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Chiral fermions on the lattice through gauge fixing: Perturbation theory
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We study the gauge-fixing approach to the construction of lattice chiral gauge theories in one-loop weak-
coupling perturbation theory. We show how the infrared properties of the gauge degrees of freedom determine
the nature of the continuous phase transition at which we take the continuum limit. The fermion self-energy
and the vacuum polarization are calculated, and confirm that, in the Abelian case, this approach can be used to
put chiral gauge theories on the lattice in four dimensions. We comment on the generalization to the non-
Abelian case[S0556-282(198)00415-9

PACS numbdps): 11.15.Ha, 11.30.Rd

[. INTRODUCTION modes are controlled by the bare lattice gauge coupling, so
that the lattice theory can be systematically studied in weak-
In a recent papefl] we have shown that one can con- coupling perturbation theory.
struct models with chiral fermions on the lattice by using a In order for the lattice theory to admit a perturbative ex-
lattice action which contains a discretization of a covariantpansion, the gauge-fixing action should have a global mini-
continuum gauge-fixing term. The model we investigated is anum at the perturbative vacuu,,=0. A discretization of

o
concrete implementatiof2] of the so-called “Rome ap- the standard Lorentz gauge-fixing term with this property
proach” [3,4]. was proposed in Ref2]. A simplified version of this model

In lattice chiral gauge theories, the gauge symmetry isvas then studied nonperturbatively for the Abelian case. In
explicitly broken for nonzero values of the lattice spacing,this “reduced” model, only the longitudinal modes of the
even in anomaly free models. The basic reason for this is thafauge field(or, equivalently, the gauge degrees of freeglom
each fermion species has to contribute its part to the chiradre taken into account. Since these are precisely the degrees
anomaly, and in order to do so, chiral symmetry has to bef freedom that, without gauge fixing, destroy the chiral na-
explicitly broken in the regulated theof§] (see also Ref6]  ture of the fermions, it is important to study such reduced
and references therginOn the lattice, the gauge-symmetry models first, in order to demonstrate that the fermions remain
breaking induced by quantum effects is not restricted to thehiral despite their interactions with the gauge degrees of
anomaly, but includes infinitely many higher-dimensionalfreedom.
operators which are suppressed by powers of the lattice spac- In Refs.[4,2] it was argued that, for small gauge coupling,
ing (are “irrelevant”) for smooth external gauge fields. the gauge-fixed lattice action leads to a continuous phase
However, for arbitrarily “rough” lattice gauge fields, these transition between a Higgs phase, and a novel “directional”
operators potentially lead to unsuppressed interactions bghase, in which the gauge field condenses. At the phase tran-
tween the fermions and the gauge degrees of freelben  sition (which belongs to a universality class different from
longitudinal modes of the gauge fig¢ldTypically, this phe- the usual Higgs transitionthe gauge field is massless, and a
nomenon alters the fermion spectrum of the theory nonpereontinuum limit can be defined. The existence of this phase
turbatively, leading to a vectorlike rather than a chiral fer-transition was confirmed in the reduced Abelian model by
mion content in the continuum limiffor reviews, see Refs. high-statistics numerical computations and in the mean-field
[7, 6]). approximation[8]. In the reduced model, which is always

In order to remedy this problem, it is natural to considerinvariant under constant gauge transformations, the Higgs
gauge-fixed lattice gauge theor{&s4]. It was argued in Ref. phase corresponds to a phase with broken symmetry, which,
[4] that a smooth gauge may lead to a suppression of roughowever, gets restored at the phase transition between the
lattice gauge fields such that a location in the phase diagranmdiggs and “directional” phases. This symmetry restoration
of the theory exists, where the fermion spectrum remainss of crucial importance, since it allows us to unambiguously
chiral. In this case, both the transversal and longitudinatletermine the fermionic quantum numbers under(tiebal

remnant of thg gauge group. Using Wilson fermions, the
existence of undoubled fermions in the desired chiral repre-

*Electronic mail: bock@linde.physik.hu-berlin.de sentation of the gauge group was confirmed numerically in
"Electronic mail: maarten@aapije.wustl.edu Ref.[1].
*Electronic mail: ftshamir@wicc.weizmann.ac.il In this paper, we study the reduced model in detail in
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weak-coupling perturbation theory. In Sec. Il, we define the Voo uut Vy
fully gauged and reduced models, and explain how perturba- By(V)=2> (%
tion theory may be set up systematically. In Sec. Ill, where H
we limit ourselves to the Abelian case, we show how the .
. with
dynamics of the gauge degrees of freedom leads to the con-
tinuous phase transition mentioned above, and how the sym-
metry gets restored at the phase transition. In Sec. IV, we Vv
discuss the one-loop fermion self-energy, and demonstrate
that indeed free chiral fermions with the correct quantum
numbers emerge at this phase transition in the reduced is the bare gauge coupling adds the bare gauge-fixing
model. We then go on to discuss the vacuum po'arization irpara.meter. It |S Stl’aightforvval’d to show that, in the classical
Sec. V. We calculate the shift in the location of the phasecontinuum limit,
transition induced by the fermions at one loop. We show
that, at the phase transition, the gauge degrees of freedom
decouple from the fermion&@ result that also follows from,
and is consistent with, the fermion self-energy calculated in
Sec. IV), and that the expected fermionic contribution to theOf course there are many possible choicesSgrwith the
B function is obtained for the gauge coupling. All these re-same classical continuum limit. Our choice here is motivated
sults confirm that, at least in the Abelian case, our latticepy two important properties obeyed by H&) [2]: Syt has a
theory leads to the desired chiral gauge theory, when th@nique absolute minimum au, =1, validating weak-
continuum limit is taken at the continuous phase transition agoupling perturbation theory ig; our choice ofSy leads to
weak gauge coupling. Some of the results of this paper havg critical behavior suitable for taking a continuum limit in
already been used in a comparison with the numerical resulige [imit g— 0.
of Refs.[1,8]. In Sec. VI, we discuss the issue of fermion  Both properties will be used and discussed in this paper.
number nonconservation at the level of perturbation theoryThe fact that this gauge-fixing action has a unique minimum
Following Ref.[9], we show that a gauge invariant fermion- s closely related to the fact that, on the lattice, it is not the
number current can be constructed with the correct anomalyquare of a local gauge-fixing condition. As a result, the
in the continuum limit. In the last section, we summarize OUraction S, (even without the fermionsis not Becchi-Rouet-
results, and outline some of the most important open probstora-Tyutin (BRST) invariant. This situation allows us to
lems. We refer to Ref$10,1]] for a less technical account of avoid a theorem stating that expectation values of gauge-
our work. invariant operators would vanish in a lattice model with ex-
act BRST invariance, due to the existence of lattice Gribov
Il. THE MODEL copies in such lattice modef42].

