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Predictions from an anomalous U„1… model of Yukawa hierarchies
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We present a supersymmetric standard model with three gauged Abelian symmetries of a type commonly
found in superstrings. One is anomalous; the other two areE6 family symmetries. It has a vacuum in which
only these symmetries are broken by stringy effects. It reproduces all observed quark and charged lepton
Yukawa hierarchies and the value of the Weinberg angle. It predicts three massive neutrinos, with mixing that
can explain both the small angle MSW effect and the atmospheric neutrino anomaly. The Cabibbo angle is
expressed in terms of the gauge couplings at unification. It conservesR parity and proton decay is close to
experimental bounds.@S0556-2821~98!06513-8#

PACS number~s!: 12.60.Jv
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I. INTRODUCTION

Over the last few years there has been growing interes
relating generic features of superstring models to low-ene
phenomenology. Prominent among these are models w
contain an anomalous U~1! with anomalies cancelled by th
Green-Schwarz mechanism@1# and in which the dilaton gets
a vacuum value, generating a Fayet-Iliopoulos term that t
gers the breaking@2# of at least the anomalous gauged sy
metry at a large computable scale.

Through the anomalous U~1!, the Weinberg angle at th
cutoff is related to anomaly coefficients@3#. This allows for
possible relations between fundamental string quantities~in
the ultraviolet! and experimental parameters~in the infrared!.
A simple model@4# with one family-dependent anomalou
U~1! beyond the standard model was the first to exploit th
features to produce Yukawa hierarchies and fix the Weinb
angle. It was soon realized that some features could be
stracted from the presence of the anomalous U~1!: expressing
the ratio of downlike quarks to charged lepton masses
terms of the Weinberg angle@5–7#, the suppression of the
bottom to the top quark masses@8#, relating the uniquenes
of the vacuum to Yukawa hierarchies and the presence
minimal supersymmetric standard model~MSSM! invariants
in the superpotential, and finally relating the seesaw mec
nism @9# to R-parity conservation@10#.

Recently, many of these ideas were incorporated i
model@11# with one anomalous and two nonanomalous U~1!
symmetries spontaneously broken by stringy effects. It c
tained only the three standard model chiral families, th
right-handed neutrinos, and the fields necessary to break
extra phase symmetries. It reproduced all quark and cha
lepton hierarchies, and the Weinberg angle, but failed
some other aspects: the proton decayed faster than obse
and the three light neutrinos had an inverse mass hierar
which could not account for the solar neutrino deficit.

In this paper, we propose an alteration of this model,
which there are two nonanomalous U~1! family symmetries

*Permanent address: Laboratoire de Physique The´orique et
Hautes Energies, Universite´ Paris-Sud, Baˆt. 210, F-91405 Orsay
Cedex, France.
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contained withinE6 and one anomalous family-independe
U~1! symmetry. All three are spontaneously broken by t
dilaton-generated FI term. To cancel anomalies, it conta
vectorlike matter with standard model charges, and hid
sector fields and interactions, some of the many features
countered in superstring models. It is expressed as an e
tive low-energy supersymmetric theory with a cutoff sca
M . It has some distinctive features, such as all quark
charged lepton Yukawa hierarchies and mixing, includi
the bottom to top Yukawa suppression, the value of
Weinberg angle at unification, three massive neutrinos w
mixings that give the small-angle Mikheyev-Smirno
Wolfenstein~MSW! effect for the solar neutrino deficit an
the large angle mixing necessary for the atmospheric n
trino effect, naturalR-parity conservation, proton decay int
K01m1 near the experimental limit, and a hidden sector t
contains strong gauge interactions. It is heavily constrai
by the requirement that the vacuum, in which the thr
U~1!’s are broken by stringy effects, be free of flat directio
associated with the MSSM invariants. Our model’s vacu
is demonstrably free of the flat direction associated with e
invariant.

The theoretical consistency of the model is tested by
many ways in which its cutoff is ‘‘measured.’’ First, th
renormalization group evolution of the standard model ga
couplings yields their unification scale. Its value depends
the number of standard-model vectorlike matter at interm
diate masses; in our model we findMU;331016 GeV. Sec-
ond, assuming that all couplings in the superpotential are
order 1, it is measured by fitting the neutrino mass scale
fit to both the small-angle MSW and the atmospheric n
trino deficit yields 1016,M,431017 GeV. A fit only to the
MSW effect yields a larger value,M;1018 GeV. Third, the
lack of experimental evidence for proton decay sets a lo
bound forM consistent with these estimates.

In all the above estimates, we have used the Cabi
angle as the expansion parameter. However, the Gr
Schwarz relation yields a natural expansion paramete
terms of the gauge coupling at unification. In our model,
find it to bel;0.28, clearly of the same order of magnitud
but larger than the Cabibbo angle, but this value depend
the standard-model vectorlike matter, about which we h
no direct experimental information. Thus we have used
© 1998 The American Physical Society03-1
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experimental value of the Cabibbo angle in all estimates
the suppression factors.

Furthermore, our determination@3# of the Weinberg angle
assumes that the cutoff is close to the unification scale. T
theoretical and numerical considerations imply that if o
theory is to be derived from a theory in higher dimensio
its ‘‘string’’ cutoff must be near the unification scale.

To complete our model, we need to include mechanis
that break both supersymmetry and electroweak symmet
The hidden sector contains a gauge theory with strong c
pling, capable of breaking supersymmetry through
Binétruy-Dudas mechanism@12#. Unfortunately, it cannot be
the main agent of supersymmetry breaking. The reaso
that squarks get soft masses through theD terms of the
gauge symmetries, and while theD term of the family-
independent anomalous U~1! yields equal squark masses, th
D terms of the other two U~1!’s give generically flavor-
dependent contributions.1 Since our model does not alig
@13# the quark and squark mass matrices sufficiently to
count for the flavor-changing constraints, we are left with
usual flavor problem associated with supersymmetry bre
ing. Also, this mechanism does not generate large gau
masses. We note that in some free-fermion superstring m
els @14#, the flavor-dependentD terms can vanish.

In the following, we present the details of the model. S
tion II details the gauge sector, followed in Sec. III by
discussion of the gauge anomalies and their cancellati
This is followed in Sec. IV by a discussion of the gene
features of its vacuum. The phenomenology of quark a
lepton masses is presented in Sec. V, followed in Sec. V
a thorough discussion of the neutrino phenomenology of
model. In Sec. VII, we analyze the consequences of the m
ter with vectorlike standard-model charges. The discuss
of the matter content concludes in Sec. VIII with the hidd
sector needed to cancel anomalies. We then describe in
IX how R-parity conservation arises in our model, followe
in Sec. X by the analysis of proton decay interactions.
nally we close with a detailed analysis of the vacuum
directions associated with the invariants of the model.

II. THE GAUGE SECTOR

In the visible sector, the gauge structure of our mode
that of the standard model, augmented by three Abelian s
metries:

SU~3!3SU~2!3U~1!Y3U~1!X3U~1!Y~1!3U~1!Y~2!.
~2.1!

One of the extra symmetries, which we callX, is anomalous;
its charges are assumed to be family independent. The o
two symmetriesY(1) and Y(2) are not anomalous, but hav
specific dependence on the three chiral families, designe
reproduce the Yukawa hierarchies. This theory is inspired
models generated from the superstringE83E8 heterotic
theory, and its chiral matter lies in broken-up representati

1E. Dudas~private communication!.
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of E6, resulting in the cancellation of many anomalies. Th
also implies the presence of both matter that is vector
with respect to standard model charges and right-han
neutrinos, which trigger neutrino masses through the see
mechanism@9#.

The three symmetriesX, Y(1,2) are spontaneously broke
at a high scale by the Fayet-Iliopoulos term generated by
dilaton vacuum. This Dine-Seiberg-Witten~DSW! vacuum
@2# is required to preserve both supersymmetry and
standard-model symmetries. Below its scale, our model
plays only the standard-model gauge symmetries.

To set our notation and explain our charge assignme
let us recall some basicE6 @16#. It contains two Abelian
symmetries outside of the standard model: The first U~1!,
which we callV8, appears in the embedding

E6,SO~10!3U~1!V8, ~2.2!

with

27516111022114 , ~2.3!

where the U~1! value appears as a subscript. The seco
U~1!, calledV, appears in

SO~10!,SU~5!3U~1!V , ~2.4!

corresponding to

1655̄231101115 , 1055̄21522 . ~2.5!

The familiar hyperchargeY appears in

SU~5!,SU~2!3SU~3!3U~1!Y , ~2.6!

with the representation content

5̄5~2,1c!211~1,3̄c!2/3, ~2.7!

105~1,1c!21~2,3c!1/31~1,3̄c!24/3.
~2.8!

The two U~1!’s in SO~10!, can also be identified with baryo
number minus lepton number and right-handed i
spin as

B2L5
1

5
~2Y1V!, I 3R5

1

10
~3Y2V!. ~2.9!

The first combination isB2L only on the standard-mode
chiral families in the16; on the vectorlike matter in the10 of
SO~10! it cannot be interpreted as their baryon number m
nus their lepton number.

We postulate the two nonanomalous symmetries to be

Y~1!5
1

5
~2Y1V!S 2 0 0

0 21 0

0 0 21
D , ~2.10!
3-2
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PREDICTIONS FROM AN ANOMALOUS U~1! MODEL OF . . . PHYSICAL REVIEW D58 035003
Y~2!5
1

4
~V13V8!S 1 0 0

0 0 0

0 0 21
D . ~2.11!

The family matrices run over the three chiral families, so t
Y(1,2) are family traceless.

We further assume that theX charges on the three chira
families in the27 are of the form

X5~a1bV1gV8!S 1 0 0

0 1 0

0 0 1
D , ~2.12!

where a, b, g are as-of-yet undetermined paramete
Since Tr(YY( i ))5Tr(YX)50, there is no appreciable kineti
mixing between the hypercharge and the three gauged s
metries. The matter content of this model is the smallest
reproduces the observed quark and charged lepton hiera
cancels the anomalies associated with the extra gauge
metries, and produces a unique vacuum structure.

