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Maximal variance reduction for stochastic propagators with applications
to the static quark spectrum

C. Michael* and J. Peisa†

Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom

~UKQCD Collaboration!
~Received 13 February 1998; published 7 July 1998!

We study a new method—maximal variance reduction—for reducing the variance of stochastic estimators
for quark propagators. We find that while this method is comparable to the usual iterative inversion for
light-light mesons, a considerable improvement is achieved for systems containing at least one infinitely heavy
quark. Such systems are needed for heavy quark effective theory. As an illustration of the effectiveness of the
method we present results for the masses of the ground state and excited states ofQ̄q mesons andQ̄qq
baryons. We compare these results with the experimental spectra involvingb quarks.
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I. INTRODUCTION

When computing hadron-hadron correlators, one ne
quark propagators from a given source to a sink. Optima
one would like to calculate the propagators required from
sites to all sites, and thus use all information available fr
the finite number of gauge samples. In practice this is seld
possible as one has to invert the Wilson-Dirac fermion m
trix to obtain the propagators. Using conventional iterat
methods, one obtains propagators from one source to
given sinks; to calculate and store such propagators from
sources is virtually impossible with current computing r
sources. Furthermore there is no known way to stop itera
before one reaches the machine precision without introd
ing bias. Therefore one obtains extremely accurate prop
tors from few sources. The propagators are so accurate
the variance coming from the limited sample of gauge c
figurations dominates the results totally. Clearly a lot of tim
is wasted on calculating the propagators to such precis
when the variance from one gauge configuration to anothe
several orders of magnitude larger.

One possibility is to calculate also the propagators
Monte Carlo methods@1–3#. This allows one to store the
propagators from everywhere to everywhere in a sens
amount of storage space and also avoids the unnece
calculation of the propagators to machine precision.

It is easy to express the inverse of a positive definite m
trix A in a form suitable for Monte Carlo integration: one ju
takes a Gaussian integral

Ai j
215

1

Z E Dff j* f i expS 2
1

2
f* Af D , ~1!

which then can be treated exactly as a free scalar field on
lattice. If the matrixA is local, it is easy to implement effi
cient Monte Carlo update techniques for the scalar fieldf,
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allowing one to calculate the required inverse ofA. Thus, for
a given gauge field, one would obtainN independent
samples of thef fields by Monte Carlo and so evaluate th
stochastic estimate of the required element of the invers
A by an average over theseN samples:Ai j 5^f j* f i&. By
storing theseN samples off, one would then be able to
evaluate propagators from any site to any site.

This is not directly applicable to the Wilson-Dirac fe
mion matrixQ512kM , becauseQ is not positive definite
for those values of hopping parameterk that one is usually
interested in. To obtain the propagators by the above met
one has to work withA5Q†Q, which is guaranteed to be
positive definite. AsQ contains only nearest neighbor inte
actions,A is still local—it contains at most next-to-neare
neighbor interactions, and an effective updating scheme
be implemented. Of course to recover the inverse ofQ in-
stead ofA21 one should modify Eq.~1! to

Gji 5Qji
215^~Qikfk!* f j&, ~2!

which can then be used to calculate the propagators
needs for hadronic observables.

In practice a direct application of Eq.~2! has a serious
drawback when used in realistic lattice QCD calculatio
Because thef fields have a variance of order one comin
from the Gaussian distribution which determines them,
standard deviation on the estimate of the propagator will
of order Ns

21/2 for Ns samples off fields. Usually one is
interested in the largeT behavior of the correlators of had
ronic observables. These correlators decay exponenti
and therefore the signal is exponentially small@like
exp(2mT) where m is the hadron mass# in the regime of
interest. As the variance of the propagators calculated fr
Eq. ~2! is the same no matter how far in time they extend
would be necessary to use impractical amounts of comp
time to increase the number of samplesNs sufficiently to
obtain a reasonable signal to noise ratio at largeT.

In this paper we will discuss stochastic methods to cal
late propagators. We will compare several suggestions
avoid the problems described above, and show that it is p
© 1998 The American Physical Society06-1
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sible to construct propagators from scalar fields that h
their variance maximally reduced. We also discuss the us
improved fermionic actions with stochastic estimators.

To test different methods, we focus our attention to s
tems which contain one infinitely heavy quark as obtained
leading order heavy quark effective theory@4#. Such a study
is appropriate in particular to the B meson and its exci
states which are made of one heavy quark and one l
quark. These systems are particularly problematic for c
ventional methods of evaluating light quark propagators,
cause, using one source for the light quark propagator, t
will be only one measurement of the hadronic correlator
time T per gauge configuration when the heavy quark
treated as static. Therefore it seems that one would be
hugely from having propagators from all sources availab
This benefit will then help to offset the extra noise comi
from having only a stochastic estimate.

For mesonic correlations, the signal is linear in the lig
quark propagator and so no problems arise with biase
correlations among stochastic samples. A more car
analysis is needed for observables involving more than
light quark propagator. Here we study one example in de
the baryonic system made of one static quark and two l
quarks.

We also study the feasibility of applying our method
choice—maximal variance reduction—to systems where
the quarks are propagating.

II. VARIANCE REDUCTION

The method described in the previous section has a sc
field f for which each component~fixing space-time, color
and Dirac index! has a typical variance of order 1. Thus th
propagator will have a standard deviation of orderNs

21/2 for
Ns samples of thef fields. The most promising way to im
prove on this situation is to improve on the operatorf* f
used to calculate the stochastic estimators ofGi j in Eq. ~1!.
Here we study in detail two different methods and disc
their advantages and suitability for effective implementati

A. Local multihit

The easiest way to construct an operator that has a
stantial reduction in variance is to observe that is it poss
to perform a local multihit for the scalar fieldsf needed for
Gi j . This is analogous to the method proposed in@5# for
pure gauge systems and is equivalent to performing an a
age over infinitely many samples of the chosen componen
f with all other components held fixed. This has been p
posed in Ref.@1# and clearly leads to a variance reductio
Because of the simple quadratic nature of the integra
over f, the multihit average is obtained explicitly by

f i→2Aii
21Ai j f j ~3!

with iÞ j and no summation oni and where, for the Wilson-
Dirac case, the diagonal term is given byAii 51116k2.
Thus eachf field can be replaced by its multihit average.
is permissible to use these multi-hit values in place off in
evaluating propagators and observables involving prod
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of f fields provided that nof field is in the neighborhood o
another—that is no pair off fields can be linked byA and so
are not nearest or L-shaped next-to-nearest neighbors.
multihit improvement is easily implemented with only
minimal effect on the computer time consumption and it p
vides a marked improvement over no variance reducti
This improvement is independent of the extentT of the fer-
mion propagation, however. Thus though the improvemen
substantial, it does not allow a study of largeT. This is
because the method only averages over the nearest and
to-nearest neighbors of each site, thus taking into acco
only local variations in the scalar fields.

B. Maximal variance reduction

Instead of averaging over only near neighbors of a giv
site, one could use all fields inside some given regionR. Let
si be the scalar field variables at the boundary ofR and
consider submatrices of the matrixA: firstly Ã containing
elements that link thef fields inside the regionR to those on
the boundary and secondlyĀ containing only links between
the fields totally inside the regionR. Now to average simul-
taneously over all scalar fields insideR while keeping the
fieldssi on the boundary fixed, it is sufficient to replacef at
a given sitei with the average obtained from the followin
expression:

v i5
1

Z E Dff i expF2
1

2
~f j* Ājkfk

1f j* Ãjksk1sj* Ãjkfk!G . ~4!

Because the integral~4! is Gaussian, one can easily calcula
it analytically to obtain

v i52Āi j
21Ãjksk . ~5!

wherei , j PR andk¹R. We will call v the variance reduced
estimator forf. By combining two such improved estima
tors, each from disjoint regionsR and R8 respectively, one
obtains a variance reduced estimator for propagatorG from
any point inR to any point inR8. The choice of the two
regionsR and R8 is arbitrary~subject to the constraint tha
the two regions should not overlap in the sense of be
linked byA!. The local multihit described above correspon
to taking each region as just one site. However, we can n
optimize the choice of regions to obtain maximal varian
reduction.

