PHYSICAL REVIEW D, VOLUME 58, 034508
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Fermion mass generation in the strongly coupléd)Uhttice gauge theory with fermion and scalar fields of
equal charge is investigated by means of numerical simulation with dynamical fermions. The chiral symmetry
of this model is broken by the gauge interaction and restored by the light scalar. We present evidence for the
existence of a particular, tricritical point of the corresponding phase boundary where the continuum limit might
possibly be constructed. It is of interest as a model for dynamical symmetry breaking and mass generation due
to a strong gauge interaction. In addition to the massive and unconfined fefndod Goldstone boson, a
gauge ball of massng=1/2mc, and some other states are found. The tricritical exponents appear to be
nonclassical[ S0556-282(98)01315-0

PACS numbgs): 11.15.Ha, 11.30.Qc, 12.60.Rc, 64.60.Kw

[. INTRODUCTION lighter and induces a phase transition to the chiral symmetric
phasg[5,6]. At this transition, for large enough gauge cou-

Attempts to construct a theory with dynamical breaking ofpling, the mass of the physical fermion in lattice units scales
global chiral symmetries in four dimensions, which couldam:-—0 and the lattice cutoff & thus can be removed for
explain or replace the Higgs-Yukawa mechanism of particleng fixed in physical units. If the theory were renormalizable,
mass generation, usually lead to the introduction of a neva continuum theory with massive fermidn as well as a
strong gauge interaction beyond the standard model and itsassless Goldstone bosétpion” =) would be obtained.
standard extensions. For example, the heavy top quark anthen the global (1) chiral symmetry, modelling the S0)
the idea of top quark condensdtt] inspired the strongly symmetry of the standard model, is gauged, thiboson is
coupled top-color and similar gauge modg2$ (for a recent  absorbed by the corresponding massive gauge boson. This is
overview see, e.g., Rdi3]). Among the requirements such a what is achieved in standard approaches by the Higgs-
theory should satisfy, the most general ones are the followYukawa mechanism.
ing two. First, because gauge theories tend to confine charges In this paper we address the question of renormalizability
in a regime where they break chiral symmetries dynamicallyof the yU¢ model at the line of chiral phase transitions
the physical states, in particular fermions, must be compositthduced by the scalar field. We have no definite answer, but
singlets of the new gauge symmetry. Second, as a strongur extensive numerical study of the model in the relevant
coupling regime is encountered, the models should be norregion of the three-dimensional parameter spaee Fig. 1
perturbatively renormalizable in order to be physically sen-with dynamical fermions provided several encouraging re-
sible in a sufficiently large interval of scales. sults.

Even in very simplified models, these are too difficult (1) Our previous studief7,8] have indicated that on the
dynamical problems to get reliably under control by analyticnearly whole chiral phase transition line, starting at the
means only. Therefore, a numerical investigation on the latstrong coupling limit3=g~?=0, the model behaves similar
tice of some prototypes of field theories with the above propio the Nambu—Jona-LasinidNJL) model, belonging pre-
erties may be instructive. In such an approach, the presunsumably to the same universality class. We now present
ably chiral character of the new gauge interaction andstrong evidence that &= 8g=0.62 the line contains a spe-
numerous phenomenological aspects have to be left out @fial point, the tricritical pointE, where for theoretical rea-
consideration. sons the scaling behavior is different from the rest of the line.

A promising candidate for such a prototype field theorylt is governed by another fixed point. In contrast to the NJL
on the lattice, theyU ¢ model, has been described in Ref. model the gauge field is not auxiliary but plays an important
[4]. Here the four-dimensional vectorlike(l gauge theory dynamical role at the poirE.
contains the staggered fermion figfdand the scalar field, (2) Using advanced methods of the finite size scaling
both of unit charge. A Yukawa coupling between these matanalysis we estimate several tricritical exponents determin-
ter fields is prohibited by the gauge symmetry. The globalng the scaling behavior at the poiitand find nonclassical
U(1) chiral symmetry, present when the bare maigf the  values, i.e., different than values predicted by mean field
fermion field y vanishes, is broken dynamically at strong theory. This indicates that due to the strong gauge interaction
gauge coupling by the gauge interaction, similar to QCD or this point differs from the expectations for tricritical points in
strongly coupled lattice QED. Whereas bgthand ¢ con-  four dimensiong9].
stituents are confined, the massive physical fermin (3) In the vicinity of the pointE in the broken phase, not
= ¢y with shielded charge appears. only the fermion masamg, but also the masses of several

The scalasuppressethe symmetry breaking when it gets bosons(neutral states composed of scalar and gauge fields
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standard model. A dynamical approach to the Higgs-Yukawa
mechanism does not necessarily require a nontrivial fixed
point. The Higgs-Yukawa sector, whose validity is restricted
due to the triviality by a certain upper energy bound, can be
replaced by a theory with a higher upper bound.
Nevertheless, it is possible that théJ ¢ model in the
continuum limit taken at the ftricritical poinE defines an
interacting theory. The pursuit of this question requires a
better understanding of tricritical points in four dimensions,
as the available experience with such points is restricted to
lower dimensiong9]. Further obstacles are the necessity to
tune two couplings and the need to extrapolate to the chiral
w0 ’ limit myg— 0. Finally, more insight is needed into strongly
FIG. 1. Schematic phase diagram of the)¢ model. Three  coupled and not asymptotically free nontrivial four-
critical lines,NE, E.E, andE_..E meet at the tricritical poinE.  gimensional gauge theories, whose existence has been re-
The lineNE is a part of the boundary of the Nambu phasark  canyy suggested by numerical investigation of purél)U
shaded reglo)ne_lt my=0 v_wth spontane(_)usly broken chiral symme- gauge theory12].
try 'amFan. Thls phase is a sheet of flrst-qrder phas_e transitions al We remark that the properties of theJ ¢ model in lower
which the chiral condensate changes sign. The likgE and di . b . .
” . AT . imensions are much better accessible. In two dimensions,
E_.E are critical boundaries of the "wings” of first-order Higgs the numerical evidence strongly suggests that the continuum
phase transitions. The unshaded regionmgt=0 corresponds to . . . . . . .
vanishing fermion masamg:=0. The vertical sheets containing the limit of the model is eqUIva_Ient to the tWO-dl_menS|0naI chiral
pointsT andC separate the confinement and Coulomb phases. Thg-}r_oss-Neveu model, and is thus renorr_nallza_ble and asymp-
line ETSis a line of triple points. totically free[13]. First results in three dimensiofi$4] sug-
gest that theyU ¢ model belongs to the universality class of
_ the three-dimensional chiral Gross-Neveu model, which has
and mesons Xy state$ scale, i.e., in lattice units they ap- a non-Gaussian fixed point. In both cases the continuum
proach zero with constant ratios. This suggests a rich spedimit is obtained on a whole critical line of chiral phase tran-
trum if the continuum limit of the model is approached at thesitions emerging from the corresponding Gross-Neveu model
point E. In particular, a gauge ball of masss=1/2mg is  obtained in the limit of infinite gauge coupling, without any

observed. _ _ _ use of possible tricritical points. In this sense the situation in
(4) The composite Goldstone statewith properties re-  four dimensions is unique, and the experience from lower
quired by chiral symmetry breaking is present. dimensions is not applicable.
(5) We determine the effective Yukawa coupligg be- If the tricritical point E in the four-dimensionalU ¢

tween the composité and 7 states in the vicinity of the model defines a renormalizable continuum theory, similar
critical line and find that lines of constagi tend to ap- property might be expected in analogous models with other
proach the poinE [10]. We cannot yet say whether some of gauge symmetry groups. For example, an(ZUgauge
them end at this point, which would imply a nontrivial con- model with scalar and staggered fermion field in the funda-
tinuum limit. However, this approaching means that the coumental representation of $2) is known to have at strong
pling decreases only slowly with an increasing cutoff dh  coupling a phase structure very similar to the ¢ model
paths toward&, thus increasing the chances for renormaliz-with the U(1) gauge field5,6]. Therefore we expect that the
ability. model we are studying is generic for a whole class of

We have not been able to achieve at least qualitative restrongly coupled gauge models with fermions and scalars in
sults in two issues of major interest: A heavy scatame-  the fundamental representation.
son, which would correspond to a composite Higgs boson, is After describing theyU ¢ model and its spectrum in the
seen, but its mass in lattice units does not yet scale on theext section, we present our results as follows. Some prepa-
lattices of sizes we could afford and is strongly dependent omatory studies of the model in the limit of infinite bare fer-
the bare fermion masam,. We cannot say anything about mion mass are presented in Sec. Ill. In the following section
its value in the continuum limit aE. Also the pion decay we demonstrate the existence of the tricritical point. In Sec.
constantf . does not scale, i.ef,/mgz seems to increase V the critical and tricritical exponents are estimated by finite
with decreasing distance froff. Its current valugat am,  size scaling studies. Spectrum in the continuum limit taken at
=0.4) is about 1/3. The present data are consistent both witthe pointE is discussed in Sec. VI. Then we summarize our
the possibility thatf, diverges in physical units, which results and conclude. In the Appendix we give a detailed
would indicate triviality[11], and that the absence of scaling definition of the meson propagators and effective Yukawa
is due to too small lattices. coupling we have calculated.

