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Dynamical fermion mass generation at a tricritical point
in strongly coupled U„1… lattice gauge theory

W. Franzki and J. Jersa´k
Institut für Theoretische Physik E, RWTH Aachen, Germany

~Received 25 November 1997; published 9 July 1998!

Fermion mass generation in the strongly coupled U~1! lattice gauge theory with fermion and scalar fields of
equal charge is investigated by means of numerical simulation with dynamical fermions. The chiral symmetry
of this model is broken by the gauge interaction and restored by the light scalar. We present evidence for the
existence of a particular, tricritical point of the corresponding phase boundary where the continuum limit might
possibly be constructed. It is of interest as a model for dynamical symmetry breaking and mass generation due
to a strong gauge interaction. In addition to the massive and unconfined fermionF and Goldstone bosonp, a
gauge ball of massmS.1/2mF , and some other states are found. The tricritical exponents appear to be
nonclassical.@S0556-2821~98!01315-0#

PACS number~s!: 11.15.Ha, 11.30.Qc, 12.60.Rc, 64.60.Kw
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I. INTRODUCTION

Attempts to construct a theory with dynamical breaking
global chiral symmetries in four dimensions, which cou
explain or replace the Higgs-Yukawa mechanism of part
mass generation, usually lead to the introduction of a n
strong gauge interaction beyond the standard model an
standard extensions. For example, the heavy top quark
the idea of top quark condensate@1# inspired the strongly
coupled top-color and similar gauge models@2# ~for a recent
overview see, e.g., Ref.@3#!. Among the requirements such
theory should satisfy, the most general ones are the foll
ing two. First, because gauge theories tend to confine cha
in a regime where they break chiral symmetries dynamica
the physical states, in particular fermions, must be compo
singlets of the new gauge symmetry. Second, as a st
coupling regime is encountered, the models should be n
perturbatively renormalizable in order to be physically se
sible in a sufficiently large interval of scales.

Even in very simplified models, these are too difficu
dynamical problems to get reliably under control by analy
means only. Therefore, a numerical investigation on the
tice of some prototypes of field theories with the above pr
erties may be instructive. In such an approach, the pres
ably chiral character of the new gauge interaction a
numerous phenomenological aspects have to be left ou
consideration.

A promising candidate for such a prototype field theo
on the lattice, thexUf model, has been described in Re
@4#. Here the four-dimensional vectorlike U~1! gauge theory
contains the staggered fermion fieldx and the scalar fieldf,
both of unit charge. A Yukawa coupling between these m
ter fields is prohibited by the gauge symmetry. The glo
U~1! chiral symmetry, present when the bare massm0 of the
fermion field x vanishes, is broken dynamically at stron
gauge couplingg by the gauge interaction, similar to QCD o
strongly coupled lattice QED. Whereas bothx and f con-
stituents are confined, the massive physical fermionF
5f†x with shielded charge appears.

The scalarsuppressesthe symmetry breaking when it ge
0556-2821/98/58~3!/034508~19!/$15.00 58 0345
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lighter and induces a phase transition to the chiral symme
phase@5,6#. At this transition, for large enough gauge co
pling, the mass of the physical fermion in lattice units sca
amF→0 and the lattice cutoff 1/a thus can be removed fo
mF fixed in physical units. If the theory were renormalizab
a continuum theory with massive fermionF, as well as a
massless Goldstone boson~‘‘pion’’ p) would be obtained.
When the global U~1! chiral symmetry, modelling the SU~2!
symmetry of the standard model, is gauged, thisp boson is
absorbed by the corresponding massive gauge boson. Th
what is achieved in standard approaches by the Hig
Yukawa mechanism.

In this paper we address the question of renormalizab
of the xUf model at the line of chiral phase transition
induced by the scalar field. We have no definite answer,
our extensive numerical study of the model in the relev
region of the three-dimensional parameter space~see Fig. 1!
with dynamical fermions provided several encouraging
sults.

~1! Our previous studies@7,8# have indicated that on the
nearly whole chiral phase transition line, starting at t
strong coupling limitb5g2250, the model behaves simila
to the Nambu–Jona-Lasinio~NJL! model, belonging pre-
sumably to the same universality class. We now pres
strong evidence that atb5bE.0.62 the line contains a spe
cial point, the tricritical pointE, where for theoretical rea
sons the scaling behavior is different from the rest of the li
It is governed by another fixed point. In contrast to the N
model the gauge field is not auxiliary but plays an importa
dynamical role at the pointE.

~2! Using advanced methods of the finite size scal
analysis we estimate several tricritical exponents determ
ing the scaling behavior at the pointE and find nonclassica
values, i.e., different than values predicted by mean fi
theory. This indicates that due to the strong gauge interac
this point differs from the expectations for tricritical points
four dimensions@9#.

~3! In the vicinity of the pointE in the broken phase, no
only the fermion massamF , but also the masses of sever
bosons~neutral states composed of scalar and gauge fie!
© 1998 The American Physical Society08-1
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and mesons (x̄x states! scale, i.e., in lattice units they ap
proach zero with constant ratios. This suggests a rich s
trum if the continuum limit of the model is approached at t
point E. In particular, a gauge ball of massmS.1/2mF is
observed.

~4! The composite Goldstone statep with properties re-
quired by chiral symmetry breaking is present.

~5! We determine the effective Yukawa couplingyR be-
tween the compositeF and p states in the vicinity of the
critical line and find that lines of constantyR tend to ap-
proach the pointE @10#. We cannot yet say whether some
them end at this point, which would imply a nontrivial co
tinuum limit. However, this approaching means that the c
pling decreases only slowly with an increasing cutoff 1/a on
paths towardsE, thus increasing the chances for renormal
ability.

We have not been able to achieve at least qualitative
sults in two issues of major interest: A heavy scalars me-
son, which would correspond to a composite Higgs boson
seen, but its mass in lattice units does not yet scale on
lattices of sizes we could afford and is strongly dependen
the bare fermion massam0 . We cannot say anything abou
its value in the continuum limit atE. Also the pion decay
constantf p does not scale, i.e.,f p /mF seems to increas
with decreasing distance fromE. Its current value~at am0
.0.4) is about 1/3. The present data are consistent both
the possibility that f p diverges in physical units, which
would indicate triviality@11#, and that the absence of scalin
is due to too small lattices.

Concerning the possible triviality, we point out again@4#
that thexUf model would be a valuable model even if th
cutoff cannot be removed completely without losing the
teraction, provided the cutoff dependence of the renorm
ized couplings is sufficiently weak, e.g., logarithmic as in t

FIG. 1. Schematic phase diagram of thexUf model. Three
critical lines,NE, E`E, andE2`E meet at the tricritical pointE.
The line NE is a part of the boundary of the Nambu phase~dark
shaded region! at m050 with spontaneously broken chiral symm
try amFÞ0. This phase is a sheet of first-order phase transition
which the chiral condensate changes sign. The linesE`E and
E2`E are critical boundaries of the ‘‘wings’’ of first-order Higg
phase transitions. The unshaded region atm050 corresponds to
vanishing fermion massamF50. The vertical sheets containing th
pointsT andC separate the confinement and Coulomb phases.
line ETS is a line of triple points.
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standard model. A dynamical approach to the Higgs-Yuka
mechanism does not necessarily require a nontrivial fi
point. The Higgs-Yukawa sector, whose validity is restrict
due to the triviality by a certain upper energy bound, can
replaced by a theory with a higher upper bound.

Nevertheless, it is possible that thexUf model in the
continuum limit taken at the tricritical pointE defines an
interacting theory. The pursuit of this question requires
better understanding of tricritical points in four dimension
as the available experience with such points is restricted
lower dimensions@9#. Further obstacles are the necessity
tune two couplings and the need to extrapolate to the ch
limit m0→0. Finally, more insight is needed into strong
coupled and not asymptotically free nontrivial fou
dimensional gauge theories, whose existence has bee
cently suggested by numerical investigation of pure U~1!
gauge theory@12#.

We remark that the properties of thexUf model in lower
dimensions are much better accessible. In two dimensi
the numerical evidence strongly suggests that the continu
limit of the model is equivalent to the two-dimensional chir
Gross-Neveu model, and is thus renormalizable and asy
totically free@13#. First results in three dimensions@14# sug-
gest that thexUf model belongs to the universality class
the three-dimensional chiral Gross-Neveu model, which
a non-Gaussian fixed point. In both cases the continu
limit is obtained on a whole critical line of chiral phase tra
sitions emerging from the corresponding Gross-Neveu mo
obtained in the limit of infinite gauge coupling, without an
use of possible tricritical points. In this sense the situation
four dimensions is unique, and the experience from low
dimensions is not applicable.

If the tricritical point E in the four-dimensionalxUf
model defines a renormalizable continuum theory, sim
property might be expected in analogous models with ot
gauge symmetry groups. For example, an SU~2! gauge
model with scalar and staggered fermion field in the fun
mental representation of SU~2! is known to have at strong
coupling a phase structure very similar to thexUf model
with the U~1! gauge field@5,6#. Therefore we expect that th
model we are studying is generic for a whole class
strongly coupled gauge models with fermions and scalar
the fundamental representation.

