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Gravitational-wave versus binary-pulsar tests of strong-field gravity
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Binary systems comprising at least one neutron star contain strong gravitational field regions and thereby
provide a testing ground for strong-field gravity. Two types of data can be used to test the law of gravity in
compact binaries: binary pulsar observations, or forthcoming gravitational-wave observations of inspiralling
binaries. We compare the probing power of these two types of observations within a generic two-parameter
family of tensor-scalar gravitational theories. Our analysis generalizes previous work~by us! on binary-pulsar
tests by using a sample of realistic equations of state for nuclear matter~instead of a polytrope!, and goes
beyond a previous study~by C. M. Will! of gravitational-wave tests by considering more general tensor-scalar
theories than the one-parameter Jordan-Fierz-Brans-Dicke one. Finite-size effects in tensor-scalar gravity are
also discussed.@S0556-2821~98!08616-0#

PACS number~s!: 04.80.Cc, 04.30.2w, 97.60.Gb
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I. INTRODUCTION

The detection of gravitational waves by kilometric-si
laser-interferometer systems such as the Laser Interfero
ric Gravitational Wave Observatory~LIGO! in the US and
VIRGO in Europe will initiate a new era in astronomy. On
of the most promising sources of gravitational waves is
inspiralling compact binary, a binary system made of neut
stars or black holes whose orbit decays under gravitatio
radiation reaction. The observation of these systems will p
vide important astrophysical information, e.g. masses of n
tron stars, and direct distance measurements up to hund
of Mpc @1#. It is also said that detecting gravitational wav
from inspiralling binaries should provide rich tests of the la
of relativistic gravity in situations comprising strong-fie
regions~like near a neutron star or a black hole!. However,
present binary-pulsar experiments already provide us w
deep and accurate tests of strong-field gravity@2–4#. It is
therefore interesting to compare and contrast the prob
power of present~and foreseeable! pulsar tests with that o
future gravity-wave observations.

A convenient quantitative way of doing this comparison
to work within a multi-parameter family of physically mot
vated ~and physically consistent! theories of gravity which
differ from Einstein’s theory in their radiative and stron
field predictions. The most natural framework of this type
the general class of tensor-scalar theories in which gravit
mediated both by a tensor fieldgmn* ~‘‘Einstein metric’’! and
by a scalar fieldw. These theories contain one arbitra
‘‘coupling function’’ A(w) defining the conformal factor re
lating the pure spin-2 Einstein metricgmn* to the ‘‘physical

metric’’ g̃mn5A2(w)gmn* measured by laboratory clocks an
rods. The usual Jordan-Fierz-Brans-Dicke theory@5–7# is the
one parameter class of theories defined by a coupling fu
tion A(w)5exp(a0w). @The coupling strengtha0 is related to
the often used parameterv by a0

25(2v13)21.] Will @8#
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has studied the quantitative constraints on the coupling
rametera0 of Jordan-Fierz-Brans-Dicke theories that cou
be brought by gravitational-wave observations. His resul
that in most cases the bounds coming from gravity-wa
observations will be comparable to presently known bou
coming from solar-system experiments~namely,a0

2,1023).
This result of Ref.@8# seems to suggest that gravitationa
wave-basedstrong-fieldtests of gravity do not go really be
yond the solar-systemweak-fieldtests of gravity. We wish,
however, to emphasize that this seemingly pessimistic c
clusion is mainly due to having restricted one’s attention
the special, one-parameter Jordan-Fierz-Brans-Dicke the
Indeed, in this theory the strength of the coupling of t
scalar fieldw to matter is given by the constant quantitya0
independently of the state of condensation of the grav
tional source. As a consequence, the predictions of the th
differ from those of Einstein’s theory by a fraction of ord
a0

2 in all situations: weak-field ones or strong-field one
alike. By contrast, it has been emphasized in Refs.@9, 10#
that the more generic tensor-scalar theories in which
strength of the coupling ofw to matter, namely

a~w![
] ln A~w!

]w
, ~1.1!

depended on the value ofw, allowed for the existence o
genuine strong-field effects, by which the presence of a
highly condensed source, such as a neutron star, could
erate order-unity deviations from general relativity even
the weak-field limit ofa~w! is arbitrarily small.@More pre-
cisely, these non-perturbative strong-field effects take pl
whenb(w)[]a(w)/]w is negative.# This led us to consider
instead of the Jordan-Fierz-Brans-Dicke modelA(w)
5exp(a0w), the class of theories defined by

A~w!5expS 1

2
b0w2D . ~1.2!
© 1998 The American Physical Society01-1
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This class of theories contains two arbitrary~dimension-
less! parameters:b0 appearing in Eq.~1.2!, and w0 , the
asymptotic value ofw at spatial infinity. @By contrast, in
Jordan-Fierz-Brans-Dicke theory,w0 has no observable ef
fects.# Equivalently, the two parameters in these theories
be defined as being the strength of the linear coupling ofw to
matter in the weak-field limit (w'w0),

a05a~w0!5
] ln A~w0!

]w0
5b0w0 , ~1.3!

and the non-linear coupling parameter

b05
]a~w0!

]w0
5

]2 ln A~w0!

]w0
2 . ~1.4!

A convenient feature of the two-parameter family of the
ries ~1.2! is that they have just the amount of general
needed both to parametrize the most general boost-inva
weak-field ~‘‘post-Newtonian’’! deviations from Einstein’s
theory, and to encompass nonperturbative strong-field
fects. Indeed, on the one hand, the two theory-parame
(a0 ,b0) determine the two well-known Eddington
Nordtvedt-Will parameters,

ḡ[gEddington21522a0
2/~11a0

2!, ~1.5!

b̄[bEddington215
1

2
b0a0

2/~11a0
2!2, ~1.6!

which measure the most general, boost-invariant, deviat
from general relativity at the first post-Newtonian level.~See
@11,12# for the generalization of the Eddington parameters
the second post-Newtonian level.! On the other hand, when
b0&24 non-perturbative strong-field effects develop in t
theories defined by Eq.~1.2!.

All existing gravitational experiments can be interpret
as constraints on the two-dimensional space of theories
fined by Eq.~1.2!. In other words, we can work within th
common (a0 ,b0) plane, and consider each gravitational e
periment~be it of weak-field or strong-field nature! as defin-
ing a certain exclusion plot within that plane. In some rec
work @10#, we have constructed such exclusion plots, as
fined by considering both solar-system experiments
binary-pulsar experiments. The present work will genera
these exclusion plots in several respects:~i! we shall plot the
regions of the (a0 ,b0) plane probed by future gravitationa
wave observations of neutron-star–neutron-star,
neutron-star–black-hole systems,~ii ! we shall improve our
previous study of the probing power of binary-pulsar expe
ments by considering a sample of realistic nuclear equat
of states~instead of the polytropic one used by us befo!
and by using updated pulsar data, and~iii ! we shall consider
the individual constraints ona0 andb0 brought by the main
solar-system experiments~instead of using published com
bined limits onḡ and b̄).

