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Electric charge quantization in a chiral bilepton gauge model
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Instituto de Fı´sica Teo´rica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-900 Sa˜o Paulo, Sa˜o Paulo, Brazil

~Received 30 January 1998; published 6 July 1998!

In the context of the standard model the quantization of the electric charge occurs only family by family.
When we consider the three families together with massless neutrinos the electric charge is not quantized any
more. Here we show that a chiral bilepton gauge model based on the gauge group SU(3)C^ SU(3)L
^ U(1)N explains the quantization of the electric charge when we take into account the three families of
fermions. This result does not depend on the neutrino masses. Charge quantization occurs whether the neutri-
nos are massless or Dirac or Majorana massive fields.@S0556-2821~98!02115-8#

PACS number~s!: 12.60.Cn, 12.90.1b
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I. INTRODUCTION

The reason why the electric charges of fundamental p
ticles appear only in discrete units is still an open questi
Over the years some proposals have appeared intendin
explain it. The first proposal was given by Dirac@1# through
the postulate of the magnetic monopoles. The second
posal comes from the grand unification theories~GUT’s!
through its group structure@2#. But the GUT’s are ruled ou
and magnetic monopoles still have not been detected.

Recently the quantization of the electric charge~QECH!
has been analyzed within gauge models that contain the~1!
factor in its gauge group@3–5#. The approach given her
relates the U~1! charges of the fermions and Higgs bosons
the model through classical and quantum constraints in s
a manner that it leads to the QECH. The classical constra
imply that the Lagrangian of the model be invariant by t
gauge group; the quantum ones imply that the model be
from anomalies@3,4,6#.

By analyzing the QECH in the standard model~SM!,
whose gauge group isGSM5SU(3)C^ SU(2)L ^ U(1)Y ,
several authors showed that the SM with one family conta
the QECH @3–5,7,8#. Nevertheless, when we increase t
number of families to three the effect of dequantization
curs@3,8,9#. To understand this we need to see that in the
with three families an independent anomaly free glo
U(1)Y1

symmetry arises@3,4#. By independent we mean tha

the U(1)Y1
is independent of the gauge symmetry of the S

By anomaly free we mean that the U(1)Y1
GSM

2 and U(1)Y1

3

anomalies are canceled@3#. This kind of symmetry is also
called hidden symmetry. It creates an arbitrariness in
definition of the electric charge operator sinceY and Y
1aY1 are equally good choices for the gauge U~1! in the
gauge group of the standard model@3,4#.

We show, using this approach, that in a chiral bilept
gauge model, proposed some years ago by Pisano, Ple
and Frampton@10#, based on the symmetry gauge gro
G3315SU(3)C^ SU(3)L ^ U(1)N , there is the QECH
through classical and quantum constraints independent
neutrinos are massless or not. This model embeds the S
adds new physics with no hidden symmetries, the lept
come in the SU(3)L representation and it has three nontriv
anomaly cancellations@11#.
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This paper is organized as follows. In Sec. II we analy
the QECH in the SM with one and three families showi
the hidden symmetries that lead to the effect of dequant
tion. In Sec. III we extend the analysis to the chiral bilept
gauge model and we obtain the quantization of the elec
charge through classical and quantum constraints and in
IV we summarize our conclusions.

II. THE QUANTIZATION IN THE STANDARD MODEL

A. The standard model with one family

The electric charge operator in the SM can be defined
general form as

Q5T31bY, ~1!

whereb is an unknown parameter. For nonvanishing fermi
masses we must introduce a Higgs doubletf;(1,2,Yf) that
acquires a vacuum expectation value

^f&0;S 0

v D . ~2!

Since we want the operatorQ unbroken,Q^f&0 must be
zero. With this condition we findb5 1

2 Yf . So the electric
charge operator takes the form

Q5T31
Y

2Yf
. ~3!

Then, the problem of the quantization of the electric cha
turns into writing all hypercharges as functions of the Hig
hyperchargeYf . To achieve this we use the classical a
quantum constraints. The only sector in the Lagrangian a
to give information about the hypercharges through class
constraints is the Yukawa one, while the information abo
the hypercharges through quantum constraints comes f
the three nontrivial anomaly cancellations@U(1)Y#3,
@SU(2)L#2U(1)Y , and@SU(3)C#2U(1)Y .