After describing thexUf model and its spectrum in th
next section, we present our results as follows. Some pre
ratory studies of the model in the limit of infinite bare fe
mion mass are presented in Sec. III. In the following sect
we demonstrate the existence of the tricritical point. In S
V the critical and tricritical exponents are estimated by fin
size scaling studies. Spectrum in the continuum limit taken
the pointE is discussed in Sec. VI. Then we summarize o
results and conclude. In the Appendix we give a detai
definition of the meson propagators and effective Yuka
coupling we have calculated.

Preliminary results of this work have been presented
Refs. @15,16#. An account of our results for the effectiv
Yukawa coupling betweenp and F is given in a separate
paper @10#. An investigation of thexUf model in the
quenched approximation, with particular emphasis on
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DYNAMICAL FERMION MASS GENERATION AT A . . . PHYSICAL REVIEW D 58 034508
role of magnetic monopoles, has been performed in R
@17#. A detailed presentation of thexUf project in two,
three, and four dimensions can be found in Ref.@18#. An
investigation of similar models in continuum has been p
formed by Kondo@19#.

II. THE xUf MODEL

A. Action, phase diagram, and spectrum

The four-dimensional latticexUf model is defined by the
action

S5Sx1SU1Sf , ~2.1!

Sx5
1

2(x
x̄x (

m51

4

hxm~Ux,mxx1m2Ux2m,m
† xx2m!

1am0(
x

x̄xxx , ~2.2!

SU52b(
P

cos~QP!, ~2.3!

Sf52k(
x

(
m51

4

~fx
†Ux,mfx1m1H.c.!.

~2.4!

HereQPP@0,2p) is the plaquette angle, i.e., the argument
the product of U~1! link variablesUx,m along a plaquetteP.
Taking QP5a2gFmn , wherea is the lattice spacing, andb
51/g2, one obtains for weak couplingg the usual continuum
gauge field actionSU5 1

4 *d4xFmn
2 . The staggered fermion

field x has ~real! bare massam0 in lattice units and corre-
sponds to four fermion species in the continuum limit. T
scalar fieldf is of fixed modulusufu51. We comment on
this and some other choices made in the action at the en
this subsection.

The model has U~1! global chiral symmetry in the limit
m0→0, wherem0 is the bare fermion mass in physical unit
to be defined while constructing the continuum limit. This
to be distinguished from the limitam0→0, allowing explicit
chiral symmetry breaking,m0Þ0, whena→0. Because of
this fine difference betweenm0 andam0 , important in vari-
ous possible continuum limits, we keep trace ofa throughout
the paper.

The schematic phase diagram is shown in Fig. 1. We
ognize several limit cases of thexUf model as models in-
teresting by themselves.

~1! At k50 and am05`, the pure U~1! gauge theory
with the Wilson action~2.3! and phase transition between th
confinement and Coulomb phases. Its continuum limit in
extended coupling parameter space may be determined
non-Gaussian fixed point@12#.

~2! At k50 andam0 finite, the gauge theory with fermi
ons, i.e., compact QED~2.2! and ~2.3!, whose phase transi
tion is currently under investigation@20#.

~3! At b50, i.e., the gauge field being auxiliary, th
Nambu–Jona-Lasinio~NJL! model, obtained by integrating
03450
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out the bosonic fields@5#. The triviality of this model has
been recently confirmed in large scale simulations@21,11#.

~4! At am05` andk arbitrary, the compact scalar QED
or U~1! Higgs model~2.3! and ~2.4!. Its continuum limit at
strong gauge coupling is Gaussian@22,23#.

At strong coupling,b,1, the model has three sheets
first-order phase transitions: the two ‘‘wings’’ at finiteam0 ,
and the sheet atam050, separating the regions with nonze
chiral condensate of opposite sign. These three sheets
critical boundary linesE6`E and NE, respectively. As we
shall discuss below, we have verified with solid numeric
accuracy that these second-order phase transition line
indeed intersect at one point, the tricritical pointE. We are
not aware of a convincing theoretical argument why t
should be so.

Of most interest is the Nambu phase at smallb and k,
with m0.0. ~Strictly speaking, this phase is atam050, but
for technical and theoretical reasons we allow small nonz
am0 .! Here, because of confinement, there is nof boson,
i.e., no charged scalar, and no fundamental chargedx fer-
mion in the spectrum. The chiral symmetry is dynamica
broken, which leads to the presence of the neutral compo
physical fermionF5f†x with nonvanishing massamF .
This phase contains the Goldstone statep whose mass ap
proaches zero with vanishingam0 in accordance with PCAC
~partial conservation of axial vector current!, amp}Aam0.

The spectrum of light neutral states in the vicinity of cri
cal lines is important for understanding of the physical sp
trum in various continuum limits. Roughly, the situation is
follows. In the vicinity of theNE line in the Nambu phase
we find various states containing the fermion fieldx. In the
am050 limit the mass of the physical fermionF5f†x
scales,amF→0, as theNE line is approached. Then ther
are various fermion-antifermion bound states, which we c
‘‘mesons’’ in analogy to QCD: the pseudoscalarp, the sca-
lar s, and the vectorr. In the am050 limit the p-meson
mass vanishes and ther mass scales similarly toamF . The
fate of thes mass in this limit is not clear. The spectru
along theNE line is very similar to that of the NJL mode
@21# and the line is presumably in the same universality cl
as that model, as suggested by our earlier results@7#.

In the vicinity of theE6`E lines at largeam0 the states
containing fermion field do not show up. Instead some lig
states in thef†-f channels are present. We call the
‘‘bosons’’ in analogy to the name they would have in th
Higgs models. It is in particular the neutral scalar bosonS.
This scalar appears both in thef†-f and the scalar gauge
ball channels, which strongly mix. Below the wings of Higg
phase transitions it is natural to interpretS as a gauge ball,
since this interpretation holds also at smallk, when the
charged scalarf is heavy. Also a vector boson is observed
the f†-f channel, whereas we found no indication for
vector gauge ball or any other light state. The massamS of
theS boson vanishes on the linesE6`E, whereas the vecto
boson does not scale there. In the continuum limit, taken
the critical linesE6`E at a nonvanishingam0 , the bare
massm0 approaches infinity and fermions decouple. The
maining U~1! Higgs model is equivalent to the trivialF4
8-3
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W. FRANZKI AND J. JERSÁK PHYSICAL REVIEW D 58 034508
theory at the critical end point of the Higgs phase transitio
@22,23#. This is confirmed by some of our results presen
below.

At the tricritical pointE the above spectra merge. We fin
that the ratiomS /mF is finite and independent of the direc
tion in whichE is approached~except directions tangential t
the critical lines!. Therefore, the continuum limit obtaine
when approaching the pointE contains, in addition to the
states scaling on theNE line, also theS boson, and is thus
different from the rest of theNE andE6`E lines. We have
found no indication for the existence of a state which wo
scale atE but not on some of the critical lines.

Finally we discuss the choice of the action~2.1!–~2.4! and
expected consequences of its possible modifications.
freezing of the radial mode off could be relaxed by insert
ing a terml(f†f21)2. Then the action~2.4! would be the
limit casel→`. Experience with the Higgs models sugge
that forl.1 the qualitative properties at smallb remain the
same as atl5` @28#. However, quantitative results migh
change. In our case this could mean that the tricritical po
E still exists, but the mass ratio of the bosonS and fermion
F at this point might depend onl. For l,1 the phase
diagram at smallb presumably changes qualitatively. O
restriction tol5` is motivated by simplicity and the nee
to limit the number of parameters.

We point out that the Yukawa coupling between the fu
damental fieldsx andf is forbidden by the charge conse
vation. Thus, exceptf4, no term with dimension 4 or les
and consistent with the symmetries of the model is miss
However, it is questionable whether naive dimensionality
a reliable guide for constructing the action to be used
strong gauge coupling. For example, asb→0, the interaction
reduces to the four-fermion interaction term of the N
model. Such a term withx field could be added also at non
zerob. We guess that it would shift the chiral phase tran
tion line, as it does atb50, without substantially influencing
the Higgs transition, and the tricritical point thus would n
exist any more. So this modification would not fit with th
aim of this paper.

Disregarding the naive dimensions, other modificatio
e.g., introducing couplings between composite neutral sta
could be thought of, too. Instead, we investigate whet
they arise as effective couplings. This appears to be the
at least for the Yukawa coupling of theF fermion to the
Goldstone bosonp @10#.

B. Observables and numerical simulations

For the investigation of the tricritical point we use th
following observables. To localize the Higgs phase transit
we use the normalized plaquette and link energy are defi
as

EP5
1

6V (
x,m,n

Re$Ux,mn%, ~2.5!

EL5
1

4V(
x,n

Re$fx
†Ux,mfx1m%, ~2.6!
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where V5L3T is the lattice volume. Following Refs.@23, 7#
we use the perpendicular and parallel components of th
energies,

E'5ELcosu1EP sin u, ~2.7!

