
PHYSICAL REVIEW D, VOLUME 58, 034010
Field strength correlators and dual effective dynamics in QCD
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We establish a relation between the two-point field strength correlator in QCD and the dual field propagator
of an effective dual Abelian Higgs model describing the infrared behavior of QCD. We find an analytic
approximation to the dual field propagator without sources and in the presence of quark sources. In the latter

situation we also obtain an expression for the staticqq̄ potential. Our derivation sheds some light on the
dominance and phenomenological relevance of the two-point field strength correlator.
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I. INTRODUCTION

The gauge invariant field strength vacuum correlators

^Fm1n1
~x1!U~x1 ,x2!Fm2n2

~x2!

3U~x2 ,x3!•••Fmnnn
~xn!U~xn ,x1!&, ~1.1!

where

U~x,y![P expS igE
y

x

dzmAm~z! D
is the Schwinger color string, play a relevant role in gluod
namics with and without quark sources. We know that in
infrared region these correlators are dominated by their n
perturbative behavior. In particular the nonperturbative ‘‘g
on condensate’’

K as

p
Fmn

a ~0!Fa
mn~0!L nonpert

[F2 , ~1.2!

plays a crucial role in the QCD sum rule method@1#.
The nonperturbative part of the gauge invariant two-po

field strength correlator̂Fmn(x)U(x,0)Frs(0)U(0,x)& has
been calculated on the lattice, with the cooling method
Ref. @2# and in the presence of sources in Ref.@3#. We define
~in Euclidean space-time, as in the rest of this work! the
gauge invariant correlator@4#

^g2Fmn~x!U~x,0!Flr~0!U~0,x!&

[~dmldnr2dmrdnl!g2D~x2!

1
1

2F ]

]xm
~xldnr2xrdnl!1

]

]xn
~xrdml

2xldmr!Gg2D1~x2!. ~1.3!

A parametrization of the form
0556-2821/98/58~3!/034010~10!/$15.00 58 0340
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D~x2!5Ae2uxu/Tg1
a

x4 e2uxu/Tp,

D1~x2!5Be2uxu/Tg1
b

x4 e2uxu/Tp,

A.128 GeV4, B.27 GeV4, a.0.69, b.0.46,

Tg.0.22 fm, Tp.0.42 fm, ~1.4!

yields a very good fit to the~cooled! lattice data@2# in the
range 0.1 fm<x<1 fm. At short distances the 1/x4 term,
which is of perturbative origin, dominates, while at distanc
x>0.4 fm the nonperturbative term, proportional toe2x/Tg,
becomes more important. In an Abelian theory witho
monopoles the Bianchi identities yieldsD50.

In the stochastic vacuum model~SVM! @4–7# it is as-
sumed that for processes which can be reduced to the ca
lation of Wilson loops with quasi-static sources~such as
heavy quark potentials and soft high energy scattering
plitudes in the eikonal approximation! the infrared behavior
of QCD can be approximated by a Gaussian stochastic
cess in the field strength and is thus determined appr
mately by the correlator~1.3!. In particular also the Wilson
loop average is given only in terms of Eq.~1.3!.

We know from strong coupling expansion and latti
simulations that the Wilson loop is an order parameter
confinement. The confining area law behavior of the Wils
loop is reproduced by the stochastic vacuum model provi
that the form factorD is different from zero and is domi
nated in the infrared region by a decreasing behavior w
the fall off controlled by a finite correlation lengthTg . These
features ofD are compatible with lattice data@see Eq.~1.4!#.
Furthermore this model gives a good description of cert
features of high-energy scattering~e.g., @8#!. We will come
back to this point in Sec. II.

It is the goal of this paper to relate the gluon correlator
the Mandelstam–’t Hooft dual superconductor mechanism
confinement@9#. In this picture the physical essence of co
finement is the formation of color-electric flux tubes betwe
© 1998 The American Physical Society10-1
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quarks due to a dual Meissner effect. The monopoles c
dense and lead to a dual superconductor which forces
color-electric field lines in flux tubes which are the dual an
logue to the Abrikosov-Olesen strings. The formation of
electric flux tube is also the consequence of the stocha
vacuum model@10#.