In the SM the quarks and leptons come in the followi
representations:

LL5S ne

e D
L

;~1,2,Yl !, eR;~1,1,Ye!,
© 1998 The American Physical Society08-1
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QL5S u

dD
L

;~3,2,Yq!, uR;~3,1,Yu!,

dR;~3,1,Yd!, ~4!

with the Yukawa interaction being

2L Y5g1
l L̄LfeR1g3

dQ̄LfdR1g2
uQ̄Lf̃uR1H.c. ~5!

This Lagrangian, being U(1)Y gauge invariant, implies that

Ye5Yl2Yf , Yu5Yq1Yf , Yd5Yq2Yf . ~6!

After this only two nontrivial anomaly constraints remain,

@SU~2!L#2U~1!Y⇒Yq52
1

3
Yl ,

@U~1!Y#Y
3⇒Yl52Yf . ~7!

Equations~6! and Eqs.~7! leave all fermion hypercharge
as functions of the Higgs one,

Yl52Yf , Ye522Yf , Yq5
1

3
Yf ,

Yu5
4

3
Yf , Yd52

2

3
Yf . ~8!

Substituting the above results into Eq.~3!, we obtain the
quantization of the electric charge with the correct elec
charges for leptons and quarks:

Qn50, Qe521, Qu5
2

3
, and Qd52

1

3
. ~9!

Next if we admit a right-handed neutrino with Dirac ma
term and we attribute the hyperchargeYn to it we find from
the Yukawa termL̄Lf̃nR thatYn5Yl1Yf , but now we only
have one nontrivial anomaly constraint@SU(2)L#2U(1)Y .
So we have three free parametersYl , Yq , and Yf from
classical constraints and only one equation from quan
constraints. This prevents us from leaving all the hyp
charges as functions of only the Higgs hypercharge. Thi
the dequantization effect@3,4#. The explanation is that the
SM with Dirac massive neutrinos present, besides the b
onic (B) and leptonic (L) global symmetries, theB2L glo-
bal symmetry. TheB and L symmetries are not free from
anomalies. So they are not hidden symmetries. Neverthe
the B2L symmetry is free from anomalies. Then it is
hidden symmetry which superposes to the hypercharge
and which obstructs us from knowing if the U(1)Y factor in
the electric charge operator is due toY or to the superposi-
tion Y1a(B2L) @3,4#. Now if we, instead of Dirac neutri-
nos, have a Majorana one with the mass-termnR

TC21nR that
breaks theB2L global symmetry, we restore the quantiz
tion condition@5#.
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c

m
-
is

ri-

ss,

ne

B. The standard model with three families

With three families the representation content is

LaL5S na

ea
D

L

;~1,2,Yl a
!, eaR;~1,1,Yea

!,

QaL5S ua

da
D

L

;~3,2,Yqa
!, uaR;~3,1,Yua

!,

daR;~3,1,Yda
!, ~10!

with the Yukawa interaction being

2L Y5gaa
l L̄aLfeaR1gab

d Q̄aLfdbR1gab
u Q̄aLf̃ubR1H.c.,

~11!

wherea,b51,2,3.
In order to be this Lagrangian U(1)Y gauge invariant we

have

Yea
5Yl a

2Yf ,

Yqa
5Yq , Yua

5Yu , Yda
5Yd ,

~12!

with

Yu5Yq1Yf , Yd5Yq2Yf .

After that we have only two nontrivial anomaly constraint

@SU~2!L#2U~1!Y and @U~1!Y#Y
3 . ~13!

So we have five free parameters from the classical c
straints, Eq.~12!, and only two equations from the quantu
constraints, Eq.~13!. This prevents us from obtaining th
QECH. This is again the effect of dequantization. The hidd
symmetry here is U(1)L , with L being one of the quantum
numbers:L5Le2Lm ,Le2Lt ,Lm2Lt @3#.

To restore the QECH in the SM with three families w
need to introduce either right-handed neutrinos with Ma
rana mass terms@3,8#, or another Higgs doublet@8#, or some
neutral fermions@9#.

III. THE QUANTIZATION IN A CHIRAL BILEPTON
GAUGE MODEL

In a chiral bilepton gauge model presented in the Int
duction the electric charge operator can be defined in a g
eral form as

Q5
1

2
~l32A3l8!1bN, ~14!

with N being the operator generator of the group U(1)N ; l3
andl8 being the two diagonal Gell-Mann matrices.

In order to break the symmetry spontaneously and to g
mass to the fermions, three Higgs triplets and one Hig
sextet doublets are introduced@10–12#,
8-2
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h;~1,3,Nh!, r;~1,3,Nr!, x;~1,3,Nx!,

S;~1,6,NS!, ~15!

with the corresponding U(1)N charges as unknown param
eters.