Euu5ELsin u2EP cosu, ~2.8!

whereu is the slope of the Higgs phase transition line at t
end point in the plane (b,4/3k).

For the localization of the chiral phase transition we me
sure the chiral condensate

^x̄x&5^TrM 21& ~2.9!

via a stochastic estimator, whereM is the fermion matrix.
To calculate the mass of the physical fermion we consi

the gauge invariant fermionic fieldFx5fx
†xx . The mass

amF is measured by fitting its propagator in momentu
space@7#. The results for the measurement in configurati
space are consistent.

The fermion-antifermion composite states are called ‘‘m
sons.’’ The corresponding operators and other details
given in Refs.@4,18#. We tried to include also the annihila
tion part, but failed to obtain sufficient statistics.

To improve the signal, we also measure the meson pro
gators with smeared sources. This required the adaptio
the routines, used with Wilson fermions, to the case of st
gered fermions. It is described in Appendix 1. With the
smeared sources we have been able to fit the meson pr
gators by a one particle contribution at time distances lar
than zero. But the same masses could be obtained if
unsmeared propagators were fitted with the inclusion of
cited states. The smeared propagators reduce the errors,
ever, and in this work we mostly show results obtained
this method. Further details of the fitting procedure can
found in Ref.@18#.

From the propagator of thep meson also the pion deca
constanta fp can be calculated@24#,

a fp5AZp

am0

~amp!2
. ~2.10!

Hereamp andZp are the mass and the wave function ren
malization constant of thep meson. We checked, thata fp

fulfills with excellent precision the current algebra relation

~a fpamp!25
1

2
am0^x̄x&. ~2.11!

This is so even very close to the phase transition, tho
both a fp and ^x̄x& show rather strong finite size effec
there.

For the investigation of the chiral phase transition we a
calculate the susceptibility ratioRp , which is defined as the
logarithmic derivative of the chiral condensate@25,26#:
8-4
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DYNAMICAL FERMION MASS GENERATION AT A . . . PHYSICAL REVIEW D 58 034508
Rp5
] ln^x̄x&
] ln am0

U
b,k

5
am0

^x̄x&

]^x̄x&
]am0

U
b,k

. ~2.12!

We measure it as the ratio of zero momentum meson pro
gators

Rp5
Cs~p50!

Cp~p50!
~2.13!

including the annihilation part of the propagator. This
done by means of a stochastic estimator and is describe
detail in Ref.@18#.

As explained in Ref.@25#, we expect that close to a criti
cal point the data could be described by means of the sca
law

Rp~ t,am0!5GS am0

tD D , ~2.14!

wheret is the distance from the critical point~reduced cou-
pling!, D5b1g the critical exponent, andG a scaling func-
tion. At the critical point,

Rp~0,am0!5G~`!5
1

d
, ~2.15!

as can be seen by inserting^x̄x&}(am0)1/d into Eq. ~2.12!.
At the critical point,Rp should be independent ofam0 for
sufficiently smallam0 ~scaling region!. In the broken phase
Rp vanishes in the chiral limit, as can been seen easily fr
the definition. In the symmetric phase, thes andp channels
are degenerate, so that in the chiral limitRp51. For small
fixed t a characteristic behavior is expected, if one var
am0 : BecauseD.1, close to the critical point the curves fo
Rp start for am050 from 0 and 1, respectively, and fo
increasingam0 approach the horizontal line 1/d. This will
happen faster the smallerutu is ~compare Fig. 12!.

Further we consider the scalar and vector bosons, wh
operators are defined as

O ~S!~ t !5
1

L3(
xW

ReH (
i 51

3

fxW ,t
†

U ~xW ,t !,ifxW1 ıW,tJ , ~2.16!

O i
~V!~ t !5

1

L3(
xW

Im$fxW ,t
†

U ~xW ,t !,ifxW1 ıW,t%, i51,2,3.

~2.17!

The massesamS andamV of the scalar and vector bosons a
calculated from the corresponding correlation functions
configuration space.1

1To reduce the statistical fluctuations in the determination
amS , calculating the propagator we subtract the momentum z
propagator before the determination of the error~average over the
propagator!.
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In the same way we also measure the gauge invar
combinations of the gauge fields, which we call gauge ba
in analogy to QCD glue balls. We define two operators w
the quantum numbers 011 and 112:

O ~011!~ t !5
1

L3(
xW

ReH (
i 52

3

(
j 51

i 21

U ~xW ,t !,i j J , ~2.18!

O i
~112!~ t !5

1

L3(
xW

Im$U ~xW ,t !, jku iÞ j ÞkÞ i%, i51,2,3.

~2.19!

The massesamG of the gauge balls are calculated in analo
to the boson masses by means of the propagators in the
figuration space.

We have observed mixing of theS boson and the 011

gauge ball by means of the two-point function

G~S,G!~ t !5^O ~S!~0!O ~011!~ t !&. ~2.20!

We have also measured the effective Yukawa couplingyR
between the neutral fermionF and thep meson. This is done
in analogy to Ref.@27#, and the used operators are describ
in Appendix 2. A detailed discussion of our results is giv
in Ref. @10# and summarized in the conclusion of the pres
paper.

III. LIMIT OF INFINITE BARE FERMION MASS

A. U„1… Higgs model and chiral phase transition
in the quenched approximation

For am05`, thexUf model reduces to the U~1! Higgs
model with ufu51 on the lattice, Eqs.~2.3! and ~2.4!. This
model was investigated in the 1980’s~for a review see, e.g.
Ref. @28#! and with modern methods in Refs.@22,23#. Its
phase diagram is represented by the front face of Fig. 1
has the Coulomb phase at smallk and largeb, the rest being
the confinement-Higgs phase. The line of Higgs phase tr
sitionsE`S` is first order except the pointsE` andS` . The
continuum limit at the critical end pointE` corresponds
most probably to a trivial scalar field theory@22,23#.

When dynamical fermions witham0.0 are included, the
phase diagram remains roughly the same, except that
confinement-Coulomb phase transition and the end p
Eam0

shift to smallerb. The end points then form the critica

line E`E. It is natural to expect that this line, except th
tricritical point E, remains in the same universality class
the pointE` . Our results confirm this expectation.

When quenched fermions with smallam0 are included
into the Higgs model, a line of chiral phase transitions a
pears in the otherwise unchanged phase diagram of the H
model. It was realized already in the first investigations
the Higgs model with fermion, that full and quenched mo
els have a very similar phase diagram@5,6#. This includes the
observation that the chiral phase transition line runs wit
numerical accuracy into the critical end point of the Hig
phase transition line. The phase diagram of the quenc
model looks thus similar to theam050 plane of Fig. 1.

f
ro
8-5
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This similarity suggests that it might be instructive
study thexUf model in the quenched approximation.
Ref. @17# a quenched investigation of the interplay of chir
phase transition and the monopole percolation was
formed. It seems that there might be an interplay of b
transitions at an intermediateb on theN`E` line, possibly
with nontrivial exponents. Around the pointsN` andE` the
chiral and the percolation transitions appear to be separa
however.

B. Scaling behavior at the end pointE`

We begin by investigating the end pointE` . We want to
gain experience and check the reliability of the determinat
of critical exponents by means of Fisher zeros. We later
ply this method at finiteam0 for the scaling investigation
along theE`E line and compare the results with those
E` .

The scaling behavior at the end point of the Higgs ph
transition line was determined in Refs.@22,23# along the
first-order Higgs transition line. It was found that the e
point is described by the classical, i.e., mean field expone
We investigate the scaling behavior approachingE` in dif-
ferent directions. For this purpose it is useful to introduce
following reduced couplings~Fig. 2!: t, parallel to the phase
transition line of first order;h, perpendicular to the phas
transition line.

Here perpendicular is understood in the same sense
Eqs.~2.7! and ~2.8!, so that

t52~b2bc!cosu1
4

3
~k2kc!sin u, ~3.1!

h5~b2bc!sin u1
4

3
~k2kc!cosu, ~3.2!

and therefore

FIG. 2. Definition of the reduced couplingst andh and of the
angleu. The pointE` is the end point of the Higgs phase transitio
line. The scale of thek axis is 4/3 times larger than that of theb
axis.
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S526V~ tEuu1hE'!1SE`
. ~3.3!

The letterst andh have been chosen in analogy to tempe
ture and external field in magnetic systems.

We introduce critical exponentsn andñ of the correlation
length for both directions

j}utu2nuh50 ~3.4!

and

j}uhu2 ñu t50 , ~3.5!

j being the correlation length diverging atE` .
To understand the relation betweenn and ñ we assume

the equation of state

j5utu2nFS uhu

utuD
D , ~3.6!

with the scaling functionF and D5b1g. Introducing
F̃(x)5xnF(xD) it can be rewritten as

j5uhu2n/DF̃S uhu1/D

utu D . ~3.7!