Furthermore, in an Abelian projection of QCD, mon
poles are the degrees of freedom responsible for confi
ment. Monopole condensation has been observed on the
tice ~for a review see Ref.@11#! and when confinement ca
be derived analytically~compact electrodynamics, Georg
Glashow model, and some supersymmetric Yang-Mills th
ries!, it is due to the condensation of monopoles. The mo
pole potential can be measured in the Abelian projection
it turns out that in the confining phase it has the Higgs fo
@12#. Lattice measurements of the distribution of monop
currents indicate that at large distances gluodynamics
equivalent to a dual Abelian Higgs model, the Higgs p
ticles are Abelian monopoles and these are condensed in
confining phase. In the maximal Abelian gauge the struct
of the interquark flux tube was intensively studied and h
precision measurements of the color fields and the mono
currents recently allowed for a detailed check of the d
superconductor scenario with respect to the Ginzbu
Landau equations@13#.

Analytic models of the infrared dynamics of dual QC
with monopoles were constructed@14,15# and their phenom-
enological consequences intensively investigated. In the
fective dual model of Baker, Ball, and Zachariasen@dual
QCD ~DQCD!#, the complete semirelativistic quark
antiquark potential, the flux tube distribution and the ene
density were obtained from the numerical solution of t
coupled nonlinear equations of motion and compared v
favorably with recent lattice data@16–18#. Although the La-
grangian of this effective dual theory for long distance QC

is based on a non-Abelian gauge group, the results for theqq̄
potentials aside from an overall color factor can to a v
good approximation be described by a~dual! Abelian Higgs
model. Therefore, the results are in this case largely inse
tive to the details of the dual gauge group and the qua
select out only Abelian configurations of the dual poten
@19#.

Since an effective Abelian description of the infrared co
fining dynamics of QCD~at least for heavy quarks! emerges
either from QCD~via Gaussian approximation and biloc
strength tensor correlators1! or via an effective Abelian
Higgs model it becomes extremely interesting to explore
which sense the two Abelian descriptions are equivalent a
once we assume an equivalence, what kind of constraints
imposes on the form of the QCD field strength correlators
the present work we will obtain from the dual Abelian Hig
model information on the form of the gauge invariant tw
point field strength correlator~1.3! and in addition we will

1In the treatment of two Wilson loops, however, the non-Abel
characteristics of QCD become very important@8,10#.
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obtain an analytic approximation for the static heavy qu
potential given by the dual theory.

There are two more arguments which motivate such
investigation. First, as we will discuss briefly in Sec. II, th
existence of a nonvanishing form factorD in the two-point
field strength correlator of QCD seems to suggest quite n
rally the existence of an effective free dual Abelian theo
‘‘behind’’ the long-range dynamics of QCD. Second, a r
cent comparison between the complete semirelativistic
tentials obtained in DQCD and in the Gaussian stocha
approximation of QCD in the limit of large interquark dis
tances showed quite striking and surprising similarities~see
Ref. @20#!. The following analysis wants to shed some lig
on that.

The plan of the paper is the following. In Sec. II w
recollect some essential features of the gauge invariant t
point correlator in QCD and we establish a relation with t
Wilson loop. In Sec. III we investigate the analogous qua
tity in the dual Abelian Higgs model without sources. For
constant Higgs field we reproduce a two-point correla
having the same behavior as obtained by other authors
studying the London limit of a dual Abelian Higgs model.
Sec. IV we introduce sources and obtain an analytic exp
sion for the static potential. This suggests a connection
tween the parameters of the two-point field strength c
relator in QCD and those of the dual Abelian Higgs mod
Finally, Sec. V contains some conclusions.

II. GAUGE-INVARIANT TWO-POINT GLUON
CORRELATOR AND WILSON LOOP IN QCD

We consider the correlator of two gluon field strengths
QCD at different space-time points, connected by
Schwinger string. This string can either consist of two strin
in the fundamental representation or one string in the adj
one. For definiteness in notation we choose the first poss
ity and consider the quantity

^g2Fmn~x!U~x,0!Flr~0!U~0,x!&.