In order to calculatev in given gauge configuration, on
needs the inverse ofĀ from an extended source—the scal
field si at the boundary ofR. This is computationally equiva
lent to a single inversion of the Dirac-Wilson fermion matr
in regionR. If the volume ofR is large, this is computation
ally demanding and so the method is not immediately adv
tageous. The gain comes from the fact that once this inv
sion is done, one can efficiently evaluate the propaga
from every site inside regionR to every site inside region
R8. If the cost of calculating the necessary scalar configu
6-2
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MAXIMAL VARIANCE REDUCTION FOR STOCHASTIC . . . PHYSICAL REVIEW D 58 034506
tions is not too high, one should gain a substantial amoun
CPU time compared to conventional methods. In addition
reduction in variance should be much greater than for
local multihit method, as one averages thef fields over a
larger region. In the case of fairly heavy quarks, one c
estimate analytically the variance reduction using the h
ping parameter expansion: this gives a reduction ofkd where
d is the minimum number of links from the boundary ofR to
the interior point under consideration, and likewise forR8.
Thus it is feasible that a stochastic evaluation of a hadro
correlator involving a separation ofT time steps will have its
variance reduced bykT. This achieves our goal of evaluatin
efficiently large time propagators.

In a sense, both local multihit and maximal variance
duction are three level Monte Carlo updating algorithms:

~1! One generates gauge configurationsg with a suitable
algorithm.

~2! In eachg one generates stochastic samplesf according
to distribution in Eq.~1!.

~3! For each scalar field configuration one generates
proved operators keeping some of the original fieldsf
fixed. This can be done analytically~or with Monte
Carlo! for both maximal variance reduction and loc
multihit.

Since the last step can be performed analytically by
iterative scheme, the computational effort involves one
version per stochastic sample. Thus forNs stochastic
samples per gauge field, one will have to perform roug
Ns/12 inversions compared to conventional extraction of
propagator from all color-spins at one source point. Ho
ever, one gets access to the propagator from all sources
sinks which may more than compensate. We now explore
implementation.

III. IMPLEMENTATION

To compare different methods, we have implemented
stochastic inversion method, both with local multihit a
with maximal variance reduction.

If one is using unimproved Wilson fermions, writing th
Monte Carlo algorithm for scalar fields is straightforwar
The only complication arises from the fact that the act
contains next-to-nearest-neighbor interactions. To be abl
vectorize our algorithm in the style of the conventional re
black partition of odd and even sites, we assigned the lat
sites to 32 ‘‘colors’’ and updated each color sequentially. F
parallel machines such a partitioning is unnecessary. The
tual heat bath and overrelaxation algorithms are simple.
local action, obtained directly from Eq.~1! by keeping only
terms involvingfx with others fixed, is just

Sloc5
1

2
~fx

†Cfx1fx
†ax1ax

†fx!, ~6!

with C51116k2 and

ax52kMxi
† f i2kMxif i1k2Mxi

† Mi j f j , ~7!
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where one should note that all sums over sites exclude thx
site. Completing the square, then

Sloc5
1

2 S fx1
ax

C D †

CS fx1
ax

C D , ~8!

and the heat bath algorithm is equivalent to generat
Gaussian random numbers with varianceC21 and equating
them tofx1ax /C. For the Gaussian random numbers w
use the Cray library functionSLARNV. The overrelaxation is
equally straightforward: one just flips

fx→2fx2
2ax

C
~9!

for each Dirac and color component off.
In evaluatingax , it is very inefficient to use the matrixA

directly since it connects 54 sites tox. As in Eq. ~7!, using
the result thatA5(12kM )†(12kM ), it is preferable to
work with M directly since it only has an implicit sum ove
8 sites. Then the main computational load in evaluatingax
comes from the gauge part of the matrix multiplicationMf.
If one keepsc5Mf in memory as well asf itself, then the
evaluation ofax from M†(2kf1k2c)2kc involves only
one application ofM† to a vector. One then needs, howeve
to updatec which involves work equivalent to a further ap
plication of M to a vector. This strategy reduces the to
work needed to the equivalent of two applications ofM to a
vector.

In practice we found that, after initializing using heatba
sweeps, it was efficient to use combined sweeps of 4 o
relaxation plus one heatbath to give sufficiently equilibra
and independent samples. We discuss the number of
sweeps in detail later. Where independence of the sampl
at a premium, one can choose to combine only samples
ther apart—this we explored and we report later on the
sult. In general, as one approaches the chiral limit of lig
quarks, one expects the fermion matrixA to have small ei-
genvalues with spatially extended eigenvectors. These
cause critical slowing down of our local updating schem
Similar considerations apply to using bosonic algorithms
dynamical fermions@6# and multi-grid and other methods ar
known to be available to circumvent this problem in pri
ciple.

For the Sheikholeslami-Wohlert improved clover acti
@7# the algorithm is not much more complicated. The Dira
Wilson fermion matrixQ is replaced by

QSW5L2kM , ~10!

whereL is diagonal in space-time but not now in color an
spin and depends on the coefficientcSW which is 1.0 in low-
est order perturbation theory and, as discussed later, ca
estimated by tadpole improvement or non-perturbative
provement:

L512
cSW

16
k(

mn
Fmnsmn , ~11!
6-3
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C. MICHAEL AND J. PEISA PHYSICAL REVIEW D58 034506
whereFmn is defined here at each site as the lattice oper
(P(UP2UP

† ) given by the 4-leaved clover sum ove
plaquettes on the lattice in them, n plane whereUP is the
product of the four links around a plaquetteP and where

smn5
1

2
@gm ,gn#. ~12!

Note thatL is Hermitian.
The local action is still quadratic in thef field at a sitex

as given by Eq.~6!, butC is now a matrix in Dirac and colo
indices:

C5S 12
cSW

16
kFmnsmnD †S 12

cSW

16
kFmnsmnD116k2,

~13!

ax52kS 12
cSW

16
kFmnsmnD †

Mxif i

2kMxi
† S 12

cSW

16
kFmnsmnDf i1k2Mxi

† Mi j f j .

~14!

For updating a given color-spin component off, we only
need the inverse of the appropriate real diagonal elemen
C. However, the non-diagonal terms inC need to be added
to the force termax . With these changes, the actual updati
algorithms for the clover action are the same as for un
proved Wilson fermions. As well as storing intermediate
sults~Mf andLf! to save computation as described for t
Wilson case, the clover term can be treated efficiently
noting @8# that projectingf5f11f2 , where f65 1

2 (1
6g5)f, allows L and C5L†L to be represented as two
36 Hermitian matrices rather than one 12312 matrix at
each site.

In addition to Monte Carlo algorithms for scalar fields o
needs an iterative inversion algorithm in regionR to imple-
ment the maximal variance reduction with sourceÃjksk .
Since the matrixĀ is Hermitian, a reliable method is conju
gate gradient and this is what we use. Since the condi
number ofA5Q†Q is considerably worse than that ofQ
itself, it may well be faster to use a method such as minim
residual to invert the non-Hermitian matrixQ and then in
turn to invertQ†, particularly if an efficient preconditione
such as red-black can be used for these inversions. Sinc
present study is exploratory, we have not investigated
option further. Another option is that since we need to inv
Ā for the same gauge configuration withNs different sources
sk coming from the stochastic Monte Carlo described abo
inversion methods using multiple sources may offer so
computational benefit.