In the BRST approach, the gauge-fixing part of the action
is not complete without a Faddeev-Popov teBg,s. How-
ever, we will not specify this term here, as we will be mostly
concerned with the Abelian ca&=U(1), in which case no
hosts need to be introduced, or with one-loop calculations
ot involving ghost loops. For more discussion of the non-
Abelian case, see Ref4]. (A recent claim[13] that the
‘theorem of Ref[12] would also apply here rests on a mis-
understanding about the choice of the ghost action. This is

_ _ explained in detail in Ref14].)
V= Spiaq™ Syrt Sgnostt Sremiont Set- @ FI):or the fermion action, we will choose to use Wilson
For Syaq We will assume the usual plaquette term with thefermions. For each left-handed fermign , we introduce a
link variablesU, ,=exp(A,) in the fundamental represen- fight-handed “spectator” fermionz. This allows us to
tation. ForSy we will take the lattice version of the square of construct a Wilson term that will serve to remove the fer-

the Lorentz gauge condition that we proposed in R2F. mion doublers, of course at the expense of gauge invariance
[15]. The fermion action is

xu= 57 (Uxu=U% ) =Ax,+ O(A?). ®

1
ng:fgz tr(aMAX’M)ZJr irrelevant operators. (6)

Let us start with the action for the fully gauged lattice
chiral fermion theory. We will assume that all physical fer-
mions are left handed, and that they transform in s¢not
necessarily irreducibjerepresentation of a gauge gro@
This representation will have to be anomaly free if a unitaryﬁ
continuum limit is to exist. The complete action can be writ-
ten as a sum of terms, each of which we will introduce be
low:

1
ng:ng tr E ny(U)Dyz(U)_g Bi(V(U)) )

1 I
e () Sfermionzz ;L (¢x7#(UX,MPL+ Pr) ¢x+,u
where — s wYu(Us ,PLPR) P
—r(y, + o, —24, . 7
ny(U):E (6x+l_hyux”u+ 5>(—Myyu;”u)_85x'y (3) (‘/’xd’x+;¢ l/,X-F,ul)bX lr//Xlr//X)) ( )
y23
P.(r are the leftright)-handed projectors (1 ys), andr
is the covariant lattice Laplacian, and is the Wilson parameter. Since the Wilson term breaks the
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left-handedG invariance anyway, we choose not to put any b _ T + inal

gauge fields in, an®emion is therefore invariant under the Sa=wlr zx: $(0(U) #)+marginal terms,

shift symmetry[16] (11
Yroyrter,  Yr—YRT €R: ®  andin whichV, , is replaced by, with

Since gauge invariand@r more precisely, BRST invari-
ance is broken by the fermion action and by the gauge- o 1 4 + ¢
fixing action, we will need to add countertern®,. In prin- Vx,uzﬁ (DxUnuPxt ™ By U B (12)
ciple, all relevant and marginal counterterms which are
allowed by the exact symmetries of the lattice theory will be
needec[B]YThe most ir)r/1portant one for our purpose}s/ in this’t\)IOte thatS; e and ther—_o pa_rt Of Stermion d0 MOt change
! T ecause they are gauge invariant.
paper is the gauge-boson mass counterterm, which is the S, i : iant under the t » i
only dimension-two counterterm. All other counterterms are ™~ IS gauge Invariant under the transtormation
of dimension four, since a fermion-mass counterterm is for-

. . ; ; . T
bidden by shift symmetrylower dimension counterterms in- Usn= hixUs i s
volving ghost fields are excluded by lattice symmetries as
well [3]). So we will choose by—h Dy,
Se=— & tr 2 (Uy,+U] ,)+marginal terms, (9) dry— (N P+ PR) iy, (13
X, i

where we do not need to specify the marginal terms for thigvhereh , e G. Because of thisp, may be completely elimi-
paper. They could be constructed from their continuum formnated fromS, by a gauge transformation, and doing so we
by replacingA, ,—Vy , [cf. Eq.(5)] and partial derivatives recover, as expected,
by difference operators.
Since the actiors, is not gauge invariant, we may intro- _
duce a Stokelberg fieldg, € G, and write the action as S/(U.)=5u(¢.U. 4] g1 - (14)
- o b . & . . .
S = Splag™ Sgi+ Sghost™ Stermiont et (10 We will refer to Sy as the action in the “vector”
with (“Higgs” ) picture. The two formulations are entirely equiva-
lent: observables in the vector picture are mapped into
1 (gauge invariantobservables in the Higgs picture, anide
Si= 27 2 (OHW) OX=BIVAW))), versa[17].