The Lorentz decomposition of this correlator is given by E
~1.3! and the results of the lattice measurements are colle
in Eq. ~1.4!. The leading~tree level! perturbative contribu-
tion is contained in the form factorD1. In an Abelian gauge
theory without monopoles the Bianchi identity implies th
the form factorD vanishes identically@4#. In a non-Abelian
theory or in an Abelian theory with monopolesD can be
different from zero. Let us briefly review how a nonvanis
ing D leads to confinement@4#.

In the presence of heavy quark sources the relevant ob
in QCD is the Wilson loop averageW(G), where G is a
closed curve built up by the trajectories of external sour
and some Schwinger strings connecting the end points.
means of the non-Abelian Stokes theorem@21# one can ex-
press the Wilson loop averageW(G) in terms of an integral
over a surfaceS(G) enclosed by the contourG. A way to
evaluate analytically this quantity consists in expanding t
0-2
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FIELD STRENGTH CORRELATORS AND DUAL . . . PHYSICAL REVIEW D58 034010
expression via a cluster expansion and keeping only the b
cal cluster~i.e., in assuming that the vacuum fluctuations a
of a Gaussian type!:2

W~G![K P expS igE
G
dzmAm~z! D L

5
Stokes

K P expS igE
S~G!

dSmn~u!Fmn~u,x0! D L ~2.1!

.
SVM

expS 2
1

2ES~G!
dSmn~u!E

S~G!
dSlr~v !

3^g2Fmn~u,x0!Flr~v,x0!& D , ~2.2!

where PFmn(u,x0)[P U(u,x0)Fmn(u)U(x0 ,u). Assump-
tion ~2.2! corresponds to the so-called stochastic vacu
model@4#. The pointx0 is an arbitrary reference point on th
surfaceS(G) needed for surface ordering. Of course the fin
result in the full theory does not depend on the refere
pointx0. The results obtained in the Gaussian approximat
however, will generally depend on it. This dependence
minimized by choosingS(G) to be the minimal area surfac
with contourG @22#. Under this condition one may negle
the x0 dependence on̂g2Fmn(u,x0)Flr(v,x0)& and recover
in this way translational invariance. Then, the decomposit
of Eq. ~1.3! can be used@by replacingx2 with (u2v)2#.

All the spin- and velocity-dependent potentials up to ord
1/m2 in the quark mass can be expressed in terms of
functionsD andD1 @5,20,23#. In particular the static poten
tial is given by

V0~R!5
g2

2 E
ux1u,R

d2x~R2ux1u!D~x2!1
ux1u
2

D1~x2!,

~2.3!

with d2x5dx1dx4, x25x1
21x4

2. The string tension emerge

for largeqq̄ distancesR as

s5
g2

2 E d2xD~x2!. ~2.4!

Therefore a nonvanishingD function leads to confinement.3

2For an extensive discussion on the validity of this assumption
Ref. @7#. Moreover, recent lattice calculations seem to confirm t
heavy quark potentials are really dominated by the two-point gl
field strength correlator@3#.

3The 1/x4 term in D in Eq. ~1.4! is a one-loop perturbative con
tribution @24# and must not be considered in the calculation of
string tensions. Preliminary results indicate that these perturbat
contributions toD appearing at one loop and higher orders a
cancelled by higher order correlator contributions@25#. This is not
surprising since in a non-Abelian theory perturbative contributio
beyond the tree level are surely not of a Gaussian type.
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While lattice data confirm the existence of a nonvanish
form factorD with exponential fall off, up to now there is no
analytic tool which allows us to calculate and to interpret t
nonperturbative contributions toD in the long-range regime
We observe, however, that a nonvanishing functionD
emerges naturally if we assume that there exists an effec
‘‘dual’’ Lagrangian describing an Abelian gauge theory f
which the dual two-point field strength correlator coincid
in the long-range limit with the bilocal cumulant given b
Eq. ~1.3!. Let us callGmn the ~Abelian! field strength of the
dual theory. Since we assume this theory to observe the
anchi identities we have, in general,

^g2Gmn~x!Glr~0!&[
1

2F ]

]xm
~xldnr2xrdnl!