Concerning the possible triviality, we point out aga] Preliminary results of this work have been presented in
that thexU ¢ model would be a valuable model even if the Refs. [15,16. An account of our results for the effective
cutoff cannot be removed completely without losing the in-Yukawa coupling betweenr and F is given in a separate
teraction, provided the cutoff dependence of the renormalpaper [10]. An investigation of thexyU¢ model in the
ized couplings is sufficiently weak, e.g., logarithmic as in thequenched approximation, with particular emphasis on the
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role of magnetic monopoles, has been performed in Refout the bosonic field$5]. The triviality of this model has
[17]. A detailed presentation of thgU¢ project in two, been recently confirmed in large scale simulatifi2s, 11].

three, and four dimensions can be found in RéB]. An (4) At amy=2 and k arbitrary, the compact scalar QED
investigation of similar models in continuum has been peror U(1) Higgs model(2.3) and (2.4). Its continuum limit at
formed by Kondd 19]. strong gauge coupling is Gaussig®2,23.
At strong coupling,8<1, the model has three sheets of
ll. THE xU¢ MODEL first-order phase transitions: the two “wings” at finigemy,

and the sheet a&my,=0, separating the regions with nonzero
chiral condensate of opposite sign. These three sheets have
critical boundary line€. .E andNE, respectively. As we
shall discuss below, we have verified with solid humerical
S=S,+Sy+S,, 2.1) accuracy that these second-order .ph.a_se transition lines do
indeed intersect at one point, the tricritical poiait We are

A. Action, phase diagram, and spectrum

The four-dimensional latticg U ¢ model is defined by the
action

1. _ 4 not aware of a convincing theoretical argument why this
SXZEE XXE an(Ux,,uXer,u_UI—,u,,uXx—,u) should be so.
x oow=l Of most interest is the Nambu phase at sm@land «,
_ with my=0. (Strictly speaking, this phase is atny=0, but
+ame>, XxXx. (2.2)  for technical and theoretical reasons we allow small nonzero
X amy,.) Here, because of confinement, there isgidboson,
i.e., no charged scalar, and no fundamental changder-
Sy= _32 cog05p), 2.3 mion in the spectrum. The chiral symmetry is dynamically
P broken, which leads to the presence of the neutral composite
. physical fermionF= ¢y with nonvanishing massme.
s This phase contains the Goldstone statevhose mass ap-
Sg=— Kg ;1 (dxUxudxsptH-C. proaches zero with vanishiram, in accordance with PCAC
(2.4  (partial conservation of axial vector currgnam, o yam,.
The spectrum of light neutral states in the vicinity of criti-
Here®p <[ 0,27) is the plaquette angle, i.e., the argument ofcal lines is important for understanding of the physical spec-
the product of W1) link variablesU, , along a plaquetté®. trum in various continuum limits. Roughly, the situation is as
Taking ®p=a?gF,,, wherea is the lattice spacing, and  follows. In the vicinity of theNE line in the Nambu phase
=1/g?, one obtains for weak couplirgjthe usual continuum we find various states containing the fermion figidin the
gauge field actiorS,=;[d*xF2,. The staggered fermion amy=0 limit the mass of the physical fermioR= ¢y
field y has(rea) bare massam, in lattice units and corre- scales,am:—0, as theNE line is approached. Then there
sponds to four fermion species in the continuum limit. Theare various fermion-antifermion bound states, which we call
scalar fieldg is of fixed modulug ¢|=1. We comment on “mesons” in analogy to QCD: the pseudoscatey the sca-
this and some other choices made in the action at the end &ir o, and the vectop. In the amy,=0 limit the 7-meson
this subsection. mass vanishes and tieemass scales similarly tamg. The
The model has (1) global chiral symmetry in the limit fate of theoc mass in this limit is not clear. The spectrum
my— 0, wherem, is the bare fermion mass in physical units, along theNE line is very similar to that of the NJL model
to be defined while constructing the continuum limit. This is[21] and the line is presumably in the same universality class
to be distinguished from the limam,— 0, allowing explicit ~ as that model, as suggested by our earlier re$ults
chiral symmetry breakingm,#0, whena— 0. Because of In the vicinity of theE...E lines at largeam, the states
this fine difference betweem, andam,, important in vari- ~ containing fermion field do not show up. Instead some light
ous possible continuum limits, we keep tracedhroughout ~ states in the¢'-¢ channels are present. We call them
the paper. “bosons” in analogy to the name they would have in the
The schematic phase diagram is shown in Fig. 1. We recHiggs models. It is in particular the neutral scalar boSon
ognize several limit cases of thdJ ¢ model as models in- This scalar appears both in th'- ¢ and the scalar gauge-
teresting by themselves. ball channels, which strongly mix. Below the wings of Higgs
(1) At k=0 andamy=c, the pure W1l) gauge theory phase transitions it is natural to interp@ias a gauge ball,
with the Wilson actior(2.3) and phase transition between the since this interpretation holds also at small when the
confinement and Coulomb phases. Its continuum limit in archarged scalag is heavy. Also a vector boson is observed in
extended coupling parameter space may be determined bytilae ¢'-¢ channel, whereas we found no indication for a
non-Gaussian fixed poift.2]. vector gauge ball or any other light state. The masg of
(2) At k=0 andamy finite, the gauge theory with fermi- the S boson vanishes on the lin&s. .E, whereas the vector
ons, i.e., compact QEIR.2) and(2.3), whose phase transi- boson does not scale there. In the continuum limit, taken on
tion is currently under investigatior20]. the critical linesE. . E at a nonvanishingam,, the bare
(3) At B=0, i.e., the gauge field being auxiliary, the massmg approaches infinity and fermions decouple. The re-
Nambu—Jona-LasinioNJL) model, obtained by integrating maining U1) Higgs model is equivalent to the triviab*
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theory at the critical end point of the Higgs phase transitionsvhere V=L3T is the lattice volume. Following Ref§23, 7]
[22,23. This is confirmed by some of our results presentedve use the perpendicular and parallel components of these
below. energies,
At the tricritical pointE the above spectra merge. We find
that the ratiomg/mg is finite and independent of the direc- E, =E,cos6+Epsin 6, 2.7
tion in which E is approachegexcept directions tangential to
the critical lines. Therefore, the continuum limit obtained
when approaching the poiE contains, in addition to the
states scaling on thE line, also theS boson, and is thus
different from the rest of th&lE andE. .E lines. We have
found no indication for the existence of a state which woul
scale atE but not on some of the critical lines.
Finally we discuss the choice of the acti¢hl)—(2.4) and
expected consequences of its possible modifications. The _
freezing of the radial mode ap could be relaxed by insert- (xx)=(TrM 1) 2.9
ing a term\ (¢'¢—1)2. Then the actiori2.4) would be the
limit casex — . Experience with the Higgs models suggestsvia a stochastic estimator, wheké is the fermion matrix.
that forA>1 the qualitative properties at sm@lremain the To calculate the mass of the physical fermion we consider
same as ah = [28]. However, quantitative results might the gauge invariant fermionic fieléf,= ¢!x,. The mass
change. In our case this could mean that the tricritical poinbkm: is measured by fitting its propagator in momentum
E still exists, but the mass ratio of the bosBrand fermion  space[7]. The results for the measurement in configuration
F at this point might depend oh. For A<1 the phase space are consistent.
diagram at smallg presumably changes qualitatively. Our  The fermion-antifermion composite states are called “me-
restriction toh = is motivated by simplicity and the need sons.” The corresponding operators and other details are
to limit the number of parameters. given in Refs[4,18]. We tried to include also the annihila-
We point out that the Yukawa coupling between the fun-tion part, but failed to obtain sufficient statistics.
damental fieldsy and ¢ is forbidden by the charge conser-  To improve the signal, we also measure the meson propa-
vation. Thus, except*, no term with dimension 4 or less gators with smeared sources. This required the adaption of
and consistent with the symmetries of the model is missingthe routines, used with Wilson fermions, to the case of stag-
However, it is questionable whether naive dimensionality isgered fermions. It is described in Appendix 1. With these
a reliable guide for constructing the action to be used asmeared sources we have been able to fit the meson propa-
strong gauge coupling. For example,&s:0, the interaction gators by a one particle contribution at time distances larger
reduces to the four-fermion interaction term of the NJLthan zero. But the same masses could be obtained if the
model. Such a term witly field could be added also at non- unsmeared propagators were fitted with the inclusion of ex-
zero B. We guess that it would shift the chiral phase transi-cited states. The smeared propagators reduce the errors, how-
tion line, as it does gB8= 0, without substantially influencing ever, and in this work we mostly show results obtained by
the Higgs transition, and the tricritical point thus would not this method. Further details of the fitting procedure can be
exist any more. So this modification would not fit with the found in Ref.[18].
aim of this paper. From the propagator of the meson also the pion decay
Disregarding the naive dimensions, other modificationsconstantaf,. can be calculatef4],
e.g., introducing couplings between composite neutral states,
could be thought of, too. Instead, we investigate whether amy
they arise as effective couplings. This appears to be the case af_= \/z—w— (2.10
at least for the Yukawa coupling of thHe fermion to the (am,)?
Goldstone bosonr [10].