This paper is organized as follows: In Sec. II we summ
rize our~numerical! approach to computing the various for
factors that describe the coupling of the scalar fieldw to a
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neutron star. In Sec. III we generalize Ref.@8# in discussing
how gravitational wave observations can give quantitat
tests of tensor-scalar gravity. In Sec. IV we combine a
compare gravitational-wave tests with binary-pulsar tests
solar-system ones. Our conclusions are presented in Se
while an Appendix discusses finite-size effects in tens
scalar gravity.

II. GRAVITATIONAL FORM FACTORS OF NEUTRON
STARS DESCRIBED BY REALISTIC EQUATIONS

OF STATE

The orbital dynamics of a binary system depends, bes
the Einstein masses of the two objectsmA ,mB , on the effec-
tive coupling constantsaA ,aB , defined as

aA[
] ln mA

]w0
, ~2.1!

as well as on their scalar-field derivatives

bA[
]aA

]w0
. ~2.2!

The derivatives in Eqs.~2.1!,~2.2! are taken for fixed values
of the baryonic massm̄A . In the limit of negligible self-
gravity aA→a0 andbA→b0 , but it was shown in Refs.@9,
10# that ~whenb0 is negative enough! the effective coupling
constantaA of a neutron star can reach values of order un
even if the weak-field coupling constanta0 is extremely
small. By contrast, in Jordan-Fierz-Brans-Dicke theoryaA
tends to zero witha0 . Let us also note that for a black hol
aA50 because of the no-scalar-hair theorems.

In Ref. @11# it was shown that the paramete
mA ,mB ,aA ,aB ,bA ,bB suffice to determine both the
(v/c)2-accurate conservative orbital dynamics~including pe-
riastron precession and other relativistic deformations
Keplerian motion! and the radiation reaction effects~mo-
nopolar, dipolar and quadrupolar effects linked to the co
bined emission of scalar and tensor waves!. On the other
hand, the relativistic timing of binary pulsar systems i
volves, besides the above effective coupling constants, a
parameter describing the possible field dependence of
~Einstein-frame! inertia momentI A of the pulsar@13,10#.
This new parameter, entering the timing formula, is of t
form KA

B5kAaB where

kA52
] ln I A

]w0
. ~2.3!

For a fixed value of the baryonic massm̄A , the quantities
mA , aA , bA and kA depend on:~i! the valuew0 of the
scalar field at infinity and the theory of gravity used~hence a
dependence ona0 andb0 in our case!, and~ii ! the equation
of state of nuclear matter used to describe the interior of
neutron star.

In this work, we shall consider, in addition to the simp
polytropic equation of state that we used before,
1-2
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ẽ5ñm̃b1
Kñ0m̃b

G21 S ñ

ñ0
D G

, P̃5Kñ0m̃bS ñ

ñ0
D G

, ~2.4!

m̃b51.66310224 g, ñ050.1 fm23,

G52.34, K50.0195, ~2.5!

a sample of three~more or less! realistic equations of state
They describe the crust by the same equation of state~due to
Baym et al. @14#! but differ in their descriptions of the cor
of the neutron star. One description~due to Pandharipand
@15#! gives a rather soft equation of state, a second one~due
to Wiringa et al. @16#! is of intermediate stiffness, while th
third one~due to Haenselet al. @17#! corresponds to a some
what stiff equation of state. This sample will allow us to s
the effect of the softness of the equation of state.

We have discussed in detail in Ref.@10# the way to com-
pute the effective coupling constantsmA, aA, bA, kA in
tensor-scalar gravity. We shall not repeat this material h
Let us only mention a modification that we brought to t
procedure discussed in Ref.@10# for more convenience whe
dealing with equations of state given in tabular form. Sta
ing from such tables, we first interpolate them to define
~proper! physical energy densityẽ and the~proper! physical
baryon number densityñ as functions of the physical pres
sure p̃. @The tilde refers here to quantities expressed
‘‘physical units,’’ i.e., with respect to the metricg̃mn

5A2gmn* .] Then, we transform the field equations by usi

the pressurep̃ as a radial variable. More precisely, th
means that we consider a set of 8 first-order differen
equations for the variation withp̃ of the variablesM , n, w, c,
r, M̄ , v andÃ. The symbolsM ,...,Ã have the same mean
ing as in Ref.@10#. In particular,r is the Schwarzschild-like
radial coordinate used in Eq.~3.1! of @10#. Note that the
quantitya0 is constructed at the end of the numerical wo
from the asymptotic value ofw by using a05b0w0 , Eq.
~1.3!. The right-hand side of the equation givingdr/dp̃ is
the inverse of the right-hand side of Eq.~3.6e! of @10#, while
the right-hand sides of the 7 other equations is simply
tained @from dQ/dp̃[(dQ/dr)/(dp̃/dr)] by dividing the
right-hand sides of Eqs.~3.6a!–~3.6h! by the right-hand side
of Eq. ~3.6e!. A bonus of this modified approach is that w
can numerically integrate these differential equations o
knownrange: namely, we start integration at the center of
star with some given central value forp̃, sayp̃c , and we stop
at p̃50 ~surface of the star!. The value ofr at the end of
integration gives the radiusR of the star. We have discusse
in Refs. @9,10# how to obtain the quantitiesm̄A , mA , aA ,
and I A from the other results of the integration.

Actually, having chosen some nuclear equation of st
the above numerical integration yields, for each value ofb0 ,
and for each initial valuesp̃c ~central pressure! andwc ~cen-
tral value of the scalar field!, an output which consists o
(m̄A, mA, aA, I A, w0), wherew0 is the value ofw at spa-
tial infinity. @We keep only the ‘‘positively scalar-polarized
04200
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configurations withw0wc.0. Indeed, we have shown in@10#
that the solutions withw0wc,0 are energetically disfa
vored.# Having constructed a sufficiently dense grid@in
( p̃c ,wc) space# of such numerically integrated models, w
can then computebA , Eq. ~2.2!, andkA , Eq. ~2.3!, by nu-
merically approximating thew0-derivatives~with fixed m̄A)
by finite differences constructed from four neighboring g
points. The expression~2.1! for aA is used as a test of ou
numerical accuracy@we appropriately densify our grid so a
to ensure that Eq.~2.1! is satisfied to better than 5%#. Using
finally some interpolation, we end up by generating a hu
multi-entry table which is conveniently organized as givin
for a grid of values ofa0 and b0 , numerical values of
(m̄A,mA,aA,bA,I A,kA). This is a numerical approximation
to giving mA , aA , bA, I A, andkA as functions ofa0, b0

and m̄A . We should also mention that we keep only stab
models in our tables, i.e., we keep only configurations c
responding to masses increasing, when the central pres
increases, between~formally! zero and their first maximum
~corresponding to the usual concept of the maximum mas
a neutron star, here quantitatively modified by scalar-fi
effects!.

