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[. INTRODUCTION evitably lead to a triviali.e., free boundary CFT, we feel it
necessary to consider interactions. A short note on interact-
Since the suggestion of Maldacena about the equivalendag scalar fields is contained {i1]. In this paper we will
of the largeN limit of certain conformal field theories id consider in detail a classical interacting scalar field on
dimensions on one hand and supergravity ofr (3 anti—-de = AdSq.; to first order in the interactions.

Sitter space (Adg ;) on the other hand1], theories on We recall here for convenience the formulas necessary for
anti—de Sitter spaces seem to have undergone a renaissangglving the classical scalar field theory with Dirichlet bound-
After detailed investigations in the pasee for examplg2—  ary conditions. Let us start with stating the action for a real

4)), there has been a multitude of papers related to this sulscalar field ind+ 1 dimensiongRiemannian signatuyavith
ject in various aspects in the past months al@e=[5] fora  polynomial interactions,

recent list of referencesin particular, the suggested corre-

spondence was made more precisq6r-8]. According to 1 N

these references, one identifies the partition function of the |[4]= dd+1 \/—(—((V¢)2+m2¢2)+ > .
AdS theory (with suitably prescribed boundary conditions 2 n=3 n!

for the fieldg with the generating functional of the boundary 2

conformal field theory. Thus, one has, schematically,
The action(2) yields the equation of motion

Zpad pol= L) D¢ exp(—1[¢])

Moo
(VE=m?)g= 2 —gyre" tc)

n=3

EZCFT[¢0]=<8XD( | ddxo¢o)>. I | R
aQ Using the covariant Green’s function, which satisfies

The path integral on the left-hand sideHS) is calculated
under the restriction that the fielp asymptotically ap- s 5 _o(x—y)
proachesp, on the boundary. On the other hand, the func- (VE=mI)G(xy)= (4)
. i , , VO(x)
tion ¢ is considered as a current, which couples to the sca-
lar density operatorO in the boundary conformal field
theory. Calculating the LHS of Eq1) thus allows one to
obtain explicitly correlation functions of the boundary con-
formal field theory. Of course, since the 2- and 3-point func-
tions are fixedup to a constantby conformal invariancg9],
one is especially interested in calculating the caseS. p d

It is not only of pedagogical interest to consider the clas-  ¢(X)= Lﬂd Y\/Hn”W—MG(Xy)’)(i’(Y)
sical approximation to the AdS partition function, which is

and the boundary conditio®(x,y)|x.,0=0, the classical
field ¢ satisfying the equation of motiof8) and a Dirichlet
boundary condition o) satisfies the integral equation

obtained by inserting the solutions of the classical field equa- 4i1 An -
tions intol[ ¢]. In fact, the suggested AdS—conformal-field- +f d* 1y \gG(x,y) Z =11 d(y)"
theory (CFT) correspondencgl] involves classical super- o n=3 '

gravity on the AdS side. Moreover, it is instructive to study 5)

toy examples in order to better understand this correspon-
dence. A number of examples, including free massive scalawhereh is the determinant of the induced metric &1 and
andU(1) gauge fields were studied [iB] and free fermions n# the unit vector normal t@) and pointing outwards. A
were considered ifi5,10]. Since a free field theory will in- perturbative expansion in the couplings is obtained by
using Eq.(5) recursively. We shall denote the surface term in
Eq. (5) by ¢(®) and the remainder by»). Then, substituting
*Email address: wmueck@sfu.ca the classical solutiort5) into Eq. (2), integrating by parts,
"Email address: kviswana@sfu.ca and using the properties of the Green'’s function, one obtains
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1
IL¢]=3 Lnddx hr“¢©a, 4

j gd+1y
n>3 n!

A short outline of the remainder of this paper is as fol-
lows. In Sec. Il we consider the free field on AS. We

Va(¢@)"+0o0N3).  (6)

explicitly calculate the solutions to the wave equation, the
Green’s function, solve the Dirichlet boundary problem, and

find the 2-point function of the boundary conformal field

theory. In Sec. Ill we perform the calculations to first order

in the interaction parameteks,. An explicit closed formula
for the n-point function does not seem attainable for 3.
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which possesses the constant curvature scRkar—d(d
+1). The boundary) is given by the spac&® with xg
=0 plus the single poinky=~ [8]. In the sequel we shall
adopt the notationx=(Xq,X), X*=(—Xg,X) and x2=x(2)
+x2.