Next, we introduce the “reduced” model, which is ob-

1 — tained fromSy, by setting thegauge field | , equal to one.
Siermion= 2 XZ (YU uPLt PRI The reason that this reduced model is of interest is that, if the
_"L full model is to yield a theory of fermions chirally coupled to
— ¢X+M7#(U;: LPLFPR) Uy gluons in the continuum limit, the reduced model should lead
_ ' to a theory of free chiral fermiongn the correct representa-
—r[ (ghy( ¢I+”P,_+ dxPRr) s T H.C) tion of the gauge grouf®) in the corresponding continuum
— limit. Ignoring the marginal counterterms, we obtain the re-
=2 PL+ dxPR) Yk, duced model action

Seduced K 1 2 (¢1(O2¢)—BI(V () — & tr 2 SO P)y

1 — — _ _
3 2 Ut e w¥ul LW B PLE PRI HHC) = 205( A5PLY $PRIU). (19)

where nowl] is the standard lattice Laplacidof. Eq. (3) and we abbreviated

thl =X s I]’
X, 2 XX+ X+ u X/ Zgg
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Sreduced IS Invariant under the transformation EL3) for
constanth ,=h, , as well as under the transformation

¢— ph,
y— (P +hgPRr) ¢,

with hge G, i.e., Siequceadh@s a globalG, X Gg symmetry.
Weak-coupling perturbation theory gn corresponds to per-
turbation theory in J¢. Note that in the original action in the

(18
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(13),(18)]. In order to analyze the situation for smat|, we
substitute ¢, =exp(gx) into the bosonic part ofSguces
which gives us a potential densi%(q):

2
> (1—coqu)) —(2 sir? qM)
3 u

2

V(a)=|4

+2m?Y, (1-cosq,,) (22)
M

vector picture, the gauge-fixing term corresponds to a kinetig js easy to see that fom?>0, V(q)=0 and thatV(q)

term for the longitudinal part of the gauge fidly, , . There-

=0<q=0. But for m? negative, the absolute minimum of

tematically in perturbation theory ig, even though it is not
gauge invarianf3,4]. In the reduced model, we expand

by=expli 0,/ \2x) = expligVEb,),

in order to develop perturbation theory. This leads to tree
level scalar and fermion propagatok®)(p)#(q))=(p

+9)G(p) and{¥(p) ¥ (a))=(p+aq)S(p) with

(19

2=

m

x| =

G(p):mzj,

S(p)=(i%(p)+rM(p))~*
=(—i8(p)+rM(p))/D(p),
D(p)=s%(p)+r2M?(p), (20

where p,=2sin@,/2), #(p)=3,y,sinp,, s%p)
=3, sirf p, andM(p) = 3p% The vertices can also be read
off from S.equceg@fter expandingg in terms of 6. A vertex
with n 6 lines has a coupling constant of order ("~2)2,
while a vertex involving the fermions and 6 lines has a
coupling of orderk "2,

lll. THE FM-FMD TRANSITION
AND THE CONTINUUM LIMIT

In this section, we will discuss in detail the properties of
the phase transition that occurs for a critical vakyeof the
parametek. We will assume thak is large and positivéfor
details on the complete phase diagram, see R&§.2)). We
will limit ourselves to the case without fermions, and post-
pone their inclusion to a later section. We will also simplify

the discussion by restricting ourselves to the Abelian case,

G=U(1).

tive it occurs af 2]

—+

5 (22

|m2| 1/4
q,= ) , all w.

Hence, for large values 6%, a continuous phase transition
takes place from a phase with broken symmetry grd,
which we will call the FM(ferromagnetit phase, to a phase
with broken symmetry andj#0, which we will call the
FMD (directional ferromagnetjcphase. In the full model,
this condensation ajf corresponds to the condensation of the
vector fieldA,,, andm? corresponds to the gauge field mass
[2]. The critical pointk=x. (=0 at tree level k—« or g

—0 should therefore correspond to the desired continuum
limit, with the desired chiral fermions and massless gluons,
in perturbation theory4].

The discussion of the order parametgy,), however,
does not complete our discussion of the phase transition at
k=K. Let us consider the expectation value={¢,) for
x>0, where the tree-level scalar propagator is given by the
expression in Eq(20). To leading order in X, we obtain

1
(B0=1- = ()

1

T 4k

1
?ﬁ_
f p PA(P*+m?)
(23
where [,=[d*p/(2m)* is the integral over the Brillouin

zone. Form?—0 this is infrared divergent, and we need to
resum the series in order to obtain a finite answer:

An indication that a continuous phase transition occurs

can be obtained from thé propagatofEq. (20)]: if <0,
m? becomes negative, signaling an instability at=0

against the condensation of plane waves with nonzero mo-

mentum, which breaks lattice space-time symmeti(i€his
value for k. is just its tree-level value; its true value will be
shifted by quantum correctionsWe first observe that, for
large’x, ¢ acquires an expectation value, and in fget,)|
—1 for k— (as long as we stay away from the phase
transition line, see below This breaks the globab, X Gg
symmetry down to the diagonal symmetiy=hg [cf. Egs.