III. TESTING TENSOR-SCALAR GRAVITY FROM
GRAVITATIONAL-WAVE OBSERVATIONS

OF INSPIRALLING BINARIES

The gravitational wave signal from inspiralling binarie
will be deeply buried in the broadband noise of interferom
ric detectors. To detect it, one will have to correlate the o
put of the detector with a ‘‘template wave form,’’ i.e., a
hopefully faithful copy of the actual time evolution of th
signal. As hundreds to tens of thousands of cycles may
usefully registered in the output of the detector, this meth
of matched filtering will allow one to dig deeply into th
broadband noise, under the condition that the used temp
wave form be an accurate representation of the signal o
that many cycles. This means that gravitational wave ob
vations will be very sensitive to the evolution of the fr
quency and the phase of the wave.

In tensor-scalar gravity the evolution of the phase of
gravitational wave will be different from that in Einstein’
pure tensor gravity because this phase evolution is driven
radiation reaction, which is modified because the system
now loose energy to scalar waves, in addition to loos
energy to tensor waves. More precisely, the energy los
scalar or tensor radiation at infinity now reads, with suf
cient approximation,

Ė5Ėw
monopole1Ėw

dipole1Ėw
quadrupole1Ėh

quadrupole, ~3.1!

where the subscript denotes the field being radiated,
where the superscript refers to the multipolar structure of
emitted radiation. The explicit expressions for the vario
energy losses have been derived for general ten
~multi-!scalar gravity theories in Ref.@11# ~see also@18#!. As
said above, they depend on the~Einstein! massesmA ,mB and
on the effective scalar coupling parameters of the two st
1-3
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aA,aB,bA,bB . Denoting M[mA1mB, XA[mA/M , XB
[mB /M512XA , n[XAXB , and assuming that the orb
is circularized~eccentricitye50), we find from Eq.~6.52!
of Ref. @11# the following evolution law for the orbital fre-
quencyn52p/Porbit

ṅ

n2 5
n

11aAaB
F96

5
kS v

cD 5

1~aA2aB!2S v
cD 3

1OXS v
cD 6CG ,

~3.2!

where

v[@G* ~11aAaB!Mn#1/3 ~3.3!

@in which G* denotes the ‘‘bare’’ gravitational constant e
tering the action of the Einstein metric
*d4xg

*
1/2R(g* )/16pG* ], and

k[11
1

6
~aAXB1aBXA!21

1

6
~aA2aB!

3~aAXA1aBXB!~XA2XB!1
5

48

aA2aB

11aAaB

3~bBaAXA2bAaBXB!1d2~aA2aB!2. ~3.4!

The term (aA2aB)2(v/c)3 in Eq. ~3.2! is associated to the
emission of scalar dipolar waves@13,19,18,20#. The first
term ~equal to one! in k comes from the emission of tenso
quadrupolar waves, the second term is due to the emissio
scalar quadrupolar waves, the remaining terms come f
O„(v/c)5

… contributions to the scalar dipolar waves@respon-
sible for theO„(v/c)3

… term in Eq. ~3.2!#. The numerical
coefficientd2 has not been computed, but this is not impo
tant in the present context as it multiplies the same te
(aA2aB)2 which will be more strongly constrained by th
O„(v/c)3

… dipolar radiation term in Eq.~3.2!. @Let us note in
passing that our parameterk differs by a certain factor from
the one used by Will@8#, namely, kwill 5(11aAaB)2(1
1a0

2)23khere.]
The expression~3.2! is similar to the frequency evolution

equations used by Will@8#. Our results are, however, mor
general because they apply in a generic tensor-gra
theory, while his were restricted to the Jordan-Fierz-Bra
Dicke case. On the other hand, starting from Eq.~3.2! we can
follow his analysis in discussing the constraints that can
derived from~future! gravitational wave observations. Let u
define a tensor-scalar ‘‘chirp mass’’~in time units! by

M[
G*
c3

~11aAaB!M S nk

11aAaB
D 3/5

, ~3.5!

and the corresponding adimensionalized orbital frequenc

u[Mn. ~3.6!

In terms of these variables, Eq.~3.2! reads
04200
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m

-

ty
-

e

Mu̇5
96

5
u11/3H 11bn2/5u22/31O~bn21/5u1/3!

2S 743

336
1

11

4
n D n22/5u2/3@11O~a2!#

14pn23/5u@11O~a2!#1O~u4/3!J , ~3.7!

where we defined

b[
5

96
k23/5~11aAaB!22/5~aA2aB!2. ~3.8!

The zeroth-order term}u11/3 in Eq. ~3.7! represent the fre-
quency evolution due to the emission of tensor quadrup
waves. The other terms represent corrections to this zer
order result. The terms containing a factorb or a symbolic
factor a2 represent the effects of the radiation of sca
waves. The main term due to the radiation of scalar wave
the bn2/5u22/3 term. It is important to note that this term
~coming from dipolar waves! contains the large facto
u22/3;v22@1. This term is the main source of the co
straints on tensor-scalar gravity coming from gravity-wa
observations because it has a different dependence onu than
the usual general relativistic terms. Indeed, the usual gen
relativistic frequency evolution is given by the terms witho
b or a2 factors, i.e., symbolically,Mu̇;u11/3@11u2/3

1u3/31u4/31¯#.
Assuming that future gravity-wave observations from

spiralling binaries will be well matched by filters construct
from the standard general relativistic orbital phase evoluti
we wish to quantify what constraints they could bring on t
modifications to the frequency evolution equation~3.7! by
the terms proportional tob or a2. This problem has been
tackled by Will @8# using a matched-filter analysis. Hi
analysis can be applied to our case, if we follow his~plau-
sible! assumption that the final bounds will restrict scala
field effects to be more or less uniformly small compared
general relativistic ones. This means that the only essen
scalar-field term that we should consider in Eq.~3.7! is the
term bn2/5u22/3. All the scalar-field effects that simply
modify usual einsteinian effects can be neglected. Furth
more, this means also that we can approximatek by one, and
the chirp mass~3.5! by its einsteinian limitG* c23Mn3/5.
Finally, we can translate Will’s final bound on the Jorda
Fierz-Brans-Dicke coupling parametera0

2 @his Eq.~1.5!#, in
the following bound onb or (aA2aB)2:

48

5
b'

1

2
~aA2aB!2,1.4631025SMT(

D 7/3

n22/5S 10

S/ND ,

~3.9!

whereT(5G* m(c23 is the gravitational time associated
a solar mass. This bound can also be rewritten in terms
M5mA1mB andn5mAmB /(mA1mB)2:

~aA2aB!2,2.9231025S M

m(
D 7/3

nS 10

S/ND . ~3.10!
1-4
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GRAVITATIONAL-WAVE VERSUS BINARY-PULSAR . . . PHYSICAL REVIEW D 58 042001
In Eqs.~3.9! and~3.10!, S/N denotes the signal-to-noise rat
~after applying a matched filter! of a LIGO-VIRGO-type de-
tector. ~The analysis of Ref.@8# assumes the noise spectr
density of a LIGO ‘‘advanced detector.’’!