Three chiral families each with the quantum numb
of a 27 of E6. This means three chiral families of th
standard model,Qi , ūi , d̄i , Li , andēi , together with three
right-handed neutrinosN̄i , three vectorlike pairs denoted b
Ei 1 D̄i andĒi 1 Di , with the quantum numbers of the5̄ 1
5 of SU~5!. Our model does not contain the singletsS that
make up the rest of the27. With our charges, they are no
required by anomaly cancellation, and their presence wo
create unwanted flat directions in the vacuum.

One standard-model vectorlike pair of Higgs weak do
blets.

Chiral fields that are needed to break the three extra U~1!
symmetries in the DSW vacuum. We denote these fields
ua . In our minimal model with three symmetries that bre
through the FI term, we just takea51,2,3. Theu sector is
necessarily anomalous.

Hidden sector gauge interactions and their matter,
gether with singlet fields, needed to cancel the remain
anomalies.

III. ANOMALIES

In a four-dimensional theory, the Green-Schwarz anom
compensation mechanism occurs through a dimensio
term that couples an axion to all the gauge fields. As a res
any anomaly linear in theX symmetry must satisfy the
Green-Schwarz relations

~XGiGj !5d i j Ci , ~3.1!

where Gi is any gauge current. The anomalous symme
must have a mixed gravitational anomaly, so that

~XTT!5CgravÞ0, ~3.2!

where T is the energy-momentum tensor. In addition, t
anomalies compensated by the Green-Schwarz mecha
satisfy the universality conditions
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for all i . ~3.3!

A similar relation holds forCX[(XXX), the self-anomaly
coefficient of theX symmetry. These result in important nu
merical constraint, which can be used to restrict the ma
content of the model.

All other anomalies must vanish:

~GiGjGk!5~XXGi !50. ~3.4!

In terms of the standard model, the vanishing anomalies
therefore of the following types.

The first involve only standard-model gauge groupsGSM,
with coefficients (GSMGSMGSM), which cancel for each chi-
ral family and for vectorlike matter. Also the hypercharg
mixed gravitational anomaly (YTT) vanishes.

The second type is where the new symmetries appear
early of the type (Y( i )GSMGSM). The choice of family-
tracelessY( i ) ensures their vanishing over the three famili
of fermions with the standard model. Hence they must v
ish on the Higgs fields: withGSM5SU~2!, it implies that the
Higgs pair is vectorlike with respect to theY( i ). It follows
that the mixed gravitational anomalies (Y( i )TT) are zero
over the fields with standard model quantum numbers. T
must therefore vanish as well over all other fermions in
theory.

The third type involve the new symmetries quadratica
of the form (GSMY( i )Y( j )). These vanish automatically ex
cept for those of the form (YY( i )Y( j )). Two types of fermions
contribute: the three chiral families and standard-model v
torlike pairs

05~YY~ i !Y~ j !!5~YY~ i !Y~ j !!chiral1~YY~ i !Y~ j !!real.
~3.5!

By choosingY(1,2) in E6, overall cancellation is assured, b
the vectorlike matter is necessary to cancel one of
anomaly coefficients, since we have

~YY~1!Y~2!!chiral52~YY~1!Y~2!!real512. ~3.6!

The fourth type are the anomalies of the new symmet
of the form (Y( i )Y( j )Y(k)). Since standard-model singlet fe
mions can contribute, it is not clear, without a full theor
how to determine how the cancellations come about.
know that over the fermions in anE6 representation, they
vanish, but, as we shall see, theu sector is necessarily
anomalous. In the following we will present a scenario f
these cancellations, but it is the least motivated sector of
theory since it involves the addition of fields whose so
purpose is to cancel anomalies.

The remaining vanishing anomalies involve the anom
lous chargeX.

Since bothX and Y are family independent andY( i ) are
family traceless, the vanishing of the (XYY(1,2)) coefficients
over the three families is assured; so they must vanish o
the Higgs pair. This means thatX is vectorlike on the Higgs
pair. It follows that the standard-model invariantHuHd ~the
m term! has zeroX andY( i ) charges; it can appear by itself i
3-3
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IRGES, LAVIGNAC, AND RAMOND PHYSICAL REVIEW D 58 035003
the superpotential, but we are dealing with a string theo
where mass terms do not appear in the superpotential: it
appear only in the Ka¨hler potential. This results, after supe
symmetry breaking, in an inducedm term of weak strength
as suggested by Giudice and Masiero@17#.

Since the Higgs pair does not contribute to anomaly
efficients, we can compute the standard-model anomaly
efficients. We find

Ccolor518a, Cweak518a, CY530a. ~3.7!

Applying these to the Green-Schwarz relations we find
Kac-Moody levels for the color and weak groups to be
same,

kcolor5kweak, ~3.8!

and through the Iba´ñez relation@3#, the value of the Wein-
berg angle at the cutoff,

tan2uw5
CY

Cweak
5

5

3
, ~3.9!

not surprisingly the same value as in SU~5! theories.
The coefficients (XY(1)Y(2)). Since standard-model sin

glets can contribute, we expect its cancellation to come ab
through a combination of hidden sector and singlet fields.
contribution over the chiral fermions~including the right-
handed neutrinos! is found to be

~XY~1!Y~2!!chiral 1 real518a. ~3.10!

The coefficient (XXY). With our choice forX, it is zero.
The coefficients (XXY( i )) vanish over the three familie

of fermions with standard-model charges, but contributio
are expected from other sectors of the theory.

The vanishing of these anomaly coefficients is high
nontrivial, and it was the main motivator for our~seemingly
arbitrary! choices ofX, andY( i ).

IV. DSW VACUUM

The X, Y(1), andY(2) Abelian symmetries are spontan
ously broken below the cutoff. Phenomenological consid
ations require that neither supersymmetry nor any of
standard-model symmetries be broken at that scale. This
severe restrictions on the form of the superpotential and
matter fields@10#.

Since three symmetries are to be broken, we assume
three fieldsua acquire a vacuum value as a result of the
term. They are singlets under the standard-model sym
tries, but not underX andY(1,2). If more fields than broken
symmetries assume nonzero values in the DSW vacuum
would have undetermined flat directions and hierarchies,
Nambu-Goldstone bosons associated with the extra sym
tries.

We express their charges in terms of a 333 matrix A,
whose rows are theX, Y(1), andY(2) charges of the threeu
fields, respectively.

Assuming the existence of a supersymmetric vacu
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where only theu fields have vacuum values implies, from
the vanishing of the threeD terms,

AS uu1u2

uu2u2

uu3u2
D 5S j2

0

0
D . ~4.1!

It follows that the matrixA must not only have an invers
but that the entries in the first row of its inverse be positiv

Since A is invertible, its rows consist of three linearl
independent~but not orthogonal! basis vectors,v1, v2, and
v3, whose components are theX, Y(1), andY(2) charges of
the u fields. The charges of any standard-model invarianS
~or any standard-model singletx) form a vector which can
be expressed in that basis:

w52~n1v11n2v21n3v3!. ~4.2!

If all na , a51,2,3 are positive integers, thenS u1
n1u2

n2u3
n3 is

a holomorphic invariant and can be present in the supe
tential. It is quite remarkable that the invertibility ofA,
which ensures the existence of the DSW vacuum, is the s
condition required for invariants of the formS u1

n1u2
n2u3

n3 to
exist. Those invariants are precisely the ones needed to
erate mass hierarchies in the DSW vacuum, withS being
Yukawa invariants. If allna are positive, but some of them
are fractional, the invariant appears at higher ord
(S u1

n1u2
n2u3

n3)m. Finally, if somena is negative, one canno
form any holomorphic invariant out ofS and theu fields.

We have found no fundamental principle that fixes t
charges of theu fields. However, by requiring that they a
get the same vacuum value and reproduce the quark hie
chies, we arrive at the simple assignment

A5S 1 0 0

0 21 1

1 21 0
D . ~4.3!

Forming its inverse

A215S 1 0 0

1 0 21

1 1 21
D , ~4.4!

we see that all threeu fields have the same vacuum expe
tation value:

u^u1&u5u^u2&u5u^u3&u5j. ~4.5!

The presence of other fields that do not get values in
DSW vacuum severely restricts the form of the superpot
tial. In particular, when the extra fields are right-handed n
trinos, the uniqueness of the DSW vacuum is attained o
after adding to the superpotential terms of the formN̄pP(u),
wherep is an integer>2, andP is a holomorphic polyno-
mial in theu fields. If p51, its F term breaks supersymme
try at the DSW scale.
3-4
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The casep52 is more desirable since it translates into
Majorana mass for the right-handed neutrino, while the ca
p>3 leave theN̄ massless in the DSW vacuum. To sing
out p52 we simply choose theX charge of theN̄i to be a
negative half-odd integer. Since right-handed neutrin
couple to the standard model invariantsLiHu , it implies that
XLiHu

is also a half-odd integer.
The same analysis can be applied to the invariants of

MSSM. Since they must be present in the superpotentia
give quarks and leptons their masses, theirX charges must be
negative integers. Remarkably, these are the very same
ditions necessary to avoid flat directions along which th
invariants do not vanish: with negative charge, these inv
ants cannot be the only contributors toDX in the DSW
vacuum. The presence of a holomorphic invariant, linea
the MSSM invariant multiplied by a polynomial in theu
fields, is necessary to avoid a flat direction where both
invariant and theu fields would get DSW vacuum values
The full analysis of the DSW vacuum in our model is rath
involved, but it is greatly simplified by using the gener
methods introduced by two of us@18#. We postpone the dis
cussion of the uniqueness of the vacuum until the end of
paper.

Finally, we note a curious connection between the DS
vacuum and the anomalies carried by theu fields. Assume
that theu sector does not contribute to the mixed gravi
tional anomalies

~Y~ i !TT!u50. ~4.6!

