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Chiral fermions on the lattice through gauge fixing: Perturbation theory
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We study the gauge-fixing approach to the construction of lattice chiral gauge theories in one-loop weak-
coupling perturbation theory. We show how the infrared properties of the gauge degrees of freedom determine
the nature of the continuous phase transition at which we take the continuum limit. The fermion self-energy
and the vacuum polarization are calculated, and confirm that, in the Abelian case, this approach can be used to
put chiral gauge theories on the lattice in four dimensions. We comment on the generalization to the non-
Abelian case.@S0556-2821~98!00415-9#
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I. INTRODUCTION

In a recent paper@1# we have shown that one can co
struct models with chiral fermions on the lattice by using
lattice action which contains a discretization of a covari
continuum gauge-fixing term. The model we investigated
concrete implementation@2# of the so-called ‘‘Rome ap-
proach’’ @3,4#.

In lattice chiral gauge theories, the gauge symmetry
explicitly broken for nonzero values of the lattice spacin
even in anomaly free models. The basic reason for this is
each fermion species has to contribute its part to the ch
anomaly, and in order to do so, chiral symmetry has to
explicitly broken in the regulated theory@5# ~see also Ref.@6#
and references therein!. On the lattice, the gauge-symmet
breaking induced by quantum effects is not restricted to
anomaly, but includes infinitely many higher-dimension
operators which are suppressed by powers of the lattice s
ing ~are ‘‘irrelevant’’! for smooth external gauge fields
However, for arbitrarily ‘‘rough’’ lattice gauge fields, thes
operators potentially lead to unsuppressed interactions
tween the fermions and the gauge degrees of freedom~the
longitudinal modes of the gauge field!. Typically, this phe-
nomenon alters the fermion spectrum of the theory nonp
turbatively, leading to a vectorlike rather than a chiral fe
mion content in the continuum limit~for reviews, see Refs
@7, 6#!.

In order to remedy this problem, it is natural to consid
gauge-fixed lattice gauge theories@3,4#. It was argued in Ref.
@4# that a smooth gauge may lead to a suppression of ro
lattice gauge fields such that a location in the phase diag
of the theory exists, where the fermion spectrum rema
chiral. In this case, both the transversal and longitudi
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modes are controlled by the bare lattice gauge coupling
that the lattice theory can be systematically studied in we
coupling perturbation theory.

In order for the lattice theory to admit a perturbative e
pansion, the gauge-fixing action should have a global m
mum at the perturbative vacuum,Am50. A discretization of
the standard Lorentz gauge-fixing term with this prope
was proposed in Ref.@2#. A simplified version of this model
was then studied nonperturbatively for the Abelian case
this ‘‘reduced’’ model, only the longitudinal modes of th
gauge field~or, equivalently, the gauge degrees of freedo!
are taken into account. Since these are precisely the deg
of freedom that, without gauge fixing, destroy the chiral n
ture of the fermions, it is important to study such reduc
models first, in order to demonstrate that the fermions rem
chiral despite their interactions with the gauge degrees
freedom.

In Refs.@4,2# it was argued that, for small gauge couplin
the gauge-fixed lattice action leads to a continuous ph
transition between a Higgs phase, and a novel ‘‘direction
phase, in which the gauge field condenses. At the phase
sition ~which belongs to a universality class different fro
the usual Higgs transition!, the gauge field is massless, and
continuum limit can be defined. The existence of this ph
transition was confirmed in the reduced Abelian model
high-statistics numerical computations and in the mean-fi
approximation@8#. In the reduced model, which is alway
invariant under constant gauge transformations, the Hi
phase corresponds to a phase with broken symmetry, wh
however, gets restored at the phase transition between
Higgs and ‘‘directional’’ phases. This symmetry restorati
is of crucial importance, since it allows us to unambiguou
determine the fermionic quantum numbers under the~global
remnant of the! gauge group. Using Wilson fermions, th
existence of undoubled fermions in the desired chiral rep
sentation of the gauge group was confirmed numerically
Ref. @1#.

In this paper, we study the reduced model in detail
© 1998 The American Physical Society01-1
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BOCK, GOLTERMAN, AND SHAMIR PHYSICAL REVIEW D58 034501
weak-coupling perturbation theory. In Sec. II, we define
fully gauged and reduced models, and explain how pertu
tion theory may be set up systematically. In Sec. III, whe
we limit ourselves to the Abelian case, we show how
dynamics of the gauge degrees of freedom leads to the
tinuous phase transition mentioned above, and how the s
metry gets restored at the phase transition. In Sec. IV,
discuss the one-loop fermion self-energy, and demonst
that indeed free chiral fermions with the correct quant
numbers emerge at this phase transition in the redu
model. We then go on to discuss the vacuum polarizatio
Sec. V. We calculate the shift in the location of the pha
transition induced by the fermions at one loop. We sh
that, at the phase transition, the gauge degrees of free
decouple from the fermions~a result that also follows from
and is consistent with, the fermion self-energy calculated
Sec. IV!, and that the expected fermionic contribution to t
b function is obtained for the gauge coupling. All these
sults confirm that, at least in the Abelian case, our latt
theory leads to the desired chiral gauge theory, when
continuum limit is taken at the continuous phase transition
weak gauge coupling. Some of the results of this paper h
already been used in a comparison with the numerical res
of Refs. @1,8#. In Sec. VI, we discuss the issue of fermio
number nonconservation at the level of perturbation theo
Following Ref.@9#, we show that a gauge invariant fermio
number current can be constructed with the correct anom
in the continuum limit. In the last section, we summarize o
results, and outline some of the most important open pr
lems. We refer to Refs.@10,11# for a less technical account o
our work.

II. THE MODEL

Let us start with the action for the fully gauged lattic
chiral fermion theory. We will assume that all physical fe
mions are left handed, and that they transform in some~not
necessarily irreducible! representation of a gauge groupG.
This representation will have to be anomaly free if a unita
continuum limit is to exist. The complete action can be wr
ten as a sum of terms, each of which we will introduce b
low:

SV5Splaq1Sgf1Sghost1Sfermion1Sct . ~1!