E|=E_sin 6—Ep cos 6, (2.9

whered is the slope of the Higgs phase transition line at the
dend point in the planeg&,4/3«).
For the localization of the chiral phase transition we mea-
sure the chiral condensate

Heream_ andZ . are the mass and the wave function renor-
malization constant of ther meson. We checked, thatf .

fulfills with excellent precision the current algebra relation
For the investigation of the tricritical point we use the

following observables. To localize the Higgs phase transition

B. Observables and numerical simulations

1 _
we use the normalized plaguette and link energy are defined (afwamw)zziamOO(X)- (2.11
as
1 This is so even very close to the phase transition, though
Er==y > ReU, ..} (2.5 — o
6V a<y both af, and {xx) show rather strong finite size effects
there.
1 For the investigation of the chiral phase transition we also
E =—> RedaiU , 26 calculate the susceptibility ratig,,, which is defined as the
L 4V2 Pt 28 logarithmic derivative of the chiral condens4gs,26:
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In the same way we also measure the gauge invariant
combinations of the gauge fields, which we call gauge balls,
in analogy to QCD glue balls. We define two operators with
the quantum numbers'0” and 1" —:

We measure it as the ratio of zero momentum meson propa-

gators

_C,(p=0)

" Culp=0) 213

including the annihilation part of the propagator. This is
done by means of a stochastic estimator and is described in

detail in Ref.[18].

3 -1

++ 1
0 (t)==2 Re >, > Umj}, (2.18

L & i=2j=1

(1) 1 - ;

O; (t)ZFZ IM{U 50 ikli#jk=i}, 1=1,2,3.
X
(2.19

As explained in Ref[25], we expect that close to a criti- The masseamg of the gauge balls are calculated in_analogy
cal point the data could be described by means of the scalin@ the boson masses by means of the propagators in the con-

law

amo)’ (2.149

Rw(t!amO) = g( t_A

wheret is the distance from the critical poifiteduced cou-
pling), A= B+ v the critical exponent, and a scaling func-
tion. At the critical point,

1

R(0amg)=g(=)=7, 219

as can be seen by insertifig ) (amy)? into Eq. (2.12.
At the critical point,R,. should be independent afm, for
sufficiently smallam, (scaling region In the broken phase,

R, vanishes in the chiral limit, as can been seen easily from

the definition. In the symmetric phase, thheand 7 channels
are degenerate, so that in the chiral lirRif=1. For small

figuration space.

We have observed mixing of th® boson and the 0*
gauge ball by means of the two-point function

GSO(1)=(0®(0)0 " (t)). (2.20

We have also measured the effective Yukawa coupfing
between the neutral fermidn and ther meson. This is done
in analogy to Ref[27], and the used operators are described
in Appendix 2. A detailed discussion of our results is given
in Ref.[10] and summarized in the conclusion of the present
paper.

[ll. LIMIT OF INFINITE BARE FERMION MASS

A. U(1) Higgs model and chiral phase transition
in the quenched approximation

For amy= 0, the yU ¢ model reduces to the (W) Higgs
model with|¢|=1 on the lattice, Eqs(2.3) and (2.4). This

fixed t a characteristic behavior is expected, if one variesnodel was investigated in the 198@fsr a review see, e.g.,
amy: Becausel > 1, close to the critical point the curves for Ref. [28]) and with modern methods in Refi22,23. Its
R, start foramy=0 from 0 and 1, respectively, and for phase diagram is represented by the front face of Fig. 1. It

increasingam, approach the horizontal line &/ This will
happen faster the smallg is (compare Fig. 12

has the Coulomb phase at smaland largeg, the rest being
the confinement-Higgs phase. The line of Higgs phase tran-

Further we consider the scalar and vector bosons, whossitionsE_.S,, is first order except the points,, andS,,. The

operators are defined as

1 3
O(S)(t):Fz Re{ izl ¢E’tU(i,t),i¢i+f,t , (2.16

1
0= 52 Im{¢} Uz idisrd, i=1,2.3.
" (2.1

continuum limit at the critical end poinE, corresponds
most probably to a trivial scalar field theof2,23.

When dynamical fermions witamy>0 are included, the
phase diagram remains roughly the same, except that the
confinement-Coulomb phase transition and the end point
Eam, shift to smallerB. The end points then form the critical

line E,.E. It is natural to expect that this line, except the
tricritical point E, remains in the same universality class as
the pointE.,. Our results confirm this expectation.

When quenched fermions with smalim, are included

The masseams andamy, of the scalar and vector bosons are jnto the Higgs model, a line of chiral phase transitions ap-
calculated from the Correspondlng correlation functions |npears in the otherwise unchanged phase diagram of the H|ggs

configuration space.

model. It was realized already in the first investigations of
the Higgs model with fermion, that full and quenched mod-
els have a very similar phase diagrgdn6]. This includes the

To reduce the statistical fluctuations in the determination ofobservation that the chiral phase transition line runs within
amg, calculating the propagator we subtract the momentum zeréumerical accuracy into the critical end point of the Higgs

propagator before the determination of the el@rerage over the
propagator.

phase transition line. The phase diagram of the quenched
model looks thus similar to them,=0 plane of Fig. 1.
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275 [ ' ' ' ' 5 S=—6V(tE+hE,)+S¢ . 3.3

I ] The letterst andh have been chosen in analogy to tempera-
270 [ 7 ture and external field in magnetic systems.

We introduce critical exponentsand v of the correlation
length for both directions

« 265
[ &t "h=o 3.4
260 [ and
[ o |h| ™ "li-o, 3.9
255 [ . . . .
[ ! , ! . ! ] £ being the correlation length diverging B&t, .
B4 85 .86 To understand the relation betweenand » we assume
8 the equation of state
FIG. 2. Definition of the reduced couplingsandh and of the |h|
angled. The pointE., is the end point of the Higgs phase transition E=|t|7'F — 1 (3.6
line. The scale of thex axis is 4/3 times larger than that of tie |t|
axis.

with the scaling functionF and A=gB+v. Introducing
F(x)=x"F(x) it can be rewritten as

|h|1/A
It )

This similarity suggests that it might be instructive to
study thexyU¢ model in the quenched approximation. In
Ref.[17] a quenched investigation of the interplay of chiral §:|h|V/A|~:(
phase transition and the monopole percolation was per-
formed. It seems that there might be an interplay of both L~ ) ~
transitions at an intermediaje on theN..E.. line, possibly ~ASSUMIngF ()<= this meansy=v/A. ,
with nontrivial exponents. Around the poirlts, andE.. the The scaling behaviof3.5) is expected in the general di-
chiral and the percolation transitions appear to be separateffctiont=ch, because\>1, and therefore
however. Ih| VA

T:hlm_llc_)oc (38)

(3.7)

B. Scaling behavior at the end pointE.,

We begin by investigating the end poiat,. We wantto for h—0 and, accordinglyt— 0. This makes clear that it is
gain experience and check the reliability of the determinatiomot important to choosé perpendicular tat. Only thet
of critical exponents by means of Fisher zeros. We later apdirection (h=0) is special as it is tangential to the phase
ply this method at finiteam, for the scaling investigation transition line and thus described by the scaling k&u).
along theE_E line and compare the results with those atThe classical values of the exponemts-1/2, y=1, andv

E.. _ . . . =1/2 correspond to=1/3.

The scaling behavior at the end point of the Higgs phase To determine the critical exponent of the correlation
transition line was determined in Reff22,23 along the  |ength we measure the scaling behavior of the edge singular-
first-order Higgs transition line. It was found that the endity in the complex coupling planéFisher zerd [29]. From

point is described by the classical, i.e., mean field exponentgcaling arguments for the free energy we expect for the first
We investigate the scaling behavior approacHingin dif-  zeroz,:

ferent directions. For this purpose it is useful to introduce the _

following reduced couplingéFig. 2): t, parallel to the phase Imzy(L)|—o=AL™ (3.9

transition line of first orderh, perpendicular to the phase

transition line. As all directions which are not tangential to the phase tran-
Here perpendicular is understood in the same sense as #ition line are equivalent, we expect the same exponent

Egs.(2.7) and(2.8), so that also if we fix 8= Bg_ or k=r«g_. This was verified in Ref.

4 [15]. Fixing one of the couplings is particularly convenient

t=—(B—B.)cos o+ §(K—KC)Sin 0, (3.1)  for the necessary analytic extrapolations into the complex
plane. That is done by means of the multihistogram re-
weighting method 30].