We now discuss the optimum choice of the partitionsR
andR8 for applications. Sites inR andR8 must not be con-
nected byA. The matrix A contains nearest and next-to
nearest link terms. Because of the spin projection1

2 (1
6gm) contained in the6m-directed link term of the Wilson
fermion matrixM , A does not contain any terms with doub
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straight links. Thus a simple way to divideR andR8 is by a
time-plane on which the sourcessk lie. Since the lattice is
periodic in time~or antiperiodic for fermions!, the optimum
situation is to have two such boundaries, for example at1

50 and t25T/2 whereT is the time extent of the lattice
Then any propagator from the region 0<t<T/2 to the region
T/2<t<T can be evaluated. Note that propagators from o
region to the source areaS are allowed and will be variance
reduced. A propagator entirely within one region will in
volve two f fields ~say atx and y! in that region and the
integration over the fields insideR of Eq. ~4! will then give

an extra disconnected term involvingĀxy
21 . This is just a

propagator within regionR and so we are back to the prob
lem of evaluating it for all pairs of pointsx andy in R. Thus
our present method does not allow any variance reduction
a propagator corresponding to a disconnected fermion lo

In applications, we createNs independent samples of th
scalar fieldf(x) for each gauge configuration. We then u
thef field as a source on time planest1 andt2 to obtain the
variance reduced fieldsv(x) for each sample inR and R8.
As well asv in R andR8, we then only need to storef(x)
on the two source time-planes~which we call regionS!. So
each variance-reduced sample has storage of 243L33T real
numbers which is equivalent to one twelfth of the storage
the usual propagator from one point to all sinks. These v
ance reduced fields then allow improved estimators of
propagator from any point inR1S to any point inR81S.
This allows a determination of hadronic correlators involvi
one light quark using nearly all points as sources and sin
We will investigate whether the increase in statistics fro
using so many source points is sufficient to compensate
the stochastic noise inherent in the method.

We now discuss the choice of the number of samplesNs .
If too many samples were used, the determination of
correlator of interest might have a variance from one ga
configuration which is smaller than the variance over ma
gauge configurations. In other words, there will be no adv
tage in measuring too accurately on one gauge configura
For correlators involving one light quark, the partition
computational effort between more samplesNs per gauge or
more gauge configurations is not crucial. Provided one d
not overdoNs as described above, the signal should be co
parable for a given product ofNs and number of gauge con
figurations.

When more than one light quark propagator is to
evaluated stochastically in an unbiased way, the consi
ations of optimumNs are more subtle. Provided the scal
field samples are independent, the two light quark propa
tors, each fromR1S to R81S, can be estimated fromNs

2

combinations of the samples on each gauge configura
@1

2 Ns(Ns21) combinations if both light quarks have th
same mass so are taken from the same set of samples#. This
suggests that the noise on the combined signal may decr
as fast asNs

21 in this case. This would imply that large
values forNs were more efficient in this case. We will repo
on our investigation of this point.

For studies of baryons or of matrix elements involvin
mesons, three or more light quark propagators are nee
6-4
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MAXIMAL VARIANCE REDUCTION FOR STOCHASTIC . . . PHYSICAL REVIEW D 58 034506
Provided no propagator lies entirely within one of the
gionsR or R8 this is feasible. For mesonic matrix elemen
one way to achieve this is to put the matrix element insert
on the source time-plane (S).

IV. STATIC SYSTEMS

We have chosen the system containing one light and
infinitely heavy quark~static quark! as our main test case
This system describes theB meson in leading order heav
quark effective theory. With conventional light quark inve
sion techniques, the propagator from one source only
evaluated and this allows the hadronic correlator to be
tained from only two sink locations on a given gauge co
figuration for a givenT. This makes very little use of the
information contained in the gauge field. In contrast, the s
chastic approach allows the hadronic propagators to be
termined from very many more sites. Furthermore since
hadronic observable is linear in the light quark propaga
any problems of correlations among the statistical sample
the f fields are irrelevant. This is thus an optimum area
testing the stochastic method. Indeed previous work@1# us-
ing multi-hit improvement has already concentrated in t
area. Here we compare our maximal variance reduction
proach with this approach and also with the conventio
iterative inversion. Our main point of comparison will be th
B-meson correlation atT57.

Because of the flexibility of the stochastic method, it
possible to study non-local hadronic operators with no ad
tional computational effort. Since orbital excitations invol
non-local operators, this allows a comprehensive study of
excited state spectrum of heavy-light mesons. This is an
where comparatively little is known, so we are able to sh
the power of our approach by determining several new f
tures of the excited B meson spectrum. We also explore
baryonic spectrum in the static limit and report on the co
parison with other lattice work and with experiment.

A. B meson in the static limit

Following the conventions of@9#, we use nonlocal opera
tors for the B meson and its excited states. This will ena
us to study also the orbitally excited mesons—the details
collected in the Appendix. The operatorB we use to create
such aQ̄q meson on the lattice is defined on a timeslicet as

Bt5 (
x1 ,x2

Q̄(x2 ,t)Pt~x1 ,x2!Gq~x1 ,t !. ~15!

Q andq are the heavy and light quark fields respectively,
sums are over all space at a given timet, Pt is a linear
combination of products of gauge linksU at time t along
pathsP from x1 to x2 , G defines the spin structure of th
operator. The Dirac spin indices and the color indices
implicit. The masses are then calculated from the exponen
fall off of the BB̄ correlation function~or vacuum expecta
tion value!
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C~T!5^BtB̄t1T&0 ~16!

5^Q̄~x2 ,t !Pt~x1 ,x2!Gq~x1 ,t !

3q̄~x18 ,t1T!Pt1T~x18 ,x28!G†Q~x28 ,t1T!&0 ~17!

5Tr^PtGGq~x18 ,t1T,x1 ,t !

3Pt1TG†GQ~x2 ,t,x28 ,t1T!&0 . ~18!

We have denoted the light and heavy quark propagators
Gq andGQ respectively and the trace is over Dirac and co
indices and also includes the spatial sums overx1 , x18 , x2

andx28 . Because we work with static heavy quarks, up to
irrelevant overall constant, one has

GQ~x2 ,t,x28 ,t1T!5
1

2
~11g4!UQ~x2 ,t,T!dx2 ,x

28
, ~19!

where the gauge link product for the heavy quark is

UQ~x,t,T!5 )
i 50

T21

U4~x,t1 i !. ~20!

Now for the light quarks, we wish to evaluate the propaga
Gq by stochastic methods using Eq.~2! where now angle
brackets refer to the average over theNs stochastic samples
An alternative form can be obtained for the Wilson-Dir
discretization, for whichQ(x,y)5g5Q(y,x)* g5 wherex in-
cludes space-time, color and spin labels. This is

Gji 5g5^~Qjkfk!f i* &g5 . ~21!

In practice, we find it optimum to evaluate both of the
expressions Eq.~2! and Eq.~21! using our stochastic estima
tors and average them. Since we shall need it frequently,
definec i5Qi j f j .

Using Eq.~19! for the heavy quark propagator and st
chastic scalar fields according to Eq.~2! for the light quark
propagator in Eq.~18! one gets

C~T!5TrK PtGf~x18 ,t1T!c* ~x1 ,t !

3Pt1TG†
1

2
~11g4!UQ~x2 ,t,T!L . ~22!

By choosing different path combinations and appropri
choices ofG in Eq. ~15! one can obtain differentJP states as
described in the Appendix. For the ground stateB mesons in
the static limit, we will have a degenerate pseudoscalar
vector.~The splitting between them can be evaluated by t
ing matrix elements of the clover termsmnFmn in the B
ground state.! The simplest hadronic operator to create the
states is then obtained from Eq.~15! by choosingPt51 and
G5g5 for the pseudoscalar andG5g i for the vector. From
Eq. ~22! one obtains

C~ t !5Tr H2^f~x!UQ~x,x4 ,t !c* ~x14̂t !&, ~23!
6-5
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TABLE I. B meson correlators att57.

Method C(7)3107 Data Set CPU

MR inversion 3712~147! propagators from 4 sources 1
for 10 gauge fields

Stochastic inversion 25 samples off
Basic 2754~926! for 20 gauge fields 2
Local multihit 3418~410! 2
Maximal variance reduction 3761~21! 4
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whereH65(16g4)/2. The sum over Dirac indices is ver
simple with our convention in whichg4 is diagonal and,
making the color sums explicit too, this is

C~ t !5(
x

(
i 53,4

^fai~x!Uab
Q ~x,x4 ,t !cbi* ~x14̂t !&. ~24!