For Splaq we will assume the usual plaquette term with t
link variablesUx,m5exp(iAx,m) in the fundamental represen
tation. ForSgf we will take the lattice version of the square
the Lorentz gauge condition that we proposed in Ref.@2#:

Sgf5
1

2jg2 trS (
xyz

hxy~U !hyz~U !2(
x

Bx
2
„V~U !…D ,

~2!

where

hxy~U !5(
m

~dx1m,yUx,m1dx2m,yUy,m
† !28dx,y ~3!

is the covariant lattice Laplacian, and
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Bx~V!5(
m

S Vx2m,m1Vx,m

2 D 2

, ~4!

with

Vx,m5
1

2i
~Ux,m2Ux,m

† !5Ax,m1O~A3!. ~5!

g is the bare gauge coupling andj is the bare gauge-fixing
parameter. It is straightforward to show that, in the class
continuum limit,

Sgf5
1

2jg2 tr~]mAx,m!21 irrelevant operators. ~6!

Of course there are many possible choices forSgf with the
same classical continuum limit. Our choice here is motiva
by two important properties obeyed by Eq.~2! @2#: Sgf has a
unique absolute minimum atUx,m5I , validating weak-
coupling perturbation theory ing; our choice ofSgf leads to
a critical behavior suitable for taking a continuum limit
the limit g→0.

Both properties will be used and discussed in this pap
The fact that this gauge-fixing action has a unique minim
is closely related to the fact that, on the lattice, it is not t
square of a local gauge-fixing condition. As a result, t
action SV ~even without the fermions! is not Becchi-Rouet-
Stora-Tyutin~BRST! invariant. This situation allows us to
avoid a theorem stating that expectation values of gau
invariant operators would vanish in a lattice model with e
act BRST invariance, due to the existence of lattice Grib
copies in such lattice models@12#.

In the BRST approach, the gauge-fixing part of the act
is not complete without a Faddeev-Popov termSghost. How-
ever, we will not specify this term here, as we will be mos
concerned with the Abelian caseG5U(1), in which case no
ghosts need to be introduced, or with one-loop calculati
not involving ghost loops. For more discussion of the no
Abelian case, see Ref.@4#. ~A recent claim @13# that the
theorem of Ref.@12# would also apply here rests on a mi
understanding about the choice of the ghost action. Thi
explained in detail in Ref.@14#.!

For the fermion action, we will choose to use Wilso
fermions. For each left-handed fermioncL , we introduce a
right-handed ‘‘spectator’’ fermioncR . This allows us to
construct a Wilson term that will serve to remove the fe
mion doublers, of course at the expense of gauge invaria
@15#. The fermion action is

Sfermion5
1

2 (
x,m

„c̄xgm~Ux,mPL1PR!cx1m

2c̄x1mgm~Ux,m
† PLPR!cx

2r ~ c̄xcx1m1c̄x1mcx22c̄xcx!…. ~7!

PL(R) are the left~right!-handed projectors12 (17g5), and r
is the Wilson parameter. Since the Wilson term breaks
1-2
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CHIRAL FERMIONS ON THE LATTICE THROUGH . . . PHYSICAL REVIEW D 58 034501
left-handedG invariance anyway, we choose not to put a
gauge fields in, andSfermion is therefore invariant under th
shift symmetry@16#

cR→cR1eR , c̄R→c̄R1 ēR . ~8!

Since gauge invariance~or more precisely, BRST invari
ance! is broken by the fermion action and by the gaug
fixing action, we will need to add counterterms,Sct . In prin-
ciple, all relevant and marginal counterterms which a
allowed by the exact symmetries of the lattice theory will
needed@3#. The most important one for our purposes in th
paper is the gauge-boson mass counterterm, which is
only dimension-two counterterm. All other counterterms a
of dimension four, since a fermion-mass counterterm is f
bidden by shift symmetry~lower dimension counterterms in
volving ghost fields are excluded by lattice symmetries
well @3#!. So we will choose

Sct52k tr (
x,m

~Ux,m1Ux,m
† !1marginal terms, ~9!

where we do not need to specify the marginal terms for
paper. They could be constructed from their continuum fo
by replacingAx,m→Vx,m @cf. Eq. ~5!# and partial derivatives
by difference operators.

Since the actionSV is not gauge invariant, we may intro
duce a Stu¨ckelberg fieldfxPG, and write the action as

SH5Splaq1Sgf
f 1Sghost

f 1Sfermion
f 1Sct

f , ~10!

with

Sgf
f 5

1

2jg2 tr (
x

~fx
†
„h2~U !f…x2Bx

2
„Vf~U !…!,

Sfermion
f 5

1

2 (
x,m

~c̄xgm~Ux,mPL1PR!cx1m

2c̄x1mgm~Ux,m
† PL1PR!cx

2r @„c̄x~fx1m
† PL1fxPR!cx1m1H.c.…

22c̄x~fx
†PL1fxPR!cx# !,
03450
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f52k tr (

x
fx

†
„h~U !f…x1marginal terms,

~11!

and in whichVx,m is replaced byVx,m
f with

Vx,m
f 5

1

2i
~fx

†Ux,mfx1m2fx1m
† Ux,m

† fx!. ~12!

Note thatSplaq and ther 50 part of Sfermion do not change
because they are gauge invariant.

SH is gauge invariant under the transformation

Ux,m→hLxUx,mhLx1m
† ,

fx→hLxfx ,

cx→~hLxPL1PR!cx , ~13!

wherehLxPG. Because of this,fx may be completely elimi-
nated fromSH by a gauge transformation, and doing so w
recover, as expected,

SV~U,c!5SH~f,U,c!uf5I . ~14!

We will refer to SV(H) as the action in the ‘‘vector’’
~‘‘Higgs’’ ! picture. The two formulations are entirely equiv
lent: observables in the vector picture are mapped i
~gauge invariant! observables in the Higgs picture, andvice
versa@17#.