. 4 We present here the scaling investigation we did for
h=(B—=pBc)sin 6+ 3 (k— Kc)coS b, (32 =0.848<p8¢_. Figure 3a) shows a nice scaling behavior for
all lattice sizes with the critical exponent=0.3236(10).
and therefore This value is very close the classical exponert1/3.
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10-2 |-

Im(z,)

10-4

$=0.848

fit: ALV

b= 0.32355(99)
A= 0.760(11)

1 X%awr=0.831250

(a)
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FIG. 4. Schematic phase diagram of the first-orB8r planes
and the critical linesl(.. , L,) in the vicinity of the tricritical point
E. L, is the line of triple points. Thé lines correspond to the lines
in Fig. 1 as follows:L,=NE, L.=E_._.E, L, =ET. A local co-
ordinate system is shown.

IV. EXISTENCE AND POSITION OF THE TRICRITICAL
POINT E

A. General properties of tricritical points

To present our investigations of the tricritical polit we

first summarize the relevant general properties of tricritical
points and define the exponents. In notation we follow Grif-
fiths [34].

In the vicinity of a tricritical point it is usual to choose the
following orthogonal coordinate syste(Rig. 4): \, tangen-
tial to the first-ordefPT line in the symmetry plangg, per-
pendicular to thePT line inside the symmetry planég; per-
pendicular to the symmetry plane. In the symmetry plane

The small deviations outside the error bars are probablylo=0, these definitions are analogous to those in the Higgs
due to logarithmic corrections, as they are expected at Gausglodel(Sec. 1l B), X andg corresponding to andh, respec-
ian fixed points. To verify this we follow the idea from Ref. tlvelly.th hase d " . al I hich
. Y i n the phase diagram there are four special lines, whic
i[r?g;]binhi\f/?grtohrazutthtgic:remadlng power law = If the scal we denote following Refl9]: the chiralPT line NE (second

ordep in the symmetry planeN>0) is lambda lineL, , its
continuation in the symmetry plane, on which three first-
order phase transition sheets mee&(0), is triple lineL .,

and the two lines of end points outside the symmetry plane
are wing critical lined., andL _. The first-ordeP T plane
below the lined_, andL, in the symmetry plane is denoted
Sy, and the two wings of Higgs phase transitions &reand

S_ . Because of the-am, symmetry we use in the follow-
ing only the index+.

The most important exponents and the defining scaling
behavior are summarized in Table I. Comparing a metamag-
net to our model, the staggered magnetization corresponds to
the chiral condensate and the magnetization to the energy
O\EL . The unfortunate fact is that the symmetry plane, which
. . . ._is of major use in the study of metamagnets, corresponds to
models have a very similar scaling behavior at the ~end POINt4 & chiral limit mo=0, which is difficult to approach in nu-

We have also determined the critical exponentby  merical simulations with fermions coupled to a gauge field.
means of the finite size scaling of the specifiC heat and of The two sets of exponents with indéxandu are defined
some cumulantl8]. These less precise methods confirm thejn analogy to the exponents on the adjacent critical lines: The
results presented here. Also the shift exponefitas turned  set with the index (tricritical exponentsis defined in anal-
out to be compatible with 1/for the investigated observ- ogy to the exponents along the chifl line NE (L, line).
ables[15,18. The set with the index (subsidiary exponenkss defined in

FIG. 3. (8 Scaling behavior of the edge singularity fe
=0.848=B¢_in the U1) Higgs model onL* lattices. The small
deviations from the trivial scaling behavior with=1/3 are re-
solved in(b). Here In(%lmz,) is shown as a function of In(lh).
The fit from (a) is shown dotted. The value fg#e_ has been taken
from Ref.[23].

L3Imzy(L)|i=o=A(In L)~ P, (3.10

we expect in the Inin plot a straight line with the slope
—p. The data shown in Fig.(B) are very well described by
a straight line withp=0.17. They? is smaller than that with
a fit by means of Eq(3.9). However, we have not investi-
gated how far these results, and especipllgepend on the
precise knowledge of the critical point.

A similar value for the exponent was also measured in
the SU?2) Higgs model[32,33, but then it was not realized

point. Now we can conclude that thg1) and SU2) Higgs
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TABLE I. Exponents at the tricritical point. In the second col- tricritical points have not yet been investigated numerically
umn the notation of Ref9] is given. The classical value is derived in four dimensions.
in three dimensions. Its applicability to four dimensions is discussed Fgr the singular part of the free enerdy usually the

in the text. following scaling relations are assumgg:
o class. - [ g ¢

exp. Ref[9] definition value Fsind\.9,0)=|A|? ““.7:()<W, |)\|¢At) , 41
a N %MWU’ g=7=0 4 FsindN,0,0)=[9|*” “F} (Igll’*b'@)' (4.2
Bt Bt OooelglP, A=7=0 i For such systems several relations between the exponents
8, 8, AE, [\[fe. g=£=0,A<0 1 can be derived34],
5 5 T {95 A= g0 c a=1-1/5,, 4.3
8, 1By |E, —E, ox|g|¥%, \=¢=0 2 A=, (4.9
u £rxIN7r g=¢=0 . 2 ay=¢(2—ay), (4.5
y £.x[g] 7 A=¢=0 2 vom by, 6
vy &gl ™" A=¢=0 3
1) ) goc|N|? at the linesL, andL,, (=0 2 1+ 6=(2—ay)l B, 4.7)
PA, A {o|\|#At at the linesL 3 A= B8=(2—ay) $8,1(1+ ),
Ay Ay= By, 2 (4.8

Br=(2—ay/(1+6). (4.9

analogy to the exponents along the line of Higgs end point$n our work we use in particular the last two of these rela-
E.E (L. line). In general, the exponents at the tricritical tions.
point are different than those at the adjacent lines. We denote Only four exponents are independent. With the assump-
the diverging correlation lengths and the exponents on th&on that the hyperscaling relation
linesL, andL, by the indices\ and+, respectively. —o g 4.10
The tricritical point can be considered as a special point of % "t '
both thelL, and thelL . critical lines. Both the correlation no|gs, only three independent exponents remain.
length &, diverging at thel, line and the correlation length  ynfortunately, theory of tricritical points in four dimen-
&, diverging at thel | line are critical there. Nevertheless, sions is insufficiently developed. The Ginzburg criterion in-
in general,&, and £, are to be distinguished also at the dicates that for all dimensiong=3, tricritical point can be
tricritical point. In our case, =1/amg and ¢, =1l/amg. described by the classical, i.e., mean field exponents. Their
Our results strongly indicatéSec. VI A 2, that at the values, derived in three dimensions, are given in Table I.
point E, & =&, on all paths into the poinE. This propor- These values would imply violation of the hyperscaling re-
tionality seems to hold also for all other observed correlatioration in four dimensions. Their validity is unclear, however
lengths(inverse massesvhich diverge at the poirE. Thus  (see p. 127 of Ref9]).

there seems to be only one scaling law age v,. This is a
generic property of tricritical points. It makes possible to use
at the tricritical point the finite size scaling theory quite in  For the existence of the tricritical poit in the yU ¢
analogy to the adjacent critical lines. model the chiral and Higgs phase transition must meet at one
In three dimensions it is usual that tricritical points have apoint in themy=0 plane. Since there is no theoretical under-
large region of dominance. In analogy, near the tricriticalstanding for the interplay between both transitions, the exis-
point we expect to find at some distance from the secondtence of such a point has to be demonstrated numerically.
orderPT lines already the scaling behavior described by the To give a first impression, Fig. 5 shows the mass of the
tricritical exponents. Such a crossover phenomenon was irscalar bosoramg in the vicinity of the tricritical point for
vestigated, for example, in R€f35]. A similar effect might amy=0.01, 0.02, and 0.04. This mass has been obtained
be expected also on small lattices in the immediate vicinityfrom the </>T-¢> correlation function(2.16. It has a pro-
to the PT lines. It is not excluded, however, that in four nounced minimungarrows in Fig. % for eachamy. Its mini-
dimensions the tricritical points are much less dominant thamal value on the x 16 lattice is about 0.35, and 0.2 on the
in three-dimensional models. To the best of our knowledge8>x 24 lattice. The significant decrease with increasing lat-

B. Two diverging correlation lengths
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FIG. 5. Boson masamg as function ofg for differentam, and
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4 amgy=0.02:
+:4*
a:g?
=g

.05

04 |7

7] gm0
amy=0.04:
w, 030 @:4*
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0:8*
02 [~ o:10*
.01 [~
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FIG. 7. Square of the latent heat of the enerBy for

lattice sizes atc=0.30~ k.. The arrows indicate the minima of @Mo=0.02 andam,=0.04 for lattices of the size*4to 8* and 10,

respectively. The mean-field exponeﬁn:%
straight line. We have described the data for eaaty with one

amg.

corresponds to a

commong, in Eq. (4.11) for the different lattice sizes.

tice size indicates that the mass in the infinite volume van-
ishes, and the correlation length = 1/amg thus diverges.
The vanishing ofamg at someg, « for any finiteam, cor-
responds to thé& .E line of end pointsEamO of the Higgs

phase transitions.