To generate mass correctly, those Higgs boson must
quire the following vacuum expectation values@10–12#:

^h&0;S vh

0

0
D , ^r&0;S 0

vr

0
D ,

^x&0;S 0

0

vx

D , ^S&0;S 0 0 0

0 0 v8

0 v8 0
D . ~16!

With the requirement that the charge operator must a
hilate the vacuum, we obtain the following relations:

Nh50, b5
1

Nr
, Nx52Nr , NS50. ~17!

With these results we can write the electric charge ope
tor in the following form:

Q5I 31
Y

2
, ~18!

with the hyperchargeY being

Y

2
5I 81

N

Nr
, ~19!

whereI 35 1
2 l3 and I 852A3/2l8.

Now the problem of the quantization of the electr
charge consists of writing all the U(1)N charges as function
of Nr . We achieve this in the same way as we did for t
hypercharges in the SM, that is, by making use of the c
sical and quantum constraints. The only sector in the
grangian able to give information about the U(1)N charges
through classical constraints is the Yukawa one, while
information about the U(1)N charges through quantum con
straints comes from the three nontrivial anomaly cance
tions, @U(1N)#3, @SU(3)C#2U(1)N , and@SU(3)L#2U(1)N .

The leptons in the model come in the SU~3! representa-
tion

LaL5S na

ea

ea
c
D

L

;~1,3,Nl a
!, ~20!

with a51,2,3. The right-handed charged leptons enter
model through charge conjugation, i.e., there are no lep
singlets.

The quarks belong to SU~3! and U~1! representations an
one family comes in triplets and the other ones in antitriple
03500
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Q1L5S u1

d1

J1

D
L

;~3,3,Nq1
!,

u1R;~3,1,Nu1
!, d1R;~3,1,Nd1

!, JR1
;~3,1,NJ1

!.
~21!

QiL5S di

ui

Ji

D
L

;~3,3* ,Nqi
!,

diR;~3,1,Ndi
!, uiR;~3,1,Nui

!, JiR;~3,1,NJi
!,

~22!

where i 52,3. The quarksu e d are the usual ones withJ
being the exotic quarks. Now we are ready to obtain
QECH.

In order to obtain relations among these U(1)N charges
through the classical constraints, we again use the Yuk
Lagrangian sector@12#

2LY5
1

2
GabL̄aL

c * LbL1l1Q̄1LJ1Rx1l i j Q̄iLJjRx*

1l1a8 Q̄1LdaRr1l ia8 Q̄iLuaRr* 1l1a9 Q̄1LuaRh

1l ia9 Q̄iLdaRh* 1H.c., ~23!

wherea,b51,2,3 andi , j 52,3. x* , r* andh* are antitrip-
lets, whileS* is an antisextet.

The main point here is the leptonic sector of the Yuka
Lagrangian. Its framework provides the U(1)N charges of
the leptons in a direct manner, that is, the U(1)N gauge in-
variance of this term implies

Nl 1
5Nl 2

5Nl 3
50. ~24!

The U(1)N gauge invariance of the quark sectors of t
Yukawa Lagrangian implies

Nu1
5Nu2

5Nu3
5Nu ,

Nd1
5Nd2

5Nd3
5Nd ,

Nq2
5Nq3

5Nq ,

NJ2
5NJ3

5NJ ,

and
8-3
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NJ5Nq2Nr ,

Nd5Nq ,

Nu5Nq1Nr ,

NJ1
5Nq12Nr ,

Nq1
5Nq1Nr . ~25!

After that we have only one nontrivial anomaly cancellati
@13#

@SU~3!L#2U~1!N⇒Nq1
12Nq50. ~26!

From the last term in Eqs.~25! and ~26! we find

Nq52
1

3
Nr , ~27!

which leads to the following relations among the U(1N
charges:

Nq1
5

2

3
Nr , Nq52

1

3
Nr , Nu5

2

3
Nr ,

Nd52
1

3
Nr , NJ15

5

3
Nr , NJ52

4

3
Nr .

~28!

This result allows us, together with Eqs.~24! and ~19! to
find @when we replace the value of the corresponding U(1N
charges# the hypercharges of all fermions. Substituting t
hypercharges into Eq.~18! we find the quantization of the
electric charge with the correct electric charges for lept
and quarks,

Qne ,nm ,nt
50,

Qe,m,t5Q521,

Qu51
2

3
,

Qd52
1

3
,

QJ151
5

3
,

QJ2,J35QJ52
4

3
. ~29!
03500
s

Then, we showed that the chiral bilepton gauge mo
based on a semisimple Lie groupG331 contains in its frame-
work the quantization of the electric charge when we ta
into account the three families of fermions with massle
neutrinos.