Next, we introduce the ‘‘reduced’’ model, which is ob
tained fromSH by setting thegauge field Ux,m equal to one.
The reason that this reduced model is of interest is that, if
full model is to yield a theory of fermions chirally coupled t
gluons in the continuum limit, the reduced model should le
to a theory of free chiral fermions~in the correct representa
tion of the gauge groupG! in the corresponding continuum
limit. Ignoring the marginal counterterms, we obtain the
duced model action
Sreduced5k̃ tr (
x

~fx
†~h2f!x2Bx

2
„Vr~f!…!2k tr (

x
fx

†~hf!x

1
1

2 (
x,m

~c̄xgmcx1m2c̄x1mgmcx2r @„c̄x~fx1m
† PL1fxPR!cx1m1H.c.…22c̄x~fx

†PL1fxPR!cx# !, ~15!
where nowh is the standard lattice Laplacian@cf. Eq. ~3!
with Ux,m5I #,

Vx,m
r 5

1

2i
~fx

†fx1m2fx1m
† fx!, ~16!
and we abbreviated

k̃[
1

2jg2 . ~17!
1-3
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BOCK, GOLTERMAN, AND SHAMIR PHYSICAL REVIEW D58 034501
Sreduced is invariant under the transformation Eq.~13! for
constanthLx5hL , as well as under the transformation

f→fhR
† ,

c→~PL1hRPR!c, ~18!

with hRPG, i.e., Sreduced has a globalGL3GR symmetry.
Weak-coupling perturbation theory ing corresponds to per
turbation theory in 1/k̃. Note that in the original action in the
vector picture, the gauge-fixing term corresponds to a kin
term for the longitudinal part of the gauge fieldUx,m . There-
fore SV is manifestly renormalizable, and can be treated s
tematically in perturbation theory ing, even though it is not
gauge invariant@3,4#. In the reduced model, we expand

fx5exp~ iux /A2k̃ !5exp~ igAjux!, ~19!

in order to develop perturbation theory. This leads to tr
level scalar and fermion propagatorŝu(p)u(q)&5d(p
1q)G(p) and ^c(p)c̄(q)&5d(p1q)S(p) with

G~p!5
1

p̂2~ p̂21m2!
, m2[

k

k̃
,

S~p!5„is”~p!1rM ~p!…21

5„2 is”~p!1rM ~p!…/D~p!,

D~p!5s2~p!1r 2M2~p!, ~20!

where p̂m52 sin(pm/2), s” (p)5(mgm sin pm , s2(p)
5(m sin2 pm andM (p)5 1

2 p̂2. The vertices can also be rea
off from Sreducedafter expandingf in terms ofu. A vertex
with n u lines has a coupling constant of orderk̃2(n22)/2,
while a vertex involving the fermions andn u lines has a
coupling of orderk̃2n/2.

III. THE FM-FMD TRANSITION
AND THE CONTINUUM LIMIT

In this section, we will discuss in detail the properties
the phase transition that occurs for a critical valuekc of the
parameterk. We will assume thatk̃ is large and positive~for
details on the complete phase diagram, see Refs.@8,4,2#!. We
will limit ourselves to the case without fermions, and po
pone their inclusion to a later section. We will also simpli
the discussion by restricting ourselves to the Abelian ca
G5U(1).

An indication that a continuous phase transition occ
can be obtained from theu propagator@Eq. ~20!#: if k,0,
m2 becomes negative, signaling an instability atkc50
against the condensation of plane waves with nonzero
mentum, which breaks lattice space-time symmetries.~This
value forkc is just its tree-level value; its true value will b
shifted by quantum corrections.! We first observe that, for
large k̃, f acquires an expectation value, and in factu^fx&u
→1 for k̃→` ~as long as we stay away from the pha
transition line, see below!. This breaks the globalGL3GR
symmetry down to the diagonal symmetryhL5hR @cf. Eqs.
03450
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~13!,~18!#. In order to analyze the situation for smalluku, we
substitutefx5exp(iqx) into the bosonic part ofSreduced,
which gives us a potential densityV(q):

V~q!5k̃F4S (
m

~12cosqm! D 2

2S (
m

sin2 qmD 2

12m2(
m

~12cosqm!G . ~21!

It is easy to see that form2.0, V(q)>0 and thatV(q)
50⇔q50. But for m2 negative, the absolute minimum o
V(q) occurs at a nonzero value ofq; for m2 small and nega-
tive it occurs at@2#

qm56S um2u
6 D 1/4

, all m. ~22!

Hence, for large values ofk̃, a continuous phase transitio
takes place from a phase with broken symmetry andq50,
which we will call the FM~ferromagnetic! phase, to a phase
with broken symmetry andqÞ0, which we will call the
FMD ~directional ferromagnetic! phase. In the full model,
this condensation ofq corresponds to the condensation of t
vector fieldAm , andm2 corresponds to the gauge field ma
@2#. The critical pointk5kc ~50 at tree level!, k̃→` or g
→0 should therefore correspond to the desired continu
limit, with the desired chiral fermions and massless gluo
in perturbation theory@4#.

The discussion of the order parameter^qm&, however,
does not complete our discussion of the phase transitio
k5kc . Let us consider the expectation valuev5^fx& for
k.0, where the tree-level scalar propagator is given by
expression in Eq.~20!. To leading order in 1/k̃, we obtain

^fx&512
1

4k̃
^ux

2&1¯

512
1

4k̃ E
p

1

p̂2~ p̂21m2!
1¯ ,

~23!

where *p5*d4p/(2p)4 is the integral over the Brillouin
zone. Form2→0 this is infrared divergent, and we need
resum the series in order to obtain a finite answer:

^fx&5expS 2
1

4k̃ E
p
G~p! D S 11OS 1

k̃2D D
;~m2!hS 11OS 1

k̃2D D , ~24!

with

h[
1

64p2k̃
1OS 1

k̃2D . ~25!

The O(1/k̃2) corrections come fromu self-interactions,
which we will discuss below. We see that fork↘kc , v goes
1-4
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CHIRAL FERMIONS ON THE LATTICE THROUGH . . . PHYSICAL REVIEW D 58 034501
to zero with ak̃-dependent critical exponenth. This situation
is very reminiscent of that with massless scalars in two
mensions, cf. the Coleman/Mermin-Wagner theorem@18#. It
is simply a consequence of the fact that the scalar propag
goes like 1/(p2)2 for m250.

Equation~24! has a very important consequence: form2

→0 ~i.e., k→kc!, ^fx& goes to zero, and the fullU(1)L
3U(1)R symmetry @cf. Eqs. ~13!,~18!# is restored atk
5kc . This implies that theU(1)L @and U(1)R# charges of
massless fermions are well defined at the critical point.