We have focussed above on the indirect effect of sca
wave emission on the phase evolution of tensor waves
the following reason. Relatively to the main tenso
quadrupolar contribution, this effect is of order (aA
2aB)2(c/v)2@(aA2aB)2. Moreover, because of possib
nonperturbative scalar-field effects associated to the str
self-gravity of neutron stars (aA2aB)2 can reach values o
order unity, even if the weak-field scalar couplinga0!1. By
contrast, the more direct effect of scalar-wave emission
the differential forces acting on any~local! detector of gravi-
tational waves can be described by the transverse projec
of the physical metricg̃mn

g̃i j
T 5„A2~w01f!gi j* …

T'hi j*
TT12a0fd i j

T , ~3.11!

whered i j
T [d i j 2ninj is the projection ofd i j transversally to

the directionni of propagation of the wave~see, e.g.,@11#!,
and where we choose units such thatA(w0)51. The main
direct effect of scalar-wave emission, associated, to sc
dipolar emission, is then†see Eq.~6.33! of @11#‡

2a0fdipoled i j
T 52

2

r
a0~aA2aB!

3
mAmB

M
ni~zA

i 2zB
i !. ~3.12!

Compared to the standard tensor-quadrupolar wave, this
order a0(aA2aB)(c/v)2. Even when nonperturbativ
strong-field effects generateaA2aB5O(1), we seethat the
direct effects of scalar-wave emission are down by a fac
a0!1 compared to the indirect ones. One thereforea priori
expects that these direct effects will be less sensitive pro
of strong-field deviations from general relativity than the
direct ones considered above. This qualitative-argum
based conclusion is confirmed by the results of Will~Sec. IV
of @8#! who quantified the lower sensitivity of matched fi
tering to amplitudes, as compared to phases.

Let us also note that Refs.@9,10# have emphasized tha
gravitational collapse and neutron-star binary coalesce
~by contrast with inspiral! might exhibit observably signifi-
cant direct and indirect scalar-wave effects due to the c
bined possibilities of strong-scalar-field effects andmonopo-
lar radiation.~However, the recent investigation of Ref.@21#
suggests that these effects will be too small to be of ob
vational interest.!

IV. COMBINING GRAVITY-WAVE, PULSAR
AND SOLAR-SYSTEM TESTS

Thanks to our consideration of a two-dimensional ‘‘min
space’’ of alternative gravity theories, we can combine va
ous experimental tests of relativistic gravity, and comp
their probing power. Indeed, each experimental constr
separates the (a0 ,b0) plane into two regions: an allowed on
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and an excluded one~at some fixed confidence level!. We
can therefore compare the probing power of various exp
mental tests by drawing a combined exclusion plot in
(a0 ,b0) plane.

We shall consider three solar-system tests of weak-fi
gravity. The measurement of the Shapiro time delay by
Viking mission@22# as well a some very long baseline inte
ferometry~VLBI ! measurements@23,24# yield the 1s bound
uḡu,231023, which @in view of Eq. ~1.5!# gives

a0
2,1023 ~1s!. ~4.1!

The measurement of the perihelion advance of Mercury@25#

gives 1
3 u2ḡ2b̄u,1023 which, using Eqs.~1.5! and ~1.6!,

translates into

Ua0
21

1

8
b0a0

2U,7.531024 ~1s!. ~4.2!

Finally, the Lunar Laser Ranging experiment@26# yields
21.731023,4b̄2ḡ,331024 which translates into

28.531024,a0
21b0a0

2,1.531024 ~1s!. ~4.3!

These three constraints, taken together, exclude the re
above the solid line labeled ‘‘1PN’’~first-post-Newtonian! in
Figs. 1–5. Concerning binary-pulsar experiments we s
take into account three of them.

The PSR 1913116 experiment uses the values of thr
well-measured phenomenological timing observab
~‘‘post-Keplerian parameters’’@4#! v̇obs, gobsandṖb

obs. ~We
neglect the low-precision measurement of the post-Keple
parametersr ands.) Herev̇obs denotes the observed secul
rate of advance of the periastron,gobs denotes the observe
value of the ‘‘Einstein’’ time-dilation parameter~entering
DE5g sinu @4#!, andṖb

obs denotes the secular change of t
orbital period. The values we shall take for these obser
parameters are@27#

v̇obs54.226 621~11!° yr21, ~4.4a!

gobs54.295~2!31023 s, ~4.4b!

Ṗb
obs2 Ṗb

gal522.4101~85!310212, ~4.4c!

where figures in parentheses represent~realistic! 1s uncer-
tainties in the last quoted digits. In Eq.~4.4c!, Ṗb

gal represents
the sum of various galactic effects which must be subtrac
from Ṗb

obs to be able to compare it to theoretical predictio
@28#. †We will take into account below the small modifica
tions brought to it by tensor-scalar gravity, Eq.~9.22! of
@11#.‡ We need also the values of the Keplerian paramet

Pb527 906.980 7804~6! s, ~4.5a!

e50.617 1308~4!. ~4.5b!

As explained in detail in Ref.@10# one converts the three
phenomenological ~theory-independent! measurements
1-5
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~4.4a–c! into constraints on alternative gravity theories
using the predictions that, say, tensor-scalar gravity make
v̇,g,Ṗb as functions of the two~a priori unknown! masses
mA ,mB and of the parameters~here a0 ,b0) defining each
tensor-scalar theory. As already mentioned above, the de
dence on the theory-parametersa0 ,b0 goes through the de
pendence of the post-Keplerian parametersv̇, g and Ṗb on
the effective coupling constantsaA,aB,bA,bB,kA. The
explicit expressions of v̇ theory(mA,mB,aA,bA,kA, . . . ),
g theory(mA ,mB,aA,bA,kA, . . . ) and Ṗb

theory(mA,mB,aA,bA,
kA, . . . ) have been written down in Refs.@11# and@10#. We
shall not reproduce them here. Using these expressions
then define a goodness-of-fit statistics by minimizing o
the physicallya priori undetermined masses:

x2~pi
obs;a0 ,b0!