1
]

]xn
~xrdml2xldmr!Gg2D~x2!.

The expectation value of the dual of the dual fieldsG̃mn

[ 1
2 emnabGab is

^g2G̃mn~x!G̃lr~0!&

5~dmldnr2dmrdnl!g2S D~x2!2x2
d

dx2 D~x2! D
12F ]

]xm
~xldnr2xrdnl!

1
]

]xn
~xrdml2xldmr!Gg2

d

dx2

d

dx2 D~x2!.

It shows a tensor structure such as the one multiplyingD in
Eq. ~1.3!. The existence of such a correlator therefore see
to suggest the existence of a dual Abelian gauge theory
which at big distances the field strength correlator behave
the corresponding correlator of the dual theory:

^g2Fmn~x,x0!Flr~0,x0!&;^g2G̃mn~x!G̃lr~0!&. ~2.5!

In the next section we want to explore some consequen
of Eq. ~2.5!. In Sec. IV Eq.~2.5! will be replaced by a bette
founded assumption on the Wilson loop. Nevertheless
basic idea behind Eq.~2.5! will remain.

III. DUAL ABELIAN HIGGS MODEL
WITHOUT SOURCES OR VORTICES

The aim of this section is essentially pedagogical. We w
reproduce in a clear and economical way some of the res
which can be found in the existing literature on the Lond
limit of a dual Abelian Higgs model. We will prove in this
way that assumption~2.5! is reasonable, i.e., compatible wit
Eq. ~1.4!. We will also show the drawbacks of this approa
and try to justify why we need to take into account extern
charge sources. This will lead to the results of Sec. IV.

Let us consider a very naive context, i.e., a ‘‘dual’’ vect
gauge fieldCm minimally coupled with some external scala

e
t
n

s

0-3
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field f which we could call a Higgs field. The action is give
by

S~Cm ,f!5E d4xF1

4
Gmn~x!Gmn~x!

1
1

2
~Dmf!* ~x!~Dmf!~x!1V@f* ~x!f~x!#G ,

~3.1!

where Gmn(x)5]mCn(x)2]nCm(x) and V(f* f)
5(l/4)(f* f2f0

2)2 ~with f0 different from zero!. The
Higgs field is coupled to the gauge fieldCm via the covariant
derivativeDmf5(]m1 ieCm)f.

We choose a gauge in which the regular part of the ph
of f vanishes, the so-called unitary gauge. The propag
Kmn[^CmCn& of the fieldCm satisfies the equation

@]2dnm2]n]m2e2f2~x!dnm#Kna~x,y!52dmad4~x2y!.
~3.2!

The quantity in which we are interested is what we could c
the ‘‘dual’’ of the field strength two-point correlator in th
theory described by the action~3.1!:

Gsglr~x,y![~dlsdrg2dlgdrs!d4~x2y!

2emnlrebasg]b
y ]m

xKna~x,y!. ~3.3!

For a matter of convenience we prefer to defineGsglr with
the delta contribution subtracted out explicitly. In this mod
Gsglr is the equivalent of the quantitŷg2G̃mn(x)G̃lr(y)&
introduced at the end of the last section. Equations~3.3! and
~2.5! then give the correlator~1.3! in terms of the propagato
of the dual theory.

Let us study now the case where the Higgs field has
constant valuef0. Then, Eq.~3.2! can be written as

~]22e2f0
2!K ma

` ~x,y!52S dma2
]m]a

e2f0
2D d4~x2y!.

~3.4!

This is simply the equation defining the free propagator o
massive vector boson with massM[ef0:

K ma
` ~x,y!5S dma2

]m]a

M2 DK `~x2y!,

with

K `~x2y!5E d4p

~2p!4e2 ip~x2y!
1

p21M2 5
M

~2p!2

K1~Mx!

x
,

whereKn (n50,1,2, . . . ) areBessel functions. As a conse
quence we can write
03401
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a

Gsglr~x2y!5~dlsdrg2dlgdrs!D`@~x2y!2#

1
1

2F ]

]xl
@~x2y!sdrg2~x2y!gdrs#

1
]

]xr
@~x2y!gdls2~x2y!sdlg#G

3D1
`@~x2y!2#, ~3.5!

with

D`~x2!5d4~x!1]2K `~x2!5M2K `~x2!5
M3

4p2

K1~Mx!

x
,

~3.6!