AssumingF̃(`),` this meansñ5n/D.
The scaling behavior~3.5! is expected in the general d

rection t5ch, becauseD.1, and therefore

uhu1/D

utu
5h1/D21/c→` ~3.8!

for h→0 and, accordingly,t→0. This makes clear that it is
not important to chooseh perpendicular tot. Only the t
direction (h50) is special as it is tangential to the pha
transition line and thus described by the scaling law~3.4!.
The classical values of the exponentsb51/2, g51, andn

51/2 correspond toñ51/3.
To determine the critical exponent of the correlati

length we measure the scaling behavior of the edge singu
ity in the complex coupling plane~Fisher zero! @29#. From
scaling arguments for the free energy we expect for the
zeroz1 :

Im z1~L !u t505AL21/ñ. ~3.9!

As all directions which are not tangential to the phase tr
sition line are equivalent, we expect the same exponenñ
also if we fix b5bE`

or k5kE`
. This was verified in Ref.

@15#. Fixing one of the couplings is particularly convenie
for the necessary analytic extrapolations into the comp
plane. That is done by means of the multihistogram
weighting method@30#.

We present here the scaling investigation we did forb
50.848'bE`

. Figure 3~a! shows a nice scaling behavior fo

all lattice sizes with the critical exponentñ50.3236(10).
This value is very close the classical exponentñ51/3.
8-6
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The small deviations outside the error bars are proba
due to logarithmic corrections, as they are expected at Ga
ian fixed points. To verify this we follow the idea from Re
@31# and factor out the leading power lawL21/ñ. If the scal-
ing behavior has the form

L3Im z1~L !u t505A~ ln L !2p, ~3.10!

we expect in the lnln plot a straight line with the slop
2p. The data shown in Fig. 3~b! are very well described by
a straight line withp.0.17. Thex2 is smaller than that with
a fit by means of Eq.~3.9!. However, we have not investi
gated how far these results, and especiallyp depend on the
precise knowledge of the critical point.

A similar value for the exponentñ was also measured i
the SU~2! Higgs model@32,33#, but then it was not realized
that this value is actually compatible with a Gaussian fix
point. Now we can conclude that the U~1! and SU~2! Higgs
models have a very similar scaling behavior at the end po

We have also determined the critical exponentñ by
means of the finite size scaling of the specific heat and
some cumulants@18#. These less precise methods confirm t
results presented here. Also the shift exponentl has turned
out to be compatible with 1/ñ for the investigated observ
ables@15,18#.

FIG. 3. ~a! Scaling behavior of the edge singularity forb
50.848.bE`

in the U~1! Higgs model onL4 lattices. The small

deviations from the trivial scaling behavior withñ51/3 are re-
solved in ~b!. Here ln(L3Imz1) is shown as a function of ln(lnL).
The fit from ~a! is shown dotted. The value forbE`

has been taken
from Ref. @23#.
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IV. EXISTENCE AND POSITION OF THE TRICRITICAL
POINT E

A. General properties of tricritical points

To present our investigations of the tricritical pointE, we
first summarize the relevant general properties of tricriti
points and define the exponents. In notation we follow G
fiths @34#.

In the vicinity of a tricritical point it is usual to choose th
following orthogonal coordinate system~Fig. 4!: l, tangen-
tial to the first-orderPT line in the symmetry plane;g, per-
pendicular to thePT line inside the symmetry plane;z, per-
pendicular to the symmetry plane. In the symmetry pla
m050, these definitions are analogous to those in the Hi
model~Sec. III B!, l andg corresponding tot andh, respec-
tively.

In the phase diagram there are four special lines, wh
we denote following Ref.@9#: the chiralPT line NE ~second
order! in the symmetry plane (l.0) is lambda lineLl , its
continuation in the symmetry plane, on which three fir
order phase transition sheets meet (l,0), is triple lineLt ,
and the two lines of end points outside the symmetry pla
are wing critical linesL1 andL2 . The first-orderPT plane
below the linesLl andLt in the symmetry plane is denote
S0 , and the two wings of Higgs phase transitions areS1 and
S2 . Because of the6am0 symmetry we use in the follow-
ing only the index1.

The most important exponents and the defining sca
behavior are summarized in Table I. Comparing a metam
net to our model, the staggered magnetization correspond
the chiral condensate and the magnetization to the en
E' . The unfortunate fact is that the symmetry plane, wh
is of major use in the study of metamagnets, correspond
the chiral limit m050, which is difficult to approach in nu-
merical simulations with fermions coupled to a gauge fie

The two sets of exponents with indext andu are defined
in analogy to the exponents on the adjacent critical lines: T
set with the indext ~tricritical exponents! is defined in anal-
ogy to the exponents along the chiralPT line NE (Ll line!.
The set with the indexu ~subsidiary exponents! is defined in

FIG. 4. Schematic phase diagram of the first-orderPT planes
and the critical lines (L6 , Ll) in the vicinity of the tricritical point
E. Lt is the line of triple points. TheL lines correspond to the line
in Fig. 1 as follows:Ll5̂NE, L65̂E6`E, Lt5̂ET. A local co-
ordinate system is shown.
8-7
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W. FRANZKI AND J. JERSÁK PHYSICAL REVIEW D 58 034508
analogy to the exponents along the line of Higgs end po
E`E (L1 line!. In general, the exponents at the tricritic
point are different than those at the adjacent lines. We de
the diverging correlation lengths and the exponents on
lines Ll andL1 by the indicesl and1, respectively.

The tricritical point can be considered as a special poin
both theLl and theL1 critical lines. Both the correlation
lengthjl diverging at theLl line and the correlation length
j1 diverging at theL1 line are critical there. Nevertheles
in general,jl and j1 are to be distinguished also at th
tricritical point. In our casejl51/amF andj151/amS .

Our results strongly indicate~Sec. VI A 2!, that at the
point E, jl}j1 on all paths into the pointE. This propor-
tionality seems to hold also for all other observed correlat
lengths~inverse masses! which diverge at the pointE. Thus

there seems to be only one scaling law andñu5n t . This is a
generic property of tricritical points. It makes possible to u
at the tricritical point the finite size scaling theory quite
analogy to the adjacent critical lines.

In three dimensions it is usual that tricritical points have
large region of dominance. In analogy, near the tricriti
point we expect to find at some distance from the seco
orderPT lines already the scaling behavior described by
tricritical exponents. Such a crossover phenomenon was
vestigated, for example, in Ref.@35#. A similar effect might
be expected also on small lattices in the immediate vicin
to the PT lines. It is not excluded, however, that in fou
dimensions the tricritical points are much less dominant t
in three-dimensional models. To the best of our knowled

TABLE I. Exponents at the tricritical point. In the second co
umn the notation of Ref.@9# is given. The classical value is derive
in three dimensions. Its applicability to four dimensions is discus
in the text.

exp. Ref.@9# definition
class.
value

a t a t
]E'

]g
}g2a t, l5z50

1
2

au a ]Euu

]l
}l2au, g5z50 -1

b t b t ^x̄x&}ugub t, l5z50
1
4

bu b2 DE'}ulubu, g5z50, l,0 1

d t d ^x̄x&}z1/d t, l5g50 5

du 1/b2t uE'2E'cu}ugu1/du, l5z50 2

nu j1}ulu2nu, g5z50 1

ñu j1}ugu2 ñu, l5z50
1
2

n t jl}ugu2n t, l5z50 1
2

f f g}uluf at the linesLl andLt , z50 2

fD t D z}ulufD t at the linesL1
5
2

Du Du5budu 2
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tricritical points have not yet been investigated numerica
in four dimensions.

For the singular part of the free energyF usually the
following scaling relations are assumed@9#:

Fsing~l,g,z!5ulu22auF ~6 !S g

uluf
,

z

ulufD t
D , ~4.1!

Fsing~l,g,z!5ugu22a tF 1
~6 !S l

ugu1/f
,

z

uguD t
D . ~4.2!

For such systems several relations between the expon
can be derived@34#,

a t5121/du , ~4.3!

Du5f, ~4.4!

22au5f~22a t!, ~4.5!

nu5fn t , ~4.6!

11d t5~22a t!/b t , ~4.7!

D t5b td t5~22au!/fd t /~11d t!,
~4.8!

b t5~22a t!/~11d t!. ~4.9!

In our work we use in particular the last two of these re
tions.

Only four exponents are independent. With the assum
tion that the hyperscaling relation

a t522dn t ~4.10!

holds, only three independent exponents remain.
Unfortunately, theory of tricritical points in four dimen

sions is insufficiently developed. The Ginzburg criterion i
dicates that for all dimensionsd>3, tricritical point can be
described by the classical, i.e., mean field exponents. T
values, derived in three dimensions, are given in Table
These values would imply violation of the hyperscaling r
lation in four dimensions. Their validity is unclear, howev
~see p. 127 of Ref.@9#!.