5minmA ,mB
x2~pi

obs;mA ,mB ,aA ,bA ,kA ,...!,

~4.6!

where, for the simultaneous measurement of any numbe
post-Keplerian parameterspi , one would define

FIG. 1. Region of the (a0 ,b0) theory plane allowed by solar
system tests, binary-pulsar experiments, and future gravity-w
detections, in the case where nuclear matter is described by
polytrope ~2.4!,~2.5!. In view of the reflection symmetrya0→
2a0 , we plot only the upper half plane. The region allowed
solar-system tests is below the thin line labeled ‘‘1PN.’’ The P
0655164 data constrain the values ofa0 andb0 to be between the
two solid lines. The regions allowed by the PSR 1913116 and PSR
1534112 tests lie respectively to the right of the bold line and
the the dashed line. The horn-shaped region at the top-left of

dashed line is removed if the observableṖb
obs is taken into account

for PSR 1534112. Each of these curves determines the levelx2

51 for the corresponding test. We have also plotted the levex2

52 for PSR 1913116 to underline that the precise value ofx2 is
not very significant in the region where binary-pulsar experime
are more constraining than solar-system tests (b0&23). The re-
gions excluded by the gravity-wave observation limit~3.10!, with a
signal-to-noise ratioS/N510, lie on the hatched sides of the curv
labeled ‘‘LIGO-VIRGO.’’ The case of a 1.4m(-neutron-star and a
10m(-black-hole binary system is labeled ‘‘NS-BH,’’ whereas th
case of a 1913116-like binary-neutron-star system is labeled ‘‘NS
NS.’’ The region simultaneously allowed by all the tests is shad
04200
or

n-

we
r

of

x2~pi
obs;mA ,mB ,aA ,bA ,...!

[(
i

~spi

obs!22

3„pi
theory~mA ,mB ,aA ,bA ,...!2pi

obs
…

2. ~4.7!

Here, we neglect the correlations between the measurem
of the various post-Keplerian parameters.

In principle, when considering one or more pulsar expe
ments simultaneously, one can associate a confidence
~in the bayesian sense! to any regionR in the theory-plane
by integrating overR the normalizeda posterioriprobability
density

da0db0ppost~a0 ,b0!

5da0db0Npprior~a0 ,b0!W1~p1
obsua0 ,b0!

3W2~p2
obsua0 ,b0!... ~4.8!

where the probability~density! W1 to observe, in the first
pulsar experiment, the multipletp1

obs @e.g. (v̇obs,gobs,

Ṗb
obs)# of post-Keplerian parameters can be approximated

the Gaussian

W1~p1
obsua0 ,b0!5expF2

1

2
x2~p1

obs;a0 ,b0!G ~4.9!

with the definition~4.6! above. In Eq.~4.8!, N is a normal-
ization constant@such that**da0db0ppost(a0 ,b0)51] and
pprior(a0 ,b0) is somea priori probability density for the
values of the theory parameters. A common~and convenient!
way of choosing some confidence regionsR is to define
them from the variousx2. One can consider either the ove
lap ~assumed to exist! of the various individualx2 contour
levels x2(p1

obs;a0,b0)5k1,x2(p2
obs;a0,b0)5k2, etc., or the

combined x2 contour levels:x tot
2 (a0, b0)5ktot, with x tot

2

[(ax
2(pa

obs;a0,b0). To each choice ofR, we associate a
bayesian probability~‘‘probability of causes;’’ the causes be

FIG. 2. Same plot as Fig. 1 in the case of a soft equation of s
~Pandharipande!. The region possibly excluded by the LIGO
VIRGO detection of a (1.4m() neutron star–(10m() black hole
system lies above the dotted line. The bubble-like region at the
of Fig. 1 ~binary-neutron-star system detected by LIGO-VIRG!
does not exist in the case of this soft equation of state.
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ing here the unknown theory parametersa0 ,b0) by integrat-
ing Eq. ~4.8! over R. Here, we shall not try to quantify
confidence levels in this way. We shall content ourselves
plotting individual x251 contours. If several independe
so-defined pulsar contours overlap, it is clear that the ove
region will define a rather high confidence level region
the total experiment combining these independent pu
measurements.

As discussed in Sec. II above, it is essential in this d
cussion to decide upon some equation of state for nuc
matter. Each choice of nuclear equation of state defines
own corresponding exclusion plot. For example, we exp
soft equations of state~like Pandharipande’s! to yield stron-
ger constraints on the theory parameters (a0 ,b0). Indeed,
they lead to more highly condensed neutron star models,
thereby to generically higher values of the effective co
plingsaA ,bA ,kA for given (a0 ,b0) @11#. We shall consider
successively the following equations of state:~i! in Fig. 1 the
polytrope~2.4!,~2.5! ~as used in our previous work@10#!, ~ii !
in Fig. 2 the~soft! Pandharipande equation of state,~iii ! in
Fig. 3 the~medium! Wiringa et al.equation of state, and~iv!
in Fig. 4 the~stiff! Haenselet al. equation of state.

The PSR 1534112 experiment consists mainly of th
high-precision measurements of three post-Keplerian par
eters ~which have to deal with strong-field effects witho
mixing of radiative ones@3#!: v̇obs, gobs, andsobs. Heresobs

denotes a phenomenological parameter measuring the s
of the gravitational time delay@29,4#. The values we shal
take for these three observable parameters are@30#

v̇obs51.755 76~4!° yr21, ~4.10a!

gobs52.066~10!31023 s, ~4.10b!

sobs50.982~7!. ~4.10c!

We shall also take into account the lower-precision meas
ment of the range-of-time-delay parameterr obs

r obs56.7~1.3!31026 s, ~4.11!

and we shall need the Keplerian observables

FIG. 3. Same plot as Fig. 2 for a medium equation of st
~Wiringa et al.!. Dotted lines indicate the regions excluded by f
ture gravitational-wave observations, respectively inside the bu
for the NS-NS case, and above the straight line for the NS-BH c
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Pb536 351.702 6587~35! s, ~4.12a!

e50.273 677 7~5!, ~4.12b!

x53.729 463~3! s. ~4.12c!

Reference@30# gives also the observed value of the radiati
parameterṖb

obs. However, it underlines that the theoretic
significance of this measurement is~at present! highly uncer-
tain because of the lack of an independent, reliable meas
ment of the distance to PSR 1534112. Indeed, as discusse
in @28#, several galactic effects have to be subtracted fr
Ṗb

obs before equating it to the theoretical predictionṖb
theory.

These corrections are relatively small and sufficiently w
known in the case of PSR 1913116, while they are relatively
large and insufficiently known in the case of PSR 1534112.
Because of this insufficient knowledge of the theoretica
relevant combinationṖb

obs2 Ṗb
gal, we shall not take into ac-

count this observable in our exclusion plots below.~An al-
ternative choice would be to take it into account but to e
large the errors induced by the uncertainty on the distance
that case, we found that its main effect is to forbid the ho
shaped region at the top-left of Fig. 1, which is anyway
ready ruled out by solar-system experiments as well as o
binary-pulsar tests.!