The alternate expression~21! for the stochastic light quark
propagator yields

C~ t !5(
x

(
i 51,2

^cai~x!Uab
Q ~x,x4 ,t !fbi* ~x14̂t !&. ~25!

If we now want to use maximally variance reduced ope
tors instead off andc, one has to pay attention to the fa
thatf andc must not come from the same partition. Here w
choose the simplest partition with sources at time planet1
and t2 . One subtlety is thatc5Qf is smeared out by one
link in each direction: thusc(t1)f(t11t)* with t.0 would
be invalid. Our favored setup~which we tested to have mini
mal variance and which corresponds naively to taking
estimators as far as possible from the source! is to takec at
t16(t/2)1 and f at t17(t/2)2 where if t is odd (t/2)1 is
rounded up, etc. So fort51 we havec(t161)f(t1)* . Since
the drop-off off from the source att1 is roughly exponential
up to half way between the source time-slices, other pa
tions of t have variance which is not much greater than o
favored setup. The complication is how to combine e
ciently several estimators which have somewhat differ
variance.

To improve the overlap of our operators with the grou
state, we have also considered fuzzed operators. These
pathsPt formed by joining the light and heavy quarks b
straight links of lengthl in all 6 spatial directions. Thes
links are themselves spatially fuzzed@10# using an iterative
scheme. We use two different lengthsl each with a different
number of fuzzing iterations as well as the unfuzzed ope
tors described previously. Correlations of all combinations
each end are evaluated giving us a 232 or 333 matrix.

B. Comparison of methods

Since there is a considerable body of data onB meson
correlations for Wilson fermions, we first tested our a
proach with Wilson fermions.

For comparison purposes, we considered a small lat
(83316) at b55.74 with Wilson fermions of hopping pa
rameter K50.156. This choice was motivated by pr
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existing studies@11#. As a first example we evaluated the
meson correlator at time separationt using local hadronic
operators at source and sink. Then we compared con
tional inversion with various implementations of stochas
inversion. Results for the correlatorC(7) at t57 are shown
in Table I where the comparison has been made for eq
disk storage of propagators or scalar field samples.

For the stochastic inversion methods we used 20 ga
configurations, each containing 25 samples of the sc
field. For the gauge fields we use 100 combined sweep
one Cabibbo-Marinari pseudo-heat-bath algorithm follow
by 3 overrelaxation steps between configurations. The sc
fields were evaluated as described previously by using
heatbath plus overrelaxation updates between measurem
after 250 sweeps to thermalize the first sample for e
gauge configuration. We tested that our results were
changed if more thermalization sweeps were used. For
conventional minimal-residual~MR! inversion method we
used 4 different sources on 10 gauge configurations. S
the storage of the conventional propagator from one sou
involves 12 color-spins, it is the same as the storage of
stochastic scalar fields, so the comparison is made at e
file storage.

Clearly the maximal variance reduction gives a factor o
improvement in error for only an overall computational i
crease of a factor of 4. This is equivalent to a net gain o
factor of 12 in computing time for a similar result. Moreove
the stochastic method allows correlations involving differe
sources~smeared, fuzzed, orbitally excited, etc.! to be con-
structed at little extra cost. This is shown in Fig. 1 where
comparison is made of our results for the effective mass w
results@11# from conventional inversions~with 170 propaga-
tors! which are seen to be significantly less precise than th
obtained here in thet region of interest. More details of th
fit are presented in Ref.@2#.

In order to explore more fully the power of the method
maximal variance reduction of stochastic propagators,
then undertook a more extensive study using clover
proved fermions. In this case the focus of attention was
the precise determination of the B meson spectrum and
cited states.

C. The excited B meson spectrum

Our results are not only useful for comparing differe
methods but are also physically interesting in their own rig
In particular, the spectrum of the exited states in the st
limit has not been thoroughly studied and experimental
formation on this spectrum is also limited. Moreover, wit
6-6
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out a precise extraction of the excited state component in
S-wave, the ground state contribution will be uncerta
which implies systematic errors in extracting heavy-light m
trix elements~for examplef B!.

In order to study these new areas of physics using
power of stochastic inversion with maximal variance red
tion, we determine the spectrum of heavy-light mesons
their excited states in the static limit. In order to minimi
order a effects, while still keeping in contact with existin
simulations, we have used a tadpole improved action ab
55.7. A non-perturbatively improved@12# action is prefer-
able to the tadpole-improved prescription on theoreti
grounds but the determination of the appropriate value of
clover coefficientcSW has not been feasible forb<6.0. The
results at largerb than 5.7 do, however, suggest that t
non-perturbative value forcSW would be significantly larger
than the tadpole value we use here. We also wish to k
finite size effects under control so we use two spatial lat
sizes.

We have performed simulations on 83316 and 123324
lattices withb55.7 with cSW51.57 and we study two dif-
ferent values of hopping parameter:k150.14077 andk2
50.13843. These values have been used before to stud
effect of tadpole improvement on the light meson spectr
@13# and pseudoscalar meson and vector meson masse
available from that work~see also Table V!. The chosen light
quark masses correspond roughly to the strange quark m
(k1) and to twice the strange quark mass (k2). We will
describe our light quark masses in dimensional units by q
ing (r 0mP)2 where r 0 /a52.94 is used atb55.7 from our
own interpolation. A recent independent study@14# gave
r 0 /a52.99(3) at thisb value. We also user 0 to set the scale

FIG. 1. The B meson effective mass versust from our data at
b55.74 from 83316 lattices with Wilson fermions and differen
combinations of local, fuzzed andg iDi sources and sinks togethe
with a three exponential fit. Also shown~squares! are the Wuppertal
data@11# for smeared source and local sink from 170 propagato
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of the B meson masses. In terms of conventional unitsr 0
'0.5 fm.

For the 20 pure gauge configurations we use a conv
tional scheme with 200 combined sweeps of 3 overrelaxa
plus one heatbath between configurations. We evaluateNs
524 scalar field samples per gauge configuration using
combined sweeps of 4 overrelaxation plus one heatbath, a
125 heatbath sweeps to initialize from a cold start. In ea
case we then evaluate the variationally improved scalar fie
using conjugate gradient in the regions between time slice
and T/2. For the hadronic operators we use spatial fuzz
links which are iteratively evaluated@10# by summing~f
3straight1sum of 4 spatial U-bends! and projecting the re-
sult to SU~3!. Using f 52.5, we choose two fuzzed supe
links: ~i! 2 iterations of fuzzing with superlinks of length 1
and ~ii ! 8 iterations of fuzzing with superlinks of length 2
When we explore Bethe Saltpeter wave functions for B m
sons, we also employ other lengths for superlinks.

Our basic method for extracting the mass spectrum is
fit the matrix of zero-momentum correlators at a range
time separations to a factorizing sum of several states.
use either two states or three, and in the latter case we
fix the mass of the third state to 2.0 in lattice units to sta
lize the fit. A typical effective mass plot can be seen in F
2, where we have plotted the effective mass of theL50 ~S!
state together with a factorizing fit. We use either uncor
lated fits or some model of the correlation@15#. Typically the
modelled correlation~this is the correlation among measur
ments from different gauge samples! is used to find thet
range giving acceptable fits. Then an uncorrelated fit is u
to give the central values of the masses and other parame
Statistical errors are determined by bootstrap of the ga
configurations. The systematic errors from fitting are e
mated by varying the fit range int and the fit correlation
model—these systematic errors are only quoted if they
significantly larger than the statistical errors.

.