We finish this section making a short analysis of the e
tensions of this model in order to consider massive neutrin
For Majorana neutrinos we only need to use the followi
vacuum expectation value for the sextet@12#:

^S&0;S v 0 0

0 0 v8

0 v8 0
D . ~30!

This conserves the structure of the leptonic sector, lead
also to the quantization condition. Now if we want a Dira
neutrino we need to add the following termGab8 L̄aLhnaR to
the LagrangianLY in Eq. ~23! with naR;(1,1,Nna

). By

gauge invariance we findNna
50. This result maintains the

quantization condition. All of this shows that this model
interesting in looking for new physics.

IV. CONCLUSIONS

In summary, we have extended the recent approach of
electric charge quantization problem in gauge models
contain an explicit U~1! gauge group to the case of oneG331
model. First we showed through classical and quantum c
straints that the standard model with one family explains
quantization of the electric charge, while with three famili
and massless neutrinos it no longer explains the charge q
tization. We discussed the reasons for the above result
we also showed that by adding neutrinos with a Majora
mass to the standard model we restored the condition of
electric charge quantization. This happens because Majo
neutrinos break the U(1)L hidden symmetry that arises whe
we consider the standard model with three families.

The central part of this work analyzed the question of
quantization of the electric charge in aG331 model and the
main result in this work is the following: the QECH throug
classical and quantum constraints occurs in theG331 model
when the three families are taken together even if neutri
are massless or not. If they are massive the QECH does
depend on the nature of the neutrino fields, i.e., it does
matter if they are Dirac or Majorana fermions.

ACKNOWLEDGMENTS

We thank J.C. Montero and V. Pleitez for the incenti
and critical suggestions and also thank M.C. Tijero for re
ing the manuscript. This work was supported by the Co
selho Nacional de Desenvolvimento Cientı´fico e Tecno-
lógico ~CNPq! ~O.P.R! and the Coordenac¸ão de
Aperfeiçoamento de Pessoal de Nı´vel Superior ~CAPES!
~C.A.S.P!.
8-4



ys

.

al
/97

v.

ELECTRIC CHARGE QUANTIZATION IN A CHIRAL BILEPTON . . . PHYSICAL REVIEW D58 035008
@1# P. A. M. Dirac, Proc. R. Soc. LondonA133, 60 ~1931!.
@2# P. Langacker, Phys. Rep.72, 185 ~1981!.
@3# R. Foot, G. C. Joshi, H. Lee, and R. R. Volkas, Mod. Ph

Lett. A 5, 2721~1990!; R. Foot,ibid. 6, 527 ~1991!; R. Foot,
H. Lee, and R. R. Volkas, J. Phys. G19, 269 ~1993!.

@4# K. S. Babu, and R. N. Mohapatra, Phys. Rev. D.41, 271
~1990!.

@5# K. S. Babu and R. N. Mohapatra, Phys. Rev. Lett.63, 938
~1989!.

@6# S. Adler, Phys. Rev.177, 2426 ~1969!; J. S. Bell and R.
Jackiw, Nuovo Cimento A60, 49 ~1969!.

@7# S. Rudaz, Phys. Rev. D41, 2619~1990!; C. Q. Geng and R. E
03500
.

Marshak,ibid. 39, 693~1989!; E. Golowich and P. B. Pal,ibid.
41, 3757~1990!.

@8# J. Sladkowski and M. Zralek, Phys. Rev. D45, 1701~1992!.
@9# M. Nowakowski and A. Pilaftsis, Phys. Rev. D48, 259~1993!.

@10# F. Pisano and V. Pleitez, Phys. Rev. D46, 410 ~1992!; H.
Frampton, Phys. Rev. Lett.69, 2889~1992!.

@11# F. Pisano, V. Pleitez, and M. D. Tonasse, in ‘‘Flavor chir
extensions for the standard model,’’ Report No. IFT-P.043
~unpublished!.

@12# R. Foot, O. F. Herna´ndez, F. Pisano, and V. Pleitez, Phys. Re
D 47, 4158~1993!.

@13# F. Pisano, Mod. Phys. Lett. A11, 2539~1996!.
8-5