B. Two diverging correlation lengths

For the existence of the tricritical pointE in the xUf
model the chiral and Higgs phase transition must meet at
point in them050 plane. Since there is no theoretical unde
standing for the interplay between both transitions, the e
tence of such a point has to be demonstrated numericall

To give a first impression, Fig. 5 shows the mass of
scalar bosonamS in the vicinity of the tricritical point for
am050.01, 0.02, and 0.04. This mass has been obtai
from the f†-f correlation function~2.16!. It has a pro-
nounced minimum~arrows in Fig. 5! for eacham0 . Its mini-
mal value on the 63316 lattice is about 0.35, and 0.2 on th
83324 lattice. The significant decrease with increasing l

d
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tice size indicates that the mass in the infinite volume v
ishes, and the correlation lengthj151/amS thus diverges.
The vanishing ofamS at someb, k for any finiteam0 cor-
responds to theE`E line of end pointsEam0

of the Higgs
phase transitions.

The fermion massamF descends steeply~Fig. 6! at the
position of the minimum of the boson mass for the sameam0
and volume. In the broken phase, the curves for differ
volumes slowly approach each other. In the symme
phase, the values ofamF achieve small finite values whic
should vanish in the chiral limit and infinite volume.

Figures 5 and 6 show that changes of volume andam0
result in a shift of the minimum inb. The same holds fork.
So there is little hope to extrapolate the data at fixedb andk
into infinite volume and chiral limit. As usual for tricritica
points, a fine tuning of both couplings is required. In th
work we assume that the limited precision of the position
the tricritical point we have achieved is outweighted by
sufficiently large domain of dominance of this point.

C. Position of the tricritical point E

To localize the pointE we determine the positions of th
end pointsEam0

for small am0 and extrapolate them to

FIG. 5. Boson massamS as function ofb for differentam0 and
lattice sizes atk50.30'kE . The arrows indicate the minima o
amS .

FIG. 6. Fermion massamF as function ofb for different am0

and lattice sizes atk50.30. The minima of the boson massamS are
marked with full symbols and arrows~cf. Fig. 5!.
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am050. It is difficult to control the uncertainties in ever
step of this complex procedure.

At a fixed nonzeroam0 we proceed in analogy to Ref
@23#. We determine the latent heat ofE' on theS1 wing.
Figure 7 shows the latent heatDE' as a function ofb for
two am0 and different lattice sizes. The values have be
obtained by reweighting the data at fixedb to the valuek
5kpc(b,am0 ,L) where both maxima have the same heig
Then the distance of these maxima in the histogram and
uncertainty have been estimated, as the data is not suffic
for a fitting procedure.

We expect a scaling ofDE' for fixed am0 and fixed
lattice size of the form

DE'}tb1}@b2bpc~am0 ,L !#b1. ~4.11!

Here the magnetic exponentb1 is defined on theE`E line.
In this procedure it is assumed that the dominant contribu
due to the finite volume can be absorbed in a volume dep
dent pseudocritical couplingbpc(am0 ,L). A better method
would have been to extrapolate the latent heat first into
infinite volume and to investigate scaling afterwards. But
such an analysis the quality of our data is not sufficient.

At am05` the classical valueb15 1
2 is observed@23#.

Expecting a similar value at finiteam0 , we plot in Fig. 7
DE'

2 . Our data are well compatible with its linear depe
dence onb and thus withb15 1

2 also at smallam0 .
A fit with free b1 gives a value ofb150.5(3) for am0

50.04, andb150.5(4) foram050.02. The probably over-
estimated error forDE' results in an overestimated error o
b1 . In fact our data do not have the necessary quality
investigate the scaling~4.11! with a free exponentb1 .
Therefore, we fit them with fixedb150.5. Forbpc(am0 ,L)
obtained in this way we assume scaling as in the Hig
model @23# with n150.5:

bpc~am0 ,L !2bc~am0!}L21/n1. ~4.12!

Our data are compatible with this assumption~Fig. 8!.

FIG. 7. Square of the latent heat of the energyE' for
am050.02 andam050.04 for lattices of the size 44 to 84 and 104,
respectively. The mean-field exponentb15

1
2 corresponds to a

straight line. We have described the data for eacham0 with one
commonb1 in Eq. ~4.11! for the different lattice sizes.
8-9
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The so determined pointsbc(am0) of the E`E line are
listed in Table II and plotted in Fig. 9. The point atam0
51.00 was only estimated and the uncertainty included
error bars@18#.

The values ofkc in Table II have been obtained in th
following way: At eacham0 thek coordinates of the pseud
ocritical pointskpc(b,am0 ,L) introduced above were inter
polated inb to obtain their values atbc(am0). For larger
lattices they are practically independent of the volume, g
ing the listed valueskc . The errors ofkc arise mainly from
the errors ofbc .

These results forbc(am0) are extrapolated into the chira
limit. The curves should approach the symmetry plane w
the critical exponentfD t :

bc~am0!2bc~E!}lc~am0!}~am0!fD t . ~4.13!

A fit of the data obtained foram0<0.10 givesfD t'1.6
~Fig. 10!. This value is in agreement with that obtained
means of the relation~4.8! from the values of the exponen
determined in the next section. There we findfD t
51.8(1). Theextrapolatedb value for the pointE is bE
.0.625. Of course, with three free parameters used to
four data points the error is large and uncertain.

The satisfactory quality of the fit and the agreement
both methods for the determination offD t indicates, that we
may actually overestimate the errors in the whole proced
For example, fixingfD t51.8 in Eq.~4.8! reduces the erro
for bE without reducing the quality of the fit shown in Fig
10 and givesbE50.62(1).

FIG. 8. Pseudocritical couplingsbpc(L) as function ofL22 for
differentam0<0.10. The fit is an extrapolation into infinite volum
assuming the exponent valuen150.5.

TABLE II. Estimate for the position of the critical end point
Eam0

on theE`E line ~L1) in the infinite volume limit.

am0 bc kc

0.02 0.654~7! 0.304~5!

0.04 0.671~4! 0.296~4!

0.06 0.684~4! 0.292~3!

0.10 0.707~3! 0.285~3!

1.00 0.80~2! 0.28~1!

` 0.848~4! 0.263~2!
03450
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In summary, we estimate the coordinates for the poinE
in infinite volume to be

bE50.62~3!, ~4.14!

kE50.32~2!. ~4.15!

The rather small improvement of the precision compared
our earlier publication@7# shows how difficult the determi-
nation of the position of the tricritical point is if no simula
tions in the symmetry plane are possible. Nevertheless,
present determination is much more reliable due to the us
the scaling analysis.

V. CRITICAL AND TRICRITICAL EXPONENTS

A. Exponents n t and bu

We have seen in Sec. III B that the scaling behavior at
point E` is mean-field-like. We now repeat the analysis
means of Fisher zeros also for small fixedam0 and deter-

FIG. 9. Projection of the critical line of end pointsE`E and the
line of triple pointsTT` onto theb-am0 plane. ~In Fig. 1 this
corresponds to a view from below foram0>0.! Shown also is the
critical line NE of chiral phase transitions. The points have be
determined on 64 and 84 lattices. The error bars reflect the unce
tainty of the extrapolation into the infinite volume.

FIG. 10. The values ofbc(am0) for am0<0.10 obtained from
extrapolation into infinite volume by means of Eq.~4.12!. The fit
shows their extrapolation into the chiral limit using Eq.~4.13!.
8-10
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DYNAMICAL FERMION MASS GENERATION AT A . . . PHYSICAL REVIEW D 58 034508
mine ñam0
, the value ofñ at fixedam0 , pursuing two aims.

We want to check the universality along theE`E line, and
we want to look for a possibly different scaling behavior
the immediate vicinity of the tricritical pointE.

To use the method of the Fisher zeros, one coupling ha
be fixed. For eacham0 we have fixedb at the position of
Eam0

. At this b we have done simulations for differentk and

afterwards determined the zeros in the complexk plane. The
accuracy of the method is limited by the uncertain precis
of bc(am0), as given in Table II. To estimate this depe
dence, we have made measurements at threeb values for
am050.02. Between 9600 and 64 000 HMC trajector
have been done for eachb value at 5–7k points.

Figure 11 shows the scaling behavior of the imagin
part of the Fisher zero ink for am050.04 and 0.02. In all
cases, no deviations from a linear behavior could be
served. The valueñ15 ñ0.0450.328(4) foram050.04 is in
excellent agreement with the result atam05`. For am0
50.02 it was more difficult to find the critical couplin
bc(0.02). From the three measurements we estimateñ0.02
50.33(4).

Investigation of the cumulants yields results forã1 / ñ1

which are consistent with the use of the Josephson rela
This indicates that the hyperscaling hypothesis is fulfille
The calculation ofñ1 with use of the Josephson relatio

FIG. 11. Scaling behavior of the edge singularity:~a! for am0

50.04 andb50.67,~b! for am050.02 andb50.64, 0.655, 0.66 on
quadratic lattices.b50.67 is our current best estimate for the po
tion of the end pointEam0

at am050.04. Foram050.02 we have
investigated three differentb values,b50.655 is nearest to the en
point.
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yields consistent results with a little bit larger error.
The finite size scaling theory above the critical dimens

should be applied with care. It is possible that in spite
consistent scaling it is not the exponentn which is

observed.2 In our case the values ofñ1 obtained by this
method and from the scaling of the fermion mass are con
tent, however.