The fermion masamg: descends steeplFig. 6) at the
position of the minimum of the boson mass for the samg
and volume. In the broken phase, the curves for differen

volumes slowly approach each other. In the symmetric_

phase, the values @&mg achieve small finite values which

should vanish in the chiral limit and infinite volume.
Figures 5 and 6 show that changes of volume ang

result in a shift of the minimum iB. The same holds fok.

So there is little hope to extrapolate the data at figemhd «

into infinite volume and chiral limit. As usual for tricritical

points, a fine tuning of both couplings is required. In this

work we assume that the limited precision of the position of

the tricritical point we have achieved is outweighted by a
sufficiently large domain of dominance of this point.

C. Position of the tricritical point E

To localize the poinE we determine the positions of the
end pointsE,n for small amy and extrapolate them to

16 z T ' T ] x=0.30
- \:\\\\ % m
TN S 1 e16:
12 @\\ \\\\{’ 7| ®:amy=.02
i 0y A\\ #:amy=.04
1.0 LU Y 7
r v N 1 g%4.
= \ I 8°24:
E 08 [ ] @\ %3%\ 3 T o:ame=.01
| Lo F% S 1 o:amg=.02
0.6 [ E? *xg *, | s:amy=.04
i | 4 3 *
0.4 [ 3]\ % Ea, g
5, ®g e,
02 [ N
0.0 | | .1\ \/P L 1\ | |
64 .85 .66 87 .88
g
FIG. 6. Fermion masamg as function ofg for differentamg

and lattice sizes at=0.30. The minima of the boson masmg are

marked with full symbols and arrowsf. Fig. 5.

amy=0. It is difficult to control the uncertainties in every
step of this complex procedure.

At a fixed nonzeroam, we proceed in analogy to Ref.

[23]. We determine the latent heat Bf, on theS, wing.
Figure 7 shows the latent heAtE, as a function ofg for

wo amg and different lattice sizes. The values have been
btained by reweighting the data at fixgdto the valuex
kpc(B,amg,L) where both maxima have the same height.

Then the distance of these maxima in the histogram and the
uncertainty have been estimated, as the data is not sufficient

for a fitting procedure.

We expect a scaling oAE, for fixed amy and fixed

lattice size of the form

AE, xtProc[ B—Bodamy,L)]P+. (4.1

Here the magnetic exponept, is defined on thde E line.

In this procedure it is assumed that the dominant contribution
due to the finite volume can be absorbed in a volume depen-
dent pseudocritical coupling,(amg,L). A better method
would have been to extrapolate the latent heat first into the
infinite volume and to investigate scaling afterwards. But for
such an analysis the quality of our data is not sufficient.

At amg=c the classical valugd, =3 is observed23].
Expecting a similar value at finitam,, we plot in Fig. 7
AEf. Our data are well compatible with its linear depen-
dence onB and thus with3, =3 also at smalamy .

A fit with free B, gives a value of3, =0.5(3) foram,
=0.04, andB,=0.5(4) foramy;=0.02. The probably over-
estimated error foAE, results in an overestimated error of
B+ . In fact our data do not have the necessary quality to
investigate the scaling4.11) with a free exponeni3, .
Therefore, we fit them with fixe@ , =0.5. Forg,{(amy,L)
obtained in this way we assume scaling as in the Higgs
model[23] with v, =0.5:

ﬁpc(amo,L)—,BC(amo)ochll”ﬁ-_ (4.12

Our data are compatible with this assumptiig. 8).
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e
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FIG. 8. Pseudocritical coupling8,(L) as function ofL~2 for 0.0 N,
differentamy<0.10. The fit is an extrapolation into infinite volume 02 0.4
assuming the exponent valug =0.5. I

The so determined point8.(amy) of the E..E line are FIG. 9. Projection of the critical line of end poinEs,E and the
° * line of triple pointsTT,, onto the B-amy plane.(In Fig. 1 this

listed in Table Il and plotted in Fig. 9. The point atng corresponds to a view from below fam,=0.) Shown also is the

=1.00 was only estimated and the uncertainty included Incritical line NE of chiral phase transitions. The points have been
error barg18].

. . . determined on 6and & lattices. The error bars reflect the uncer-
The values ofx. in Table Il have been obtained in the

- . tainty of the extrapolation into the infinite volume.
following way: At eacham, the k coordinates of the pseud- Y P

ocritical pointsxp{8,amy,L) introduced above were inter- |, symmary, we estimate the coordinates for the paint
polated ing3 to obtain their values gB.(amp). For larger iy infinite volume to be
lattices they are practically independent of the volume, giv-

ing the listed valuex.. The errors of«; arise mainly from Be=0.623), (4.19
the errors of3..
These results foB:(am,) are extrapolated into the chiral kg=0.322). (4.15
limit. The curves should approach the symmetry plane with
the critical exponentpA, : The rather small improvement of the precision compared to

our earlier publicatiof7] shows how difficult the determi-
Be(amy) — B(E)x A s(amy)=(amy)®t.  (4.13  nation of the position of the tricritical point is if no simula-
tions in the symmetry plane are possible. Nevertheless, our
A fit of the data obtained foamy,<0.10 gives¢pA,~1.6  present determination is much more reliable due to the use of
(Fig. 10. This value is in agreement with that obtained bythe scaling analysis.
means of the relatiofd.8) from the values of the exponents
determined in the next section. There we finplA, V. CRITICAL AND TRICRITICAL EXPONENTS
=1.8(1). Theextrapolated8 value for the pointE is B¢
=0.625. Of course, with three free parameters used to fit
four data points the error is large and uncertain. We have seen in Sec. Il B that the scaling behavior at the
The satisfactory quality of the fit and the agreement ofpoint E,, is mean-field-like. We now repeat the analysis by
both methods for the determination ¢\, indicates, that we means of Fisher zeros also for small fixach, and deter-
may actually overestimate the errors in the whole procedure.

A. Exponents »; and 8,

For example, fixingpA,=1.8 in Eq.(4.8) reduces the error e s e
for B without reducing the quality of the fit shown in Fig. b 8’22(551)7)
10 and givesBg=0.621). o < o

.68
TABLE II. Estimate for the position of the critical end points

Eamo on theE_E line (L) in the infinite volume limit. .

amy Be Ke 64

0.02 0.6547) 0.3045) i i

0.04 0.6714) 0.2964) el

006 06844) 02913) 0 .02 .04 .06 .08 .10

0.10 0.7073) 0.2853) o

1.00 0.802) 0.291) FIG. 10. The values oB.(am,) for am,=<0.10 obtained from
o 0.8484) 0.2632) extrapolation into infinite volume by means of E¢.12. The fit

shows their extrapolation into the chiral limit using E¢.13.
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amg=0.04

fit: AL
©:6=0.67
P= 0.3282(37)
1 A= 0.945(54)
Xiaot=0.028390

amg=0.02

fit: AL~

2:,8=0.64
V= 0.3749(88)
1 A= 0.653(61)
Xoaor=4.028770

0:6=0.655
Y= 0.3079(49)
1 A= 1.32(11)
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(b)

FIG. 11. Scaling behavior of the edge singularigg) for am
=0.04 andB=0.67,(b) for amy=0.02 and3=0.64, 0.655, 0.66 on
quadratic latticesB=0.67 is our current best estimate for the posi-
tion of the end poinEamo at amy=0.04. Foramy=0.02 we have
investigated three differemg values,3=0.655 is nearest to the end
point.

mine;a%, the value ofp at fixedam,, pursuing two aims.
We want to check the universality along tBe E line, and
we want to look for a possibly different scaling behavior in
the immediate vicinity of the tricritical poin.

To use the method of the Fisher zeros, one coupling has t

be fixed. For eactam, we have fixed8 at the position of
Eam, At this B we have done simulations for differeatand

afterwards determined the zeros in the comptegxane. The

accuracy of the method is limited by the uncertain precision_

of B:.(amy), as given in Table Il. To estimate this depen-
dence, we have made measurements at tgrealues for

PHYSICAL REVIEW D 58 034508

yields consistent results with a little bit larger error.

The finite size scaling theory above the critical dimension
should be applied with care. It is possible that in spite of
consistent scaling it is not the exponemt which is

observed. In our case the values af, obtained by this
method and from the scaling of the fermion mass are consis-
tent, however.

Therefore, we interpret our results as a good confirmation
of the universality along th&.E line. The measured values
are nearly identical to those amy=c. Also the logarithmic
corrections seem to tend into the same direction. Since we
found similar results also foB, it is likely that all expo-
nents along th&,E line are independent aimy.

Assuming that for the small values afm,, we could
investigate, the dominance region of the tricritical point is
already achieved, we expect that am,—0 the exponent

v.. turns over intor,= r,. This implies that the subsidiary
exponents with the index are identical or at least very
similar to the exponents along tite.E line, which are the
corresponding classical values. The measured value then cor-
responds tor,=3%. This means, that the value is different
from the classical values of a tricritical point. The corre-
sponding classical predictiom,=3 is hardly compatible
with the data.