FIG. 2. Effective mass plot for theS-wave Q̄s meson using
clover fermions on 123324 lattice atb55.7 with light quark hop-
ping parameterk150.14077. The different symbols correspond
different combinations of local~L! and fuzzed~F1 and F2! sources.
6-7
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C. MICHAEL AND J. PEISA PHYSICAL REVIEW D58 034506
Our results for the masses are collected in Table II.
Here the different operators used correspond to those

fined in the Appendix. The two values quoted for theP2

state correspond to~i! using the same fit as for theP1 state
to yield the mass difference most reliably and~ii ! using the
extra operators available for theP2 case to get the best mas
determination. We determined the mass difference of theP2

and P1 using a bootstrap analysis of this difference a
obtain, from the 123 spatial lattices, values of the mass d
ference in lattice units of 0.068~64! at k1 . The P1 state for
strange light quarks is thus heavier thanP2 with a signifi-
cance of 1 standard deviation. For the D-wave states, we
for the mixed operator~labelledD6! a mass consistent with
lying between the masses of the two states separately.
splitting between theD2 andD1 masses appears to be qu
large.

The absolute values of the masses obtained in the s
limit are not physical because of the self-energy of the st
quark. We present masses by taking the difference with
ground state S-wave state~the usual B meson!. The depen-
dence on the orbital angular momentum is shown in Fig
for strange quarks (k1). This suggests that the energy of th
orbital excitations is linear with angular momentum.

The dependence on the light quark mass~through k!
would be expected to be small since the effect should
similar for each state and so cancel in the difference. O
results from the larger lattice are broadly compatible w
this picture—see Fig. 4 where our results fromk1 andk2 are
plotted.

TABLE II. B meson effective masses.

State k L am am8 x2/dof t range

S 1 12 0.875~06! 1.271~10! 32/54–11 4–12
P2 1 12 1.214~43! 1.727~53! 28/60–11 3–12
P2 1 12 1.194~48! 1.697~54! 13/30–8 3–12
P1 1 12 1.262~56! 1.698~57! 20/30–8 3–12
D6 1 12 1.555~12! 1.825~35! 22/27–6 4–12
D2 1 12 1.423~20! 1.751~27! 41/30–6 3–12
D1 1 12 1.744~56! 2.039~61! 15/30–6 3–12
F6 1 12 1.850~36! 2.053~44! 28/30–6 3–12

S 1 8 0.877~26! 1.273~44! 17/30–11 4–8
P2 1 8 1.200~90! 1.647~73! 12/18–8 3–8
P1 1 8 1.222~120! 1.774~70! 20/15–8 3–7

S 2 12 0.912~06! 1.284~10! 35/54–11 4–12
P2 2 12 1.313~17! 1.797~32! 77/60–11 3–12
P2 2 12 1.329~19! 1.809~41! 41/30–8 3–12
P1 2 12 1.386~27! 1.823~24! 21/30–8 3–12
D6 2 12 1.578~10! 1.826~30! 38/21–6 3–10
D2 2 12 1.480~13! 1.773~18! 34/30–6 3–12
D1 2 12 1.710~43! 1.883~45! 28/30–6 3–12
F6 2 12 1.901~24! 2.102~54! 53/30–6 3–12

S 2 8 0.899~12! 1.290~21! 11/30–11 4–8
P2 2 8 1.263~50! 1.837~48! 12/18–8 3–8
P1 2 8 1.224~71! 1.721~49! 5/18–8 3–8
03450
e-

d

he

tic
ic
e

3

e
r

We see evidence of significant finite size effects in co
paring our results atL58 andL512. Because of this, we do
not show results in Table II from our smaller spatial latti
for the higher lying excitations where the effect of the fin
spatial size could be even larger. One specific example of
finite size effects is that, fork2 , theP1 state appears lighte
thanP2 for L58 while the order is the other way around
L512, although the statistical significance of these level
derings is limited. This order of theP6 levels atL58 was
also found in our results@2# from Wilson fermions. This is

FIG. 3. The masses of excitedQs̄ mesons versus angular mo
mentumL from clover fermions withk50.14077. For theL52,3
states, results from operators which are a mixture of the two le
are also plotted. The straight line is to guide the eye. The scale i
by a(5.7)50.91 GeV21.

FIG. 4. The spectrum of B mesons containing one light~with
mass proportional to pseudoscalar massmP

2 ! and one infinitely
heavy quark. Masses are given in terms ofr 0 . The straight lines
show a linear chiral extrapolation.
6-8
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MAXIMAL VARIANCE REDUCTION FOR STOCHASTIC . . . PHYSICAL REVIEW D 58 034506
an issue of direct physical interest since potential mod
indicate that the long range spin-orbit interaction can,
principle, yield aP1 state lying lighter than theP2 as the
light quark mass decreases to zero. Our larger volume re
do not support this scenario and we find theP2 state to lie
lower thanP1 with a significance of 1s. To explore this in
more detail, we need to establish the effect of the finite s
effects. This is especially relevant for excited states, si
they would be expected to be more extended spatially. T
can be studied by determining the wave functions of
various states.

We can determine the Bethe-Salpeter wave functi
w(R) of the B meson states directly by fitting the grou
state contribution@of the form w(R1)w(R2)exp(2mt)# to a
hadronic correlator where the operators at sink and so
are of spatial sizeR1 andR2 respectively. Thus we measur
correlations for a range of spatial extentsR of the lattice
operators used to create and destroy the meson. We ex
this at our larger lattice volume. In practice, following@10#,
we use straight fuzzed superlinks of lengthR ~we keep the
number of iterations of fuzzing fixed at 4 here!. After fitting,
we extract the wave functions which are plotted for lig
quark mass corresponding tok2 in Fig. 5. This clearly shows
the expected behavior of higher orbital excitations be
more spatially extended. Moreover, it shows evidence
the P1 state is fatter than theP2 which could explain the
mass difference dependence on volume noted abov
namely that theP1 state has a modified mass atL58.
Changing the light quark mass fromk2 to k1 results in no
change in the wavefunctions within errors.

Another comforting conclusion is that there is eviden
that the excited S-wave state has a node at radiusR'1.5a
which corresponds to 0.5r 0 . This implies that the meson ha
a nodal surface with a diameter of approximatelyr 0 which is

FIG. 5. The Bethe Salpeter wave function of theQ̄q mesonic
states. The radiusR of the light quarkq from the static quarkQ is
given in units ofr 0 . Here the light quark mass corresponds tok2 .
For theLb baryon, the results shown are obtained as describe
the text. The continuous lines are to guide the eye.
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broadly compatible with the result@10# for S-wave mesons
made from two light quarks that the node for the excit
state occurs at a diameter of about 6a at b56.0 which again
corresponds tor 0 .

We should like to explore also the lattice spacing dep
dence of our results since, even with an improved fermio
action, some residual discretization effects are expecte
b55.7. We chose as parametersb55.9 with cSW51.5 and
k250.1375 with a 123324 lattice. Here we expectr 0 /a
'4.5 which implies that the lattice spacing is 2/3 of that
b55.7. Thus the spatial lattice size corresponds toL58 at
5.7. This, unfortunately, means that the finite size effects
the excited states will still be significant, as found above. F
this reason we do not pursue this study here, waiting inst
until we have resources to enable us to study larger sp
sizes than 123.

D. Baryons

In addition to mesons, we are also interested inQL1L2
baryons whereLi refers to au, d or s quark andQ is a static
quark. Sinceb quarks are close to static, we describe su
states by that name. We only consider states with no orb
angular momentum here, so in the static limit these baryo
states can be described by giving the light quark spin
parity. The lightest such state is expected to be theLb
baryon with light quarks ofSP501 which can be created by
the local operator with Dirac indexi :

eabcQiaujb~Cg5! jkdkc . ~26!

We treat the two light quarks as different, even if they ha
the same mass on the lattice. Experimentally, these st
will be the Lb and Jb for ud and qs light quarks respec-
tively, whereq meansu or d.

In the static limit for theb quark, there will be only one
other baryonic combination@16# with no orbital angular mo-
mentum, namely theSb and degenerateSb* with light quarks
of SP511 created by

eabcQiaujb~Cg r ! jkdkc . ~27!

In this case we average over the three spatial componenr .
Experimentally these states will be theSb , Sb* , Jb8 , Jb* ,
andVb , Vb* for qq, qs andss light quarks respectively.