Therefore, we interpret our results as a good confirmat
of the universality along theE`E line. The measured value
are nearly identical to those atam05`. Also the logarithmic
corrections seem to tend into the same direction. Since
found similar results also forb1 it is likely that all expo-
nents along theE`E line are independent ofam0 .

Assuming that for the small values ofam0 , we could
investigate, the dominance region of the tricritical point
already achieved, we expect that foram0→0 the exponent
ñ1 turns over intoñu5n t . This implies that the subsidiary
exponents with the indexu are identical or at least very
similar to the exponents along theE`E line, which are the
corresponding classical values. The measured value then
responds ton t5

1
3 . This means, that the value is differe

from the classical values of a tricritical point. The corr
sponding classical predictionn t5

1
2 is hardly compatible

with the data.
A crossover to the exponents of the tricritical point

small am0 could be expected also for the exponentb1 ,
which we measured along theE`E line ~in the S1 plane! in
Sec. IV C. However, also here we could not observe a
am0 dependence andb1 is compatible with the classica
exponent of a critical lineb15 1

2 down to am050.02. We
therefore interpreted these results as a indication, that alsbu
is close to1

2 .

B. Estimate of d t from Rp

As suggested in Ref.@25# it is possible to determine the
‘‘magnetic’’ exponentd for fermionic theories by measurin
the susceptibility ratioRp for different smallam0 around the
critical point. We have measuredRp for different k values.
Inside the broken phase (k,kc), we expect a curve which
approachesRp50 for am0→0. In the symmetric phase (k
.kc), we expect the curve to approachRp51 for am0
→0. At the critical point (k5kc), the line should be hori-
zontal for smallam0 and the corresponding value ofRp is
equal to 1/d51/d t .

We have tried this method in our model atb50.55 on the
NE line ~Fig. 12!. For k50.37 the curves bend downwar
when approaching the chiral limit, fork50.38 they bend
upward. This indicates, that the criticalk is between 0.37
and 0.38, in agreement with 0.376~5!, our estimate based o
the modified gap equation@7#. The estimated horizontal line
separating both phases is atRp50.30(5). This is in good
agreement with the classical value ofd51/Rp53. Both re-
sults confirm our earlier result that the phase transition ab
50.55 is mean-field-like@7#.

2We thank K. Binder for a discussion on this point.
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Our results forb50.64, close to the tricritical point, ar
shown in Fig. 13. A horizontal curve is found forkc
50.307(2). It extrapolates toRp(kc)50.10(5). We esti-
mate thatd t51024

110 under the assumption, that the increa
of the volume does not change this picture significantly.
deed, the data for the 84 and 104 differ only very little.

To estimate the sensitivity of these results onb we have
obtained lower statistics data also atb50.62, our current
best estimate forbE . The results are very similar to those
b50.64. This indicates that forb50.64 we are already in
the influence region of the tricritical point.

Also an explorative investigation with the method of t
Lee-Yang zeros in the complexam0 plane, as we applied
recently in the three-dimensional model@36,14#, confirms the
large value ford t . Using the lattices 44 and 64 we get for
b50.64 andk50.307 the estimateñ.0.275, which corre-
sponds tod t510.

C. Summary of results for the tricritical exponents

We have determined three independent exponents a
tricritical point:

n t50.33~5!, ~5.1!

bu50.5~2!, ~5.2!

d t51024
110. ~5.3!

These values disagree with the classical values for tricrit
points expected in four dimensions,n t50.5, bu51, d t55.

The errors take into account only uncertainties in the m
surement. We cannot estimate possible systematic error
particular we have assumed that atam050.02 on the used
lattices we observe the asymptotic scaling behavior of
tricritical point. Some support for this assumption is obtain
in the spectrum analysis in the next section. It is plausi
also because typically tricritical points have a large region
influence and the corresponding deviations from the sca
behavior are small.

If one assumes the validity of the scaling laws, all furth
exponents are fixed. We only could check with good pre
sion the Josephson relation betweena t and n t . Some very

FIG. 12. Rp as function ofam0 at b50.55 on 64, 84, and 104

lattices for differentk.
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crude check was possible fornu , and another one forb t is
described in Sec. VI A 4. We found no indications for a vi
lation of the scaling laws.

VI. SPECTRUM

To analyze the possible physical content of the continu
limit taken at the pointE, it is important to study the spec
trum. This investigation has the advantage that it is relativ
independent of the missing theory of tricritical points in fo
dimensions. Here we give only the most important results
tabular overview of the measured values~which could be
presented even graphically only in part! can be obtained
from the authors.

Most of the shown results have been obtained for fix
k50.30. The reason for this is the observation, that the s
of the end pointEam0

with am0 is smaller in thek direction

than in theb direction. The advantage of this is, that fo
different am0 the end pointEam0

can be approximately hi

with one k. The difference of this chosen value ofk from
our current best estimatekE50.32(2) is due to the underes
timated remaining shift at the beginning of the large sc
simulation. The valuek50.30 corresponds the position o
the end pointEam0

at am0'0.03.
Some measurements with less statistics have been

formed forb50.64 andk50.305. They confirm the picture
presented here. In particular, they indicate a common sca
behavior in a whole region aroundE, e.g., independent o
the direction of approach to this point, provided it is n
tangential to the critical lines.

A. Fermion, boson, and gauge-ball spectrum

1. Uniform behavior as a function of amF

The pictures showing the behavior of the mass of ferm
and scalar bosonS in the vicinity of E have been shown
already in Sec. IV B. The very similar position of the pseu
ocritical area ofamS and amF for different volumes and
small am0 for k50.30.kE suggests that we express on
mass as a function of the other.

As amF is monotonously decreasing with increasingk or
b, and is well measurable, we plotamS as a function ofamF

FIG. 13. Rp as function ofam0 close to the tricritical point at
b50.64 on 84 and 104 lattices for differentk.
8-12
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DYNAMICAL FERMION MASS GENERATION AT A . . . PHYSICAL REVIEW D 58 034508
~Fig. 14!. In this figure the broken phase is to the right a
the symmetric phase to the left. The border between b
phases is at the minimum of the boson mass. In the infi
volume and the chiral limit, the symmetric phase would
duce in this plot to one point,amF50. This kind of plot as a
function of amF is possible for all couplings near to theNE
line, butamS scales only at the pointE.

To extract continuum physics in this way, it is necess
to check that all curves are close to a uniform curve, wh
the tricritical point is approached. In principle, this means
fourfold limit V→`, am0→0, k→kE , andb→bE .

One can see that in the broken phase,amS as a function of
amF is nearly independent of volume andam0 . For other
k.kE andb.bE nearly the same curves result. From th
nontrivial observation we conclude that our data for fix
am0 and k50.30 correspond approximately to a path t
wardsE for am050. For smallamF , at the transition into
the symmetric phase, the boson massamS increases rapidly.
As expected, the minimum shifts to the left for increasi
lattice size and decreasingam0 , which corresponds to the
approach to the critical theory~chiral limit in the infinite
volume!.

In the following, all observables are plotted as a functi
of amF . To make the figures more clear, usually only t
data on the 83324 lattice are shown, as long as the effects
finite volume in this kind of plot are small.

2. Scaling behavior of amS

To investigate the scaling behavior ofamS we look at the
mass ratiomS /mF . As shown in Fig. 15, this ratio is nearl
constant, and close to 0.5 in the broken phase. A small
crease of this ratio for decreasingamF is indicated. Most
probably the reason for this is, that for nonzeroam0 , the
boson massamS vanishes at the pointEam0

in the V→`

limit, whereasamF stays finite. We have checked that a
proximately the same mass ratio is obtained also on o
paths into the pointE. This strongly suggests that this ma
ratio is preserved also in the continuum limit. This wou
mean that the scalar boson would survive with appro
mately half the fermion mass.

This similar scaling behavior means, that both obse
ables have a common critical point. This is our strong

FIG. 14. Boson massamS as function of the fermion mas
amF . The broken phase is to the right from the minima.
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argument for the coincidence of chiral and Higgs phase tr
sition at the pointE which is thus a tricritical point.

The fact that this nice scaling behavior can be obser
for all investigatedam0<0.04 further suggests that thes
values of the bare mass are inside the dominance regio
the tricritical point. In the influence region of theE`E criti-
cal line amF would stay finite whereasamS would scale to
zero. This should at least show up in scaling deviations.

3. Gauge balls and vector boson

We also measured the mass of two gauge balls. The sc
gauge ball with the quantum numbers 011 ~Fig. 16! has
nearly exactly the same values as the scalar bosonS obtained
from the f†-f correlation function~2.16!. We have also
measured the cross correlation between both channe
some points and found a mass in good agreement with
from individual channels. This strongly suggests that in b
channels we see one state, which can be interpreted both
scalar boson and gauge ball. In the Nambu phase, the se
interpretation might be more natural as it holds in the wh
phase, includingk50. Nevertheless, we continue to deno
the state byS.