1 1
w»=w%—Z;LGm)@+oiﬂ)
1
~(m?)71+0 7{—2)) (24)
with
1 1
1= ann ?) (25)

The O(1/k?) corrections come fromé self-interactions,
which we will discuss below. We see that fer «., v goes
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to zero with ax-dependent critical exponemt This situation (a) )

is very reminiscent of that with massless scalars in two di- RN

mensions, cf. the Coleman/Mermin-Wagner theofé&®i. It ! \ RN
is simply a consequence of the fact that the scalar propagator \ / ’ \

goes like 1/p?)2 for m?=0. /\

Equation(24) has a very important consequence: fiof
—0 (i.e., k= k), (¢y) goes to zero, and the full (1), FIG. 1. One-loop fermion self-energy.
XU(1)gr symmetry [cf. Egs. (13),(18)] is restored atk
= k.. This implies that thdJ(1), [andU(1)gr] charges of For a quicker, but more heuristic argument leading to the
massless fermions are well defined at the critical point. ~ same result, see R4fL0].
Interactions can be taken into account systematically in In order to perform actual perturbation theory calcula-
perturbation theory. To order®@?, Eq.(24) is replaced by tions, it is advantageous to reformulate the reduced action,
Eq. (15 by a field redefinition of the fermion variables. By
<¢x>:eXF< _ i f Gl—loop(p)) ~(k— KkL~10oP) 7. redefiningyp= @'y or Yt =y , we can write the action
4k Jp ¢ in terms of respectively charged or neutral fermion fields
(26) only. This has the advantage of improving the infrared be-
havior of loop corrections. Here we will choose the charged

17| - - . .
where G*~'°°P differs from G by finite wave function and option. To order B, for G=U(1), thereduced action be-

mass renormalizations. Also the critical valuexois shifted

comes
from its (vanishing tree-level value t¢8]
1-loop_ ) 1 — — _
Ke "=0.029981). @D S 5 2 | vt Y w i UKD
e

The fact that the renormalizations are finite originates in the

fact that the interactions are irrelevdirt the Abelian casg i N — c — .
and therefore do not change the long-distance behavior of + N7 (0 Ox(h Y PR T Yt ¥ uPRYY)
correlation functions. See RgB] for a much more detailed

analysis of the order parametés,) in both the FM and 1, = . — .
FMD phases, where it is shown that perturbation theory ~ 77 (Qu Ox(yuPrY s ™ ¥ YuPrRYY)
agrees very well with numerical results.

i _ _
IV. FERMION SPECTRUM IN THE REDUCED MODEL —V(F (0 (Wt = Wss u¥0)
K

In this section we will present one of the key results of
this paper: the fermion self-energy to one loop in the reduced _i (o* 6)2(_° S c
model. But let us first discuss what we would expect, if the A7 “OnTx by wt U w0 | |
reduced model is to pass the test outlined in Sec. Il. The
fermion action in Eq.(15 is formulated in terms of a Where(7; is the forward derivative: ﬂ'(;f)x:fxm—fx- If
charged left-handed fielg; =P_y [i.e., it transforms under we would have chosen to use the neutral formulation, the
the symmetry Eq.(13)], and a neutral right-handed field action would have been similar, but for a parity transforma-
h=Pgry [which does not transform under EQ.3)]. In the  tion P «Pg, 6— — 6, and the omission of scalar-fermion
continuum limit, the neutral right-handed fermion is free be-couplings proportional to. Note that, in both formulations,
cause of the shift symmetry E) [16]. Moreover, at least the 6 field always appears with derivatives, improving the
naively, the charged left-handed fermion is also free in thenfrared behavior of perturbation theory in the limi— 0.
continuum limit, because the interaction terms in ELH) (In the non-Abelian case, there would have been extra scalar-
with the field ¢ are irrelevan{in the usual technical sense, fermion couplings involving the commutatpé, , 6, ,]. We
i.e., dimension greater than fouthas mass dimension zero, believe that in this case the infrared finiteness in the limit
cf. Eg.(20)], as can be seen by inserting and expanding Egm?—0 of observables invariant under the symmetries of the
(19). However, this argument does not take into account thenodel can be proven adapting the methods of Refl.) The
nonstandard infrared behavior of the scalar figldnd might  calculation of the charged fermion one-loop self-energy pro-
therefore be misleading. We will therefore study the fermionceeds in a straightforward manner. There are two contribu-
propagator at one loop in perturbation theory, and see that, tiions, depicted in Fig. 1. The tadpole diagram of Fi¢ga)1
this order, the argument just given is nevertheless correctives a contribution

(28)

1 . .
3@ (p)= A ; (—iy,sinp,Pg+r cospﬂ)kay (1—cosk,)G(k), (29
while the diagram of Fig. (b) leads to a more complicated contribution
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1 - | A | |
sP(p)=g= 2 e""#*'pvka(k)(e"kﬂ— D)(e*v—1){—7,ig(k+p)y,PrD H(k+p)(e'*"?Put1)(e7 'K 2P+ 1)
mv

—rS(k+p) y,Pr(e®2Pu—1)(e7k* 2Pt 1) —ry,[ig(k+p)PL—rM (k+p)Pg]D ~*(k+p)(e'k*2Put 1)
X (e k*2Pv— 1) —r2g(k+p) (€' 2Pu—1)(e 'k 2Pv—1)}, (30)

The total one-loop self-energy is given B(p)=3@(p) G (k)=k?(k?*+m?), but now S(k+p) is of order one
+3®)(p). (thanks to the Wilson terinand again there are no nonana-
First, substitutingp=0, we find3,(0)=0, which tells us  Iytic terms coming from this regior{iNote that the derivative
that no mass counterterm is needed in order to keep the fefouplings of § play an important role hereWe conclude
mion massless. In the neutral formulation, this is a directhat, for these momenta, (p) constitutes a small regular
consequence of shift symmetfg6], and what we find here correction of order ¥, and that t_herefore the doublers are
in the charged formulation is consistent with that. still removed by the tree-level Wilson term. _