This means that the chargesY( i ) are traceless over theu
sector. They are therefore generators of the global SU~3!
under which the threeu fields form the3 representation.
However, SU~3! is anomalous, and it contains only on
nonanomalous U~1! that resides in its SU~2! subgroup. Thus
to avoid anomalies, the two chargesY(1,2) need to be aligned
over theu fields, but this would imply detA50, in contra-
diction with the necessary condition for the DSW vacuum
follows that the vacuum structurerequirestheu sector to be
anomalous. Indeed we find that, over theu fields,

~Y~1!Y~1!Y~2!!u5~Y~1!Y~2!Y~2!!u521. ~4.7!

In a later section we discuss how these anomalies migh
compensated for.

V. QUARK AND CHARGED LEPTON MASSES

To account for the top quark mass, we assume that
superpotential contains the invariant

Q3ū3Hu . ~5.1!

SinceX is family independent, it follows that the standar
model invariant operatorsQi ūjHu , wherei , j are family in-
dices, have zeroX charge. Together with the anomaly co
ditions, this fixes the Higgs charges

XHu
52XHd

52XQ2Xū ~5.2!
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YHu

~1!52YHd

~1!50, YHu

~2!52YHd

~2!52, ~5.3!

X~Qi ūjHu![X[u]50. ~5.4!

The superpotential contains terms of higher dimensions
the charge 2/3 sector, they are

Qi ūjHuS u1

M D ni j
~1!S u2

M D ni j
~2!S u3

M D ni j
~3!

, ~5.5!

in which the exponents must be positive integers or ze
Invariance under the three charges yields

ni j
~1!50, ni j

~2!5Yi j
~2![u] , ni j

~3!52Yi j
~1![u]1Yi j

~2![u] ,
~5.6!

whereYi j
(1)[u] andYi j

(2)[u] are the charges ofQi ūjHu , respec-
tively. They are determined by our choice for the charg
Y(1,2). A straightforward computation yields the orders
magnitude in the charge 2/3 Yukawa matrix

Y[u];S l8 l5 l3

l7 l4 l2

l5 l2 1
D , ~5.7!

wherel5uuau/M is the expansion parameter.
A similar computation is now applied to the charge21/3

Yukawa standard-model invariantsQi d̄jHd . The difference
is the absence of dimension-3 terms, so that itsX charge,
which we denote byX[d] , need not vanish. We find that i
X[d].23, one exponent in the (33) position is negativ
resulting in a supersymmetric zero@13# and spoiling the
quark hierarchy. Hence, as long asX[d]<23, we deduce the
charge21/3 Yukawa matrix

Y[d];l23X[d]26S l4 l3 l3

l3 l2 l2

l 1 1
D , ~5.8!

and diagonalization of the two Yukawa matrices yields t
Cabibbo-Kobayashi-Maskawa~CKM! matrix

UCKM;S 1 l l3

l 1 l2

l3 l2 1
D . ~5.9!

This shows the expansion parameter to be of the same o
of magnitude as the Cabibbo anglelc . For definiteness in
what follows we take them to be equal, although as we sh
later the Green-Schwarz evaluation ofl gives a slightly
higher value.

The eigenvalues of these matrices reproduce the geo
ric interfamily hierarchy for quarks of both charges,
3-5
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mu

mt
;lc

8 ,
mc

mt
;lc

4 , ~5.10!

md

mb
;lc

4 ,
ms

mb
;lc

2, ~5.11!

while the quark intrafamily hierarchy is given by

mb

mt
5cot blc

23X[d]26 , ~5.12!

implying the relative suppression of the bottom to top qu
masses, without large tanb. These quark-sector results a
the same as in a previously published model@11#, but our
present model is different in the lepton sector.

The analysis is much the same as for the down qu
sector. No dimension-3 term appears and the standard-m
invariantsLiējHd have chargesX[e] , Yi j

(1,2)[e] . The pattern of
eigenvalues depends on theX[e] : if X[e].23, we find a
supersymmetric zero in the (33) position, and the wro
hierarchy for lepton masses; ifX[e]523, there are super
symmetric zeros in the (21) and (31) position, yielding

Y[e];lc
3S lc

4 lc
5 lc

3

0 lc
2 1

0 lc
2 1

D . ~5.13!

Its diagonalization yields the lepton interfamily hierarchy

me

mt
;lc

4 ,
mm

mt
;lc

2 . ~5.14!

Our choice ofX ensures thatX[d]5X[e] , which guarantees
through the anomaly conditions the correct value of
Weinberg angle at the cutoff, since

sin2uw5
3

8
↔ X[d]5X[e] ; ~5.15!

it setsX[d]523, so that

mb

mt
;1,

mb

mt
; cot blc

3 . ~5.16!

It is a remarkable feature of this type of model that bo
inter- and intrafamily hierarchies are linked not only wi
one another but with the value of the Weinberg angle
well. In addition, the model predicts a natural suppression
mb /mt , which suggests that tanb is of order 1.

VI. NEUTRINO MASSES

Our model, based onE6, has all the features of SO~10!; in
particular, neutrino masses are naturally generated by
seesaw mechanism@9# if the three right-handed neutrinosN̄i
acquire a Majorana mass in the DSW vacuum. The flat
rection analysis then indicates that theirX charges must be
negative half-odd integers, that is,XN̄521/2, 23/2, . . . .
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Their standard-model invariant masses are generated
terms of the form

MN̄iN̄j S u1

M D pi j
~1!S u2

M D pi j
~2!S u3

M D pi j
~3!

, ~6.1!

whereM is the cutoff of the theory. In the (i j ) matrix ele-
ment, the exponents are computed to be equal to22XN̄ plus

S ~0,4,0! ~0,2,1! ~0,0,21!

~0,2,1! ~0,0,2! ~0,22,0!

~0,0,21! ~0,22,0! ~0,24,22!
D . ~6.2!

If XN̄521/2, this matrix has supersymmetric zeros in t
(23), (32), and (33) elements. While this does not result i
zero eigenvalue, the absence of these invariants from
superpotential creates flat directions along which^N̄3&Þ0;
such flat directions are dangerous because they can lea
vacua other than the DSW vacuum. IfXN̄<25/2, none of
the entries of the Majorana mass matrix vanishes, but t
the vacuum analysis indicates that flat directions are allow
which involve MSSM fields. For those reasons, we choo
XN̄523/2, which still yields one harmless supersymmet
zero in the Majorana mass matrix, now of the form

Mlc
7S lc

6 lc
5 lc

lc
5 lc

4 1

lc 1 0
D . ~6.3!

Its diagonalization yields three massive right-handed neu
nos with masses

mN̄e
;Mlc

13, mN̄m
;mN̄t

;Mlc
7 . ~6.4!

By definition, right-handed neutrinos are those that cou
to the standard-model invariantsLiHu , and serve as Dirac
partners to the chiral neutrinos. In our model,

X~LiHuN̄j ![X[n]50. ~6.5!

The superpotential contains the terms

LiHuN̄j S u1

M D qi j
~1!S u2

M D qi j
~2!S u3

M D qi j
~3!

, ~6.6!

resulting, after electroweak symmetry breaking, in the ord
of magnitude~we notevu5^Hu

0&)

vuS lc
8 lc

7 lc
3

lc
5 lc

4 1

lc
5 lc

4 1
D ~6.7!

for the neutrino Dirac mass matrix. The actual neutrino m
matrix is generated by the seesaw mechanism. A careful
culation yields the orders of magnitude
3-6
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vu
2

Mlc
3S lc

6 lc
3 lc

3

lc
3 1 1

lc
3 1 1

D . ~6.8!

A characteristic of the seesaw mechanism is that the cha
of the N̄i do not enter in the determination of these orders
magnitude as long as there are no massless right-handed
trinos. Hence the structure of the neutrino mass matrix
pends only on the charges of the invariantsLiHu , already
fixed by phenomenology and anomaly cancellation. In
few models with two nonanomalous horizontal symmetr
based onE6 that reproduce the observed quark and char
lepton masses and mixings, the neutrino mass spectrum
hibits the same hierarchical structure: the matrix~6.8! is a
very stable prediction of our model. Its diagonalizati
yields the neutrino mixing matrix@19#

UMNS5S 1 lc
3 lc

3

lc
3 1 1

lc
3 1 1

D , ~6.9!

so that the mixing of the electron neutrino is small, of t
order oflc

3 , while the mixing between them andt neutrinos
is of order 1. Remarkably enough, this mixing pattern
precisely the one suggested by the nonadiabatic MSW@20#
explanation of the solar neutrino deficit and by the oscillat
interpretation of the reported anomaly in atmospheric n
trino fluxes ~which has been recently confirmed by th
Super-Kamiokande@21# and Soudan@22# Collaborations!. It
should be stressed here that the model of Ref.@11#, which
differs from the present one by the fact thatY(1) is alongB
1L instead ofB2L, predicts the same lepton mixing matri
However, it cannot accommodate the MSW effect, becaus
yields an inverted mass hierarchy in the neutrino sector.
change ofB1L into B2L restores the natural hierarchy, b
requires the addition of vectorlike matter to cancel anom
lies.

Whether the present model actually fits the experime
data on solar and atmospheric neutrinos or not depend
the eigenvalues of the mass matrix~6.8!. A naive order of
magnitude diagonalization gives am andt neutrinos of com-
parable masses and a much lighter electron neutrino:

mne
;m0 lc

6 , mnm
, mnt

;m0 , m05
vu

2

Mlc
3 .

~6.10!

The overall neutrino mass scalem0 depends on the cutoffM .
Thus the neutrino sector allows us, in principle, to meas
it.