We also looked at the gauge-ball channel with the qu
tum numbers 112, but we could not observe any light pa
ticle near the tricritical point. The mass of the vector bos
amV does not scale~Fig. 17!. The mass decreases signi
cantly in the symmetric phase but stays large at the ph
transition (amV.1).

FIG. 15. Mass ratiomS /mF as function of the fermion mass.

FIG. 16. Mass ratiomG /mF of the scalar gauge ball (011) as
function of the fermion mass.
8-13
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FIG. 17. Mass of the vector bosonamV as function of~a! b and ~b! amF for k50.30 on the 83324 lattice. The phase transitio
~minimum of amS) is marked in~a! with arrows.
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4. Scaling of amF and Šx̄x‹

We have tried to estimate the tricritical exponents a
from the fermion massamF and the chiral condensate^x̄x&.
The proper method would be to extrapolate the data firs
the infinite volume and then into the chiral limit. As dis
cussed in Sec. IV B, we are not able to do this. Therefore
have investigated whether both effects can be absorbed
the am0 and volume dependence of the pseudocritical c
pling bpc. This is suggested by the fact that the value
amS /amF is nearly independent ofamF and of the used
~small! am0 . As amS scales foram0Þ0, this should be ap-
proximately so also foramF and ^x̄x&. (amS itself is less
suitable for such an investigation, because of the larger
rors.!

Correspondingly, we plot the results for the fermion ma
amF and the chiral condensate^x̄x& for different am0 as a
function of the couplingb ~Fig. 18!. We expect the approxi
mate scaling behavior

amF5AF~bpc2b!n t, ~6.1!

FIG. 18. Scaling behavior ofamF ~filled symbols! and ^x̄x&
~open symbols! as function of the couplingb for k50.30 on

83324 lattices. For eacham0 a simultaneous fit tôx̄x& andamF

with one common critical coupling was done. The fit interval
marked with arrows. The results of the fit are given in the lege
~the amplitudes are not shown!.
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^x̄x&5As~bpc2b!b t, ~6.2!

where bpc depends both on the volume andam0 . To get
stable results we did, for eacham0 , a fit with a common
pseudocritical couplingbpc. We choose for the fit of both
observables the three points closest to the critical coup
~as determined by the minimum ofamS) in the broken
phase. At these points the value of the condensate is
around or above 0.3. So we end up with six measured va
and five free fit parameters.

The so estimated parametersbpc, b t, andn t are listed in
Fig. 18. The values ofbpc are in nice agreement with th
minimum of the boson massamS . The results for critical
exponents are in rough agreement with the values ofn t

50.33(5) andb t50.1226
112 obtained in Sec. V.@The latter

value is obtained from Eq.~5.3! by means of Eqs.~4.9! and
~4.10!.# These results support the values of the expone
@Eqs. ~5.1! and ~5.3!# obtained by other methods at the tr
critical point.

B. Properties of p meson

The mass of thep meson (021) can be measured ver
reliably. In the broken phase we expect the validity of t
PCAC relation

~amp!2}am0 . ~6.3!

As shown in Fig. 19, this relation is nearly perfectly satisfi
for b50.64,k50.305~near the tricritical point in the broken
phase!. Thus it has the expected scaling behavior of a Go
stone boson. Fork50.31~transition to the symmetric phase!
an expected deviation is observed.

To investigate the flavor symmetry restoration we co
pare in Fig. 20 the mass in the channels~1! and ~2! which
belongs to the quantum numbers 021 ~Table I in @4#!. These
masses are labeledamp,1

( i ) with the corresponding channel i
the exponent. In channel~2! also the first excited state coul
be measured and is labeledamp,2

(2) .
d

8-14
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DYNAMICAL FERMION MASS GENERATION AT A . . . PHYSICAL REVIEW D 58 034508
A light particle can be observed only in channel~2!. This
is the Goldstone boson, which scales corresponding to
PCAC relation. Its mass is different from that in the chan
~1!. The first excited state in channel~2! is close to the mass
in channel~1!. Both scale with approximately twice the fe
mion mass. The small observed deviations for smallamF are
in the symmetric phase.

We cannot see restoration of flavor symmetry with p
ticipation of the massless Goldstone boson. But an ag
ment of the massive contributions with the correspond
quantum numbers seems to show up. This behavior of
Goldstone boson, which is massless in the chiral limit, a
its role in the flavor symmetry restoration is not yet und
stood. Similar behavior was observed, e.g., in the NJL mo
@21#.

We note that the data indicate presence of a light pseu
scalar in the symmetric phase, as seen, e.g., in Fig. 1
small amF . In the chiral limit the massless Goldstone pa
ticle seems to change at the phase transition into a~bound?!
state of two massless fermionsF.

Figure 21 shows the pion decay constanta fp @Eq. ~2.10!#
as a function ofamF . The value ofa fp is nearly indepen-

FIG. 19. (amp)2 from channel~2! as function ofam0 . The
PCAC relation~6.3! corresponds to a straight line through the o
gin.

FIG. 20. Mass ofamp from channel~1! ~circles! together with
massamp and first excited state of channel~2! ~squares and tri-
angles, respectively! as function ofamF . In channel~1! a simulta-
neous fit to the data with point source and smeared source has
used.
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dent ofam0 and for largeramF also nearly independent o
the volume. For smallamF there is a clear tendency fo
decrease ofa fp on larger lattices.

Figure 22 shows a comparison ofa fp for different b
along theNE line. The smallest values fora fp can be ob-
served close to the pointE, but the difference betweenb
50.55 andb50.64 is very small.

If the pion decay constanta fp scaled as a mass, its plo
as a function ofamF should give a straight line through th
origin. This is not observed, although on larger lattices th
is a slight reduction observable even in the broken phase.
do not know, if this is a hint towards a larger finite siz
dependence. One may expect such a large dependence o
basis of estimates made by means of the Schwinger-Dy
equations for the NJL model~Fig. 33 in Ref. @21#!. At
present we cannot exclude thatf p /mF diverges in the con-
tinuum limit. This could be an indication of the trivial con
tinuum limit @11#. In any case the largest valuef p /mF
.1/3, we found in the broken phase aroundamF.0.4, is a
lower bound for this ratio.

C. Further mesons

1. r meson mass

The mass of ther meson (122) can be measured quit
well. We use a fit to the propagator with a smeared sou
and sink, which suppresses excited states quite well. We

een

FIG. 21. Pion decay constanta fp as function ofamF for k
50.30.

FIG. 22. Pion decay constanta fp as function ofamF for am0

50.02 and differentb andk, respectively, along theNE line.
8-15
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FIG. 23. r meson mass from~a! channel~4! and ~b! channel~3! for k50.30 on the 83324 lattice. The line shows the 2amF threshold.
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the same mass also if we use the point source and sink
do a fit with two states with negative~and one with positive!
parity.

The interesting feature of ther meson is the fact, that we
can observe it in two channels. As is shown in Fig. 23
results are nearly identical, especially near to the phase t
sition (amF'0.5). So the flavor symmetry seems to be
stored within good precision, at least for ther.

The values close to the phase transition are nearly exa
equal to 2amF ~line!3 and ther meson thus scales in exce
lent agreement with the fermionF. We cannot distinguish
whether ther meson is a bound state or a resonance.

2. s meson mass

Figure 24 shows our measurement of thes meson (011)
mass without consideration of the annihilation part. T
simplification is necessary due to computer time restrictio
It is striking, that thes meson mass is especially for sma
am0 nearly independent ofamF . In the broken phase it doe
not increase with it. We also observe some finite size effe
with tendency of increasingams with increasing volume.
Furthermore, as seen in Fig. 24, the dependence on the
mass is large. The data therefore do not allow us to extra
late ms to the infinite volume and chiral limits.

It is probable that thes meson decays in twop mesons.
Therefore for eacham0 the dotted curve shows 2amp . All
measurements are within the error bars on or above
threshold. Possibly, what we observe is not thes resonance
but two p mesons. It should be noted that also in the N
model thes meson shows large finite size effects and dep
dence on the bare mass@21#.

The measurement of the mass of thes meson would have
been very interesting, as it is the most natural candidate
the Higgs boson. Because also the scalar bosonS has the
same quantum numbers, we would have expected a mi

3The somewhat larger values foramr in Ref. @15# are due to an
insufficient consideration of the excited states.
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of those two states. This does not seem to be so. Thus
have to leave open the question, with which of the sca
particles observed on the lattice the~composite! Higgs boson
has to be identified and what mass it has.

VII. SUMMARY AND CONCLUSION

The tricritical pointE in thexUf model turns out to be a
very complex phenomenon in four-dimensional quant
field theory, presenting numerous challenges. No relia
way is known to study it analytically. Its numerical invest
gation faces tremendous obstacles: the analysis of nume
data is made without a plausible analytic scenario, two c
plings have to be fine-tuned, the use of dynamical fermio
is necessary, and the chiral symmetry plane is not yet ac
sible to simulation. The last two obstacles make the inve
gation of this point substantially more difficult than the stu
of tricritical points in metamagnets and other systems in s
tistical mechanics. Though statistical mechanics provides
conceptual understanding of tricritical points which we ha
heavily used, there is actually no experience with tricritic
points in four dimensions to compare our results with.