A crossover to the exponents of the tricritical point at
small am, could be expected also for the exponght,
which we measured along ttt&.E line (in the S, plang in
Sec. IV C. However, also here we could not observe any
amy dependence ang, is compatible with the classical
exponent of a critical ling8,. =3 down toamy,=0.02. We
therefore interpreted these results as a indication, thaj|so
is close to3.

B. Estimate of é; from R,

As suggested in Ref25] it is possible to determine the
“magnetic” exponents for fermionic theories by measuring
the susceptibility ratidr, for different smallam, around the
critical point. We have measurdgl, for different « values.
Inside the broken phasecK «.), we expect a curve which
approache®R =0 for amy— 0. In the symmetric phasec(
Kc), we expect the curve to approaéh.=1 for am
—0. At the critical point = «.), the line should be hori-
zontal for smallam, and the corresponding value Bf, is

amy,=0.02. Between 9600 and 64 000 HMC trajectoriesequal to 16=1/5, .

have been done for eaghvalue at 5—7« points.

Figure 11 shows the scaling behavior of the imaginaryN

part of the Fisher zero ik for amy=0.04 and 0.02. In all

cases, no deviations from a linear behavior could be ob

served. The value, = o= 0.328(4) foramy=0.04 is in
excellent agreement with the result atmy=c. For am,
=0.02 it was more difficult to find the critical coupling
B:(0.02). From the three measurements we estimgig
=0.334).

Investigation of the cumulants yields results fer /v,

We have tried this method in our model@ 0.55 on the
E line (Fig. 12. For k=0.37 the curves bend downward
when approaching the chiral limit, fox=0.38 they bend
upward. This indicates, that the critical is between 0.37
and 0.38, in agreement with 0.3B§, our estimate based on
the modified gap equatidY]. The estimated horizontal line
separating both phases is Rf=0.30(5). This is in good
agreement with the classical value & 1/R,=3. Both re-
sults confirm our earlier result that the phase transitios at
=0.55 is mean-field-likg7].

which are consistent with the use of the Josephson relation.
This indicates that the hyperscaling hypothesis is fulfilled.

The calculation ofr, with use of the Josephson relation 2We thank K. Binder for a discussion on this point.
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FIG. 12. R, as function ofam, at 3=0.55 on &, 8* and 1¢ FIG. 13. R, as function ofam, close to the tricritical point at
lattices for differentx. B=0.64 on & and 10 lattices for differentx.

Our results for3=0.64, close to the tricritical point, are crude check was possible fey,, and another one fg, is
shown in Fig. 13. A horizontal curve is found fot,  described in Sec. VI A 4. We found no indications for a vio-
=0.3072). It extrapolates toR,(x.)=0.105). We esti- lation of the scaling laws.
mate thatétzlofﬁo under the assumption, that the increase
of the volume does not change this picture significantly. In- VI. SPECTRUM
deed, the data for the*@and 10 differ only very little.

To estimate the sensitivity of these results @nve have
obtained lower statistics data also @at0.62, our current
best estimate foBg. The results are very similar to those at
B=0.64. This indicates that fog8=0.64 we are already in
the influence region of the tricritical point.

Also an explorative investigation with the method of the
Lee-Yang zeros in the complexm, plane, as we applied
recently in the three-dimensional mod&6,14], confirms the
large value fors,. Using the lattices %4 and 6' we get for

B=0.64 andk=0.307 the estimate=0.275, which corre-
sponds tod,= 10.

To analyze the possible physical content of the continuum
limit taken at the poing, it is important to study the spec-
trum. This investigation has the advantage that it is relatively
independent of the missing theory of tricritical points in four
dimensions. Here we give only the most important results. A
tabular overview of the measured valugshich could be
presented even graphically only in padan be obtained
from the authors.

Most of the shown results have been obtained for fixed
x=0.30. The reason for this is the observation, that the shift
of the end poinEamo with amy is smaller in thex direction

than in theB direction. The advantage of this is, that for
differentam, the end poimEamO can be approximately hit

) ) with one «. The difference of this chosen value effrom
We have determined three independent exponents at thgyr current best estimate-=0.32(2) is due to the underes-

C. Summary of results for the tricritical exponents

tricritical point: timated remaining shift at the beginning of the large scale
_ simulation. The value<=0.30 corresponds the position of
n=0.335), 5.1 the end poinE,,, atam,~0.03.
B,=0.52), (5.2) Some measurements with less statistics have been per-
formed for 3=0.64 andk=0.305. They confirm the picture
5= 10:110. (5.3 presented here. In particular, they indicate a common scaling

behavior in a whole region arour, e.g., independent of
These values disagree with the classical values for tricriticalhe direction of approach to this point, provided it is not

points expected in four dimensions,=0.5, 8,=1, 6,=5. tangential to the critical lines.
The errors take into account only uncertainties in the mea-
surement. We cannot estimate possible systematic errors. In A. Fermion, boson, and gauge-ball spectrum

particular we have assumed thataati,=0.02 on the used
lattices we observe the asymptotic scaling behavior of the
tricritical point. Some support for this assumption is obtained The pictures showing the behavior of the mass of fermion
in the spectrum analysis in the next section. It is plausibleand scalar bosos in the vicinity of E have been shown
also because typically tricritical points have a large region ofalready in Sec. IV B. The very similar position of the pseud-
influence and the corresponding deviations from the scalingcritical area ofamg and amg for different volumes and
behavior are small. small amy for k=0.30=«g suggests that we express one
If one assumes the validity of the scaling laws, all furthermass as a function of the other.

exponents are fixed. We only could check with good preci- As amg is monotonously decreasing with increasikagr
sion the Josephson relation betwegnand v,. Some very B, and is well measurable, we plaimg as a function obmg

1. Uniform behavior as a function of arp
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] ¥=0.30 8°24

__ o:amg=.01

0:am,=.02

| &:amy=.04

02

02 [

0.0

0.0

FIG. 15. Mass rationg/mg as function of the fermion mass.
FIG. 14. Boson massimg as function of the fermion mass

amg. The broken phase is to the right from the minima. argument for the coincidence of chiral and Higgs phase tran-

) o ) ) sition at the poinE which is thus a tricritical point.
(Fig. 14. In this figure the broken phase is to the right and = Thg fact that this nice scaling behavior can be observed
the symmetric phase to the left. The border between both,, 5| jnvestigatedam,<0.04 further suggests that these
phases is at the minimum of the boson mass. In the infinitg,)yes of the bare mass are inside the dominance region of
volume and the chiral limit, the symmetric phase would ré-ye tricritical point. In the influence region of thg.E criti-
duce in this plot to one poingmg=0. This kind of plotas a ;5| jine ame would stay finite whereaams would scale to

function ofamg is possible for all couplings near to tE ;¢ This should at least show up in scaling deviations.
line, butamg scales only at the poiri.

To extract continuum physics in this way, it is necessary
to check that all curves are close to a uniform curve, when
the tricritical point is approached. In principle, this means the We also measured the mass of two gauge balls. The scalar
fourfold limit V—oo, amy—0, k— kg, and 8— Bg. gauge ball with the quantum numbers 0 (Fig. 16 has

One can see that in the broken phas®g as a function of  nearly exactly the same values as the scalar b&suistained
amg is nearly independent of volume amdn,. For other from the ¢'-¢ correlation function(2.16. We have also
k=K and 8= B nearly the same curves result. From thismeasured the cross correlation between both channels at
nontrivial observation we conclude that our data for fixedsome points and found a mass in good agreement with that
am, and x=0.30 correspond approximately to a path to-from individual channels. This strongly suggests that in both
wardsE for amy=0. For smallamg, at the transition into channels we see one state, which can be interpreted both as a
the symmetric phase, the boson masss increases rapidly. scalar boson and gauge ball. In the Nambu phase, the second
As expected, the minimum shifts to the left for increasinginterpretation might be more natural as it holds in the whole
lattice size and decreasirgm,, which corresponds to the phase, including«=0. Nevertheless, we continue to denote
approach to the critical theorfchiral limit in the infinite  the state bys.
volume. We also looked at the gauge-ball channel with the quan-

In the following, all observables are plotted as a functiontum numbers 1~, but we could not observe any light par-
of amg. To make the figures more clear, usually only theticle near the tricritical point. The mass of the vector boson
data on the 8x 24 lattice are shown, as long as the effects ofamy, does not scaléFig. 17). The mass decreases signifi-
finite volume in this kind of plot are small. cantly in the symmetric phase but stays large at the phase

transition @my,>1).

3. Gauge balls and vector boson

2. Scaling behavior of amg

To investigate the scaling behavior afng we look at the el ] x=030 824

mass ratiang/mg . As shown in Fig. 15, this ratio is nearly
constant, and close to 0.5 in the broken phase. A small de-
crease of this ratio for decreasimgng is indicated. Most
probably the reason for this is, that for nonzexo,, the
boson massamg vanishes at the poinE,y, in the V—o

limit, whereasamg stays finite. We have checked that ap-
proximately the same mass ratio is obtained also on other
paths into the poinE. This strongly suggests that this mass 0z |-
ratio is preserved also in the continuum limit. This would N S B B
mean that the scalar boson would survive with approxi- R
mately half the fermion mass.