At first sight, this spectrum is not compatible with a s
multaneous explanation of the solar and atmospheric n
trino problems, which requires a hierarchy betweenmnm

and

mnt
. However, the estimates~6.10! are too crude: since th

~2,2!, ~2,3!, and~3,3! entries of the mass matrix all have th
same order of magnitude, the prefactors that multiply
powers oflc in Eq. ~6.8! can spoil the naive determinatio
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of the mass eigenvalues. In order to take this effect i
account, we rewrite the neutrino mass matrix, expresse
the basis of charged lepton mass eigenstates, as

m0 S alc
6 blc

3 clc
3

blc
3 d e

clc
3 e f

D , ~6.11!

where the prefactorsa, b, c, d, e, and f , unconstrained by
any symmetry, are assumed to be of order 1, say,
,a, . . . ,f ,2. Depending on their values, the two heavie
neutrinos may be either approximately degenerate~scenario
1! or well separated in mass~scenario 2!. It will prove con-
venient in the following discussion to express their ma
ratio and mixing angle in terms of the two parametersx
5(d f2e2)/(d1 f )2 andy5(d2 f )/(d1 f ):

mn2

mn3

5
12A124x

11A124x
, sin22umt512

y2

124x
. ~6.12!

Scenario 1 corresponds to both regimes 4x;1 and (24x)
@1, while scenario 2 requiresuxu!1. Let us stress that sma
values ofuxu are very generic whend and f have same sign
provided thatd f;e2. Since this condition is very often sa
isfied by arbitrary numbers of order 1, a mass hierarchy
not less natural, given the structure~6.8!, than an approxi-
mate degeneracy.

Scenario 1. mn2
;mn3

. In this scenario, the oscillation fre

quenciesDmi j
2 5mn j

2 2mn i

2 are roughly of the same order o

magnitude,Dm12
2 ;Dm23

2 ;Dm13
2 . There is no simultaneou

explanation of the solar and atmospheric neutrino data
strong degeneracy betweenn2 andn3, which would result in
two distinct oscillation frequenciesDm23

2 !Dm12
2 .Dm13

2 ,
would be difficult to achieve in this model,2 as it would
require one either to fine-tuned. f and to allow fore!1
~case 4x;1) or to fine-tuned.2 f @case (24x)@1#.

Thus, this scenario yields only the MSW effect, wi
Dm12

2 ;Dm13
2 ;1026 eV2, and a total electron neutrino os

cillation probability

P ~ne→nm,t!54 u2lc
6sin2S Dm12

2 L

4E D 14v2lc
6sin2S Dm13

2 L

4E D ,

~6.13!

where the parametersu and v are defined to beu5(b f
2ce)/(d f2e2) and v5(be2cd)/(d f2e2). If Dm12

2 is
close enough toDm13

2 , Eq. ~6.13! can be viewed as a two
flavor oscillation with a mixing angle sin22u54 (u2

1v2) lc
6 . The solar neutrino data then require (u21v2)

;10220 @24#, which is still reasonable in our approac

2This is to be contrasted with the models of Ref.@23#, in which the
close degeneracy is linked to the structure of the neutrino m
matrix.
3-7
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IRGES, LAVIGNAC, AND RAMOND PHYSICAL REVIEW D 58 035003
Although the mixing betweenm andt neutrinos is of order
1, they are too light to account for the atmospheric neutr
anomaly.

Scenario 2. mn2
!mn3

. The two distinct oscillation fre-

quenciesDm12
2 andDm13

2 .Dm23
2 can explain both the sola

and atmospheric neutrino data: nonadiabatic MS
ne→nm,t transitions require@24#

431026 eV2<Dm2

<1025 eV2 ~best fit: 531026 eV2!,

~6.14!

while an oscillation solution to the atmospheric neutri
anomaly requires@25#

531024 eV2<Dm2

<531023 eV2 ~best fit: 1023 eV2!.

~6.15!

To accommodate both, we need 0.03<mn2
/mn3

.x<0.15

~with x50.06 for the best fits!, which can be achieved with
out any fine-tuning in our model. Interestingly enough, su
small values ofx generically push sin22umt towards its maxi-
mum, as can be seen from Eqs.~6.12!. Indeed, sinced and f
have the same sign and are both of order 1,y2 is naturally
small compared with (124x). This is certainly a welcome
feature, since the best fit to the atmospheric neutrino da
obtained precisely for sin22u51.

To be more quantitative, let us fixx and try to adjusty to
make sin22umt as close to 1 as possible. Withx50.06, one
obtains sin22umt50.9 for y.0.3, sin22umt50.95 for y.0.2,
and sin22umt50.98 for y.0.1. This shows that very larg
values of sin22umt can be obtained without any fine-tunin
~note thaty51/3 already ford/ f 52). Thus, in the regime
x!1, nm↔nt oscillations provide a natural explanation f
the observed atmospheric neutrino anomaly. As for the s
neutrino deficit, it can be accounted for by MSW transitio
from the electron neutrinos to bothm andt neutrinos, with
parametersDm25Dm12

2 and sin22u54 u2l6. To match the
mixing angle with experimental data, one needsu;325;
we note that such moderate values ofu are favored by the
fact thatd f;e2.

In both scenarios, the scale of the neutrino masses m
sures the cutoffM . In scenario 1, the MSW effect require
m0;1023 eV, which givesM;1018 GeV. In scenario 2,
the best fit to the atmospheric neutrino data givesm0 (d
1 f )5mn2

1mn3
.0.03 eV, which corresponds to a slight

lower cutoff 1016 GeV<M<431017 GeV ~assuming 0.2
<d1 f <5). It is remarkable that those values are so clos
the unification scale obtained by running the standard-mo
gauge couplings. This result depends of course on our ch
for XN̄ , since

m05
vu

2

M
lc

6~11XN̄! , ~6.16!
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but the valueXN̄523/2 is precisely that favored by the fla
direction analysis. As a comparison,XN̄521/2 would give
M;1022 GeV, and XN̄<25/2 corresponds to M
,1014 GeV.

Turning the argument the other way, had we setM5MU
ab initio, the value ofXN̄ favored by the flat direction analy
sis would yield precisely the neutrino mass scale neede
explain the solar neutrino deficit,m0;1023 eV. Other val-
ues of XN̄ would give mass scales irrelevant to the da
XN̄521/2 corresponds tom0;1027 eV, which is not inter-
esting for neutrino phenomenology, andXN̄<25/2 to m0
.10 eV, which, given the large mixing betweenm and t
neutrinos~and assuming no fine-tuned degeneracy betw
them!, is excluded by oscillation experiments.

To conclude, our model can explain both the solar n
trino deficit and the atmospheric neutrino anomaly, depe
ing on the values of the order-1 factors that appear in
neutrino mass matrices. The cutoffM , which is related to the
neutrino mass scale, is determined to be close to the uni
tion scale. Finally, our model predicts neither a neutri
mass in the few eV range, which could account for the
component of the dark matter needed to understand struc
formation, nor the LSND result@26#. The upcoming flood of
experimental data on neutrinos will severely test our mod

VII. VECTORLIKE MATTER

To cancel anomalies involving hypercharge, vectorli
matter with standard-model charges must be present. Its
ture is not fixed by phenomenology, but by a variety of th
oretical requirements: vectorlike matter must not affect
unification of gauge couplings, must cancel anomalies, m
yield the value of the Cabibbo angle, must not create
wanted flat directions in the DSW vacuum, and of cou
must be sufficiently massive to have avoided detection.
we shall see below, ourE6-inspired model, with vectorlike
matter in525̄ combinations, comes close to satisfying the
requirements, except that it produces a high value for
expansion parameter.

The masses of the three families of standard-model v
torlike matter are determined through the same proced
namely, operators of the form

M D̄iDj S u1

M D si j
~1!S u2

M D si j
~2!S u3

M D si j
~3!

1MĒiEj S u1

M D t i j
~1!S u2

M D t i j
~2!S u3

M D t i j
~3!

. ~7.1!

The X charges of the standard-model invariant mass te
are the same:

X~D̄iDj !5X~ĒiEj !52a24g[2n. ~7.2!

Its value determines theX charge, sinceX[d]523 andXNi

523/2 already fixb523/20 anda1g523/4. It also fixes
the orders of magnitude of the vectorlike masses.
3-8
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First we note thatn must be a non-negative integer. Th
reason is that the power ofu1 is n, the X charge of the
invariant, and by holomorphy, it must be zero or a posit
integer. Thus ifn is negative, all vectorlike matter is mas
less, which is not acceptable. The exponents for the he
quark matrix are given by the integern plus

S ~0,23,23! ~0,21,23! ~0,1,21!

~0,22,0! ~0,0,0! ~0,2,2!

~0,21,1! ~0,1,1! ~0,3,3!
D : D̄iDj

~7.3!

and those of the heavy leptons byn plus

ĒiEj : S ~0,23,23! ~0,22,22! ~0,21,21!

~0,21,21! ~0,0,0! ~0,1,1!

~0,1,1! ~0,2,2! ~0,3,3!
D .

~7.4!

Since these particles carry standard-model quantum n
bers, they can affect gauge coupling unification. As th
states fall into complete SU~5! representations, the gaug
couplings unify at one loop like in the MSSM, provided th
the mass splitting between the doublet and the triplet is
too large.

n50. We obtain the mass matrices

S 0 0 0

0 1 lc
4

0 lc
2 lc

6D M5M D̄D , S 0 0 0

0 1 lc
2

lc
2 lc

4 lc
6D M5MĒE .

~7.5!

Diagonalization of these matrices yields one zero eigenva
for both matrices and nonzero~order of magnitude! eigen-
valuesM andlc

7M for M D̄D andM andlc
2M for MĒE . The

pair of zero eigenvalues is clearly undesirable and furth
more the mass splitting between the second familyE andD
destroys gauge coupling unification. This excludesn50.

n51. The mass matrices are

M D̄D5MS 0 0 lc
3

0 lc
3 lc

7

lc
3 lc

5 lc
9D , MĒE5MS 0 0 lc

lc lc
3 lc

5

lc
5 lc

7 lc
9D .

~7.6!

