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Conformal field theory correlators from classical scalar field theory on anti–de Sitter space
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We use the correspondence between scalar field theory on AdSd11 and a conformal field theory onRd to
calculate the first-order contributions to the 3- and 4-point functions of the latter.@S0556-2821~98!50116-6#

PACS number~s!: 11.25.Hf, 11.10.Kk
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I. INTRODUCTION

Since the suggestion of Maldacena about the equivale
of the largeN limit of certain conformal field theories ind
dimensions on one hand and supergravity on (211) anti–de
Sitter space (AdSd11) on the other hand@1#, theories on
anti–de Sitter spaces seem to have undergone a renaiss
After detailed investigations in the past~see for example@2–
4#!, there has been a multitude of papers related to this s
ject in various aspects in the past months alone~see@5# for a
recent list of references!. In particular, the suggested corr
spondence was made more precise in@6–8#. According to
these references, one identifies the partition function of
AdS theory ~with suitably prescribed boundary condition
for the fields! with the generating functional of the bounda
conformal field theory. Thus, one has, schematically,

ZAdS@f0#5E
f0

Df exp~2I @f#!

[ZCFT@f0#5K expS E
]V

ddxOf0D L . ~1!

The path integral on the left-hand side~LHS! is calculated
under the restriction that the fieldf asymptotically ap-
proachesf0 on the boundary. On the other hand, the fun
tion f0 is considered as a current, which couples to the s
lar density operatorO in the boundary conformal field
theory. Calculating the LHS of Eq.~1! thus allows one to
obtain explicitly correlation functions of the boundary co
formal field theory. Of course, since the 2- and 3-point fun
tions are fixed~up to a constant! by conformal invariance@9#,
one is especially interested in calculating the casesn.3.

It is not only of pedagogical interest to consider the cl
sical approximation to the AdS partition function, which
obtained by inserting the solutions of the classical field eq
tions intoI @f#. In fact, the suggested AdS–conformal-fiel
theory ~CFT! correspondence@1# involves classical super
gravity on the AdS side. Moreover, it is instructive to stu
toy examples in order to better understand this corresp
dence. A number of examples, including free massive sc
andU(1) gauge fields were studied in@8# and free fermions
were considered in@5,10#. Since a free field theory will in-
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evitably lead to a trivial~i.e., free! boundary CFT, we feel it
necessary to consider interactions. A short note on inter
ing scalar fields is contained in@11#. In this paper we will
consider in detail a classical interacting scalar field
AdSd11 to first order in the interactions.

We recall here for convenience the formulas necessary
solving the classical scalar field theory with Dirichlet boun
ary conditions. Let us start with stating the action for a re
scalar field ind11 dimensions~Riemannian signature! with
polynomial interactions,

I @f#5E
V

dd11xAgS 1

2
„~¹f!21m2f2

…1 (
n>3

ln

n!
fnD .

~2!

The action~2! yields the equation of motion

~¹22m2!f5 (
n>3

ln

~n21!!
fn21. ~3!

Using the covariant Green’s function, which satisfies

~¹22m2!G~x,y!5
d~x2y!

Ag~x!
~4!

and the boundary conditionG(x,y)uxP]V50, the classical
field f satisfying the equation of motion~3! and a Dirichlet
boundary condition on]V satisfies the integral equation

f~x!5E
]V

ddyAhnm
]

]ym G~x,y!f~y!

1E
V

dd11yAgG~x,y! (
n>3

ln

~n21!!
f~y!n21,

~5!

whereh is the determinant of the induced metric on]V and
nm the unit vector normal to]V and pointing outwards. A
perturbative expansion in the couplingsln is obtained by
using Eq.~5! recursively. We shall denote the surface term
Eq. ~5! by f (0) and the remainder byf (1). Then, substituting
the classical solution~5! into Eq. ~2!, integrating by parts,
and using the properties of the Green’s function, one obta
© 1998 The American Physical Society01-1
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W. MÜCK AND K. S. VISWANATHAN PHYSICAL REVIEW D 58 041901
I @f#5
1

2 E
]V

ddxAhnmf~0!]mf~0!

1 (
n>3

ln

n! EV
dd11xAg~f~0!!n1O~l2!. ~6!

A short outline of the remainder of this paper is as f
lows. In Sec. II we consider the free field on AdSd11 . We
explicitly calculate the solutions to the wave equation,
Green’s function, solve the Dirichlet boundary problem, a
find the 2-point function of the boundary conformal fie
theory. In Sec. III we perform the calculations to first ord
in the interaction parametersln . An explicit closed formula
for the n-point function does not seem attainable forn.3.
However, we will stay general as far as possible and o
then specialize in the casesn53 andn54. Finally, Sec. IV
contains conclusions.