For these reasons our conclusions can be only tenta

FIG. 24. s meson mass for channel~1! for k50.30 on the 83

324 lattice. The full line shows the 2amF threshold, the three
dotted lines twice thep meson mass.
8-16
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DYNAMICAL FERMION MASS GENERATION AT A . . . PHYSICAL REVIEW D 58 034508
Nevertheless, they justify the effort4 we have spent: there i
fair chance that the tricritical pointE exists and defines a
interesting quantum field theory in four dimensions. Thou
it has various features analogous to the NJL model,
gauge field plays an important dynamical role. It may
very complex and completely unaccessible by perturba
theory. However, it may provide a new alternative for d
namical explanation of the masses of fundamental cons
ents in the standard model.

The simplest way to justify this hope is to describe o
results as a microscopic model for a strong Yukawa c
pling, postulated in the standard model, e.g., for the
quark. We have done this in a separate paper@10#.5 In the
vicinity of E, the Yukawa coupling betweenF and p
emerges naturally as the Van der Waals remnant of the
strong interactions of thexUf model.

The most surprising result is the clear signal for the sca
S with mass proportional tomF and thus present in the con
tinuum limit in whichmF is finite. It can be interpreted eithe
as a bound state of the pair of fundamental scalarsf†,f, or
as a gauge ball. Both channels mix strongly. At present
do not know, however, whether the found valuemS
.1/2mF changes with possible modifications of the mod
in particular if thef4 coupling is varied.

On the other hand, the would-be Higgs boson,
fermion-antifermion bound states5x̄x, is elusive. It does
not show scaling properties allowing an extrapolation to
continuum limit. It does not mix appreciably withS.

The most perplexing result is the value of the tricritic
exponentn t.1/3, which is a nonclassical value. Could
mean that the continuum theory is nontrivial? As the criti
properties of the pointE are different from those of the ad
jacent critical lines, their triviality does not exclude nontriv
ality of E. On the other hand, standard lore in statisti
mechanics is that in and above three dimensions tricrit
points are classical@9#, suggesting triviality. However, this is
based on the experience with spin systems and scalar fi
and strongly coupled gauge theory with fermions might
different. Thus pointE is a challenge also for statistical me
chanics.

We feel that our aim to understand the tricritical point
the xUf model was a little bit ahead of time. Though w
used the most advanced methods, they were not powe
enough. The computational resources should be also la
by 1–2 orders of magnitude. Algorithms for simulation
the chiral symmetry limit are needed. Last but not least,
interest in a search of strongly coupled theories beyond
standard model should be much higher than the current w
erspread beliefs.
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APPENDIX: DETAILS ABOUT THE USED OPERATORS

1. Smeared sources for meson propagators

To reduce the contribution of excited states in the me
propagators we have implemented gauge invariant sme
sources@37#. We are not aware of any such implementati
for staggered fermions. It requires that the even-odd sep
tion is preserved. Therefore we have transported the so
with two link term to the next to nearest neighbor. This rea

f~xW ,t !→f8~xW ,t !

5
1

126a H f~xW ,t !1a(
i 51

3

@Ui~xW ,t !Ui~xW1ei
W ,t !

3f~xW12ei
W ,t !1Ui* ~xW2ei

W ,t !Ui* ~xW22ei
W ,t !

3f~xW22ei
W ,t !#J . ~A1!

We have chosen valuesa50.01 anda50.02 and 20 smear
ing iterations. The resulting smearing radii wereR.0.89 and
R.1.47, respectively. The latter gave the better resu
Compared to QCD these radii may seem very small, wh
might be due to larger masses in our case, however.

2. Effective Yukawa couplingyR

We have done measurements ofyR in the momentum
space, similar to Ref.@27#. The meson-fermion three poin
function is

G3
~a!~p,q!5

1

T (
t1 ,t2

e2 ip4t11 iq4t2 (
x1 ,x2

e2 ipW x11 iqW x2

3K f~x1 ,t1!x̄~x1 ,t1!(
y4

ei ~p42q4!y4

3Ma~pW 2qW ,y4!f†~x2 ,t2!x~x2 ,t2!L ,

~A2!

with

Ma~pW 0 ,y4!5(
yW

eipW 0yWwa~yW !x̄~yW ,y4!x~yW ,y4!, ~A3!

ws(yW )51 for the s meson ~scalar!, and wp(yW )5h4(yW )
5(21)y11y21y3 for thep meson~pseudoscalar!. The under-
score ofx1 andx2 indicates that the spatial part of the vect
has even coordinates. The corresponding sums run ove
23 cubes of the spatial lattice. The measurements were d
for the momenta

,

f
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p45H q4 for thes meson,

q41p for thep meson,
q456

p

T
, ~A4!

~pW ,qW !5~0W ,0W !, S 2p

L
e1
W ,0W D , S 2p

L
e1
W ,

2p

L
e1
W D . ~A5!

This choice ofp4 guarantees that only states of the rig
parity contribute. Forq4 only the smallest possible values a
considered and the results are averaged over both sign
q4 . The different spatial momenta are evaluated separa
The spatial momentum of the meson ispW 05pW 2qW .

For the implementation we neglect the disconnected p
and write, by means of the fermion matrixM yx ,

G3
~a!~p,q!52

1

T K (
y4 ,yW

ei ~p2q!ywa~yW !«~y!

3H (
t1 ,x1

M yx1

21f~x1!e2 ipx1J
3H (

t2 ,x2

M yx2

21f~x2!e2 i @q1~0W ,p!#x2J * L ,

~A6!

where the four-vectorsx15(x1 ,t1), y5(yW ,y4), . . . , have
been introduced. In this notation it is well noticeable, that
our six different momentum pairs (p,q) for both G3 all to-
gether eight matrix inversions are needed. Due to the so
on the whole lattice the signal is very good and we ha
done a measurement only on every eighth configuration.

The effective Yukawa couplingyR
(a) is now obtained from

the comparison of the Monte Carlo data for the three-po
function, with that obtained in the tree level approximati
of an effective lattice action, which describes the interact
of the staggered fermion fieldsF, F̄ and a ~pseudo!scalar
field F with a coupling term of the form

2yR
~s!(

x
F~x!F̄~x!F~x! ~scalar!, ~A7!

2yR
~p!(

x
«~x!F~x!F̄~x!F~x! ~pseudoscalar!.

~A8!

The connected part of the three-point function is

G3
~a!~p,q!52

yR
~a!

T

V

8(
vW

ūa~vW !G̃a~p2q!

3H (
x2 ,t2

h4~vW ! t2eiq~x21vW !GF~x21vW ,0!qW J
3H (

x1 ,t1
h4~vW ! t1ei @p1~0W ,p!#~x11vW !

3GF~x11vW ,0!pW J *
~A9!
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ūs~vW !5h4~vW !, ūp~vW !51. ~A10!

Here vW runs over corners of the elementary thre
dimensional cube. In the tree-level approximation,G̃a and
GF are the free propagators for the meson and the ferm
the tilde indicating the Fourier transformation of the mes
propagator. These propagators are replaced by the full pr
gators from the simulation and the wave function renorm
ization constantsZF andZa are included:

G̃a~p0!5AZa~pW 0!ua

3(
x

eip0x^w~xW !x̄~x!x~x! w~0W !x̄~0!x~0!&c ,

~A11!

GF~x,0!pW5AZF~pW !^x̄~x!x~0!&, ~A12!

with us521 andup51 to correct for the negative sign o
the s propagator.

After these replacements and identifications
G3

(a)(p,q) with the measured values of expression~A6! we
obtainyR

(a)(p,q) from Eq. ~A9!. yR should be real and only
slightly dependent on the momenta. For the determination
Z(pW ) we have measured the corresponding propagator
momentumpW and then performed a fit with the free prop
gator.

Using these definitions we have measured the real
imaginary part ofyR . The implemented momenta combin
tions have been numbered corresponding to Eq.~A5! from 1
to 3.

For the effective coupling of thep meson we get a con
sistent picture~Fig. 25!. The imaginary part ofyR is very
small, and for different momenta we get approximately t

FIG. 25. Results for the real and imaginary part ofyR of the p
meson for different momenta atk50.30 andam050.02 on the
83324 lattice as a function ofamF .
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same values. Because of this agreement we restrict ours
to the evaluation of the data with vanishing momentum~No.
1!.

For the s meson we failed to get a reliableyR . The
imaginary part is not really small and the real part is only
the momentum combinations 1 and 2~at least one fermion
-
nd

Il

.

l

he

on

y-
s,’

03450
ves

r

momentum vanishes! approximately equal. The inconsisten
cies are larger in the broken phase. The problems migh
related to the neglected disconnected parts but also to
fact that thes meson is probably only a broad resonance.
this sense this measurement shows again the problem
already met in the measurement of thes meson mass.
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@26# M. Göckeler, R. Horsley, P. E. L. Rakow, G. Schierholz, a
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