Interactions can be taken into account systematically
perturbation theory. To order 1/k̃2, Eq. ~24! is replaced by

^fx&5expS 2
1

4k̃ E
p
G12 loop~p! D;~k2kc

12 loop!h,

~26!

whereG12 loop differs from G by finite wave function and
mass renormalizations. Also the critical value ofk is shifted
from its ~vanishing! tree-level value to@8#

kc
12 loop50.02993~1!. ~27!

The fact that the renormalizations are finite originates in
fact that the interactions are irrelevant~in the Abelian case!,
and therefore do not change the long-distance behavio
correlation functions. See Ref.@8# for a much more detailed
analysis of the order parameter^fx& in both the FM and
FMD phases, where it is shown that perturbation the
agrees very well with numerical results.

IV. FERMION SPECTRUM IN THE REDUCED MODEL

In this section we will present one of the key results
this paper: the fermion self-energy to one loop in the redu
model. But let us first discuss what we would expect, if t
reduced model is to pass the test outlined in Sec. II. T
fermion action in Eq.~15! is formulated in terms of a
charged left-handed fieldcL

c5PLc @i.e., it transforms under
the symmetry Eq.~13!#, and a neutral right-handed fiel
cR

n5PRc @which does not transform under Eq.~13!#. In the
continuum limit, the neutral right-handed fermion is free b
cause of the shift symmetry Eq.~8! @16#. Moreover, at least
naively, the charged left-handed fermion is also free in
continuum limit, because the interaction terms in Eq.~15!
with the field u are irrelevant@in the usual technical sense
i.e., dimension greater than four;u has mass dimension zero
cf. Eq. ~20!#, as can be seen by inserting and expanding
~19!. However, this argument does not take into account
nonstandard infrared behavior of the scalar fieldu, and might
therefore be misleading. We will therefore study the ferm
propagator at one loop in perturbation theory, and see tha
this order, the argument just given is nevertheless corr
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For a quicker, but more heuristic argument leading to
same result, see Ref.@10#.

In order to perform actual perturbation theory calcu
tions, it is advantageous to reformulate the reduced act
Eq. ~15! by a field redefinition of the fermion variables. B
redefiningcR

n5f†cR
c or cL

c5fcL
n , we can write the action

in terms of respectively charged or neutral fermion fie
only. This has the advantage of improving the infrared b
havior of loop corrections. Here we will choose the charg
option. To order 1/k̃, for G5U(1), thereduced action be-
comes

Sreduced
fermion5

1

2 (
x,m

F c̄x
cgmcx1m

c 2c̄x1m
c gmcx

c2r c̄x
c~hcc!x

1
i

A2k̃
~]m

1u!x~ c̄x
cgmPRcx1m

c 1c̄x1m
c gmPRcx

c!

2
1

4k̃
~]m

1u!x
2~ c̄x

cgmPRcx1m
c 2c̄x1m

c gmPRcx
c!

2r S i

A2k̃
~]m

1u!x~ c̄x
ccx1m

c 2c̄x1m
c cx

c!

2
1

4k̃
~]m

1u!x
2~ c̄x

ccx1m
c 1c̄x1m

c cx
c!D G , ~28!

where ]m
1 is the forward derivative: (]m

1 f )x5 f x1m2 f x . If
we would have chosen to use the neutral formulation,
action would have been similar, but for a parity transform
tion PL↔PR , u→2u, and the omission of scalar-fermio
couplings proportional tor . Note that, in both formulations
the u field always appears with derivatives, improving th
infrared behavior of perturbation theory in the limitm2→0.
~In the non-Abelian case, there would have been extra sca
fermion couplings involving the commutator@ux ,ux1m#. We
believe that in this case the infrared finiteness in the lim
m2→0 of observables invariant under the symmetries of
model can be proven adapting the methods of Ref.@19#.! The
calculation of the charged fermion one-loop self-energy p
ceeds in a straightforward manner. There are two contri
tions, depicted in Fig. 1. The tadpole diagram of Fig. 1~a!
gives a contribution

FIG. 1. One-loop fermion self-energy.
S~a!~p!5
1

8k̃ (
m

~2 igm sin pmPR1r cospm!E
k
(

n
~12coskn!G~k!, ~29!

while the diagram of Fig. 1~b! leads to a more complicated contribution
1-5
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S~b!~p!5
1

8k̃ (
mn

e2 ipm1 ipnE
k
G~k!~e2 ikm21!~eikn21!$2gmis” ~k1p!gnPRD21~k1p!~ei ~k12p!m11!~e2 i ~k12p!n11!

2rS~k1p!gnPR~ei ~k12p!m21!~e2 i ~k12p!n11!2rgm@ is” ~k1p!PL2rM ~k1p!PR#D21~k1p!~ei ~k12p!m11!

3~e2 i ~k12p!n21!2r 2S~k1p!~ei ~k12p!m21!~e2 i ~k12p!n21!%. ~30!
fe
ec

th
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an

a-
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a

The total one-loop self-energy is given byS(p)5S (a)(p)
1S (b)(p).

First, substitutingp50, we findS(0)50, which tells us
that no mass counterterm is needed in order to keep the
mion massless. In the neutral formulation, this is a dir
consequence of shift symmetry@16#, and what we find here
in the charged formulation is consistent with that.

Next, we are interested in the nonanalytic behavior of
self-energy in the continuum limit. To start, let us see w
happens to the doublers, i.e., for momentap5pA1 p̃, where
we takep̃ small and

pAP$~p,0,0,0!,...,~p,p,p,p!%. ~31!

The only pole in the fermion propagator inS (b) occurs for
k5pA1 k̃ with k̃ small, but in that regionG(k) is of order
one, and therefore these regions do not lead to any non
lytic terms inp̃ in the continuum limit. For smallk of course
s
ed
e
in
e
its

op

-
ra
ht
a
in

he
h

03450
r-
t

e
t

a-

G21(k)'k2(k21m2), but now S(k1p) is of order one
~thanks to the Wilson term!, and again there are no nonan
lytic terms coming from this region.~Note that the derivative
couplings ofu play an important role here.! We conclude
that, for these momenta,S(p) constitutes a small regula
correction of order 1/k̃, and that therefore the doublers a
still removed by the tree-level Wilson term.