Let us first solve the massive wave equation

d

(vz—m%¢=(%2%f—xdd—naf+¥)¢=a ®

The linearly independent solutions of E§) are found to be

However, we will stay general as far as possible and only

then specialize in the casas-3 andn=4. Finally, Sec. IV
contains conclusions.

Il. FREE FIELD THEORY ON AdS 4,

We will use the representation of AgS, as the upper
half space X,>0) with the metric

1 d

$=7 2 dx, (7
X0|:0

G(x,y)= f—d( xg2e k0N (k

we explicitly satisfy the boundary condition a§=0 ando°
and ensure continuity ag=y,. Matching the two regions at
the discontinuity yieldsf:—yg/z. The ansat210) can be
integrated and gives

1
A;a-l—l;—z),

z 11

c d
G(x,y)=— Zf_AF(E’

whereF denotes the hypergeometric functigi?],

(X—y*)?)+ V(x—y)z(x—y*)z}

12

&= ((x y)2+

2XoYo

and the new constants are defined dy-d/2+a and c
=T(A)/(#¥T'(a)). The Green’s function11) coincides
with the one found by Burgess andtken[4] after using a
transformation formula for the hypergeometric funct[d2,

formula 9.134 2. Our form has the advantage that for even

Yo)

| a(kXo)

d/i2—ik-
X ”“ww

0

d2
wherea= \/Z+m2, 9

k is a momentund-vector andk=|Kk|. It is easy to check
that these modes are not square integrable?i —d?/4.

The modes can now be used to calculate the Green’s func-
tion in Eqg. (4). Making the ansatz

I a(kXO) Ka(kyO)
Ka(kXo)! o(KYo)

for xo<yp,

for x>V, (10

1

F(1,1+ a;1+ a; Z)—l =

We shall in this paper make use only of the boundary
behavior of the Green’s function. Since the induced metric
diverges on the boundary of AdS; (Xo=0), one has to
consider the standard formalism described in Sec. | on a
near-boundary surface,=€>0 and then take the limit
—0. It has been pointed out recently by Freedman, Mathur,
Matusis, and Rastellf13] that this limit has to be taken
carefully, in particular at the very end of those calculations,
which involve only the boundary behavior of the classical
solution. It is therefore necessary to find the Green’s func-
tion, which vanishes not aty=0, but atx,=e€. One can
easily change Eq(10) to accommodate this. Denoting the
new Green'’s function b, , we find

d the result can, using either special value formulas or the

definition as a series, be expressed in terms of rational func-

tions. For example, fod=2 we can use

d’k dir2o—ik-(x—y)
Gf(x,y)=Go(x,y)+f 2m)e (XoYo) ¥ e " TYK,
Ta(ke) e)
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where Gy is given by Egs(10) and(11). It does not seem
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The first two terms in the squared bracket yiéldunction

possible to perform the momentum integral, but this is nofcontact terms in the two-point function, which are of no in-
necessary in order to obtain the desired boundary behavioterest to us. In the third term, the divergence of the Bessel
In particular, we find the normal derivative on the boundaryfunction for e—0 is exactly canceled by the power efin

as
J
——Gdxy) = —xd2e(d2)-1
Yo yoe
ddk ' K, (kxo)
—ik-(x—y)_ ¢«
Xf @m?* K.(ke) '
(14)

giving — €47 18(x—y) for xo=e.

The bulk behavior of the free field can be obtained from
Eq. (5) using the asymptotic behavior of the Bessel function

in the denominator of Eq(14) for e—0. We note that for
AdSy. 1, one hasyh(y)=e 9 andn*=(—¢,0). The minus
sign comes frorn* pointing outward. One finds

Xo

A
, (15
x3+|x—y|2) 19

¢<°)b””‘(x)=ceA‘df dYye.(y)

whereg, denotes the Dirichlet boundary valuexgt=€. We
define

Bo(X) =€ () (16)

in order to make contact with the conformal field theory on

the boundary of AdS. ;.