Finally, we follow Ref. @10# in taking also into accoun
the data on PSR 0655164. This binary pulsar is composed o
a neutron star of massmA'1.4m( and a white dwarf com-
panion of massmB'0.8m( , moving around each other on
nearly circular orbit in a period of about one day. This d
symmetric system is, potentially, a strong emitter of sca
dipolar waves. Indeed, we saw above that dipolar radia
losses are proportional to (aA2aB)2(v/c)3. Here aB does
not differ significantly from the weak-field couplinga0 be-
cause the self-gravity of a white dwarf is very small, wh
aA can reach values of order unity. We refer to Ref.@10# for
the discussion of the constraints obtainable from this syst
The end result is that we get the following~conservative! 1s
constraint

@aA~mA!2a0#2,331024. ~4.13!

e

le
e.

FIG. 4. Same plot as Fig. 3 for a stiff equation of state~Haensel
et al.!. Note that the bubble excluded by the detection of a bina
neutron-star system by LIGO-VIRGO is much larger when t
equation of state is stiff.
1-7
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We use the correspondingx0655164
2 51 level in our exclusion

plots.
For all the equations of state that we consider, we see

the exclusion plots Fig. 1–4 that the most stringent c
straints coming from pulsar experiments are obtained
combining the 1913116 exclusion region forb0&11 with
that from 0655164 for b0*11. The resulting theoretica
bounds are somewhat less stringent~by a factor of a few!
than solar-system bounds whenb0*bc , while for b0&bc
pulsar experiments essentially exclude an infinite domain
the (a0 ,b0) plane which remained allowed by solar-syste
experiments. Here,bc denotes the~negative! critical value of
b0 below which nonperturbative strong-field effects develo
thereby exhibiting the unique strong-field probing power
pulsar experiments. As we see on Figs. 1–4, the value obc
depends on the equation of state. In particular, a soft eq
tion of state leads to highly condensed neutron star confi
rations and, thereby, develop nonperturbative effects ea
than stiff equations of state: in other words2bc

soft

,2bc
stiff . This is visible on Fig. 2~Pandharipande! where

the pulsar bound is more stringent than the solar-system
for b0&21, while for stiffer equation of state it become
more stringent only whenb0&23.

Finally, we have added, for comparison, the exclus
regions defined by the gravity-wave observation limit~3.10!,
assuming a signal-to-noise ratioS/N510. In absence of
gravity-wave observations telling us about the prec
masses of real inspiralling binaries, we have considered
fiducial cases:~i! a two-neutron-star system with Einste
massesmA51.441m(, mB51.388m( ~as measured in PSR
1913116 when interpreted in general relativity!, and ~ii ! a
neutron star–black hole system withmA51.4m( , mB
510m( . In case~i! neither the precise numerical values
the masses nor the fact that we fix Einstein masses instea
baryonic masses is crucial. What is crucial in our definiti
of the fiducial case~i! is that we assume afractional mass
differenceDm/m'Dm̄/m̄'4%, as large as in PSR 191
116. Indeed, the over important dipolar radiation is prop
tional to @aA(mA)2aB(mB)#2}(Dm/m)2 as Dm/m→0. In
case~ii !, the no-scalar-hair theorems guarantee thataB50
for a black hole~see, e.g.,@11#!, so that neutron-star-black
hole systems are always gooda priori probes of possible
scalar dipolar radiation.

Because of the complexity of the numerical calculation
the strong-field form factors of neutron stars~see Sec. II
above!, we could compute more precisely the exclusion
gions for the polytropic equation of state, Eqs.~2.4!,~2.5!.
Therefore, it is in Fig. 1 that one sees best the shape of
regions possibly excluded1 by future gravitational wave data
The fiducial case~i! ~à la 1913116! excludes an ellipsoida
bubble which touches theb0 axis aroundb0'25, while the
fiducial case~ii ! ~neutron star–black hole! excludes the re-
gion abovethe nearly straight linea020.03b0'0.15 repre-

1We assume here that general relativity is the~nearly! exact de-
scription of gravity chosen by nature, and we discuss constraint
deviations away from general relativity.
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sented in Fig. 1. The corresponding excluded regions
realistic equations of state can be recognized on Figs. 2–
deformations of the just described regions for the polytro
case. Note that the bubble excluded by 1913116-like sys-
tems~i! is smaller when the EOS is softer, and that it ev
disappears for Pandharipande’s equation of state~Fig. 2!. In
that case, the detection of such a system by a gravitatio
wave interferometer would not constrain at all the space
theories.

The valueS/N510 chosen for Figs. 1–4 corresponds
the conventional event rate of 3 binary-neutron-star coa
cences per year in a radius of 200 Mpc, and to a proba
smaller event rate for neutron-star-black-hole coalescen
However, as pointed out by Will@31#, the event rate is only
slightly relevant to our discussion since a single system
suffice to constrain the space of gravity theories. It is the
fore interesting to consider also the lucky discovery of
exceptionally near system, with a signal-to-noise ratio
large asS/N5100. The corresponding exclusion plots a
displayed in Fig. 5, for the same polytropic equation of st
as in Fig. 1. The bubble excluded by the 1913116-like sys-
tem is much larger, but still not competitive with prese
binary-pulsar tests. Similarly, the neutron-star-black-h
system is more constraining than in Fig. 1, but the slope
the corresponding line is only reduced by a factor;A10,
although the signal-to-noise ratio is 10 times larger. This
due to the fact that the dominant dipolar radiation is prop
tional to the square ofaA . Therefore, the lucky discovery o
a nearby neutron-star-black-hole system would be sligh
more constraining than present binary-pulsar tests in the
gion 23&b0,0, but not better than present solar-syste
experiments. Moreover, one must keep in mind that so
system experiments will improve in the mean time. In p
ticular, NASA’s Gravity Probe B mission~due for launch in
2000! is expected to improve the probing ofa0 down to the
level a0;A1025'331023.