For p small ~i.e., pA50! all nonanalytic behavior come
from the region aroundk50. We obtain the nonanalytic
terms by cutting out a small region with radiusd aroundk
50, with k!d!1, so that we can replace the integrand
side this region by its covariant~continuum! expression@5#.
~Any explicit d dependence coming from the regionk,d
must cancel against the explicitd dependence coming from
the regionk.d, leaving the complete result independent
the arbitrary parameterd.! Power counting tells us that n
contribution comes from any of the terms proportional to
power of r , and we find, in the continuum limit,
Snonan~p!5
2 i

2k̃ E
uku,d

G~k!k” ~k”1p” !k”PR~k1p!22

5
2 ip”PR

32k̃p2 H log
p2

d2 1
1

2 F S p2

m2 1
m2

p2 12D logS 11
m2

p2 D2
m2

p2 log
m2

p2 21G J
→

2 ip”PR

32k̃p2 log
p2

d2 , m2→0, ~32!
e

ite

r-

ill
he
ob-
for small p2/d2. This result shows that nonanalytic term
occur only in the right-handed kinetic part of the charg
fermion propagator. The left-handed kinetic term receiv
only a finite renormalization coming from contact terms
the fermion self-energy. This tells us that the left-hand
charged fermion is a free particle, with a simple pole in
two-point function.

A similar analysis of the neutral propagator at one lo
can be performed by expressing Eq.~15! in terms of the
neutral fermion fieldcn5f†cc. One finds similar nonana
lytic terms only in the left-handed kinetic part of the neut
fermion propagator, telling us that in this case, the rig
handed neutral fermion is free. The finite one-loop renorm
ization of the right-handed kinetic term actually vanishes
this case, in accordance with shift symmetry.

If indeed the neutral right-handed fermion and t
charged left-handed fermion are the only free fermions t
s

d

l
-
l-

at

exist at the critical pointm250 in the reduced model, on
would expect that the two-point functions ofcR

c andcL
n cor-

respond to two-point functions of fermion-scalar compos
operators, with a cut starting atp50 ~for m250!. In fact, in
the continuum limit, we would expect to find that these co
relation functions factorize:

^cRx
c c̄Ry

c &;^cRx
n c̄Ry

n &^fx
†fy&, ~33!

and similar for the neutral left-handed fermion. We w
show now that the nonanalytic behavior found for t
charged right-handed fermion is exactly what one would
tain from calculating the right-hand side of Eq.~33! in mo-
mentum space, expanded to order 1/k̃. An analogous argu-
ment can be given for the neutral left-handed fermion.

The bosonic two-point function in Eq.~33! is
1-6
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^fx
†fy&5exp

1

2k̃
@G~x2y!2G~0!#F11OS 1

k̃2D G
511

1

2k̃
@G~x2y!2G~0!#1¯ , ~34!

where

G~x2y!5E
p
ei ~x2y!G~p!. ~35!
th
ve
tic
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.

e
th
ou

-

es

al
ya
t

um
r-

03450
In order to calculatêcRx
n c̄Ry

n &, we need to repeat the sel
energy calculation, but now withSreducedin the neutral fer-
mion formulation. This calculation is analogous, but simp
than the one we outlined above, so we will not repeat it he
but just quote the results as we need them. One finds tha
this case, the only nonanalytic term occurs for the le
handed fermion, i.e., the nonanalytic neutral self-energy
the parity-transformed version of Eq.~32!. We have
e second
the
(
xy

e2 ipx1 iqy^cRx
n c̄Ry

n &^fx
†fy&5d~p2q!exp@2G~0!/2k̃ #FPRSn~p!PL1

1

2k̃ E
k
PRSn~p2k!PLG~k!1OS 1

k̃2D G ,
~36!

whereSn is the neutral fermion propagator, and we wish to calculate the right-hand side of Eq.~36! to order 1/k̃. The first term
in square brackets does not contain any nonanalytic terms in the continuum limit because of the chiral projectors. Th
term, in which we may replaceSn(p2k) by S(p2k) to the desired accuracy, yields the following nonanalytic terms in
continuum limit:

1

2k̃ E
k
PRSn~p2k!PLG~k!→

1

32p2k̃ S 2 ip”

p2 D ip”PRH log
p2

m2 1
1

2 F S p2

m2 1
m2

p2 12D logS 11
m2

p2 D2
m2

p2 log
m2

p2 21G J S 2 ip”

p2 D .

~37!
t in
ef.

he
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d to
If we amputate the two massless fermion propagators,
expression is not quite equal to minus the self-energy gi
in Eq. ~32! yet. For this, we need to include the nonanaly
part coming from expanding the factor exp(2G(0)/2k̃) with

G~0!

2k̃
5

1

2k̃ E
p
G~p!

52
1

32p2k̃
log

m2

d2 1const, ~38!

where we again isolated the nonanalytic term by cutting
a spherical region with radiusd from the integration region
Combining this with the tree-level part of Eq.~36! and with
Eq. ~37!, we recover exactly the expression Eq.~32! for the
charged right-handed fermion self-energy.

The dynamics of the scalar fieldf plays a crucial role in
obtaining this state of affairs. A very similar model, th
Smit-Swift model @15#, has been studied in the past wi
hopes of enforcing the situation described above. With
gauge fields, the Smit-Swift model corresponds to Eq.~15!
with k̃50. For no values ofk and the Wilson-Yukawa cou
pling r does one obtain the desired result: if the globalGL
3GR symmetry is unbroken, neutral or charged massl
fermions always come in left- and right-handed pairs~for a
review see Ref.@7#!. This is in accordance with a gener
argument about the applicability of the Nielsen-Ninomi
theorem@20# to interacting theories@21#. Here we see tha
addition of an extra parameter,k̃, which has its origin in
gauge fixing, makes it possible to construct a continu
limit in which the symmetry is unbroken, and the chiral fe
is
n

t

t

s

mions undoubled. For a discussion as to how this is no
contradiction with the Nielsen-Ninomiya theorem, see R
@11#.