The eigenvalues forM D̄D arelc
3M , lc

3M , andlc
3M and, for

MĒE , lcM , lcM , andlc
9M . The splitting between the mem

bers of the third family vectorlike fields is too large and, a
consequence, gauge coupling unification is spoiled.

n52. The mass matrices are
03500
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M D̄D5MS 0 0 lc
6

lc
4 lc

6 lc
10

lc
6 lc

8 lc
12D ,

MĒE5MS 0 lc
2 lc

4

lc
4 lc

6 lc
8

lc
8 lc

10 lc
12D . ~7.7!

The eigenvalues are nowlc
4M , lc

6M , lc
8M andlc

2M , lc
4M ,

lc
12M , respectively. There is again splitting between t

families of the doublet and the triplet and therefore the ga
couplings do not unify at one loop. The splitting in this ca
is not too big and a two-loop analysis may actually prove t
case viable from the gauge coupling unification point
view.

n53. We obtain the mass matrices

M D̄D5MS lc
3 lc

5 lc
9

lc
7 lc

9 lc
13

lc
9 lc

11 lc
15D ,

MĒE5MS lc
3 lc

5 lc
7

lc
7 lc

9 lc
11

lc
11 lc

13 lc
15D , ~7.8!

with eigenvalues

MD5$lc
3M , lc

9M , lc
15M % ~7.9!

and

ME5$lc
3M , lc

9M , lc
15M %, ~7.10!

respectively. The unification of couplings in this case is p
served. Forn>3, there are no supersymmetric zeros in t
mass matrices and the mass eigenvalues are just the dia
entries; so there is no splitting between masses of the s
family of D and E. A simple one-loop analysis using sel
consistentlyM5MU in the mass of the vectorlike particle
and for the unification scale yields unified gauge couplings
the unification scaleMU :

n53: a~MU!;
1

19
, MU;331016 GeV. ~7.11!

For n large, other problems arise as the vectorlike ma
becomes too light. This can easily spoil gauge coupling u
fication by two-loop effects@28# and cause significant devia
tions from precision measurements of standard-model
rameters@27,28#. Thus the unification of the gauge coupling
favorsn53.

The value ofn also determines the mixing between th
chiral and vectorlike matter. Indeed, the quantum number
the vectorlike matter allow for mixing with the chiral fam
3-9
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lies, since (Ei , L j , Hd), (Ēi with Hu), and (D̄i with d̄j ) have
the same standard-model quantum numbers. This gene
new standard-model invariants. In Table I, we give a se
mixed operators up to superfield dimension 3. Next to
operator we show itsX charge in brackets. One notices th
the operators fall into three classes.

For n odd only the operators of the first class can app
in the superpotential and forn even only operators of the
second class appear. The third class is excluded for any
teger value ofn. Let us examine these two possibilities
more detail.

n52,4,6, . . . . Only operators of the second class a
allowed inW andD̄ mixes with d̄. The mixing is computed
by diagonalizing the down-type quark mass matrices. To
this, we give a one-family example where the operatorsD̄D,
Qd̄Hd , QD̄Hd , andDd̄ are all present in the superpotentia
After electroweak breaking the masses of the down-t
quark fields come from diagonalizing the matrix

S vdY[d] vdY[D]

MDd̄ M D̄D D . ~7.12!

The extra quark fields affect the down quark mass matr
of Sec. V and modify our previous order of magnitude es
mates. The same type of mixing happens in the lepton se
due to the operatorsĒE, LĒ, and EēHd . If allowed, this
type of mixing produces phenomenologically unaccepta
mass patterns for quarks and charged leptons.

TABLE I. Operators that mix MSSM fields with vectorlike ma
ter with b523/20.

Class 1 Class 2 Class 3

EHu F322
n

2G LĒ F2
n

2G ūD̄D̄ F2n2
3

2G
ĒHd F2

3

2
2

n

2G Dd̄ F2
n

2G EQD̄ F2n2
3

2G
QQD F2

3

2
2

n

2G QD̄Hd F232
n

2G EEē F2n2
3

2G
ūd̄D̄ F2

3

2
2

n

2G EēHd F232
n

2G
QūĒ F2

3

2
2

n

2G
EQd̄ F2

3

2
2

n

2G
LQD̄ F2

3

2
2

n

2G
LEē F2

3

2
2

n

2G
Dūē F2

3

2
2

n

2G
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n53,5, . . . .Operators of the first class are allowed sin
their X charges are all negative integers. Because of the m
ing of the heavy leptons with the Higgs doublets, we have
diagonalize the following mass matrix~we give again a
simple one-family example!:

S m MĒHd

MEHu
MĒE D . ~7.13!

The 11 entry is them term generated by the Giudice-Masie
mechanism and is naturally of the order of 1 TeV. The Hig
eigenstates will be modified to

Hu85Hu1(
i

ci
u
•Ēi ~7.14!

and

Hd85Hd1(
i

ci
d
•Ei , ~7.15!

whereci
u,d are mixing angles to be obtained upon diagon

ization. With both off-diagonal entries present, this mat
has two large eigenvalues and consequently the Higgs m
is driven to the Planck scale. If one of the off-diagonal e
tries is missing, then the matrix has one small and one la
eigenvalue and the mixing is harmless as long as the an
ci

u,d are small~see later!.
There are several ways to evade these problems. One

relax the simple but very restrictive assumption thatX is the
same for both the MSSM and the vectorlike fields and
other is to assume the existence of a discrete symmetry
prohibits the dangerous operators.

A. Shift X

The vectorlike matter could come from a different27 than
the MSSM fields so that theX charges of the vectorlike field
are shifted relative to the fields in the16:

XVL5ā1b̄V1ḡV8. ~7.16!

In Table II we show the different operators with theirX
charges. It is interesting to notice that theX charges of these
operators depend only onb̄ andn522ā14ḡ. We have two
possibilities.

1. No MSSM vectorlike mixing

We can chooseb̄ in such a way that none of theX
charges of the operators appearing in Table II is an inte
for any integern. None of them will appear inW and there-
fore we avoid the mixing problem. Then, the lightest of t
vectorlike fields will be stable. To avoid cosmological pro
lems, this requires a reheating temperature lower than
lowest vectorlike mass in order to dilute their abundan
during inflation. Recall that the mass of the lightest pair ofD
and E for n53 is lc

15M;10627 GeV, and therefore a re
3-10
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TABLE II. Operators that mix MSSM fields with vectorlike matter withXVL5ā1b̄V1ḡV8.

Class 1 Class 2 Class 3

EHu F2S22b̄1
n

2
2

18

10D G LĒ F S 22b̄1
n

2
1

3

10D G ūD̄D̄ F2S 24b1n1
9

10D G
ĒHd F2S 2b̄1

n

2
1

18

10D G Dd̄ F2S 2b̄1
n

2
1

3

10D G EQD̄ F2S 24b̄1n1
9

10D G
QQD F2S 2b̄1

n

2
1

18

10D G QD̄Hd F2S 22b̄1
n

2
1

27

10D G EEē F2S 24b̄1n1
9

10D G
ūd̄D̄ F2S 22b1

n

2
1

12

10D G EēHd F2S 22b̄1
n

2
1

27

10D G
QūĒ F2S 2b̄1

n

2
1

18

10D G
EQd̄ F2S 22b̄1

n

2
1

12

10D G
LQD̄ F2S 22b̄1

n

2
1

12

10D G
LEē F2S 22b̄1

n

2
1

12

10D G
Dūē F2S 2b̄1

n

2
1

18
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W

heating temperature of at most this order of magnitude
required.n54 or higher result in lower eigenvalues and th
lower reheating temperatures. We therefore favor in this c
n53. Similar arguments apply to any other scenario w
stable heavy vectorlike states.

2. Partial MSSM vectorlike mixing

Let us taken53 which avoids the dangerousd̄-D̄ and
L-Ē mixing. TheX charges of the operators that could gi
rise to mixing areX(EHu)52b̄13/10 andX(ĒHd)522b̄

233/10. We can chooseb̄ in a way thatX(EHu) is positive
andX(ĒHd) is negative and so prohibitEHu from appearing
but allow ĒHd . This yields the mass matrix~7.10! with its
21 element being zero. As we mentioned before, the mix
is harmless if the anglesci

u,d are small which is indeed th
case.

We still have to check if the proton decays due to mix
operators slowly enough to avoid conflict with experimen
data. Proton decay due to operators consisting only
MSSM fields will be discussed in a separate section, sinc
is independent of the choice of the charges of the vector
matter.
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We find that the dominant proton decay channels co
from the operators

LQD̄ and ūd̄D̄ ~7.17!

and

QQD and Dūē ~7.18!

via an intermediate heavy quark. They appear after DS
breaking as

l i jkLiQjD̄k1l̄ i jk ūi d̄jD̄k ~7.19!

and

r i jkQiQjDk1 r̄ i jkDi ūj ēk , ~7.20!

where

l i jk;S ^u1&
M D n~1!S ^u2&

M D n~2!S ^u3&
M D n~3!

~7.21!
3-11
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is the suppression factor in the DSW vacuum in front of
corresponding operator with flavor indicesi ,j ,k. Similar ex-
pressions hold forl̄ i jk , r i jk , and r̄ i jk . The experimental
constraint on these is@29#

l i jk l̄ i jk<MD
2 10232 GeV22 ~7.22!

and similarly

r i jk r̄ i jk<MD
2 10232 GeV22, ~7.23!

We computed the suppression factors of these operato
the DSW vacuum that the model gives forb̄57/20 and we
found that the above constraints are very difficult to satis
Notice that this choice amounts to shifting theX charge of
the vectorlike matter by half a unit ofV. Interestingly
enough, a similar mechanism occurs in some superst
models, as a result of Wilson line breaking@30#.

B. Discrete symmetry

It is known that superstring models usually contain d
crete symmetries. If present, they could forbid the danger
mixed operators, leaving the mass terms for the vector
matter intact.

As an example, consider the discrete symmetry where

E→2E, Ē→2Ē, D→2D, D̄→2D̄. ~7.24!