Next, we are interested in the nonanalytic behavior of the FOr P small(i.e., m4=0) all nonanalytic behavior comes
self-energy in the continuum limit. To start, let us see what"©™M the region aroundk=0. We obtain the nonanalytic
happens to the doublers, i.e., for momeptam,+p, where terms by cutting out a small region with radidsaroundk

we takep small and =0, with k< §<1, so that we can replace the integrand in-
side this region by its covariaritontinuum expressiori5].
mpe{(m,0,0,0,...(m 7,7, m)}. (31)  (Any explicit § dependence coming from the regiér<§

must cancel against the explieitdependence coming from
The only pole in the fermion propagator B{*) occurs for  the regionk> 5, leaving the complete result independent of
k=ma+k with k small, but in that regiorG(k) is of order  the arbitrary parametef.) Power counting tells us that no
one, and therefore these regions do not lead to any nonaneentribution comes from any of the terms proportional to a
lytic terms inp in the continuum limit. For smak of course  power ofr, and we find, in the continuum limit,

S rona D)= o J GUOK(K+ B)KPa(k+p) 2
|k|<é

2k

2 2 2

_—i¢PR| p2 1[[p? m I m m2I m?
=35 |9 @ T ||t pz te)leg It 7] Tz leg it
—ipPr p
— W |Og Ez, m2~>0, (32)

for small p?/6%. This result shows that nonanalytic terms exist at the critical pointn?=0 in the reduced model, one
occur only in the right-handed kinetic part of the chargedwould expect that the two-point functions ¢f and ¢ cor-
fermion propagator. The left-handed kinetic term receivegespond to two-point functions of fermion-scalar composite
only a finite renormalization coming from contact terms in operators, with a cut starting pt=0 (for m®>=0). In fact, in
the fermion self-energy. This tells us that the left-handedhe continuum limit, we would expect to find that these cor-
charged fermion is a free particle, with a simple pole in itsrelation functions factorize:
two-point function.

A similar analysis of the neutral propagator at one loop ¢ o n Tn +
can be performed by expressing Ed5) in terms of the <’/’RX¢RV>~<¢RX¢RV><¢X¢Y>' (33
neutral fermion fieldy"= ¢'¢°. One finds similar nonana-
lytic terms only in the left-handed kinetic part of the neutraland similar for the neutral left-handed fermion. We will
fermion propagator, telling us that in this case, the right-show now that the nonanalytic behavior found for the
handed neutral fermion is free. The finite one-loop renormalcharged right-handed fermion is exactly what one would ob-
ization of the right-handed kinetic term actually vanishes intain from calculating the right-hand side of E&3) in mo-
this case, in accordance with shift symmetry. mentum space, expanded to ordek.1An analogous argu-

If indeed the neutral right-handed fermion and thement can be given for the neutral left-handed fermion.
charged left-handed fermion are the only free fermions that The bosonic two-point function in E¢33) is
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In order to calculate wg@p@, we need to repeat the self-
x energy calculation, but now witB.c4,ceqin the neutral fer-
mion formulation. This calculation is analogous, but simpler
1 than the one we outlined above, so we will not repeat it here
=1+ = [G(x—y)—G(0)]+---, 34 . ' - &
2k [GOx=y) (0] (34) but just quote the results as we need them. One finds that in
where this case, the only nonanalytic term occurs for the left-
A handed fermion, i.e., the nonanalytic neutral self-energy is
G(x—y)=f e YG(p). (35)  the parity-transformed version of E(B2). We have
p

A

1
(¢1dy)=exp5= [G(x—y)~G(0)] 1+0

2 e PV YRR, (i) = (P Q) exi] ~ G(0)/2K] >

1 1
PRSn(p)PL+ A~ kaRSn(p_ k)PLG(k) + O(?) } ’
(36)

whereS" is the neutral fermion propagator, and we wish to calculate the right-hand side (f@Etp order 1%. The first term

in square brackets does not contain any nonanalytic terms in the continuum limit because of the chiral projectors. The second
term, in which we may replac8”(p—k) by S(p—k) to the desired accuracy, yields the following nonanalytic terms in the
continuum limit:

2

1+ m i
p?

p? 2 m m? —ip
—FlogF—l ? .

+m+2I
mz " pz te)lod

1 ok ‘ 1 —ip). | p? 1
ﬁkaR (p—K)P_G( )-’m ra ipPgr 09 2t5

If we amputate the two massless fermion propagators, thisions undoubled. For a discussion as to how this is not in
expression is not quite equal to minus the self-energy givegontradiction with the Nielsen-Ninomiya theorem, see Ref.
in Eq. (32) yet. For this, we need to include the nonanalytic[11].

part coming from expanding the factor exg®(0)/2k) with We will end this section with some remarks. First, the
calculation of the neutral and charged fermion propagators
G(0) 1 could have been done starting directly from Etp), in what
7 o f G(p) we will call the “mixed formulation.” For the two-point
P functions which are invariant under the global symmetry,
1 m? (UradhRy) (VLxly), (WrxtPRy), and (Y, ly), we would
=T 3% log 2T const, (38)  have found exactly the same resulor noninvariant quan-

tities, resummations are necessary in order to remove infra-
{ed divergences; the simplest example of thigdg) dis-
cussed in the previous sectiprThis holds only for the
connected correlation functions, and not for “auxiliary”
guantities such as the self-energy.

Second, we believe that all these arguments can be ex-
tended to higher orders in perturbation theory. This is based
on the observation that the infrared structure of the reduced
model is very similar to that of two-dimensional theories
Yvith massless scalars. There is a vast literature on such two-
dimensional models, see, e.g., R422,19, and we expect
that some of the arguments and methods can be adapted to
our four-dimensional case.

where we again isolated the nonanalytic term by cutting ou
a spherical region with radiug from the integration region.
Combining this with the tree-level part of EB6) and with
Eq. (37), we recover exactly the expression Eg2) for the
charged right-handed fermion self-energy.