Since we are mentioning the possibility of lucky disco
eries, like those of PSRs 1913116 and 1534112, let us also
quote the constraints which could be achieved if a bin
pulsar with a black-hole companion were discovered. In t
case, the main dipolar radiation would be proportional toaA

2
on

FIG. 5. Same plot as Fig. 1, assuming the same polytropic eq
tion of state, but a signal-to-noise ratioS/N5100 for the LIGO
~hatched! curves. For clarity, the dashed line corresponding to
PSR 1534112 test has been suppressed.
1-8
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~sinceaB50 for a black hole!, instead of the small facto
(aA2aB)2}(Dm/m)2 appearing for binary-neutron-sta
systems. The mass of the black hole is not a crucial par
eter for this discussion~we takemB510m(). Assuming an
orbital periodPb and a measurement accuracy forṖb similar
to those of PSR 1913116, one finds that the constraints o
a0 would be tightened by a factor2 ;80, i.e., that the bold
lines of Figs. 1–5 would cross the vertical axis arounda0
'0.05/80'631024. In terms of the Eddington paramete
gEdd, Eq. ~1.5!, this corresponds to a levelugEdd21u
&1026, which is about a thousand times tighter than pres
solar-system limits, and ten times better than the prob
level expected from Gravity Probe B. This underlines that
the future, binary-pulsar tests may become competitive w
or even supersede, solar-system experiments even in th
gion b0.24 of the theory plane.

V. CONCLUSIONS

The main conclusion of the comparison carried out
Figs. 1–5 is that, in all cases, future LIGO-VIRGO observ
tions of inspiralling compact binaries turn out not to be co
petitive with present binary-pulsar tests in theirdiscriminat-
ing probing of the strong-field, and radiative, aspects
relativistic gravity. This conclusion may seem paradoxical
should not be interpreted negatively against LIGO-VIRG
observations which, as shown in Figs. 1–5, will indepe
dently probe strong-field gravity and will exclude regions
parameter space allowed by solar-system experime
Rather, it is simply a reminder that binary-pulsar expe
ments are superb tools for probing strong-field and radia
aspects of gravity. It is also somewhat a good news for gr
tational wave data analysis~which promises to be already
very challenging task even if onea priori assumes the valid
ity of general relativity; see, e.g.,@32#!. Indeed, our results
Figs. 1–5 indicate that our present experimental knowle
of the law of relativistic gravity is sufficient to justify usin
general relativity as the standard theory of gravitational
diation.

Note that this conclusion explicitly refers to the quanti
tive probing of plausible3 deviationsfrom general relativity.
At the qualitative level, and also at thenon-discriminating
quantitative level, LIGO-VIRGO observations will bring in
valuable advances in our experimental knowledge of rela
istic gravity. First, they will provide the first direct observ

2This improvement factor of 80 ona0 comes mainly from the
ratio uaNS2aBHu/uaA2aBu'ucNS2cBHu/ucA2cBu, where the
‘‘compactness’’ parameters@11# for neutron stars and black hole
are respectively cA'0.21mA /m( and cBH51. ~Here mA

51.441m( , mB51.388m( , mNS'1.4m( , and the value ofmBH

does not matter.!
3Within the presently accepted framework for low-energy fund

mental physics, namely field theory, the only alternative~long-
range! gravity theories which,~i! do not violate the basic tenets o
field theory, and~ii ! are not already necessarily extremely co
strained by existing equivalence-principle tests, are the tensor-s
gravity theories.
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tion of gravitational waves far in the wave zone~while
binary pulsar experiments prove the reality of the propa
tion with finite velocity of the gravitational interaction in th
near zone of a binary system!. Second, they will~hopefully!
lead to superb additional confirmations of general relativ
through the observation of the wave forms emitted during
inspiral and coalescence of neutron stars or black holes;
e.g.,@1,33#.

Independently of the comparison between LIGO-VIRG
tests and binary-pulsar tests, the present paper has prov
the first systematic study of the influence of the nucle
equation of state on the theoretical probing power of bina
pulsar tests. In particular, Fig. 2 shows that if the equation
state were as soft as predicted by the simple Pandharip
model, binary-pulsar tests quantitatively supersede so
system ones in all the regionb0&21 of parameter space
Even if we consider the less constraining stiff equations
states, the present work confirms the limit

b0.24.5 ~5.1!

found ~modulo 10%! in @10#. We recall that this limit can be
interpreted as a limit on the ratio of the two weak-field po
Einstein parameters

bEdd21

gEdd21
'2

1

4
b0,1.1. ~5.2!

Finally, we pointed out that the discovery of a bina
pulsar with a black-hole companion has the potential of p
viding a superb new probe of relativistic gravity. The di
criminating power of this probe might supersede all
present and foreseeable competitors in measuringa0 down
to the levela0

2,1026.
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APPENDIX A: FINITE-SIZE EFFECTS
IN TENSOR-SCALAR GRAVITY

In the text we have assumed that the leading modificat
in tensor-scalar gravity, of the orbital motion of binary sy
tems comes from the change in radiation reaction forces
this appendix, we briefly discuss the modifications of t
orbital motion caused by the finite extension of the bodi
Contrary to the pure spin 2 theory where such effects
very small~because they are suppressed in spherical bod!,
the presence of a scalar field opens the possibility of c
plings to the spherical inertia moment*d3xr(x)x2. In this
appendix we use the general diagrammatic approach of
@12# to confirm ~and hopefully better understand! the results
of Nordtvedt @34–36# based on some explicit calculation
valid only for weakly-self-gravitating extended bodies. T
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final outcome is that finite-size effects can be neglected
matched-filter analysis of inspiralling compact binaries.

Following the indications given in@12#, we can formally,
but very generally, take extension effects into account
considering that the effective action for each compact b
is a functionalof the fieldsw andgmn* which can be expande
in terms of the values along some central worldline of th
spacetime derivatives~derivative expansion!. Namely, we
take the following action for the extended body~labeledE)

SE
extended52cE mE

eff@w,gmn* #

3„2gmn* ~zE
l !dzE

mdzE
n
…

1/2, ~A1!

with

mE
eff@w,gmn* #5mE„w~z!…1I E~w!R* 1JE~w!uE*

muE*
nRmn*

1KE~w!h* w1LE~w!uE*
muE*

n¹m* ]nw

1ME~w!uE*
muE*

n]mw]nw

1NE~w!g* mn]mw]nw. ~A2!