This additional symmetry, indeed, completely decouples
MSSM fields from the vectorlike matter. No operator with
odd number of vectorlike fields is allowed for any value ofn.
Specifically, all operators that mix MSSM fields and vecto
like matter and that can cause proton decay are also pro
ited. Such are the dimension-3 operators

LQD̄ and ūd̄D̄, ~7.25!

which belong to class 1 and the dimension-4 operators

QQQE, ūūD̄ē. ~7.26!

As a consequence of this discrete symmetry, the vector
matter has no available decay channels. This can have
desired cosmological implications except if inflation tak
place at a temperature lower than the lightest of the vec
like particles. For this reason we strongly favor the valuen
53. Also in this case we can keep the simple universaX
charge assignmentX5a1bV1gV8 for both the MSSM
and the vectorlike fields which makes the flat directi
analysis particularly simple because the superpotential h
very small number of supersymmetric zeros correspondin
standard-model invariants with vectorlike fields.

C. Summary

To summarize, we have given three alternative ways to
the X charges of the vectorlike fields.

The solution of Sec. VII A 1 is viable for a reheating tem
perature;10627 GeV for n53. Lower reheating tempera
03500
e

in

.

g

-
s
e

e

-
ib-

e
n-

r-

a
to

x

tures are required asn increases, and so in this casen53 is
clearly favored.

The solution of Sec. VII A 2 (b̄57/20) is not viable even
if the mixing anglesci

u,d are small because proton decay
too fast. The vectorlike particles can decay.

The solution of Sec. VII B involves a discrete symmetr
Stable heavy quarks and leptons require a reheating temp
ture ;10627 GeV for n53 and lower temperatures fo
higher values ofn; son53 is again favored. In this case th
flat direction analysis is particularly simple.

We do not have any physical motivation that can tell
which of the above proposed mechanisms is the correct
The simplest is the scenario with the discrete symmetry
from now on we will continue our discussion on flat dire
tions and proton decay in this context.

VIII. THE HIDDEN SECTOR

So far we have described the matter necessary to sa
the anomaly conditions that involve standard-model quan
numbers, the breaking of the extra gauge symmetries,
phenomenology. These are the three chiral families, the th
right-handed neutrinos, the three vectorlike families just
scribed, and threeu fields necessary to produce the DS
vacuum. We refer to this asvisible matter. By fixing the
value of X(ĒE)5X(D̄D)52n, the X charge is totally de-
termined. Since gauge unification favorsn53, the weak and
color anomalies are fixed,Ccolor5Cweak5218.

This enables us to ‘‘predict’’ the value of the Cabibb
angle through the relation

lc;l5
^u&
M

5A2gstring
2

192p2 Cgrav. ~8.1!

Using the Green-Schwarz relation

Cgrav

12
5

Cweak

kweak
~8.2!

and the identification

gstring
2 5kweakgweak

2 , ~8.3!

we relate the Cabibbo angle to the gauge couplings at
cutoff a(M ), using onlyvisible matter contributions:

lc;A2
Cweak

4p
a~M !. ~8.4!

For n53, the couplings unify witha;1/19, which yields
l50.28, clearly of the same order of magnitude as
Cabibbo angle. Given the many uncertainties in this type
theory, the consistency of these results with nature is rem
able. We note that the numerical value of the expansion
rameter clearly depends on the contribution of the vector
matter toCweak, about which we have no direct experiment
information.
3-12
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In addition, the values of the mixed gravitational anoma
is also determined through the relation

Cg512
Cweak

kweak
. ~8.5!

For integerkweak and n53, this implies thatCgrav52216,
2108,272, . . . for kweak51,2,3, . . . , to becompared with
the visible matter contribution toCgrav5280. Thus addi-
tional fields are required, andkweak<2, to avoid fields with
positiveX charges that spoil the DSW vacuum. Another
gument for new fields is that not all anomalies are cancel
since we have, from theu sector,

XXY~2!51, Y~1!Y~1!Y~2!5Y~1!Y~2!Y~2!521, ~8.6!

and, from allvisible matter,

XY~1!Y~2!5218. ~8.7!

The construction of a hidden sector theory that cancels th
anomalies, and provides the requisite thatCgrav is rather ar-
bitrary, since we have few guidelines: anomaly cancellat
and the absence of flat directions which indicates that thX
charges of the hidden matter should be negative.

If we use as a theoretical guide theE83E8 heterotic
theory, we expect an exceptional gauge theory in the hid
sector. In particular, Bine´truy and Dudas@12# considered a
hidden gauge groupG with a pair of matter fields with the
sameX charge, but vectorlike with respect to all other sym
metries, causing supersymmetry breaking. This theory c
tributes to few anomalies, only inCgrav, (XY(1)Y(2)), and
the anomaly associated with the hidden gauge groupG, re-
lated by the Green-Schwarz relation

CG5218
kG

kweak
, ~8.8!

wherekG is the Kac-Moody integer level (kG integer heavily
constrains possible theories of this type!. It must be aug-
mented by other fields, since it does not cancel the remain
anomalies (XXY(2)), (Y(1)Y(1)Y(2)), and (Y(1)Y(2)Y(2)).
These will be accounted for by singlet fields.

There is a simple set of four singlet fields,Sa , which
absorb many of the remaining anomalies, without creat
unwanted flat directions. Their charges are given in the
lowing:

S1 S2 S3 S4

X 21/2 21/2 0 0
Y(1) 0 0 1/2 21/2
Y(2) 29/4 27/4 9/4 7/4

They cancel the anomalies from theu sector, since, over the
S fields,

XY~1!Y~2!50, XXY~2!521,

Y~1!Y~1!Y~2!5Y~1!Y~2!Y~2!51, ~8.9!
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as well asCgrav521.
The remaining anomalies can be accounted for by

simple gauge theory based onG5E6; it has two matter fields
with X5x1, transforming as the78 and one27,27 pair, each
with X5x2. For kweak51, we find that

Cgrav52216 → 2~27x2178x1!52135. ~8.10!

The gauge anomaly condition is given by

CG52~6x2124x1!5218kG . ~8.11!

For kG51, one of the charges is positive, leading to und
sirable flat directions, while forkG52, we findx1529/20
andx2526/5. Theadjoint fields have noY(1,2) charges, and
the pair of 27-27 have vectorlike charges with respect
Y(1,2), with charges 5/9 and 1/2, respectively. This sec
breaks supersymmetry, but it cannot be the main agent
supersymmetry breaking, since it produces nondegene
squark masses, and our model does not have alignment

The singlet fields have little effect on low-energy ph
nomenology. Computation of the powers of theu fields in
the mass invariantsSaSb yields in the DSW vacuum the
mass matrix of theS fields before SUSY breaking:

MS5S 0 0 0 0

0 0 0 0

0 0 0 Mlc
8

0 0 Mlc
8 0

D ; ~8.12!

it has two zero eigenvalues. The Giudice-Masiero mec
nism can fill in the 12~and 21! entries after SUSY breaking
yielding

MS5S 0 mlc
7 0 0

mlc
7 0 0 0

0 0 0 Mlc
8

0 0 Mlc
8 0

D , ~8.13!

wherem is of order of the SUSY breaking scale. The abo
matrix has now two large (;1011 GeV) and two small
~12100 MeV! eigenvalues. The two heavy states get dilut
during inflation. The two light states are stable since th
lowest-order coupling to the light fields is quartic, dominat
by terms likeS1S2HuHd . Although stable and undiluted b
inflation, their contribution to the energy density of the un
verse is negligible.

Finally we note that it is difficult to produce models fo
the hidden sector; for example we could takeG5E7 with
kG52, two matter fields transforming as the133 ~adjoint!
representation, but there does not seem to be any simpl
of singlet fields with the requisite anomalies.
3-13
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IX. R PARITY

The invariants of the minimal standard model and th
associated flat directions have been analyzed in detail in
literature@31#. In models with an anomalous U~1!, these in-
variants carry in generalX charges, which, as we have see
determines their suppression in the effective Lagrangian.
as there is a basis of invariants, proved long ago by Hilb
the charges of these invariants are not all independent;
can in fact be expressed in terms of the charges of
lowest-order invariants built out of the fields of the minim
standard model and some anomaly coefficients.

TheX charges of the three types of cubic standard-mo
invariants that violateR parity as well as baryon and/or lep
ton numbers can be expressed in terms of theX charges of
the MSSM invariants and theR-parity-violating invariant

X[R” ][X~LHu!, ~9.1!

through the relations

XLQd̄5X[d]2X[m]1X[R” ] , ~9.2!

XLLē5X[e]2X[m]1X[R” ] , ~9.3!

Xūd̄d̄5X[d]1X[R” ]1
1

3
~Ccolor2Cweak!2

2

3
X[m] . ~9.4!

Although they vanish in our model, we still displayX[u] and
X[m]50, since these sum rules are more general.

In the analysis of the flat directions, we have seen how
seesaw mechanism forces theX charge ofN̄ to be a half-odd
integer. Also, the Froggatt-Nielsen@32# suppression of the
minimal standard-model invariants and the holomorphy
the superpotential requireX[u,d,e] to be zero or negative in
tegers, and the equality of the Ka´c-Moody levels of SU~2!
and SU~3! forcesCcolor5Cweak, through the Green-Schwar
mechanism. Thus we conclude that theX charges of these
operators are half-odd integers, and thus they cannot ap
in the superpotential unless multiplied by at least oneN̄. This
reasoning can be applied to the higher-orderR” operators
since their charges are given by

XQQQHd
5X[u]1X[d]2

1

3
X[m]2X[R” ] , ~9.5!

Xd̄d̄d̄LL52X[d]2X[u]2
5

3
X[m]13X[R” ] ,

~9.6!

XQQQQū52X[u]1X[d]2
4

3
X[m]2X[R” ] ,

~9.7!

Xūūūēē52X[u]2X[d]12X[e]2
2

3
X[m]2X[R” ] ,

~9.8!