The dynamics of the scalar fielgl plays a crucial role in
obtaining this state of affairs. A very similar model, the
Smit-Swift model[15], has been studied in the past with
hopes of enforcing the situation described above. Withou
gauge fields, the Smit-Swift model corresponds to @)
with k=0. For no values ok and the Wilson-Yukawa cou-
pling r does one obtain the desired result: if the gloBal
X Gr symmetry is unbroken, neutral or charged massless
fermions always come in left- and right-handed péfts a (a) (b)

review see Ref[7]). This is in accordance with a general Q

argument about the applicability of the Nielsen-Ninomiya
theorem[20] to interacting theorie$21]. Here we see that - -

addition of an extra parametek, which has its origin in L7 S
gauge fixing, makes it possible to construct a continuum ’ N
limit in which the symmetry is unbroken, and the chiral fer- FIG. 2. One-loopd self-energy.
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Last, we note that all arguments in this section generalize 1

to the non-Abelian case. gfermion._ > % URY s = Wy Y i — TR0y,

V. VACUUM POLARIZATION

+ n n n n

Let us first consider the effects of the fermions on the B \/7—7( (0, (b VuPLr s VPR
dynamics of the scalar field), Since in the continuum limit,
the gauge degrees of freedom, which are represented by the 1 _ _
field 6, are supposed to decoupllafter suitable adjustment I (0, O ey PLYR = e ¥uPLED) |-
of local counterterms we expect the lattice dynamics to
conform with this expectation. In particular, we expect that (39
no nonanalytic terms survive in the continuum limit of the
two-point function which come from fermion loops. We wil
verify this explicitly at the one-loop level.

It is convenient to perform this calculation using the 1 aoan o
neutral-fermion language. Of course, one would obtain the Gl (P)=p=(p*+m?) +Z4(p). (40)
same result using the charged-fermion formSafy,ceql EQ-
(28)]. Expanded to order %/ the reduced action with neutral To one loop, the fermionic contribution t& 4(p) is
fermions is 3 fermion gy = 5. (p) + 3P (p) (cf. Fig. 2), with

| We define the# self-energy,, from the full 6 two-point
function Gy by

E(a)(p):i~ ZSSinEp sinlp cog k —Ep co k—ip
o 2k Jk AR uo o Fu v o My

v

x| sink,sin(k,—p,)+sink,sin(k,—p,)—8,,> sink, sin(kh—px)) D Yk)D (k- p)},
A

1 1
3P (p)= > f 8 sirf = p,,sin® k,D (), (42)

whereD is given in Eq.(20). In order to find the continuum limit of this expression, we need to expand it to pfdef. Eq.
(40)]. First, the ordep? term is

1 1 1
_ 2 - _ - . 72 - - 71
5= P fk (% sirk ,cod k, 5 % S|n2kMZV cogk, |D2(k) + 5 % sirPk,,D (k)}
1
~0.05464 o= p? (for r=1), (42)
|
leading to a one-loop contribution te. (cf. Sec. ) where
Ky '°°P=0.029931)—0.027321)n; (for r=1), | (p)=2f 2K, Ky~ KuPy— KuPyu— 8,(K°—k-p)
(43 my PED) k?(k—p)?
wheren; is the number of left-handed fermions in the Abe- 1

lian case. = 5272 (PP~ 8,.,p%)log (p?/ %) +regular terms

Next, we are interested in th@(p*) term. We will not
calculate the complete coefficient of this term, but restrict
ourselves to inspection of the nonanalytic part. Like beforefor p2< 5%, We see that, because the nonanalytic patt,of
we can do_ this by restricting thg Ioop-mpmentum |ntggrat|0qs transversal, there is indeed no nonanalytic contribution to
to t_he region/k| <4, and replacing the integrand by its co- the @ two-point function from the fermions. This again dem-
variant form: onstrates that the reduced model leads to a theory of free

1 chiral fermions decoupled from the gauge degrees of free-
s - J..(p), 44 dom in the C(_)ntm_uum limit, after a suitable tuning of local
o(P) 2k ,LEV PuPul (P “49 countertermsgin this case thec term).

(45
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(@ ®) (@) (b) ©

A Ohan ROty O O

FIG. 3. One-loop contributions to the vacuum polarization. (e) RN
S . . : d L/
It is straightforward to verify that, in the Abelian case, the @ S—<
same conclusion holds for the one-loop contribution from the
0 self-interactions, in accordance with the fact that these self-
interactions correspond to irrelevant operators.

Next, we would like to discuss the effective action for the
gauge fieldA, ,, obtained by integrating out all other de-
grees of freedom. An important test of our approach consists

®

of the following. Take the external gauge field to be smooth. M,\Q __ _O.VW
The effective action can now be defined in two wals:We
may setp, =1 [cf. Egs.(1),(14)], and integrate over the fer- o o
mions; (2) we may integrate over bot#, and the fermions FIG. 4. Two-loop contributions to the vacuum polarization.
cf. Eq.(10)].
[ Bo?h (me)t]hods(which, in the terminology of Sec. II, cor- Ed.(10). As in the reduced model, this improves the infrared
respond to respectively the “vector” and “Higgs” picture Pehavior of perturbation theory, validating standard power-
should yield the same gauge-invariant effective action in th&ounting arguments in particular. We observe that, in the
continuum limit, modulo local counterterni# the fermion ~ charged-fermion language, gauge field-fermion vertices only
representation is anomaly fiedhe second method verifies OCcur in the left-handed kinetic term, whitefermion verti-
that the integration over th@attice) gauge orbit of the ex- €S occur only in the right-handed kinetic and Wilson terms.
ternal gauge field does not change tlang-distance part of (The reduced model in the charged-fermion formulation is
the) effective action. then obtained again by setting, ,=1.) . .