There are some computational issues. As two light qua
are involved, we need to use different stochastic samples
each. These can be obtained variance improved fieldsv in R
andR8 but a little care is needed when both light quarks ha
the same mass. One way to grasp the subtlety is to ima
that there are two quarks with different flavors. Then one
to split the sum over samplesa51, . . . ,Ns into subsets for
each flavor. If these subsets are independent, one ob
propagators of each flavor with no bias. In practice if t
stochastic estimatorsfa are independent ofa, one can cal-
culate the required propagators from

Gji
a Gj 8 i 8

b
5 (

aÞb
~Qikvk

a!* ~Qi 8k8vk8
b

!* v j
av j 8

b . ~28!

in
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C. MICHAEL AND J. PEISA PHYSICAL REVIEW D58 034506
wherek,k8PR and j , j 8PR8. TheLb correlator is then eas
ily constructed by multiplying two light quark propagato
from Eq. ~28! by the gauge links corresponding to a hea
quark propagator with the appropriateg matrix contractions.
Note that since we save the stochastic samples and their
ance reduced fields, we need very little extra computatio
study this area. In order to be sure that there is full indep
dence of thea andb samples we choseua2bu.3 with our
stochastic Monte Carlo parameters described previou
This reduces the statistics very little while increasing
number of sweeps between samples.

Note that because approximatelyNs
2 samples are used, th

error on the stochastic method decreases faster withNs for
baryons. This is illustrated in Fig. 6 for one gauge config
ration. Here the local operators are used for S-wave B me
andLb respectively and the correlator from 1 gauge config
ration att57 with Ns stochastic samples of massk2 is plot-
ted with errors coming from a jackknife analysis.

For our study of the spectrum we use, as previously,Ns
524 from 20 gauge configurations. For each of the lig
quarks we use either a local coupling or a sum of strai
fuzzed links of lengthl 51 where 2 iterations of our fuzzing
were used. This gives three hadron operators~neither, one
and both light quarks fuzzed! which we employ at source
and sink. Using both available hopping parameters for
light quark gives the results shown in Table III. Note that t
results with mixed hopping parameters~labelled 12! have
higher statistics since the full set of stochastic samples
used~i.e. Ns

2!. The mass values in Table III come from
state fits to the matrix of correlators in thet range shown. We
chosetmax,12 in the fit because the signal was too noisy
larger t.

The dependence of these baryon masses on the light q
content appears consistent with the mesonic results in T

FIG. 6. Relative error as a function of the stochastic sample
Ns . For the S-wave B meson containing only one light quark
decrease is consistent withNs

21/2, while for the Lb baryon the
decrease is consistent withNs

21 . The results are from one gaug
configuration atb55.7 with clover fermions atk50.13843 on a
123324 lattice for the correlation of local hadronic operators at
57.
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II that the mass in lattice units is 0.037 heavier when a lig
quark with k2 replaces one withk1 . The exception is that
the result for Sb with mixed hopping parameters seem
anomalously light—this appears to be a statistical fluctuat
caused by our limited number of gauge samples.

We may also explore the Bethe Saltpeter wave functi
in a similar way as for the B mesons. The additional feat
for these baryons is that there are two light quarks and s
definition of radius is not unambiguous. We use two types
operator,~i! with one light quark fuzzed by a superlink o
radiusl and the other at 0, and~ii ! with both light quarks at
radius l . We then varied the fuzzing radiusl and extracted
the ground state coupling. One feature is the same as
found for light baryons@10#—namely the distributions of the
two cases are similar if the radius in the double fuzzed c
is increased by a factor of& which is a simple way to take
into account the mean squared radius of the three dim
sional double fuzzed case. With this interpretation, some
sults for theLb are included in Fig. 5. We find a very simila
distribution for theSb .

We also evaluated the baryonic correlations on spatial
tices with L58. They are similar to those found forL512
but, because of the more limited statistics and time exten
is difficult to extract a stable signal from the fit so we a
unable to quantify the finite size effects on the mass.

E. Comparison with earlier results and experiments

Since we are using a quenched Wilson action atb55.7,
for quantities defined in terms of gauge links, there will
order a2 effects in mass ratios from this discretization. F
the 011 glueball, the dimensionless product withr 0 has
been extensively studied and substantial ordera2 effects are
observed@17#. Indeed this ratio atb55.7 is only 65% of the
continuum value. It is commonly thought that the 011 glue-
ball has especially large ordera2 effects, so that other quan
tities may well have smaller departures atb55.7 from their
continuum values.

Discretization effects arising from the fermionic comp
nent are of ordera for a Wilson fermion action. A SW-
clover improvement term reduces this and a full no
perturbative choice@12# of the coefficientcSW would remove
this ordera discretization error. As discussed above, atb
55.7, the non-perturbative improvement scheme canno
implemented because of exceptional configurations. A m
heuristic tadpole-improvement scheme can give estimate
this region and that is what we have employed here. Fro
thorough study of the light quark spectrum in this scheme

e
e

TABLE III. Lb andSb effective masses.

Baryon t range k am

Lb 4–9 11 1.435~37!

Sb 5–9 11 1.514~52!

Lb 4–9 12 1.476~35!

Sb 5–9 12 1.493~25!

Lb 4–9 22 1.514~31!

Sb 5–9 22 1.621~27!
6-10
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MAXIMAL VARIANCE REDUCTION FOR STOCHASTIC . . . PHYSICAL REVIEW D 58 034506
Ref. @13# with the parameters we use here, we can estab
the region that we are exploring.

Because of the significant discretization effects in the
gion of parameters we are using, a definitive study wo
require results at largerb so that extrapolation to the con
tinuum limit would be possible. In this exploratory study, w
present results at the coarse lattice spacing to show the p
of the stochastic inversion method in extracting signals
hadrons. Since the study of light quark hadrons at this lat
spacing@13# does show qualitatively the features of the co
tinuum limit, we present our results in way that allows co
parison with experimental data.

The extrapolation to the chiral limit is uncertain in th
quenched approximation because of effects from excepti
configurations and because of possible chiral logs. Thus
well as giving the chirally extrapolated results, we pres
our results without extrapolation to avoid that source of s
tematic error. This can be achieved by interpolating to
strange quark mass for the light quark. Following Ref.@13#,
we define the strange quark mass by requir
mV( s̄s)/mP( s̄s)51.5, and assuming that the quark mass
proportional to the squared pseudoscalar mass, which g
k1 as 0.91(2)ms andk2 as 1.77(4)ms . Hence we can extrac
results for strange light quarks by interpolation~as 90%
those withk1 and 10% those withk2!.

Equating mV( s̄s) to the f meson gives the scalea
50.82 GeV21. This can be compared with the scale o
tained from using r 0 ~see below! which gives a
50.91 GeV21. The scale obtained from different obser
ables is likely to be different because of the coarse lat
spacing, and indeed differences of order 10% are seen in
@13# when comparing with known continuum results.

Another issue is the possibility of finite size effects. T
study of the light quark spectrum@13# shows no sign of any
significant difference going from spatial sizeL512 to L
516. This encourages us to expect that some of our res
for L512 may be close to those for infinite spatial volum
We can check this by comparing withL58 and by looking
at the Bethe-Salpeter wave functions for the different sta
as discussed above.

We first compare our results, usingr 0 /a(5.7)52.94, to
lattice results obtained using usual inversion techniques
Fig. 7~a,b! we have plotted results which several oth
groups @18,19,11# have obtained in the static limit usin
much more computing resources. Note that some of th
earlier works@11,18# only use un-improved Wilson fermi
ons. Our results are clearly consistent with earlier lattice
sults, within the errors quoted. However, we have sma
error bars and are able to obtain reliably several exc
states, which is not generally true for the earlier work in t
static limit.