We will end this section with some remarks. First, t
calculation of the neutral and charged fermion propaga
could have been done starting directly from Eq.~15!, in what
we will call the ‘‘mixed formulation.’’ For the two-point
functions which are invariant under the global symmet
^cRx

c c̄Ry
c &, ^cLx

c c̄Ly
c &, ^cRx

n c̄Ry
n &, and ^cLx

n c̄Ly
n &, we would

have found exactly the same results.~For noninvariant quan-
tities, resummations are necessary in order to remove in
red divergences; the simplest example of this is^fx& dis-
cussed in the previous section.! This holds only for the
connected correlation functions, and not for ‘‘auxiliary
quantities such as the self-energy.

Second, we believe that all these arguments can be
tended to higher orders in perturbation theory. This is ba
on the observation that the infrared structure of the redu
model is very similar to that of two-dimensional theori
with massless scalars. There is a vast literature on such
dimensional models, see, e.g., Refs.@22,19#, and we expect
that some of the arguments and methods can be adapte
our four-dimensional case.

FIG. 2. One-loopu self-energy.
1-7
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BOCK, GOLTERMAN, AND SHAMIR PHYSICAL REVIEW D58 034501
Last, we note that all arguments in this section genera
to the non-Abelian case.

V. VACUUM POLARIZATION

Let us first consider the effects of the fermions on t
dynamics of the scalar field,u. Since in the continuum limit,
the gauge degrees of freedom, which are represented b
field u, are supposed to decouple~after suitable adjustmen
of local counterterms!, we expect the lattice dynamics t
conform with this expectation. In particular, we expect th
no nonanalytic terms survive in the continuum limit of theu
two-point function which come from fermion loops. We wi
verify this explicitly at the one-loop level.

It is convenient to perform this calculation using th
neutral-fermion language. Of course, one would obtain
same result using the charged-fermion form ofSreduced@Eq.
~28!#. Expanded to order 1/k̃, the reduced action with neutra
fermions is
e-

ric
re
io
-

03450
e

the

t

e

Sreduced
fermion5

1

2 (
x,m

S c̄x
ngmcx1m

n 2c̄x1m
n gmcx

n2r c̄x
n~hcn!x

2
i

A2k̃
~]m

1u!x~ c̄x
ngmPLcx1m

n 1c̄x1m
n gmPRcx

n!

2
1

4k̃
~]m

1u!x
2~ c̄x

ngmPLcx1m
n 2c̄x1m

n gmPLcx
n!D .

~39!

We define theu self-energySu from the full u two-point
function Gfull by

Gfull
21~p!5 p̂2~ p̂21m2!1Su~p!. ~40!

To one loop, the fermionic contribution toSu(p) is
Su

fermion(p)5Su
(a)(p)1Su

(b)(p) ~cf. Fig. 2!, with
Su
~a!~p!5

1

2k̃ E
k
F(

mn
8 sin

1

2
pmsin

1

2
pncosS km2

1

2
pmD cosS kn2

1

2
pnD

3S sin kmsin~kn2pn!1sin knsin~km2pm!2dmn(
l

sin kl sin~kl2pl! DD21~k!D21~k2p!G ,
Su

~b!~p!5
1

2k̃ E
k
8 sin2

1

2
pmsin2 kmD21~k! , ~41!

whereD is given in Eq.~20!. In order to find the continuum limit of this expression, we need to expand it to orderp4 @cf. Eq.
~40!#. First, the orderp2 term is

1

2k̃
p2E

k
F S (

m
sin2kmcos2 km2

1

2 (
m

sin2km(
n

cos2knDD22~k!1
1

2 (
m

sin2kmD21~k!G
'0.054643

1

2k̃
p2 ~ for r 51!, ~42!
to
-

free
ee-
al
leading to a one-loop contribution tokc ~cf. Sec. III!

kc
12 loop50.02993~1!20.02732~1!nf ~ for r 51!,

~43!

wherenf is the number of left-handed fermions in the Ab
lian case.

Next, we are interested in theO(p4) term. We will not
calculate the complete coefficient of this term, but rest
ourselves to inspection of the nonanalytic part. Like befo
we can do this by restricting the loop-momentum integrat
to the regionuku,d, and replacing the integrand by its co
variant form:

Su~p!;
1

2k̃ (
mn

pmpnI mn~p!, ~44!
t
,

n

where

I mn~p!52E
uku,d

2kmkn2kmpn2knpm2dmn~k22k•p!

k2~k2p!2

5
1

24p2 ~pmpn2dmnp2!log ~p2/d2!1regular terms

~45!

for p2!d2. We see that, because the nonanalytic part ofI mn

is transversal, there is indeed no nonanalytic contribution
theu two-point function from the fermions. This again dem
onstrates that the reduced model leads to a theory of
chiral fermions decoupled from the gauge degrees of fr
dom in the continuum limit, after a suitable tuning of loc
counterterms~in this case thek term!.
1-8
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CHIRAL FERMIONS ON THE LATTICE THROUGH . . . PHYSICAL REVIEW D 58 034501
It is straightforward to verify that, in the Abelian case, t
same conclusion holds for the one-loop contribution from
u self-interactions, in accordance with the fact that these s
interactions correspond to irrelevant operators.

Next, we would like to discuss the effective action for t
gauge fieldAx,m , obtained by integrating out all other de
grees of freedom. An important test of our approach cons
of the following. Take the external gauge field to be smoo
The effective action can now be defined in two ways:~1! We
may setfx5I @cf. Eqs.~1!,~14!#, and integrate over the fer
mions; ~2! we may integrate over bothfx and the fermions
@cf. Eq. ~10!#.

Both methods~which, in the terminology of Sec. II, cor
respond to respectively the ‘‘vector’’ and ‘‘Higgs’’ picture!
should yield the same gauge-invariant effective action in
continuum limit, modulo local counterterms~if the fermion
representation is anomaly free!. The second method verifie
that the integration over the~lattice! gauge orbit of the ex-
ternal gauge field does not change the~long-distance part of
the! effective action.

We will now examine this using the example of the fe
mionic contribution to the Abelian vacuum polarizatio
Pmn(p). Starting from Eq.~1! ~i.e., following method 1!, the
vacuum polarization is just the sum of the two one-loop d
grams of Fig. 3. We find thatPmn(p) is given by the expres
sion Eq.~44! for the u self-energy with a factorpmpn /(2k̃)
omitted. This leads to a one-loop gauge-field mass coun
term in Eq.~9! with k given by Eq.~43!. For the nonanalytic
part, we findPmn(p)5I mn(p) @Eqs. ~44!,~45!#, leading to
the one-loopb function

b~g![
]g

] log a
52nf

g3

24p2 ~46!