We will now examine this using the example of the fer-  The topology of the contributing two-loop diagrams is
mionic contribution to the Abelian vacuum polarization Shown in Fig. 4(where we omitted any diagrams with
11,,(p). Starting from Eq(2) (i.e., following method 1, the tadpoles, since this tadpole vanishes we just explained,
vacuum polarization is just the sum of the two one-loop diaférmion-6 vertices either arise from the Wilson term, or con-
grams of Fig. 3. We find thd ,,(p) is given by the expres- tain a factory,Pg. If we start follqwmg the fermion loop
sion Eq.(44) for the 6 self-energy with a factop,,p, /(2%) from one of theA, vertices, we either encounter a vertex
omitted. This leads to a one-loop gauge-field mass counteffom the Wilson term, which corresponds to an irrelevant
term in Eq.(9) with « given by Eq.(43). For the nonanalytic OPerator, or we encounter a vertgxPr. In this case, be-
part, we findIl,,(p)=1,,(p) [Egs. (44),(45)], leading to ~ cause of the left-handed project®y at theA , vertex, only

the one-loopa function the Wilson term part of the fermion propagatof. Eq.(20)]
contributes, which again corresponds to an irrelevant opera-
ag g® tor. In both cases, we therefore do expect these diagrams to
B@)=- loga_ " 2an2 (46)  yield only contact terms in the continuum limit.

This analysis demonstrates explicity how the “rough
(in the non-Abelian case this has to be multiplied by thegauge field problem” is resolved within the gauge-fixing ap-
appropriate quadratic Cas|m|r'|'h|s is exacﬂy the result we proach[4] also for nontrivial orbits. The resolution is a direct
expect for “chiral QED” with n left-handed fermions. consequence of the fact that the full theory, including the

Next, we wish to verify that the orbit integration does not 9auge degrees of freedom, can be systematically investigated

change the nonlocal part of the vacuum polarizatioh  In perturbation theory.
method 2. To one loop, this is trivial, since, as before, the
vacuum polarization is just the sum of the two diagrams of VI. THE FERMION-NUMBER CURRENT
Fig. 3, which do not contain any lines. Diagrams with ) ) o ) )
internal @ lines only show up at two loops and higher, and we  The fermion action, Eq(7), is invariant under simple
did not perform an explicit calculation of these diagrams.U(1) phase rotations of the fermion field
But, one can easily understand on general grounds that these _ -
higher-loop diagrams with internd lines do not contribute y—e'%Yy,  Y—ye ' (47)
to the nonanalytic part of the vacuum polarization, and that
therefore their effects can be removed by counterterms. TwoFhis exact symmetry appears to be problematic, since it
and higher-loop contributions can be conveniently calculatedeems to imply that we can define a continuum limit contain-
by rewriting the action Eq(10) in terms of charged fermion ing only left-handed fermionghe right-handed fermions de-
fields only, by making the substitutiof= (P +Pgr¢ ") #C in couple in the continuum limitwith a conservedJ (1) quan-
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tum number[23]. This would be in contradiction with the
fact that thisU(1) quantum number should be anomalous,
leading to fermion number violating processes through in-
stantong 24]. Here, we analyze this question in perturbation
theory, leaving a discussion of nonperturbative issues to fu-
ture work. In this section, we will work in the vector picture,

cf. Eq. (D).
The conserved current corresponding to the symmetry EQ. g 5. Triangle diagranithe cross denotes the conserved cur-
(47) is rent of Eq.(48)].

JX'M=J)';’M+JEM+JW

o order in the gauge field&, , , in the continuum limit((- - -) o

gt :;(57 PLU, i denotes the functional average ovgrand ¢ only.) We
R choose the fermions to be in the fundamental representation

+Z><+,L7,¢PLU;,J//X), of the gauge groufs, and we write

R = (v Pribs ut e u VPR, |
= B, a7, P Ao=hiTar AL [ i), G0
p

r J— J—
‘]X\,/ﬂ: ) (¢x¢x+,u_ ¢x+#¢x)-
(48) with T, the Hermitian generators of the groGp normalized
by
On the lattice, we have
tr TaTb: %5ab . (51)
2 Ju= e ) =0. (49
o
The only diagram that contributes to ord&f is shown in
However,J, , is not gauge invariant, and therefore will not Fig. 5. (All other “lattice artifact” diagrams vanish, as al-
correspond to the appropriate physical current in the conready observed in Ref5].) The parity-even part vanishes,
tinuum limit. Let us consider this in some detail by calculat-and we find the following result, to leading order in the
ing the expectation value of the currefd, ,)A to quadratic ~ gauge-field momentk and|:

(i [ @)+ k1) JASHOASC)

(IR A= fkle‘(“'”IRew(k—I»Aj;‘(k)Af}(l).

(J\x',v,)A:ifklei(k”)xlwewpg(k—l)VAi(k)Ai(l), (52

with summation implied over repeated indices. The functign,(k,l) is given by
I/.Lpa(kyl):Zeaﬂ,u(rkalﬁ[kp(IZO_IlO)_IpIl]:|+26aﬁupkalﬁ[ko'l 117 1o(loz=lo) ]
+ %pru{ka[k2| 20— 2K+ 11 13+ 12(1 o= 21 o) 1= 1 [ 1Pl 6= 2K 11 13+ K2(1 50— 2119) T}, (53
where

XSyt

1 1 1-x
ls= sk )= 15— fodxfo dy A=K Ty (1=y)2 2xyk " (54)

The constant$, , Iz, andl,y are given by
|L:r2f (4€1C2C3C4S?(P)MZ(P) — €1C,C3555%(P)M(p))D ~*(p),
P
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Ir= rzf (3€1C2C5C4M2(P)D ~3(p) — $[€1€,C3C4S3(P) + 4r2C1CoC3s5M (P) IMZ(p)D ~4(p)),
p

lw= —rzfpclczc3sﬁM(p)D3(p), (55

in which - w
JX’MZm ‘]X,,u . (60)
s,=sinp,, c,=cosp,, sip)=> sirtp,.