This similar scaling behavior means, that both observ- FIG. 16. Mass ratiang /m of the scalar gauge ball (0') as
ables have a common critical point. This is our strongestunction of the fermion mass.

7_ oamg=.01
O:amgy=.02
1 4:ame=.04

amg(0"")/amg

0.4 [
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FIG. 17. Mass of the vector bosam, as function of(a) 8 and (b) amg for k=0.30 on the §x24 lattice. The phase transition
(minimum ofamg) is marked in(a) with arrows.

4. Scaling of ang and (xx) <;X>:Ao-(:8pc_ B)~, 6.2
We have tried to estimate the tricritical exponents also

from the fermion masame and the chiral condensatgy).  where 3, depends both on the volume aasn,. To get
The proper method would be to extrapolate the data first tgtable results we did, for eachm,, a fit with a common
the infinite volume and then into the chiral limit. As dis- pseudocritical coupling3,.. We choose for the fit of both
cussed in Sec. IV B, we are not able to do this. Therefore webservables the three points closest to the critical coupling
have investigated whether both effects can be absorbed infas determined by the minimum afmg) in the broken
the amy and volume dependence of the pseudocritical couphase. At these points the value of the condensate is still
pling B,. This is suggested by the fact that the value ofaround or above 0.3. So we end up with six measured values
amg/amg is nearly independent chm: and of the used and five free fit parameters.
(small) amy. As amg scales foram,# 0, this should be ap- The so estimated paramete8s., B;, andv; are listed in
proximately so also foamg and (yx). (ams itself is less ~ Fig. 18. The values o, are in nice agreement with the
suitable for such an investigation, because of the larger eminimum of the boson masams. The results for critical
rors) exponents are in rough agreement with the valuesyof
Correspondingly, we plot the results for the fermion mass=0.33(5) andB,=0.12"§* obtained in Sec. V[The latter
ame and the chiral condensatgy) for differentam, as a  Value is obtained from E¢5.3) by means of Eqs4.9) and
function of the couplingd (Fig. 18. We expect the approxi- (4.10.] These results support the values of the exponents

mate scaling behavior [E_qs.(5.1)_ and (5.3)] obtained by other methods at the tri-
critical point.
amFZAF(,ch_,B)Vty (6.1)
T T T T T T 030 6924 B. Properties of = meson
1 amemoon The mass of ther meson (0 ) can be measured very
o:<ky> ®amgp . . e
{ &= 0.082(23) reliably. In the broken phase we expect the validity of the
| v= 0.214(68) .
: Bpo= 0.65645(99) PCAC relation
m, — amy=0.02: 2
{ oo v (am,)?<an. ©3
Y v= 0.359(86)
o | Be=066129(62)
amy=0.04 As shown in Fig. 19, this relation is nearly perfectly satisfied
I I for B=0.64,x=0.305(near the tricritical point in the broken
L] v= 0246(70) phase. Thus it has the expected scaling behavior of a Gold-

Boe= 0.66684(49)

stone boson. Fat=0.31(transition to the symmetric phase
an expected deviation is observed.

FIG. 18. Scaling behavior cim; (filled symbolg and (xx) To investigate the flavor symmetry restoration we com-
(open symbols as function of the couplingd for k=0.30 on  Pare in Fig. 20 the mass in the channéls and (2) which

8%x 24 lattices. For eachm, a simultaneous fit tQ;)A andamg belongs to the quantLgir)n nl_meer§b(TabIe I i_n[4]). These.
with one common critical coupling was done. The fit interval is Masses are labelexim;’; with the corresponding channel in

m

marked with arrows. The results of the fit are given in the legendhe exponent. In channé2) also the first excited state could
(the amplitudes are not shoyn be measured and is Iabelamg)z.
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FIG. 19. (am,)? from channel(2) as function ofam,. The
PCAC relation(6.3) corresponds to a straight line through the ori-  FIG. 21. Pion decay constaatf . as function ofamg for «
gin. =0.30.

A light particle can be observed only in chani2). This ~ dent ofam, and for largeramg also nearly independent of
is the Goldstone boson, which scales corresponding to the volume. For smaleme there is a clear tendency for
PCAC relation. Its mass is different from that in the channeldecrease oaf . on larger lattices.

(1). The first excited state in chann@) is close to the mass  Figure 22 shows a comparison aff; for different 3
in channel(1). Both scale with approximately twice the fer- along theNE line. The smallest values faf, can be ob-
mion mass. The small observed deviations for smai} are ~ served close to the poiri, but the difference betweef
in the symmetric phase. =0.55 andB=0.64 is very small.

We cannot see restoration of flavor symmetry with par- If the pion decay constamtf, scaled as a mass, its plots
ticipation of the massless Goldstone boson. But an agreets a function olmg should give a straight line through the
ment of the massive contributions with the correspondingprigin. This is not observed, although on larger lattices there
guantum numbers seems to show up. This behavior of this a slight reduction observable even in the broken phase. We
Goldstone boson, which is massless in the chiral limit, andlo not know, if this is a hint towards a larger finite size
its role in the flavor symmetry restoration is not yet under-dependence. One may expect such a large dependence on the
stood. Similar behavior was observed, e.g., in the NJL moddbasis of estimates made by means of the Schwinger-Dyson
[21]. equations for the NJL modelFig. 33 in Ref.[21]). At

We note that the data indicate presence of a light pseudgresent we cannot exclude thiaf/mg diverges in the con-
scalar in the symmetric phase, as seen, e.g., in Fig. 19 &nuum limit. This could be an indication of the trivial con-
smallamg. In the chiral limit the massless Goldstone par-tinuum limit [11]. In any case the largest value,/mg

ticle seems to change at the phase transition infmoand?  =1/3, we found in the broken phase aroumh-=0.4, is a
state of two massless fermiofs lower bound for this ratio.
Figure 21 shows the pion decay constaf. [Eq. (2.10]
as a function ofamg. The value ofaf, is nearly indepen- C. Further mesons
— 1. p meson mass
20 [T r=0.30 The mass of thep meson (I ~) can be measured quite
i 57 % e amy=0.02 well. We use a fit to the propagator with a smeared source
[ LT T eoea and sink, which suppresses excited states quite well. We get
15 [ ¢ o yf
” ] o:am{) sm 25 [ i i L ' ' ] amy=0.02
4 A ]
& / g A;am%i 1 ap=0.00 (6°16)
1.0 [© 7 ’ - 0:4=0.55 (8°24)
° ig-B =t o] 0:4=0.64 (832:)
1 =«=0.30 (8°24)

05 ]
r gEE T B e o B —— B - —— - i

af,

| L | L 1 L 1 L 1 L | L | ]
02 04 06 08 1.0 12 14

0.0

.05 [ ]
amyp [ ]

FIG. 20. Mass ofam,, from channel(1) (circles together with ottt
massam,. and first excited state of chann@) (squares and tri- '
angles, respectivelyas function ofamg . In channel(1) a simulta-
neous fit to the data with point source and smeared source has been FIG. 22. Pion decay constaatff . as function ofamg for amy
used. =0.02 and differenj3 and «, respectively, along thBlE line.
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FIG. 23. p meson mass fronfe) channel(4) and (b) channel(3) for k=0.30 on the 8x 24 lattice. The line shows thea2n: threshold.

the same mass also if we use the point source and sink arad those two states. This does not seem to be so. Thus we

do a fit with two states with negati@nd one with positive
parity.

have to leave open the question, with which of the scalar
particles observed on the lattice tfemmposite Higgs boson

The interesting feature of the meson is the fact, that we has to be identified and what mass it has.

can observe it in two channels. As is shown in Fig. 23 the
results are nearly identical, especially near to the phase tran-
sition (amg~0.5). So the flavor symmetry seems to be re-
stored within good precision, at least for the

VIl. SUMMARY AND CONCLUSION

The tricritical pointE in the yU ¢ model turns out to be a

The values close to the phase transition are nearly exactlyery complex phenomenon in four-dimensional quantum

equal to 2ame (line)® and thep meson thus scales in excel- field theory, presenting numerous challenges. No reliable
lent agreement with the fermioR. We cannot distinguish way is known to study it analytically. Its numerical investi-
whether thep meson is a bound state or a resonance. gation faces tremendous obstacles: the analysis of numerical
data is made without a plausible analytic scenario, two cou-
plings have to be fine-tuned, the use of dynamical fermions
i N is necessary, and the chiral symmetry plane is not yet acces-
Figure 24 shows our measurement of theneson (0'")  gipje to simulation. The last two obstacles make the investi-
mass without consideration of the annihilation part. ThiSgation of this point substantially more difficult than the study
simplification is necessary due to computer time restrictionset ycritical points in metamagnets and other systems in sta-
It is striking, that theo- meson mass is especially for small (igtica| mechanics. Though statistical mechanics provides the

2. o meson mass

am, nearly independent afm . In the broken phase it does ¢qnceptual understanding of tricritical points which we have
not increase with it. We also observe some finite size effects,qqyily used, there is actually no experience with tricritical

with tendency of increasingm, with increasing volume.

points in four dimensions to compare our results with.