It follows that there are no R-parity-violating operators
whatever their dimensions: through the right-handed neutr
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nos, R parity is linked to half-odd integer charges, so th
charge invariance results inR-parity invariance. Thusnone
of the operators that violateR parity can appear in holomor
phic invariants: even after breaking of the anomalousX sym-
metry, the remaining interactions all respectR parity, leading
to anabsolutely stable superpartner. This is a general resul
deduced from the uniqueness of the DSW vacuum,
Green-Schwarz anomaly cancellations, and the see
mechanism.

X. PROTON DECAY

In the presence of the extra discrete symmetry we in
duced before, the operators that mix MSSM fields and v
torlike matter and trigger proton decay are excluded. SincR
parity is exactly conserved, the dangerous dimension-3
eratorsLQd̄ and ūd̄d̄ that usually induce fast proton deca
are also excluded. This leaves for the dominant source
proton decay the dimension-5 operators that appear in
effective Lagrangian as

W5
1

M
@k112iQ1Q1Q2L i1k̄1 jkl ūi ūj d̄kēl #, ~10.1!

where for the first operator the flavor indexi 51,2 if there is
a charged lepton in the final state andi 51,2,3 if there is a
neutrino andj 52,3,k,l 51,2. We have denoted the suppre
sion factors in the DSW vacuum in front of the operators
k and k̄. These operators could, for example, give rise
proton decay modesp→p1n̄ i andp→p0l i

1 or to p→K1n̄ i

andp→K0l i
1 . In @29#, the phenomenological limits on thes

suppression factors were computed to be

k112i<lc
11 ~10.2!

and

k̄1 jkl~KRR
u !1 j<lc

12, ~10.3!

where KRR
u

1 j5VR
uṼR

† . VR are the matrices that diagonaliz
on the right the quark and the squark matrices, respectiv
We can easily calculate it in this model:

KRR
u

1 j5S 1 lc
3 lc

5

lc
3 1 lc

2

lc
5 lc

2 1
D . ~10.4!

In Table III we give in the first column a list of the dange
ous operatorsQQQL (ūūd̄ē) and in the second column th
suppressionk i jkl (k̄ i jkl KRR

u ) that we computed in our mode
Even though all operators in Table III seem naively s

ficiently suppressed so that proton decay is within the exp
mental bound, it is interesting to examine them more clos
from the phenomenological point of view. Consider the o
eratorQ1Q1Q2L2. This operator can lead to proton decay v
a W-ino, gluino,Z-ino, photino, or Higgsino exchange. Th
contribution via gluino exchange could be the dominant d
3-14
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to the strong coupling of the gluino. Here let us recall th
experimental data strongly suggest a near degeneracy
tween squark masses in order to avoid large contribution
flavor-changing neutral currents~FCNCs!. One mechanism
that has been suggested@33# is where alignment betwee
quarks and squarks takes place and therefore FCNCs are
pressed irrespectively of the SUSY breaking mechani
One can calculate in the model the extent of such an al
ment. We find that there is no sufficient quark-squark alig
ment and therefore FCNCs are not sufficiently suppres
To agree with experimental data we have to assume tha
squark masses that result from SUSY breaking are appr
mately degenerate, a fact that does not seem to be unlike
the context of realistic superstring models@15#. In such a
case, the contribution due to gluino exchange is negligib

Generically, a careful calculation of a proton decay p
cess not only involves uncertainties due to our ignorance
superpartner masses but also due to large uncertaintie
hadronic matrix elements. Assuming nearly degene
squarks, the dominant decay mode is viaW-ino exchange
and the decay rate for the processp→K0m1 is given by@34#

G~p→K0m1!

5S 10.5ba2cosuc

pM D 2~mp
22mK

2 !2

8pmp
3 f p

2 u0.7k1122f ~mw̃ ,mq̃!u2,

~10.5!

where hereb5(0.00320.03) GeV3 is an unknown strong
matrix element,a25a/sin2uW, and from our earlier esti-
mates of the cutoff,M;331016 GeV. We have two re-
gimes to consider:

TABLE III. Operators inducing proton decay and their suppr
sion.

Operator Supression

Q1Q1Q2L1 lc
14

Q1Q1Q2L2,3 lc
11

ū1ū2d̄1ē1 lc
15

ū1ū2d̄1ē2 lc
16

ū1ū2d̄2ē1 lc
14

ū1ū2d̄2ē2 lc
15

ū1ū3d̄1ē1 lc
13

ū1ū3d̄1ē2 lc
14

ū1ū3d̄2ē1 lc
12

ū1ū3d̄2ē2 lc
13
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mw̃!mq̃ : f ~mw̃ ,mq̃!5
mw̃

mq̃
2 ~10.6!

and

mw̃@mq̃ : f ~mw̃ ,mq̃!5
1

mw̃

ln
mw̃

2

mq̃
2 . ~10.7!

The experimental bound on the decayp→K01m1, which is
the dominant one in our theory, is@36#

G~p→K0m1!,1032 yr21. ~10.8!

For W-ino masses much larger than squark masses, this
cay rate is several orders of magnitude lower than the exp
mental limit. For W-ino masses much lower than squa
masses, the rate is near the experimental limit. For exam
with mw̃;100 GeV,mq̃;800 GeV, andb50.003, we get
the lifetime ;1031 yr, near the experimental bound. Unfo
tunately our model cannot be more precise, because of
unknown prefactors of order-1 terms in the effective inter
tions; still it predicts that the proton decays preferentia
into a neutralK and an antimuon with a lifetime at or nea
the present experimental limit. Finally we note that if we u
the expansion parameter determined through the Gre
Schwarz relation, and not the Cabibbo angle, our estim
get worse and our model implies a proton lifetime sligh
shorter than the experimental bound. As we remarked ear
this value of the expansion parameter depends on the co
bution of the vectorlike matter toCweak.

XI. FLAT DIRECTION ANALYSIS

Our model is now completely specified, except for t
supersymmetry-breaking sector. We can study its flat dir
tions and check whether the DSW vacuum is unique, us
the techniques introduced in Ref.@18#. We shall only sketch
the main points, and refer the interested reader to this re
ence for more details and the discussion of some subtle

In the presence of an anomalous U~1!, the well-known
correspondence between the zeros of theD terms and the
holomorphic gauge invariants@35# breaks down. However
the existence of the DSW vacuumu^u1&u25u^u2&u2
5u^u3&u25j2 allows us to rewrite the AbelianD-term con-
straints as

S u^u1&u22j2

u^u2&u22j2

u^u3&u22j2
D 5(

a
va

2S n1
a

n2
a

n3
a
D 1(

i
u^x i&u2S n1

i

n2
i

n3
i
D ,

~11.1!

where the$x i% are standard-model singlets other than theu
fields, theva

2 are vacuum expectation values~VEVs! associ-
ated with a basis of standard-model invariants$Sa%, and the
numbersna

a andna
i are associated with the invariantSa and

singlet x i , respectively, by Eq.~4.2!. In the present model
thex fields are the three right-handed neutrinosN̄1, N̄2, and

-

3-15
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TABLE IV. Flat directions~FDs! of MSSM andN̄i fields.

Basis invariant (n1 ,n2 ,n3) Flat direction FD lifted by

N̄3
(3/2,21/2,1/2) ^N̄3 ,u1 ,u3& N̄2N̄3

3u1
6u3

4

L1Hu (23/2,1/2,5/2) ^L1 ,Hu,u2 ,u3& L1N̄3Huu3
3

L2Hu (23/2,1/2,21/2) ^L2 ,Hu,u2 ,u3& L2N̄3Hu

L3Hu (23/2,1/2,21/2) ^L3 ,Hu,u2 ,u3& L3N̄3Hu

L2ē1Hd
(3,2,21) ^L2 ,ē1 ,Hd,u1 ,u2& L2ē3Hdu1

3

L3ē1Hd
(3,2,21) ^L3 ,ē1 ,Hd,u1 ,u2& L3ē3Hdu1

3

L2L3ē1
(3/2,5/2,23/2) ^L2 ,L3 ,ē1 ,u1 ,u2& L2L3ē1N̄1u1

3u2
6

L2L3ē3
(3/2,1/2,21/2) ^L2 ,L3 ,ē3 ,u1 ,u2& L2L3ē3N̄3u1

3

L2Q3d̄2
(3/2,1/2,21/2) ^L2 ,Q3 ,d̄2,u1 ,u2& L2Q3d̄2N̄3u1

3

L3Q3d̄2
(3/2,1/2,21/2) ^L3 ,Q3 ,d̄2,u1 ,u2& L3Q3d̄2N̄3u1

3

L2Q3d̄3
(3/2,1/2,21/2) ^L2 ,Q3 ,d̄3 ,u1 ,u2& L2Q3d̄3N̄3u1

3

L3Q3d̄3
(3/2,1/2,21/2) ^L3 ,Q3 ,d̄3 ,u1 ,u2& L3Q3d̄3N̄3u1

3

ū3d̄2d̄3
(3/2,1/2,21/2) ^ū3 ,d̄2 ,d̄3 ,u1 ,u2& ū3d̄2d̄3N̄3u1

3

Q3ū3ē1Hd
(9/2,3/2,21/2) ^Q3 ,ū3 ,ē1 ,Hd,u1 ,u2& Q3ū3Hu

Q3ū3ē3Hd
(9/2,21/2,1/2) ^Q3 ,ū3 ,ē3 ,Hd,u1 ,u3& Q3ū3Hu

Q3ū3L2ē1
(3,2,21) ^Q3 ,ū3 ,L2 ,ē1 ,u1 ,u2& Q3ū3Hu

Q3ū3L3ē1
(3,2,21) ^Q3 ,ū3 ,L3 ,ē1 ,u1 ,u2& Q3ū3Hu

Q3ū3Q3ū3ē1
(9/2,3/2,21/2) ^Q3 ,ū3 ,ē1 ,u1 ,u2& Q3ū3Hu

Q3ū3Q3ū3ē3
(9/2,21/2,1/2) ^Q3 ,ū3 ,ē3 ,u1 ,u3& Q3ū3Hu

d̄1d̄2d̄3L2L3
(3/2,3/2,21/2) ^d̄1 ,d̄2 ,d̄3 ,L2 ,L3 ,u1 ,u2& d̄1d̄2d̄3L2L3N̄3u1

3u2
n
S
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N̄3 and theS fields needed to ensure anomaly cancellatio3

The basis of standard-model invariants includes the MS
basis of Ref.@31# as well as invariants containing the vecto
like fields, such as the ones discussed in Sec. VII. Equa

3As alluded to earlier, we have not included the SO~10! singlets
S1, S2, andS3 necessary to make up three complete families in
27 of E6; otherwise the superpotential would contain an invari
S1 u2

3u3
3 linear in S1, which would spoil the DSW vacuum.
03500
.
M

n

~11.1! tells us thatD-flat directions are parametrized by th
vacuum expectation values of both the standard-model
variants and thex fields. The generic effect ofF-term con-
traints and supersymmetry breaking is to fix these VEV
resulting in a particular low-energy vacuum. As stressed
Ref. @18#, the computation of thena simplifies a lot the dis-
cussion ofD andF flatness.