We also present, in Table IV and in Fig. 7~c,d!, our results
in MeV by assuming that the scale is set byr 0
52.68 GeV21. To avoid self energy effects from the stat
quark, mass differences are evaluated and we choose as
the ground state S-wave B mesons with strange light qua
In the heavy quark limit, this S-wave B meson should
identified with the center of gravity of the pseudoscalar a
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vector B mesons. There will be an overall scale error wh
may be significant and is expected to be at least 20%
energy differences. We also provide results extrapolated
massless light quarks assuming that the B meson masse
linear in mP

2—where in the tables and q refer to strange
light quarks and massless light quarks respectively. As
cussed above there will be significant systematic errors fr
this chiral extrapolation if it is not purely linear, as well a
the statistical errors from bootstrap shown in the table. T
chiral extrapolation for higher lying states may also be
fected by finite size effects too. A further issue is the resid
effect in heavy quark effective theory from treating theb
quark as static—this has been estimated to be around
MeV for theLb2B mass difference@16# and around 30–50
MeV for the S-P splitting in B mesons@20# which gives an
order of magnitude estimate of this source of error.

Comparing our results, remembering that only the sta
tical errors are included in Table IV, with experime
@22,21,23#, we see several discrepancies. Note, however,
some assignments of excited states experimentally are ra
uncertain, for instance the excited strange B meson see
5853 MeV has no definiteJP.

One feature is that the dependence of the B meson m
on the light quark mass is smaller than experiment. To co
pare with different lattice groups, we evaluate the dimensi
less quantity which is the slope ofmB versus the squared
light-quark pseudoscalar meson mass, where a common
quark is used in the heavy-light and light mesons,

Jb5
1

r 0

dmB

dmP
2 .

From our twok values, we findJb50.048(13). Previous
lattice determinations in the static limit@18,19,24# show con-
sistency with a linear dependence and give values ofJb be-
tween 0.05 and 0.08. The results of Ref.@18# with Wilson
light quarks show some evidence for an increase ofJb from
b55.7 to 6.1. The experimental value of theBs to Bd mass
difference is 90 MeV and, using the string tension (AK
50.44 GeV) to set the scale ofr 0 , gives Jb50.074. The
mass difference ofDs to Dd , taking the center of gravity of
the vector and pseudoscalar states, is about 103 MeV
since the corrections to the heavy quark effective the
~HQET! limit are expected to behave like 1/mQ , the change
from the b quark to static quarks should be very small f
this quantity—of order 2%. In summary, our quenched l
tice result for Jb appears to be low compared t
experiment—as also found by Ref.@24#.

This is reminiscent of the case for light quark meso
where in the quenched approximation, a similar property
found—summarized@25# by theJ parameter~proportional to
slope ofmV versusmP

2 ! which is typically 0.37 rather than
the experimental value of 0.48~2!. This is equivalent to ‘‘the
strange quark problem’’ of quenched QCD where a con
tent way to set the strange quark mass is not possible.
seems to carry over, in our work, to the heavy-light sp
trum. As well as in theB spectrum as described above, w
also see the same effect in the light quark mass depend
of the Lb baryon—as discussed previously.
6-11
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FIG. 7. ~a!, ~b! Comparison of our results to earlier lattice results in the static limit@11,18,19# where we have plotted the mass splittin
between excited states and ground state at a given light quark mass in units ofr 0 . The horizontal scale is proportional to the light quark ma
~the average light quark mass for baryons!. The strange quark mass is also shown.~c!, ~d! Comparison of our results to experiment@22,21,23#
where the center of gravity of states degenerate in the static limit is plotted where available. The origin is set by theBs , Bs* mass. The mass
scale of our lattice results is evaluated as described in the text usinga(5.7)50.91 GeV21.
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The spectrum of mesonic excited states can be comp
with experimental data which has been interpreted as sh
ing evidence for the assignments given@21–23#. Our result
for the radial excitation appears to agree well while the
wave results agree qualitatively too. We give our predictio
for the higher orbital excitations too. The finite size effec
on these excited states should be more significant than on
ground state and, thus, this source of systematic error
only be removed by exploring even larger spatial volum
than here.

Our results forLb are significantly larger than exper
ment. We have checked that there do not appear to be
nificant systematic errors from extracting the ground st
signal. Our results for the baryonic correlations from 83 spa-
tial lattices do not suggest any very strong finite size effe
either. Moreover, as seen in Fig. 4, we agree with other
tice determinations in the static limit although the statisti
significance of these earlier studies is quite low. The discr
ancy in conclusion compared with Ref.@19# is in the extrapo-
lation to the chiral limit. The lattice results agree within e
rors but the slope of theLb mass versusmP

2 is rather
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different which leads to the much lower mass value in
chiral limit from Ref. @19#.

As well as lattice results in the static limit, studies ha
been undertaken with propagating quarks. The conventio
method implies a significant extrapolation in heavy qua
mass to reach theb quark—and even more so to compa
with static quarks. More relevant to our work is the NRQC
method which allows heavy quarks to be used explicitly o
lattice. This NRQCD method has also been used to study
area and has reported@20# preliminary mass values forbq̄ S
and P-wave mesons and forbqq baryons with light and
strange quarks in qualitative agreement with experime
Their results suggest a level ordering with theP1 state
above theP2 by about 200 MeV with a significance of 4s.
Their results for the baryonic levels are lower than ours,
better agreement with experiment.

V. NON-STATIC SYSTEMS

The simplest such situation is the spectrum of mes
made from 2 light quarks. To test our approach, we ha
6-12
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MAXIMAL VARIANCE REDUCTION FOR STOCHASTIC . . . PHYSICAL REVIEW D 58 034506
compared the results from stochastic maximal variance
duction with conventional methods@13#.

As a cross check, we have measured pseudoscalar
vector meson masses for clover fermions on 123324 lattices
at the same parameters as Ref.@13#. We use superlinks o
lengthl 53 made from links with 5 fuzzing iterations as we
as local observables and a two state fit with the excited s
fixed at am51.75 to stabilize the fit. We obtain fromNs
524 samples on 20 gauge configurations the results sh
in Table V. The values from conventional inversions on 5
gauge configurations@13# clearly have much smaller error
than our method using 20 gauge configurations. By incre
ing our sample sizeNs , we could improve our signal/CPU
since the noise decreases as 1/Ns , but the conventiona
method works very well here. In principle, one gains by
creasingNs only until the noise from finite sample size
comparably small to the inherent fluctuations from gau
configuration to gauge configuration. This limit onNs will
depend on the observable under study and other param
and, after exploring values ofNs up to 96, we find that in
general it is greater than 96.

The main reason that the stochastic maximal variance
duction is so noisy is that our variance reduction is in ter
of the number of links~in the time direction! from the source
planes. The zero-momentum meson correlator involve
sum over the whole of the source and sink time-planes.
noise from each term in this sum is similar even though
signal is small at large spatial separation differences. T
we get noise from the whole spatial volume whereas
signal is predominantly from a part of the volume. This sa
problem also plagues large spatial volume studies of g
balls and the solution@26# in that case is to evaluate th
non-zero momentum correlators since they are related to
well measured part at relatively small spatial separation. T
approach should help equally with our stochastic maxim
variance reduction method.

Even though the meson mass spectrum is rather n
compared to conventional inversions, there is a substa
gain from using our all-to-all techniques when exploring m
trix elements of mesons. In this case three or more li
quark propagators will be needed and they must be fr
more than one source point. This is straightforward to eva
ate using our stochastic techniques with our stored sam

TABLE IV. Heavy-light spectrum in MeV.

State JP latt (s) expt (s) latt (q) expt (q)

B(S) 02, 12 input 5404 5356~16! 5313
B(S8) 02, 12 5835~12! - 5819~40! 5859~15!

B(P2) 01, 11 5784~50! 5853~15! 5655~113! 5778~14!

B(P1) 11, 21 5838~50! 5853~15! 5679~130! 5778~14!

B(D2) 12, 22 6001~25! - 5934~43! -
B(D1) 22, 32 6349~60! - 6392~120! -
B(F) 21, 31, 41 6475~50! - 6409~83! -
Lb

1
2

1 6023~41! - 5921~89! 5641~50!

Sb
1
2

1, 3
2

1 6113~57! - 5975~60! 5851~50!
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fields. We intend to explore this area more completely el
where.