This is the most general action, expanded up to two der
tives of the fieldsw and/orgmn* , for a body which is spheri-
cally symmetric and static when unperturbed.@Terms which
are first order in derivatives are excluded by spherical sy
metry or, for HE(w)uE*

m]mw, by time-reversal symmetry.#
This form, being generic, is valid for strongly sel
gravitating bodies. In this case, thew-dependent quantitie
I E ,JE ,KE,LE,ME,NE, define some ‘‘scalar form factors’’ o
body E which go beyond the basic effective couplin
aE(w)5] ln mE(w)/]w associated with the point-like effec
tive action SE

point52c*mE(w)dsE* . @For non-spherical
and/or non-static bodies many other new scalar form fac
could, in principle, appear.#

Most of the a priori independent-looking terms in Eq
~A2! can be easily shown either not to contribute at the~ob-
servationally most relevant! first post-Keplerian level@i.e.,
O(v2/c2) beyond the Keplerian orbital motion#, or to be
equivalent to other terms, modulo some redefinition of
dynamical variables. Let us first recall that any correct
term, in a Lagrangian, which is proportional to the zero
order equations of motion can be redefined away by shif
some of the dynamical variables. Technically,S0@c#
1eI (c)dS0 /dc5S0@c8#1O(e2) with c85c1eI (c). In
our case, the dynamical variables can be eithergmn* , w or zE

m .
In all cases, the local redefinitionsc→c8 have no effects on
the observables at infinity~such as the periastron advance
the evolution of the orbital phase of an inspiralling binar!.
Using such local redefinitions of the dynamical observab
~and formally neglecting singular self-action terms, i.e.,d-
function contributions tomE

eff@w#), one easily checks the fol
lowing simplifications: The JE(w) contribution can be
transformed~using thegmn* field equationsRmn* 52]mw]nw
1d-functions and a local redefinition ofgmn* within bodyE)
into the ME(w) contribution. TheME(w) term contributes
only at the second post-Keplerian levelO(v4/c4). The
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KE(w) term can be eliminated by redefiningw within body
E. TheLE(w) term can be reabsorbed in theNE(w) one by
redefining the positionzE

m , and by neglecting second pos
Keplerian ~2PK! effects. Indeed, integrating by par
2*cdsE* LE(w)u* mu* n¹m* ]nw one finds an ME(w)-like
term ~contributing only at 2PK order! plus a term propor-
tional to u* m¹m* un* , which is equal to 2aE(dn

m

1u* mun* )]mw upon using the equations of motion. Th
shows that after the redefinition

zE
m→zE8

m5zE
m1

LE

m̃E

¹* mw, ~A3!

theLE(w) contribution is, modulo 2PK, equivalent to chan
ing NE(w)→NE8 (w)5NE1aELE . Similarly, theI E term can
be absorbed in theNE one by locally redefininggmn* . @In
fact, if one fixes the harmonic gauge before making this
definition of gmn* , one also needs a shift of the positions
the bodiesAÞE to absorbI E into NE , namely, zA

i →zA8
i

5zA
i 14G* I E(zA

i 2zE
i )/(r EA

3 c2)1O(1/c4).]
Finally, we end up~modulo 2PK! with a generic, simpli-

fied effective action containing only aNE-type two deriva-
tive term:

SE
new52cE dsE* @mE~w!1NE

new~w!g* mn]mw]nw#,

~A4!

where

NE
new5NE1aELE12I E . ~A5!

The conclusion is that, moduloO(v4/c4) terms and higher-
order terms in the radius of the extended bodyE ~associated
to higher-derivatives!, there is only one relativistic form fac
tor for, possibly compact, extended bodies in tensor-sc
gravity: NE

new. By dimensional analysis @NE
new#

5@mass#@length#2 and we therefore expectsNE
new to be,

roughly, some spherical inertia moment. Using the diagra
matic method of Ref.@12#, it is easy to compute the extr
contribution to theN-body Lagrangian entailed by the pre
ence ofNE :

dextendedLN-body52 (
AÞEÞB

G
*
2 mAmB~aANE

newaB!nEA•nEB

r EA
2 r EB

2 c2
,

~A6!

wherenEA[(zE2zA)/r EA . Note that in a two-body system
the summation will have two terms: one whereE51, A5B
52, and one whereE52, A5B51. ~We denote here for
clarity the two bodies by the labels 1 and 2.!

The above considerations have the advantage of b
valid even when discussing strongly self-gravitating e
tended bodies. In the case of aweakly self-gravitating ex-
tended body, Nordtvedt@36# has obtained an effective action
after some explicit calculations of the equations of motio
of the form
1-10
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SE52cE dsE* FmE~w!1
1

6
Ĩ EA2~w!ũmũnR̃mnG , ~A7!

where Ĩ E5*d3x̃r̃( x̃) x̃2 is the physical spherical inertia mo
ment, and where we recall that the tilde refers to physi
Jordan-frame quantities: g̃mn5A2gmn* , R̃mn5Rmn@ g̃#,

g̃mnũmũn521. By expanding Eq.~A7! in terms of our ge-
neric expansion~A2! we find

I E50, JE5
1

6
Ĩ E , KE5

a0

6
Ĩ E , LE52

a0

3
Ĩ E

ME52
1

3
~b02a0

2! Ĩ E, NE
old5

1

6
~b012a0

2! Ĩ E . ~A8!

We conclude from Eq.~A5! that the only observable form
factor from infinity is

NE
new5

1

6
b0 Ĩ E . ~A9!

In other words, after the shift zE8
m5zE

m

2 1
3 a0( Ĩ E /m̃E)¹* mw, the only new contribution to the

N-body Lagrangian is Eq.~A6! with NE
new given by Eq.~A9!.

When comparing with Nordtvedt’s results, note that he d
not perform the simplifying shift that we are advocating
that he ends up with a more complicated-lookingN-body
Lagrangian containing a contribution like Eq.~A6! but with
NE

old5 1
6 (b012a0

2) Ĩ E , plus two other sums which are simp
obtainable by applying the inverse shiftzE

Nordtvedt5zE
us
ite
in

rg

04200
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s

1 1
3 a0( Ĩ E /m̃E)¹w, with w5w02(AG* mAaA /r Ac2,

to the unperturbed LagrangianL0(zA ,vA)5(A
1
2 mAvA

2

1(AÞB
1
2 G* mAmB(11aAaB)/r AB . ~Here, bothvA5 żA and

r AB5uzA2zBu get modified by the shift.! Finally, we find
that in a binary system the finite-size effects cause the
pearance of the additional interaction energy terms

dextendedEint51
G

*
2 mAmB

r AB
4 c2

~aA
2NB

new1aB
2NA

new!.

~A10!

For compact bodies~radiusRA comparable toG* mA /c2) we
expect thatNA

new;bAmA(G* mA /c2)2, so that the new inter-
action energy~A10! will be of the form

dextendedEint;~CBbBaA
21CAbAaB

2 !E3PK
GR , ~A11!

where E3PK
GR denotes the general relativistic third pos

Keplerian„O(v6/c6)… contribution to the interaction energy
and whereCA and CB are numerical coefficients which ar
roughly of order unity. The 3PK energyE3PK

GR

;G* mAmB /r AB3(G* mA /c2r AB)3 depends on the distanc
r AB in the same way asdextendedEint .

The conclusion is that scalar-mediated finite-size effe
can be neglected in a matched-filter analysis of the ph
evolution of inspiralling binaries, because they only mod
by a factor;11Cba2 ~which tends to 1 asa2→0) terms
already present in the general relativistic phase evolution.
discussed for similar fractional corrections in Sec. III, th
can be neglected compared to the non-general-relativ
scalar dipolar contribution to the phase evolution.
ro-
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