Consider first the flat directions involving only standar
model singlets. Assuming for simplicity that only onex field
acquires a VEV, we must distinguish between two cases

e
t
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TABLE V. Flat directions involving vectorlike matter~up to quartic operators! in the discrete symmetry
scenario.

Basis invariant (n1 ,n2 ,n3) Flat direction FD lifted by

Ē1Hd
(3,21,21) ^Ē1 ,Hd ,u1& Ē1E1 u1

3

D1d̄1
(3/2,21/2,3/2) ^D1 ,d̄1 ,u1 ,u3& D̄1D1 u1

3

D1d̄2,3
(3/2,21/2,1/2) ^D1 ,d̄2,3,u1 ,u3& D̄1D1 u1

3

L1Ē1
(3/2,21/2,3/2) ^L1 ,Ē1 ,u1 ,u3& Ē1E1 u1

3

L2,3Ē1
(3/2,21/2,23/2) ^L2,3,Ē1 ,u1 ,u2& Ē1E1 u1

3

Q3D̄1Hd
(9/2,1/2,21/2) ^Q3 ,D̄1 ,Hd ,u1 ,u2& D̄1D1 u1

3

Q3ū3Ē1
(3,21,21) ^Q3 ,ū3 ,Ē1 ,u1& Ē1E1 u1

3

L2,3Q3D̄1
(3,1,21) ^L2,3,Q3 ,D̄1 ,u1 ,u2& D̄1D1 u1

3

D1ū3ē3
(3,21,1) ^D1 ,ū3 ,ē3 ,u1 ,u3& D̄1D1 u1

3

ū3d̄2,3D̄1
(3,1,21) ^ū3 ,d̄2,3,D̄1 ,u1 ,u2& D̄1D1 u1

3

Q3ū3Q3D̄1
(9/2,1/2,21/2) ^Q3 ,ū3 ,Q3 ,D̄1 ,u1 ,u2& D̄1D1 u1

3

D̄1ū2ū3ē1
(9/2,7/2,21/2) ^D̄1 ,ū2 ,ū3 ,ē1 ,u1 ,u2& D̄1D1 u1

3

Q3D1D2Ē1
(9/2,21/2,1/2) ^Q3 ,D1 ,D2 ,Ē1 ,u1 ,u3& D̄1D1 u1

3

a

il
e
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en
fo

e
th
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in
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t
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ts
e
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All na are positive. Thenu^ua&u2>j2 for a51,2,3, what-
ever ^x& may be. In addition, the superpotential contains
invariant of the formxm u1

m1u2
m2u3

m3, with ma5m na ~as
discussed in Sec. IV,m>2 is required in order not to spo
the DSW vacuum!. The F-term constraints then impos
^x&50: the flat direction is lifted down to the DSW vacuum

Some of thena are negative. The relationsu^ua&u2>j2 no
longer hold, and the low-energy vacuum may be differ
from the DSW vacuum. In our model, this happens only
N̄3, for which (n1, n2, n3)5(3/2, 21/2, 1/2). One can then
see from Eq. ~11.1! that the vacuum^N̄3 ,u1 ,u3& with
u^N̄3&u252 j2, u^u1&u254 j2 and u^u3&u252 j2 is perfectly
allowed byD-term constraints. This is a rather unwelcom
feature, because most Yukawa couplings vanish in
vacuum. Fortunately, the superpotential contains an invar
N̄3

3 N̄2 u1
6u3

4, with no power ofu2, which lifts the undesired
vacuum.

This discussion can be generalized to flat directions
volving severalx fields; we conclude that the model does n
possess any other stable vacuum of singlets than the D
vacuum. Thus, the low-energy mass hierarchies are c
pletely determined by the symmetries at high energy.

Flat directions involving fields charged under SU~3!C
3SU~2!L3U~1!Y can be analyzed in a similar way. For ea
03500
n

t
r

is
nt

-
t
W
-

elementS of the basis of invariants, we compute the numb
(n1, n2, n3). If one of thena is negative, we must check tha

the superpotential contains a term of the formS8 u
1
n18u

2
n28u

3
n38

~with S8 a combination of basisG-invariants andx fields!,
where either one of the following two conditions is fulfilled
~i! S8 contains no other field than the ones appearing inS,
andna850 or 1, if na,0 ~with the additional constraint tha
no more than one suchna8 should be equal to 1);~ii ! S8
contains only one field that does not appear inS, and na8
50, if na,0. This ensures that there is no flat directio
associated with the single invariantS.

Remarkably enough, those conditions are always fulfil
in our model, despite the great number of standard-mo
invariants. In Table IV, we list the MSSM basis invarian
for which some of thena are negative. For each of thes
invariants~first column!, we give the corresponding numbe
n1, n2, andn3 ~second column!, the associated flat directio
that breaks the standard model symmetries~third column!,
and an invariant that lifts it~fourth column!.

The case of flat directions involving vectorlike matter
slightly different. Since we have assumed the existence
discrete symmetry that prevents numerous invariants fr
appearing in the superpotential, there could be flat directi
associated with these invariants. But this is not the case
3-17
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long as the vectorlike fields are massive. TheirF terms take
indeed the following form~gauge indices are not shown, an
powers of theu fields have been absorbed in the mass m
trices for simplicity!:

FĒi
5MĒiEj

Ej1•••, F D̄i
5M D̄iDj

Dj1•••, ~11.2!

FEj
5MĒiEj

Ēi1•••, FDj
5M D̄iDj

D̄i1•••, ~11.3!

where the ellipses stand for possible higher-order contr
tions. Since the matricesMĒE and M D̄D are invertible, one
concludes that the vanishing of Eqs.~11.2! and~11.3! forbids
any flat direction involving vectorlike fields, provided that
is associated with an invariant for which allna are positive.
That this is true also for invariants with one or several ne
tive na is less obvious. It is due to the following features
the model: the~1,1! entry of the vectorlike mass matrices
generated from the superpotential termsĒ1E1 u1

3 and

D̄1D1 u1
3, and all invariants that have one or several nega

na both satisfyn1>0 and contain at least one vectorlike fie
of the first family. Therefore, condition~ii ! is always ful-
filled. This can be checked in Table V~where only operators
up to superfield dimension 4 have been displayed!.

We have thus checked that the superpotential cont
terms that lift all flat directions associated with a sing
standard-model invariant. This is not sufficient, however,
ensure that the standard-model symmetries are not broke
the scalej. Other invariants than those of Tables IV and
are in general necessary to lift completely the flat directio
associated with several standard-model invariants and
glets. While we did not perform a complete analysis
which would be rather tedious — it is clear that most, if n
all, flat directions are forbidden by theF term constraints.

We conclude that the vacuum structure of our mode
satisfactory: the only stable vacuum of singlets allowed
D- andF-term constraints is the DSW vacuum, and flat
rections associated with a single SU~3!C3SU~2!L3U~1!Y in-
variant are lifted by theF terms. The only expected effec
of supersymmetry breaking are to lift the possible remain
flat directions and to shift slightly the DSW vacuum by gi
ing a small or intermediate VEV to other singlets or to fiel
with standard-model quantum numbers.
1,
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XII. CONCLUSION

We have presented a simple model that extends
standard-model gauge group by three phase symmetries
of which is anomalous. The extra symmetries are broken
the DSW vacuum, thereby providing a smallcomputableex-
pansion parameter, in terms of which the Yukawa couplin
of the standard model can be expanded. The model h
natural cutoff characterized by the scale at which the ano
lies are absorbed by the Green-Schwarz terms, which is
gauge unification scale. The expansion parameter, which
pends on the contribution of the standard-model vector
matter to the weak anomaly, turns out to be close to
Cabibbo angle. All Yukawa hierarchies as well as the We
berg angle are reproduced if the expansion paramete
taken to be the Cabibbo angle. The model is predictive in
neutrino sector, yielding three massive neutrinos with sm
mixings between the electron neutrino and the muon and
neutrinos, and mixings of order 1 between the muon and
neutrinos. With the cutoff near the unification scale, the so
neutrino deficit is explained in terms of the nonadiaba
MSW effect, and the atmospheric neutrino imbalance is
produced. With the Cabibbo angle as an expansion par
eter, our model is compatible with proton decay bounds.

Many of the uncertainties of the model are associa
with the nature of its vectorlike matter, which determin
gauge unification and the value of the expansion parame
In addition, it must contain matter with no standard-mod
charges, to cancel anomalies. Although we made a defi
proposal for those fields, our lack of experimental guidelin
should be kept in mind. Our model shows the way in whi
many of the generic features encountered in the compac
cation of theories in higher dimensions can be used to
duce phenomenological constraints. Finally we note that
value of the cutoff is the gauge unification, underlining t
well-known possible conflict with compactified string the
ries.
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