“

The currentJX,ﬂJrJiX'f” yields the correct, gauge-invariant,

(56)  fermion-number current in the continuum limit to ord&f.

. . . " Its divergence is
Lattice loop integrals were calculated again by splitting the

integration region into a small region with radidsaround - 1
p=0 (“inner region”), and the rest“outer region”), taking (It Ixa— 9Ky = 30,2 Envoo tr(Fy, uFx po)-
the double limita—0, followed by 6—0. [The split into (61)

inner and outer regions depends on the routing of the exter-

nal momenta through the loop: we chose the momentum ofAn additional irrelevant operator of ordér® would likely

the fermion propagator connecting the two gauge-field vertibe needed in order to construct a gauge-invariant current to
ces to bep—3(k—1). Of course, the sum of inner and outer orderA2 in the non-Abelian casgNote that the vector cur-
region contributions does not depend on thior <JEM>A rent that leads to gauge-invariant correlation functions in the
and(J%)A the inner-region integrals vanish, while the inte- continuum limit, isnot what one might naively guesék’ﬂ

grall ,,,(k,1) represents thénonloca) inner-region contri- +Jf:ﬂ. The reason is that, although this operator is invariant
bution for (J;M)A. The integralsl g\ represent outer- under gauge transformations, the Feynman rules of the
region contributions. In other words, onIYJ)&’M)A is  theory are not.

nonlocal, as one expects, since the right-handed fermions are

free in the continuum limit. Usin§5] VII. CONCLUSION AND DISCUSSION

1 In this paper, we studied a proposal for the construction of
542 (57 lattice chiral gauge theories {one-loop weak-coupling per-
turbation theory. We considered mostly the Abelian case,
and demonstrated that, in perturbation theory, the model de-
fined in Sec. Il has a continuum limit with the desired chiral
1 fermions, in which the gauge degrees of freedom decouple,
k)= Y €uvpo(K+1) (k=1),, and with the correct one-loog function for the gauge cou-

a pling. Note that, in the reduced model, the figddwhich
represents the gauge degrees of freedom in the full model,
decouples from the fermions for any fermion content. This is
consistent with the fact that the anomaly vanishes for a
purely longitudinal gauge field. Together with the nonpertur-
Jei(kH)x‘E ok I A1), (58  bative results presented in Refd.8], this makes us confi-

I prpRye dent that the gauge-fixing approach can indeed be used to
define Abelian chiral gauge theories on the lattice. Of course,
[In deriving this result, we used the relatidef(I,9(k,])  when the full dynamics of the gauge field is taken into ac-
— 2l 50(K,1))=12(1 gg(k,1) = 21 g5(k,1)).] This proves that, as count, the fermion representation has to be anomaly free. A
expected, the currenl, , is indeed not gauge invariant, as next step(in the Abelian casewould be to investigate the
was pointed out in this context in R¢B]. A gauge-invariant potential between two static charges. In principle, the full
vector current can be defined by adding an irrelevant terngounterterm actiorS,; will have to be calculated, and it
J;’fﬂ toJ with an expectation value that goeskq inthe  would be interesting to see to what precision the counter-

I L+ | R+ IW: -
(for any nonzero value aof!), and

(k+1)

,U«l ppol

we find that indeed ,(J, ,)a Vanishes.
From Egs.(52), (53), (57) one can show that

(Ixuda_

K SA%(k)  16m°

X, !
continuumﬂ limit, wher¢g 9] terms have to be adjusted in order to obtain the Coulomb
potential.

- 1 Our results should also apply to other lattice fermion for-
(Ixua— vau:W €urpall (A s Fxp0 ™ 3A A oA ) mulations, such as staggered fermions, domain wall fermi-
(59 ons, or Weyl fermions with Majorana mass and Wilson

terms.(The latter were discussed in Reff$,25]. We verified
For example, we may take explicitly that at one loop in the reduced model, the bare
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Majorana mass can be tuned such that a free Weyl fermioAbelian case in perturbation theory in much detail. We note
emerges in the continuum limit. Since in this case there is ndiere that the fact that our lattice gauge-fixing actphas a
shift symmetry, the critical value of the bare fermion massunique global minimum &), ,= 1, while suppressing rough
does not vanish. “lattice” Gribov copies, does not tell us anything about
We expect that all perturbative results presented in thiffong-distance, continuum Gribov copies.
paper generalize to the non-Abelian case, with suitable modi- Finally, we addressed the issue of fermion-number non-
fication. For instance, the long distance behavior of theonservation, but only in perturbation theory. Work on the
gauge degrees of freedofwithout fermiong should be de-  nonperturbative aspects of this issue is in progress, and we
scribed by the continuum higher-derivative sigma model ofexpect to report on it in a future publication. Here we just
Ref. [26], and we expect that it will. The analysis of the quote Ref[27], in which it was shown that the existence of

fermion self-energy of Sec. IV carries over without changea gauge-noninvariant conserved charge on the lattice does
and therefore we expect the same conclusions about the fefiot imply that fermion number is conserved.

mion content as in the Abelian case. The main reason that we

have not considered the non-Abelian case in more detail here

is that, in our view, non_tr|V|aI nonperturbative issues WI!| ACKNOWLEDGMENTS
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