One of the problems, in the quenched approximation, w
the conventional approach to light quark propagators is
exceptional configurations cause huge fluctuations in the
relation of hadrons, especially of pions, at hopping para
eters close to the chiral limit. These exceptional configu
tion problems are associated with regions of non-z
topological charge. Using all-to-all propagators m
smoothen these fluctuations somewhat in that the ave
over the spatial volume will fluctuate less than the propa
tor from one site. Eventually, however, this problem of e
ceptional configurations can only be solved unambiguou
by using dynamical quark configurations.

VI. CONCLUSIONS

We have established a method to study hadronic corr
tors using stochastic propagators which can be evalu
from nearly all sources to nearly all sinks and which allo
the correlations to be obtained with relative errors which
not increase too much at large time separation. In this
ploratory study, we have considered light quark propaga
from about 1 million sources for eachk value. The amount
of resources we have used is minimal. The total CPU tim
roughly 10 Mflops yr, and the total disk space needed for
our results is 17 Gbytes.

We find that for hadrons involving one static quark, o
approach is very promising. We have been able to exp
the spectrum of excited B mesons and heavy quark bary
in detail, albeit at a rather coarse lattice spacing. The res
go beyond previous lattice work, in particular in explorin
higher orbital angular momentum excitations. We find e
dence for a linear dependence of mass on orbital ang
momentum for heavy-light mesons up to F-waves.

For the light quark mass dependence we find that
slopes of the heavy-light meson and baryon masses ve
the squared pseudoscalar mass with that light quark are
significantly less than experiment. A similar feature has be
found for light-light vector mesons and baryons with a sim
lar reduction of slope of about 70%. A common explanati
would be that the quenched approximation is mainly de
cient in providing light-light pseudoscalar masses. This is
unreasonable since both the effect of disconnected diagr
~the h splitting from thep! and the effect of exceptiona
configurations are expected to be most important for pseu
scalar mesons.

We determine the heavy-light baryon to meson mass
ferences which we find to be significantly larger than expe
ment. This may arise from discretization effects at our rat

TABLE V. Pseudoscalar and vector meson masses.

Meson k t range am Ref. @13#

P 11 3–12 0.523~30! 0.529~2!

V 11 3–12 0.731~87! 0.815~5!

P 22 3–12 0.740~36! 0.736~2!

V 22 3–12 0.977~48! 0.938~3!
6-13
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C. MICHAEL AND J. PEISA PHYSICAL REVIEW D58 034506
coarse lattice spacing, a non-linear extrapolation to the ch
limit or enhanced finite size effects. Note that for light bar
ons, recent precise data@27# show significant non-linearity
for the JP5 1

2
1 states which has the effect of reducing t

lattice mass prediction in the chiral limit compared to a l
ear extrapolation. This effect, if present for heavy-light ba
ons, would go some way to explain our discrepancy.

To establish our results more fully, we need to study
approach to the continuum limit and to check on finite s
effects. An increase in the number of gauge configurati
would also allow a more thorough analysis of errors. Th
we would need to explore larger lattices at smaller latt
spacing. This is straightforward in principle, but involves
non-trivial re-organization of the logistics of creating a
storing the stochastic samples.

The approach can easily be extended to other case
volving static quarks—particularly matrix elements and
teraction energies between two B mesons. Another app
tion is to study the bound states of a static adjoint sou
with light quarks.

One motivation for this work is that dynamical fermio
configurations are very expensive computationally to cre
Thus one should use fully the information contained in
gauge configurations available. Our method works straig
forwardly with such dynamical fermion gaug
configurations—thus it is the method of choice to explo
these configurations most fully by evaluating correlatio
from all sources.

One potential advantage of stochastic methods to de
mine propagators is that disconnected diagrams are ac
sible. Unfortunately, as we have explained, our maxim
variance reduction technique does not help to reduce
noise of any component of the correlation which has a
mion loop with common sink and source. This area of
search will need other variance reduction techniques t
those we have presented here.
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APPENDIX A: CONSTRUCTION OF B MESON
OPERATORS IN THE STATIC LIMIT

In the heavy quark limit, theQ̄q meson which we refer to
as a ‘‘B’’ meson, will be the ‘‘hydrogen atom’’ of QCD
Since the meson is made from non-identical quarks, cha
conjugation is not a good quantum number. States can
labelled byL6 where the coupling of the light quark spin t
the orbital angular momentum givesj 5L6 1

2 . In the heavy
quark limit these states will be doubly degenerate since
heavy quark spin interaction can be neglected, so theP2

state will haveJP501,11 while P1 hasJP511,21, etc.
We now describe lattice operators to construct th

states. For the generic construction, following the conv
tions of @9#, we use nonlocal operators for the B meson a
03450
al
-

-

e
e
s
s
e

in-
-
a-
e

e.
e
t-

s

r-
es-
l
e

r-
-
n

/
-
e

ge
be

e

e
-

d

its excited states. This will enable us to study also the or
ally excited mesons. The operatorB we use to create such
Q̄q meson on the lattice is defined on a timeslicet as

Bt5 (
x1 ,x2

Q̄~x2 ,t !Pt~x1 ,x2!Gq~x1 ,t !. ~A1!

Q andq are the heavy and light quark fields respectively, t
sums are over all space at a given timet, Pt is a linear
combination of products of gauge linksU at time t along
pathsP from x1 to x2 , G defines the spin structure of th
operator. The Dirac spin indices and the color indices
implicit.

In this work we choose pathsPt which are specific com-
binations of a product of fuzzed links in a straight line
lengthl . The appropriate symmetry for the cubic rotations
a lattice with a state of zero momentum are given by
representations ofOh . The relationship of these represent
tions to those of SU~2! can be derived by restricting th
SU~2! representations to the rotations allowed by cubic sy
metry and classifying them underOh . This process~called
subduing! yields the results~tabulated toL54!:

L50 A1

L51 T1

L52 ET2

L53 A2T1T2

L54 A1ET1T2

so that anL53 excitation can be extracted by looking at th
A2 representation, for example.

For our lattice construction, we define the sum and diff
ence of the two such paths in directioni assi andpi respec-
tively ~the latter is in theT1 representation!. The combina-
tions appropriate for the discrete group of cubic rotations
then theA1 symmetric sumS5s11s21s3 and theE com-
binations ofai which can be taken asE(ai)5a12a2 and
(2a32a12a2)/).

The appropriate operators for B mesons in the static li
are then

S: Q̄g5Sq or Q̄g iSq

P2 : Q̄1q or Q̄(
i

g i piq

P1 : Q̄E~g i pi !q

with no sum oni :

D6 : Q̄g5E~si !q.

Note that this operator is a mixture of bothD6 states.
In order to access higher spin states, following@9#, we

also consider L-shaped pathsPt where each side of the L ha
the same length. We take linear combinations of these in
T2 representation~pathst i wherei is direction of normal to
6-14
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plane of paths! and in theA2 representation~pathsa!. This
allows us to separate theD6 states since

D2 : Q̄E~g i t i !q

with no sum oni

D1 : Q̄(
i

~g i t i !q.

Also

F6 : Q̄g5aq

wherea refers to the sum with alternating sign of paths to
corners of a spatial cube from the center. The paths to e
corner are the sum of the 6 routes of shortest length along
axes, combined by projecting to the SU~3! group after addi-
o,

. B

. B

03450
ch
he

tion. This gives anL53,6, . . .state. This operator is a mix
ture of bothF6 states.

In each case we use two different fuzzing/length choi
to build up the operators. ForS andP2 we also have a loca
operator available. We also explored additional operat
with ( ig i pi factors but they do not add anything very use
in practice. We measure the correlations between each o
2 ~or 3! operators at sink and source so obtaining a matrix
correlations which can be used to separate the excited s
from the ground state of that quantum number.

For off-diagonal elements there is one further subtle
The alternate light quark stochastic expression introduces
tra g5 factors. For theP2 correlation between 1 andg i pi ,
this will introduce a relative sign change as well as chang
H2→H1 . Interchanging the operators between source
sink now involves taking2g41g4 instead of 1 which intro-
duces further minus signs in this correlation.
r-
d
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