Equation(15) is the solution to the Dirichlet problem with
the boundary ax,= 0 [8]. However, for the two-point func-
tion, we need to calculate the surface integral in @4, i.e.,
we need the near-boundary behavior for a boundaryyat
= €. Using the exact expressidi4) we find

d
:l qd d’k —ik-(x=y)
(90¢|X0=E € y¢€(y) (277)(3 €

X

d J «
E—a'-i- kﬁln((ke) Ka(ke)) )

c

|<1>[¢o]=n§3

with

n)\n
ni fddxl---ddxn¢0(xl)---¢0(xn)|n(xly---!xn)a

front of it. Using the series expansion,

I'(l-a)
T(l+a)

]

where the dots denote terms of ord8randz?**", one can
approximate the logarithm and then evaluate the integral to
obtain

zaKa(z)=2alr(a)[1

Pely)
x—y[?

Jodlx,=e=2ace® J dly (17)

Inserting Eq.(17) into Eq. (6), we find the value of the free
field action as

1 _g) PX) DY)
o_ _ = dy ~d 2(A—d)
I 5 fd xdy2ace X—y[2

(18

Taking the limit e—0 with the definition(16) we hence
obtain, in agreement witfL3], the two-point function for the
boundary conformal operators:

2acC
(O0)Oy)= 1= . 19)

Ill. FIRST-ORDER CALCULATIONS

For interactions, one can take the linait-0 beforehand,
which makes the considerations somewhat easier. The reason
is that these calculations involve bulk integrals over
AdS,. 1, as in the second term of E¢6). Hence only the
bulk behavior of the free field will be needed, which was
obtained in Sec. Il. Inserting Eq15) (with e—0) into the
interaction term of the action, one obtains

(20

—(d+1)+nA
yo( s

Lx )= | g9+t )
) j Y T+ ly=x). (Y2+ly—x D18

(21)
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We can read off the first-order contribution to the connected  ['(2A—d/2) 792

-poi i = | ,=
part of then-point functions 6=3) for the operato from TTOT(20) (XyXan) ™
= d X2+ BoX5g) (X3,4+ BoX5
« ﬁF(A,A;ZA;l—(lg B2 23)2( 124 B2X24) .
o B2 B2X1X34

<O(X1)- . -O(Xn)>conn.: - )\ncnl n(X1,..Xn). (22

A change of integration variables and the introduction of the
We shall now elaborate on a detailed calculation of the 3€0nformal invariantgharmonic ratios 9]
and 4-point functions. After a Feynman parametrization, the
y integral in Eq.(21) can be done yielding
_X1Fu o, = X12X34 _ X12Xs4
XoaXoa X14X23' X13X24'

Bo

792 [(n/2)A—d/2]T[(n/2)A]
In: ZF(A)n then yle|dS

> ai—1>

X
fo day...dapd T(2A-d) 27

4TTT8) (nd X)) P8

HaiA71 i<j
(2 aja;x5) (M4
< xfwsz(A A-zA-l—M—isinh?z
0 T () W '
wherex;; =|xi—xj|. Now we can introduce new integration (25)
variablesB; by a;=8; and ;= 8,8; (i=2). The integra-
tion over B, is then trivial and leads to Obviously, Eq.(25) is of exactly the form dictated for a four

point function by conformal invariand®].

- 742 [(n/2)A—d/2]T[(n/2)A] IV. CONCLUSIONS

n n
2T(a) We have considered an example of the correspondence
N AC1 between field theories on an AdS space and CFTs on its
" i:Z'Bi boundary. The classical interacting scalar field has been
X f dg,...dB, — _ treated to first order in the interactions and a nontrivial con-
0 [ 3 BiOE+ S Bix2)]|m2h formal field theory of boundary operators has been obtained.
i=2 j>i 17 We calculated a nontrivial coefficient of the 3-point function

and, for the first time with this method, found an expression
for the functionf(#,{) contained in the first-order contribu-
tion to the 4-point functiof9]. The analysis could in prin-
ciple be extended to higher orders, since all necessary tools
are at our disposal. The simplest second-order term is a tree
diagram contribution to the 4-point function involving two
"3-point vertices, which are connected by a bulk Green’'s
function. However, even in this case the integrals involved
seem intractable. We believe that the obtained results will
also be helpful for studying more complicated field theories

(23

We shall not try to perform the remaining integration in the
general formula, but consider the cases3 andn=4. For
n=3 the integrations can be carried out straightforwardly
Inserting the result into Eq22) gives

(O(%1) O(X2) O(X3)) containing fermions and gauge fields.
NL[(1/2A+a] [T[(1/2A]]3 1
T 279 T(a) | (XiXiaXon)' ACKNOWLEDGMENTS
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