed LagrangiarLO(zA,vA)=EA%mAvi
+3 a6, Mamg(1+ apag)/t ag. (Here, bothva=2z, and
rag=|Za—2zs| get modified by the shift. Finally, we find

ment, and where we recall that the tilde refers to physicaly,a; in 3 binary system the finite-size effects cause the ap-

Jordan-frame  quantities: g,,=A%g%,, R,,=R,.[9],

9,,U“u"=—1. By expanding Eq(A7) in terms of our ge-
neric expansiortA2) we find

1. ag ~
|E:0, JEzglE! KEZFIE!

1 2 old 1 27
Me=—3(Bo~agle, Neg=g(Bot2ap)le. (A8)

6

We conclude from Eq(A5) that the only observable form
factor from infinity is

1 .
Ngewzgﬂd E- (A9)
In  other words, after the shift zg#=2zf

—2ao(Tg/mg)V**p, the only new contribution to the
N-body Lagrangian is EA6) with NE*" given by Eq.(A9).

pearance of the additional interaction energy terms

2
Gimym
xtende! _ * TATTB 20 new PANLG
&° Eint—+4—2(aANB +aBNA

(A10)

For compact bodiegadiusR, comparable t@, m,/c?) we
expect thalNi*"~ Bama(G, ma/c?)?, so that the new inter-
action energy(A10) will be of the form

otendet, — (CgBpai+CaBacd)ESh,  (All)

where ESY, denotes the general relativistic third post-
Keplerian(O(v®/c®)) contribution to the interaction energy,
and whereC, and Cg are numerical coefficients which are
roughly of order unity. The 3PK energyESh
~G, mamg /1 AgX (G, Ma/C%r o5)° depends on the distance
rag in the same way ag®<edet,

The conclusion is that scalar-mediated finite-size effects
can be neglected in a matched-filter analysis of the phase

When comparing with Nordtvedt's results, note that he doegg|ytion of inspiralling binaries, because they only modify
not perform the simplifying shift that we are advocating SOpy a factor~1+CBa? (which tends to 1 ag?—0) terms

that he ends up with a more complicated-lookiNgbody
Lagrangian containing a contribution like E@\6) but with

already present in the general relativistic phase evolution. As
discussed for similar fractional corrections in Sec. I, they

N29=%(Bo+2a§)Te, plus two other sums which are simply can be neglected compared to the non-general-relativistic

obtainable by applying the inverse shif°Veds Zus

scalar dipolar contribution to the phase evolution.

[1] K. S. Thorne, inBlack Holes and Relativistic Star®roceed-

ings of a Conference in Memory of S. Chandrasekhar, edited

by R. M. Wald (University of Chicago Press, Chicago, in
press, gr-gc/9706079.
[2] J. H. Taylor, Rev. Mod. Phys$6, 711 (1994).

[14] G. Baym, C. Pethick, and P. Sutherland, Astrophysl17D,

299 (1971.

[15] V. R. Pandharipande, Nucl. Phy&174, 641(1971).

[16] R. B. Wiringa, V. Fiks, and A. Fabrocini, Phys. Rev. 3B,
1010(1988.

[3] J. H. Taylor, A. Wolszczan, T. Damour, and J. M. Weisberg,[17] P. Haensel, M. Kutschera, and M. Proszynski, Astron. Astro-

Nature(London 355, 132(1992.

[4] T. Damour and J. H. Taylor, Phys. Rev.453, 1840(1992.

[5] P. Jordan, Naturé_ondon 164, 637 (1949; Schwerkraft und
Weltall (Vieweg, Braunschweig, 1955Z. Phys. 157, 112
(1959.

[6] M. Fierz, Helv. Phys. Act&®9, 128(1956.

[7] C. Brans and R. H. Dicke, Phys. Rel24, 925 (1961).

[8] C. M. Will, Phys. Rev. D50, 6058(1994).

[9] T. Damour and G. Esposito-Fagg Phys. Rev. Let#0, 2220
(1993.

[10] T. Damour and G. Esposito-Fags Phys. Rev. 54, 1474
(1996.

[11] T. Damour and G. Esposito-Fag Class. Quantum Gra9,
2093(1992.

[12] T. Damour and G. Esposito-Faes Phys. Rev. 53, 5541
(1996.

[13] D. M. Eardley, Astrophys. J196, L59 (1975.

phys.102, 299 (1980.

[18] C. M. Will, Theory and Experiment in Gravitational Physics
(Cambridge University Press, Cambridge, England, 1993

[19] C. M. Will, Astrophys. J.214, 826 (1977).

[20] C. M. Will and H. W. Zaglauer, Astrophys. 346, 366(1989.

[21] J. Novak, Phys. Rev. 37, 4789(1998.

[22] R. D. Reasenbergt al, Astrophys. J., Lett. Ed234, L219
(1979.

[23] D. S. Robertson, W. E. Carter, and W. H. Dillinger, Nature
(London 349, 768(1991).

[24] D. E. Lebachet al, Phys. Rev. Lett75, 1439(1995.

[25] I. 1. Shapiro, inGeneral Relativity and Gravitation 198@d-
ited by N. Ashby, D. F. Bartlett, and W. Wyg4€ambridge
University Press, Cambridge, England, 1998 313.

[26] J. G. Williams, X. X. Newhall, and J. O. Dickey, Phys. Rev. D
53, 6730(1996.

[27] J. H. Taylor, Class. Quantum Grail0, S167(1993.

042001-11



THIBAULT DAMOUR AND GILLES ESPOSITO-FARESE PHYSICAL REVIEW D58 042001

[28] T. Damour and J. H. Taylor, Astrophys. 366, 501 (1991). 57, 885(1998.

[29] T. Damour and N. Deruelle, Ann. Inst. Henri Poincadys.  [33] L. Blanchet and B. S. Sathyaprakash, Class. Quantum Grav.
Theor.44, 263(1986. 11, 2807(1994); Phys. Rev. Lett74, 1067(1995.

[30] I. H. Stairset al,, astro-ph/9712296. [34] K. Nordtvedt, Astrophys. 2264, 620 (1983.

[31] C. M. Will (private communication [35] K. Nordtvedt, Phys. Rev. 33, 3131(199).

[32] T. Damour, B. R. lyer, and B. S. Sathyaprakash, Phys. Rev. 36] K. Nordtvedt, Phys. Rev. @9, 5165(1994.

042001-12