~in the non-Abelian case this has to be multiplied by t
appropriate quadratic Casimir!. This is exactly the result we
expect for ‘‘chiral QED’’ with nf left-handed fermions.

Next, we wish to verify that the orbit integration does n
change the nonlocal part of the vacuum polarization~cf.
method 2!. To one loop, this is trivial, since, as before, th
vacuum polarization is just the sum of the two diagrams
Fig. 3, which do not contain anyu lines. Diagrams with
internalu lines only show up at two loops and higher, and w
did not perform an explicit calculation of these diagram
But, one can easily understand on general grounds that t
higher-loop diagrams with internalu lines do not contribute
to the nonanalytic part of the vacuum polarization, and t
therefore their effects can be removed by counterterms. T
and higher-loop contributions can be conveniently calcula
by rewriting the action Eq.~10! in terms of charged fermion
fields only, by making the substitutionc5(PL1PRf†)cc in

FIG. 3. One-loop contributions to the vacuum polarization.
03450
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Eq. ~10!. As in the reduced model, this improves the infrar
behavior of perturbation theory, validating standard pow
counting arguments in particular. We observe that, in
charged-fermion language, gauge field-fermion vertices o
occur in the left-handed kinetic term, whileu-fermion verti-
ces occur only in the right-handed kinetic and Wilson term
~The reduced model in the charged-fermion formulation
then obtained again by settingUx,m51.!

The topology of the contributing two-loop diagrams
shown in Fig. 4~where we omitted any diagrams withu
tadpoles, since this tadpole vanishes!. As we just explained,
fermion-u vertices either arise from the Wilson term, or co
tain a factorgmPR . If we start following the fermion loop
from one of theAm vertices, we either encounter a verte
from the Wilson term, which corresponds to an irreleva
operator, or we encounter a vertexgmPR . In this case, be-
cause of the left-handed projectorPL at theAm vertex, only
the Wilson term part of the fermion propagator@cf. Eq. ~20!#
contributes, which again corresponds to an irrelevant op
tor. In both cases, we therefore do expect these diagram
yield only contact terms in the continuum limit.

This analysis demonstrates explicitly how the ‘‘roug
gauge field problem’’ is resolved within the gauge-fixing a
proach@4# also for nontrivial orbits. The resolution is a dire
consequence of the fact that the full theory, including t
gauge degrees of freedom, can be systematically investig
in perturbation theory.

VI. THE FERMION-NUMBER CURRENT

The fermion action, Eq.~7!, is invariant under simple
U(1) phase rotations of the fermion field

c→eiac, c̄→c̄e2 ia. ~47!

This exact symmetry appears to be problematic, sinc
seems to imply that we can define a continuum limit conta
ing only left-handed fermions~the right-handed fermions de
couple in the continuum limit! with a conservedU(1) quan-

FIG. 4. Two-loop contributions to the vacuum polarization.
1-9
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tum number@23#. This would be in contradiction with the
fact that thisU(1) quantum number should be anomalou
leading to fermion number violating processes through
stantons@24#. Here, we analyze this question in perturbati
theory, leaving a discussion of nonperturbative issues to
ture work. In this section, we will work in the vector pictur
cf. Eq. ~1!.

The conserved current corresponding to the symmetry
~47! is

Jx,m5Jx,m
L 1Jx,m

R 1Jx,m
W ,

Jx,m
L 5 1

2 ~ c̄xgmPLUx,mcx1m

1c̄x1mgmPLUx,m
† cx!,

Jx,m
R 5 1

2 ~ c̄xgmPRcx1m1c̄x1mgmPRcx!,

Jx,m
W 52

r

2
~ c̄xcx1m2c̄x1mcx!.

~48!

On the lattice, we have

(
m

~Jx,m2Jx2m,m!50. ~49!

However,Jx,m is not gauge invariant, and therefore will n
correspond to the appropriate physical current in the c
tinuum limit. Let us consider this in some detail by calcula
ing the expectation value of the current,^Jx,m&A to quadratic
03450
,
-

u-

q.

-
-

order in the gauge fieldsAx,m , in the continuum limit.~^¯&A

denotes the functional average overc and c̄ only.! We
choose the fermions to be in the fundamental representa
of the gauge groupG, and we write

Ax,m5Ax,m
a Ta , Ax,m

a 5E
p
eipxAm

a ~p!, ~50!

with Ta the Hermitian generators of the groupG, normalized
by

tr TaTb5 1
2 dab . ~51!

The only diagram that contributes to orderA2 is shown in
Fig. 5. ~All other ‘‘lattice artifact’’ diagrams vanish, as al
ready observed in Ref.@5#.! The parity-even part vanishes
and we find the following result, to leading order in th
gauge-field momentak and l :

FIG. 5. Triangle diagram@the cross denotes the conserved c
rent of Eq.~48!#.
^Jx,m
L &A5 i E

kl
ei ~k1 l !x@ I mrs~k,l !1I Lemnrs~k2 l !n#Ar

a~k!As
a~ l !,

^Jx,m
R &A5 i E

kl
ei ~k1 l !xI Remnrs~k2 l !nAr

a~k!As
a~ l !,

^Jx,m
W &A5 i E

kl
ei ~k1 l !xI Wemnrs~k2 l !nAr

a~k!As
a~ l !, ~52!

with summation implied over repeated indices. The functionI mrs(k,l ) is given by

I mrs~k,l !52eabmskal b@kr~ I 202I 10!2 l rI 11#12eabmrkal b@ksI 112 l s~ I 022I 01!#

1 1
2 eamrs$ka@k2I 2022k• l I 111 l 2~ I 0222I 01!#2 l a@ l 2I 0222k• l I 111k2~ I 2022I 10!#%, ~53!

where

I st[I st~k,l !5
1

16p2 E
0

1

dxE
0

12x

dy
xsyt

x~12x!k21y~12y!l 212xyk• l
. ~54!