Furthermore, as seen in Fig. 24, the dependence on the bare g, these reasons our conclusions can be only tentative.

mass is large. The data therefore do not allow us to extrapo-
late m,, to the infinite volume and chiral limits.

It is probable that ther meson decays in twa- mesons.
Therefore for eaclam, the dotted curve showsain_. All
measurements are within the error bars on or above this
threshold. Possibly, what we observe is not theesonance
but two 7= mesons. It should be noted that also in the NJL
model theo meson shows large finite size effects and depen-
dence on the bare mag&1].

The measurement of the mass of theneson would have
been very interesting, as it is the most natural candidate for
the Higgs boson. Because also the scalar bdsdras the
same quantum numbers, we would have expected a mixing

3The somewhat larger values fam, in Ref. [15] are due to an
insufficient consideration of the excited states.
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Nevertheless, they justify the effénive have spent: there is discussions. The computations have been performed on the
fair chance that the tricritical poirE exists and defines an Fujitsu S600, VPP500, and VPP300 at RWTH Aachen, and

interesting quantum field theory in four dimensions. Thoughon the Cray-YMP and T90 of HLRZ ligh. The work was

it has various features analogous to the NJL model, thgupported by DFG.

gauge field plays an important dynamical role. It may be
very complex and completely unaccessible by perturbation )
theory. However, it may provide a new alternative for dy- APPENDIX: DETAILS ABOUT THE USED OPERATORS
namical explanation of the masses of fundamental constitu- 1. Smeared sources for meson propagators

ents in the standard model. o . .
The simplest way to justify this hope is to describe our To reduce the contribution of excited states in the meson

results as a microscopic model for a strong Yukawa couPropagators we have implemented gauge invariant smeared
pling, postulated in the standard model, e.g., for the toppources37]. We are not aware of any such implementation
quark. We have done this in a separate pdfét.> In the  for staggered fermions. It requires that the even-odd separa-
vicinity of E, the Yukawa coupling betweef and =  tion is preserved. Therefore we have transported the source
emerges naturally as the Van der Waals remnant of the VeWith two link term to the next to nearest neighbor. This reads
strong interactions of thgU ¢ model. R R

The most surprising result is the clear signal for the scalar  ¢(X,t)— ¢’ (X,t)
S with mass proportional tong and thus present in the con- 1 3
tinuum limit in whichmg is finite. It can be interpreted either _ > > >, >
as a bound state of the pair of fundamental scafdrsp, or  1-6a [ ¢(X’t)+ai21 [V DUi(x+e;.t)
as a gauge ball. Both channels mix strongly. At present we

do not know, however, whether the found valueg X (x+26;,1)+UF (x—€,1)UF (x—26;,1)
=1/2mg changes with possible modifications of the model,
in particular if the¢* coupling is varied. il P

On the other hand, the WouE-be Higgs boson, the X ¢(x=2e,0]f. (A)

fermion-antifermion bound state= yy, is elusive. It does
not show scaling properties allowing an extrapolation to the/Ve have chosen values=0.01 ande=0.02 and 20 smear-
continuum limit. It does not mix appreciably with ing iterations. The resulting smearing radii w&e-0.89 and

The most perplexing result is the value of the tricritical R=1.47, respectively. The latter gave the better results.
exponentr,=1/3, which is a nonclassical value. Could it Compared to QCD these radii may seem very small, which
mean that the continuum theory is nontrivial? As the criticalmight be due to larger masses in our case, however.
properties of the poinE are different from those of the ad-
jacent critical lines, their triviality does not exclude nontrivi- 2. Effective Yukawa couplingyg
ality of E. On the other hand, standard lore in statistical .
mechanics is that in and above three dimensions tricritical V& h‘f’w? done measurements yf in the momentum
points are classic@b], suggesting triviality. However, this is space, s!mllar to Ref.27]. The meson-fermion three point
based on the experience with spin systems and scalar fielddnction is
and strongly coupled gauge theory with fermions might be 1 o
different. Thus poin€ is a challenge also for statistical me- GY(p,q)= ?Z g iPatitidaty B gipXgtiax,
chanics. itz X1.%2

We feel that our aim to understand the tricritical point in o
the xU ¢ model was a little bit ahead of time. Though we X (X1,ty) x(Xq,ty) >, el(Pa=aava
used the most advanced methods, they were not powerful - - Y4
enough. The computational resources should be also larger
by 1-2 orders of magnitude. Algorithms for simulation in ><Ma(ﬁ—ﬁ,y4)¢T(x2,t2)X(x2,t2)>,
the chiral symmetry limit are needed. Last but not least, the - -
interest in a search of strongly coupled theories beyond the (A2)
standard model should be much higher than the current wid-
erspread beliefs. with
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Qs for the o meson, T T T ‘ T T T T ] x=0.30
= = t—, A4 L amy,=0.02
Pa qs+m forthemmeson, W==7. (Ad ol 3] eooa
S
. 2m_ .\ (2m_ 2m_ o ] sRentr,
(p,q):(0,0), Tela ) L €1, L €. (AS) G 3; | A;Rei:(ﬂ):
= | odm yg(n),
L o:dm ye(m),
This choice ofp, guarantees that only states of the right 4 1 2m ya(m),
parity contribute. Fog, only the smallest possible values are 1r 7
considered and the results are averaged over both signs of 0 BB B PN
d4. The different spatial momenta are evaluated separately. L

The spatial momentum of the mesonpg=p-—q. 02 04 06 08 10 12 14
For the implementation we neglect the disconnected parts o

and write, by means of the fermion matfif,,, o
FIG. 25. Results for the real and imaginary partygfof the =

1 ) R meson for different momenta at=0.30 andam,=0.02 on the
GY(p,q)=— T< 2 eP=We (y)e(y) 8% 24 lattice as a function ciime .
Ya,y
. _ with
3P Myxld)(xl)e—'le]
t1.xg

O (0)=7n4(®), 6O, (0)=1. (A10)
X

. *
» Myxt¢<x2>e'[q+<°ﬁ>kz] >
t2.Xo

(A6) Here o runs over corners of the elementary three-

dimensional cube. In the tree-level approximati@), and
where the four-vectors,=(xy,t,), y=()7,y4), ... have Ge are the free_ propagators_ for the meson and the fermion,
been introduced. In this notation it is well noticeable, that forthe tilde indicating the Fourier transformation of the meson
our six different momentum pairgp(q) for both G5 all to- propagator. Thes_e prop_agators are replaced bY the full propa-
gether eight matrix inversions are needed. Due to the sour&at(.)rS from the simulation and. the wa\{e function renormal-
on the whole lattice the signal is very good and we havéZatlon constant¥ andZ, are included:
done a measurement only on every eighth configuration.
The effective Yukawa coupling!® is now obtained from
the comparison of the Monte Carlo data for the three-point
function, with that obtained in the tree level approximation

Gal(Po)= VZa(Po) b4

of an effective lattice action, which describes the interaction X; e'PoX{(o(x) x(X) x(X) #(0)x(0)x(0))c,

of the staggered fermion fields, F and a(pseudgscalar

field @ with a coupling term of the form (A11)
—y%")g D(X)F(X)F(x) (scalay, (A7) Ge(x,05=VZe(P)(X(X)x(0)), (A12)

with 6,=—1 and6,=1 to correct for the negative sign of

—ygﬂ; e(X)P(X)F(X)F(x) (pseudoscalar the o propagator.

(A8) After these replacements and identifications of
G$Y(p,q) with the measured values of expressi@) we
The connected part of the three-point function is obtainy(R“)(p,q) from Eq. (A9). yg should be real and only
(@) \/ sliqhtly dependent on the momenta. For the determination of
Ggm(p,q):_y%g > ya((;)éa(p_q) Z(p) we haive measured the corresponding propagators at
w momentump and then performed a fit with the free propa-
ator.
><| E n4(£)t2e‘q<x2+“’)GF(x2+ J),O)a ’ Using these definitions we have measured the real and
X2:t2 imaginary part ofyg. The implemented momenta combina-
. . tions have been numbered corresponding to(B§) from 1
Xr 2 774((:,)tlei[9+(0m)](><1+w) to 3.
X1t For the effective coupling of ther meson we get a con-
R * sistent picture(Fig. 25. The imaginary part of/g is very
X Gg(Xq+ “"0)5} (A9) small, and for different momenta we get approximately the
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same values. Because of this agreement we restrict ourselvesomentum vanishe@spproximately equal. The inconsisten-

to the evaluation of the data with vanishing momentiiNn.  cies are larger in the broken phase. The problems might be

1). related to the neglected disconnected parts but also to the
For the o meson we failed to get a reliablgz. The  fact that theo meson is probably only a broad resonance. In

imaginary part is not really small and the real part is only forthis sense this measurement shows again the problems we

the momentum combinations 1 and(& least one fermion already met in the measurement of #hieneson mass.
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