II. FREE FIELD THEORY ON AdS d11

We will use the representation of AdSd11 as the upper
half space (x0.0) with the metric

ds25
1

x0
2 (

i 50

d

dxi
2 , ~7!
t

en
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n

04190
e
d

r

ly

which possesses the constant curvature scalarR52d(d
11). The boundary]V is given by the spaceR with x0
50 plus the single pointx05` @8#. In the sequel we shal
adopt the notationsx5(x0 ,x), x* 5(2x0 ,x) and x25x0

2

1x2.
Let us first solve the massive wave equation

~¹22m2!f5S x0
2(

i 50

d

] i
22x0~d21!]02m2Df50. ~8!

The linearly independent solutions of Eq.~8! are found to be

x0
d/2e2 ik–xH I a~kx0!

Ka~kx0!
, wherea5Ad2

4
1m2, ~9!

k is a momentumd-vector andk5uku. It is easy to check
that these modes are not square integrable, ifm2>2d2/4.

The modes can now be used to calculate the Green’s fu
tion in Eq. ~4!. Making the ansatz
G~x,y!5E ddk

~2p!d x0
d/2e2 ik–~x2y! f ~k,y0!H I a~kx0!Ka~ky0! for x0,y0 ,

Ka~kx0!I a~ky0! for x0.y0 , ~10!
ry
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we explicitly satisfy the boundary condition atx050 and`
and ensure continuity atx05y0 . Matching the two regions a
the discontinuity yieldsf 52y0

d/2 . The ansatz~10! can be
integrated and gives

G~x,y!52
c

2a
j2DFS d

2
,D;a11;

1

j2D , ~11!

whereF denotes the hypergeometric function@12#,

j5
1

2x0y0
F1

2
„~x2y!21~x2y* !2

…1A~x2y!2~x2y* !2G
~12!

and the new constants are defined byD5d/21a and c
5G(D)/„pd/2G(a)…. The Green’s function~11! coincides
with the one found by Burgess and Lu¨tken @4# after using a
transformation formula for the hypergeometric function@12,
formula 9.134 2.#. Our form has the advantage that for ev
d the result can, using either special value formulas or
definition as a series, be expressed in terms of rational fu
tions. For example, ford52 we can use
e
c-

F~1,11a;11a;z!5
1

12z
.

We shall in this paper make use only of the bounda
behavior of the Green’s function. Since the induced me
diverges on the boundary of AdSd11 (x050), one has to
consider the standard formalism described in Sec. I o
near-boundary surfacex05e.0 and then take the limite
→0. It has been pointed out recently by Freedman, Math
Matusis, and Rastelli@13# that this limit has to be taken
carefully, in particular at the very end of those calculatio
which involve only the boundary behavior of the classic
solution. It is therefore necessary to find the Green’s fu
tion, which vanishes not atx050, but at x05e. One can
easily change Eq.~10! to accommodate this. Denoting th
new Green’s function byGe , we find

Ge~x,y!5G0~x,y!1E ddk

~2p!d ~x0y0!d/2e2 ik–~x2y!Ka

3~kx0!Ka~ky0!
I a~ke!

Ka~ke!
, ~13!
1-2
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whereG0 is given by Eqs.~10! and ~11!. It does not seem
possible to perform the momentum integral, but this is
necessary in order to obtain the desired boundary beha
In particular, we find the normal derivative on the bounda
as

]

]y0
Ge~x,y!U

y05e

52x0
d/2e~d/2!21

3E ddk

~2p!d e2 ik–~x2y!
Ka~kx0!

Ka~ke!
,

~14!

giving 2ed21d(x2y) for x05e.
The bulk behavior of the free field can be obtained fro

Eq. ~5! using the asymptotic behavior of the Bessel funct
in the denominator of Eq.~14! for e→0. We note that for
AdSd11 , one hasAh(y)5e2d andnm5(2e,0). The minus
sign comes fromnm pointing outward. One finds

f~0!bulk~x!5ceD2dE ddyfe~y!S x0

x0
21ux2yu2D D

, ~15!

wherefe denotes the Dirichlet boundary value atx05e. We
define

f0~x!5eD2dfe~x! ~16!

in order to make contact with the conformal field theory
the boundary of AdSd11 .

Equation~15! is the solution to the Dirichlet problem with
the boundary atx050 @8#. However, for the two-point func-
tion, we need to calculate the surface integral in Eq.~6!, i.e.,
we need the near-boundary behavior for a boundary ax0
5e. Using the exact expression~14! we find

]0fux05e5
1

e E ddyfe~y!E ddk

~2p!d e2 ik–~x2y!

3S d

2
2a1k

]

]k
ln„~ke!aKa~ke!…D .
04190
t
or.
y

The first two terms in the squared bracket yieldd function
contact terms in the two-point function, which are of no i
terest to us. In the third term, the divergence of the Bes
function for e→0 is exactly canceled by the power ofe in
front of it. Using the series expansion,

zaKa~z!52a21G~a!F12
G~12a!