The constantsI L , I R , andI W are given by

I L5r 2E
p
„

1
4 c1c2c3c4s2~p!M2~p!2c1c2c3s4

2s2~p!M ~p!…D24~p!,
1-10
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I R5r 2E
p
„

1
2 c1c2c3c4M2~p!D23~p!2 1

4 @c1c2c3c4s2~p!14r 2c1c2c3s4
2M ~p!#M2~p!D24~p!…,

I W52r 2E
p
c1c2c3s4

2M ~p!D23~p!, ~55!
th
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sm[sin pm , cm[cospm , s2~p![(
m

sin2pm .

~56!

Lattice loop integrals were calculated again by splitting
integration region into a small region with radiusd around
p50 ~‘‘inner region’’!, and the rest~‘‘outer region’’!, taking
the double limita→0, followed by d→0. @The split into
inner and outer regions depends on the routing of the ex
nal momenta through the loop: we chose the momentum
the fermion propagator connecting the two gauge-field ve
ces to bep2 1

2 (k2 l ). Of course, the sum of inner and out
region contributions does not depend on this.# For ^Jx,m

R &A

and^Jx,m
W &A the inner-region integrals vanish, while the int

gral I mrs(k,l ) represents the~nonlocal! inner-region contri-
bution for ^Jx,m

L &A . The integralsI L,R,W represent outer-
region contributions. In other words, onlŷJx,m

L &A is
nonlocal, as one expects, since the right-handed fermions
free in the continuum limit. Using@5#

I L1I R1I W52
1

64p2 ~57!

~for any nonzero value ofr ! !, and

~k1 l !ml mrs~k,l !5
1

64p2 emnrs~k1 l !m~k2 l !n ,

we find that indeed]m^Jx,m&A vanishes.
From Eqs.~52!, ~53!, ~57! one can show that

kr

d^Jx,m&A

dAr
a~k!

5
i

16p2 E
l
ei ~k1 l !xemnrskrl nAs

a~ l !. ~58!

@In deriving this result, we used the relationk2
„I 10(k,l )

22I 20(k,l )…5 l 2
„I 01(k,l )22I 02(k,l )….# This proves that, as

expected, the currentJx,m is indeed not gauge invariant, a
was pointed out in this context in Ref.@9#. A gauge-invariant
vector current can be defined by adding an irrelevant te
Jx,m

irr to Jx,m , with an expectation value that goes toKm in the
continuum limit, where@9#

^Jx,m
irr &A→Kx,m5

1

16p2 emnrstr~Ax,nFx,rs2 1
3 Ax,nAx,rAx,s!.

~59!

For example, we may take
03450
e

r-
of
i-

re

m

Jx,m
irr 5

1

32p2I W
Jx,m

W . ~60!

The currentJx,m1Jx,m
irr yields the correct, gauge-invarian

fermion-number current in the continuum limit to orderA2.
Its divergence is

]m^Jx,m1Jx,m
irr &A→]mKx,m5

1

32p2 emnrs tr~Fx,mnFx,rs!.

~61!

~An additional irrelevant operator of orderA3 would likely
be needed in order to construct a gauge-invariant curren
orderA3 in the non-Abelian case.! Note that the vector cur-
rent that leads to gauge-invariant correlation functions in
continuum limit, isnot what one might naively guess:Jx,m

L

1Jx,m
R . The reason is that, although this operator is invari

under gauge transformations, the Feynman rules of
theory are not.

VII. CONCLUSION AND DISCUSSION

In this paper, we studied a proposal for the construction
lattice chiral gauge theories in~one-loop! weak-coupling per-
turbation theory. We considered mostly the Abelian ca
and demonstrated that, in perturbation theory, the model
fined in Sec. II has a continuum limit with the desired chir
fermions, in which the gauge degrees of freedom decou
and with the correct one-loopb function for the gauge cou
pling. Note that, in the reduced model, the fieldu, which
represents the gauge degrees of freedom in the full mo
decouples from the fermions for any fermion content. This
consistent with the fact that the anomaly vanishes fo
purely longitudinal gauge field. Together with the nonpert
bative results presented in Refs.@1,8#, this makes us confi-
dent that the gauge-fixing approach can indeed be use
define Abelian chiral gauge theories on the lattice. Of cou
when the full dynamics of the gauge field is taken into a
count, the fermion representation has to be anomaly free
next step~in the Abelian case! would be to investigate the
potential between two static charges. In principle, the f
counterterm actionSct will have to be calculated, and i
would be interesting to see to what precision the coun
terms have to be adjusted in order to obtain the Coulo
potential.

Our results should also apply to other lattice fermion fo
mulations, such as staggered fermions, domain wall fer
ons, or Weyl fermions with Majorana mass and Wils
terms.~The latter were discussed in Refs.@4,25#. We verified
explicitly that at one loop in the reduced model, the ba
1-11
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Majorana mass can be tuned such that a free Weyl ferm
emerges in the continuum limit. Since in this case there is
shift symmetry, the critical value of the bare fermion ma
does not vanish.!

We expect that all perturbative results presented in
paper generalize to the non-Abelian case, with suitable m
fication. For instance, the long distance behavior of
gauge degrees of freedom~without fermions! should be de-
scribed by the continuum higher-derivative sigma model
Ref. @26#, and we expect that it will. The analysis of th
fermion self-energy of Sec. IV carries over without chan
and therefore we expect the same conclusions about the
mion content as in the Abelian case. The main reason tha
have not considered the non-Abelian case in more detail
is that, in our view, nontrivial nonperturbative issues w
have to be addressed first. The approach to lattice ch
gauge theories investigated here is inherently based on g
fixing. This raises the issue of Gribov copies, which sho
be resolved before the proposal is ‘‘complete’’ for no
Abelian gauge theories. A related observation is that
BRST approach to non-Abelian gauge theories has not b
defined outside perturbation theory. Until this issue is be
understood, it is relatively less important to study the no
tt.
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Abelian case in perturbation theory in much detail. We n
here that the fact that our lattice gauge-fixing actionSgf has a
unique global minimum atUx,m51, while suppressing rough
‘‘lattice’’ Gribov copies, does not tell us anything abou
long-distance, continuum Gribov copies.

Finally, we addressed the issue of fermion-number n
conservation, but only in perturbation theory. Work on t
nonperturbative aspects of this issue is in progress, and
expect to report on it in a future publication. Here we ju
quote Ref.@27#, in which it was shown that the existence
a gauge-noninvariant conserved charge on the lattice d
not imply that fermion number is conserved.
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