G~11a! S z

2D 2a

1¯ G ,
where the dots denote terms of orderzn andz2a1n, one can
approximate the logarithm and then evaluate the integra
obtain

]0fux05e52ace2a21E ddy
fe~y!

ux2yu2D 1¯ . ~17!

Inserting Eq.~17! into Eq. ~6!, we find the value of the free
field action as

I ~0!52
1

2 E ddxddy2ace2~D2d!
fe~x!fe~y!

ux2yu2D 1¯ .

~18!

Taking the limit e→0 with the definition ~16! we hence
obtain, in agreement with@13#, the two-point function for the
boundary conformal operators:

^O~x!O~y!&5
2ac

ux2yu2D . ~19!

III. FIRST-ORDER CALCULATIONS

For interactions, one can take the limite→0 beforehand,
which makes the considerations somewhat easier. The re
is that these calculations involve bulk integrals ov
AdSd11 , as in the second term of Eq.~6!. Hence only the
bulk behavior of the free field will be needed, which w
obtained in Sec. II. Inserting Eq.~15! ~with e→0! into the
interaction term of the action, one obtains
I ~1!@f0#5 (
n>3

cnln

n! E ddx1 ...ddxnf0~x1!...f0~xn!I n~x1 ,...,xn!, ~20!

with

I n~x1 ,...,xn!5E dd11y
y0

2~d11!1nD

@~y0
21uy2x1u2!...~y0

21uy2xnu2!#D . ~21!
1-3
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We can read off the first-order contribution to the connec
part of then-point functions (n>3) for the operatorO from
Eq. ~20!,

^O~x1!...O~xn!&conn.52lncnI n~x1 ,...,xn!. ~22!

We shall now elaborate on a detailed calculation of the
and 4-point functions. After a Feynman parametrization,
y integral in Eq.~21! can be done yielding

I n5
pd/2G@~n/2!D2d/2#G@~n/2!D#

2G~D!n

3E
0

`

da1 ...dandS ( a i21D
3

Pa i
D21

~ (
i , j

a ia j xi j
2 !~n/2!D ,

wherexi j 5uxi2xj u. Now we can introduce new integratio
variablesb i by a15b1 and a i5b1b i ( i>2). The integra-
tion overb1 is then trivial and leads to

I n5
pd/2G@~n/2!D2d/2#G@~n/2!D#

2G~D!n

3E
0

`

db2 ...dbn

P
i 52

n

b i
D21

@ (
i 52

n

b i~x1i
2 1 (

j . i
b j xi j

2 !#~n/2!D

.

~23!

We shall not try to perform the remaining integration in t
general formula, but consider the casesn53 andn54. For
n53 the integrations can be carried out straightforward
Inserting the result into Eq.~22! gives

^O~x1!O~x2!O~x3!&

52
l3G@~1/2!D1a#

2pd FG@~1/2!D#

G~a! G3 1

~x12x13x23!
D .

~24!

For n53 there is no disconnected contribution, hence
~24! describes the full first-order 3-point function.

For n54, we obtain, after integration overb4 and b3 ,
04190
d

-
e

.

.

I 45
G~2D2d/2!

2G~2D!

pd/2

~x12x34!
2D

3E
0

` db2

b2
FS D,D;2D;12

~x13
2 1b2x23

2 !~x14
2 1b2x24

2 !

b2x12
2 x34

2 D .

A change of integration variables and the introduction of
conformal invariants~harmonic ratios! @9#

b25
x13x14

x23x24
e2z, h5

x12x34

x14x23
, z5

x12x34

x13x24
,

then yields

I 45
G~2D2d/2!

G~2D!

2p3/2

~hz P
i , j

xi j !
~2/3!D

3E
0

`

dzFS D,D;2D;12
~h1z!2

~hz!2 2
4

hz
sinh2 zD .

~25!

Obviously, Eq.~25! is of exactly the form dictated for a fou
point function by conformal invariance@9#.

IV. CONCLUSIONS

We have considered an example of the corresponde
between field theories on an AdS space and CFTs on
boundary. The classical interacting scalar field has b
treated to first order in the interactions and a nontrivial co
formal field theory of boundary operators has been obtain
We calculated a nontrivial coefficient of the 3-point functio
and, for the first time with this method, found an express
for the functionf (h,z) contained in the first-order contribu
tion to the 4-point function@9#. The analysis could in prin-
ciple be extended to higher orders, since all necessary t
are at our disposal. The simplest second-order term is a
diagram contribution to the 4-point function involving tw
3-point vertices, which are connected by a bulk Gree
function. However, even in this case the integrals involv
seem intractable. We believe that the obtained results
also be helpful for studying more complicated field theor
containing fermions and gauge fields.
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