D1
`~x2!524

d

dx2K `~x2!5
M

2p2x2

3FK1~Mx!

x
1

M

2
@K0~Mx!1K2~Mx!#G .

~3.7!

Therefore, the assumption thatGsglr has the same long
range behavior of the gauge invariant two-point fie
strength correlator in QCD@see Eq.~2.5!# is compatible with
the parametrization~1.4! and leads to a correlation lengthTg
equal to the inverse of the dual gluon massM . In particular,
the asymptotic behaviors ofK ` are

K `~x2! →
uxu→0

1

~2p!2

1

x2 1•••, ~3.8!

K `~x2! →
uxu→`

1

2

1

~2p!3/2

1

AMx3/2
e2Mx1•••.

~3.9!

The results shown here coincide with those obtained fr
the London limit of a dual Abelian Higgs model in Ref.@26#.
The seeming difference as far as the functionD is concerned
is due to the fact that we have subtracted out explicitly in o
definition ofGsglr the delta singularity which in the referre
work is taken into account in a regularized form. One m
wonder how the result of a topologically trivial model~no
singular Higgs phase! agrees with results which take int
account properly the internal Abrikosov-Nielsen-Oles
strings. This is due to the fact thatGsglr is sensitive to the
string only via the strength of the Higgs field and this is fix
to a constant here as well as in the London limit of a d
Abelian Higgs model.

The agreement between both approaches reveals a
mon weakness: the missing treatment of the interaction
tween the internal strings present in the dual Abelian Hig
model and the string between external quark sources. In
@26# no external sources were introduced and the result~3.6!,
~3.7! for the correlator was obtained in the following wa
The functional integral for the Abelian Higgs model wa
rewritten in such a form as to exhibit integration over t
0-4
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closed surfaces of the~internal! strings. From the form of the
contribution of a single closed surface in the London limit
was deduced that it could be obtained by a correlator suc
Eqs. ~3.6!, ~3.7! in the Gaussian approximation. Implicitl
this form was assumed to be valid also for external sour
When external quark sources are introduced however,
strings of those sources will interfere with the intern
strings. Some aspects of that phenomenon have been tr
in Ref. @27#, but to our knowledge there exists no analy
attempt to evaluate the influence on the phenomenologic
relevant parameters.

We notice that due to the short-range behavior~3.8!, Eq.
~3.7! reproduces the expected short-range behavior of
functionD1@;1/x4, see Eq.~1.4!#. Due to the short-distanc
behavior of the functionD, such as 1/x2, the string tension
we obtained using Eqs.~2.5!, ~3.6!, and~2.4!, is logarithmi-
cally divergent:

s`[
g2

2
lim
e→0

E
uxu.e

d2xD`~x2!5pf0
2 lim

e→0
K0~e!

;pf0
2~ ln 22 ln e2g!, ~3.10!

where we have used the Dirac quantization conditione
52p/g, relating g to the coupling constante of the dual
theory. The divergence is a short-distance effect and app
to be a result of the freezing of the Higgs field to the vacu
valuef0, i.e., in terms of the dual Abelian Higgs model,
the London limit. Assuming a coordinate-dependent Hig
mass going to zero asuxu near the origin, would yield a finite
short-range behavior of the functionD` while preserving the
perturbative short-range behavior of the functionD1

` . There
is, however, no motivation for such an anisotropic behav
of the Higgs field unless we introduce some charges into
vacuum. Only in such a context can we expect that near
sources and on the connecting flux tube string the Higgs fi
vanishes while far away it assumes the vacuum valuef0.
This will be precisely the subject of the next section, whe
we will consider a dual Abelian Higgs model with extern
charges and where we will also change our intuitive dua
assumption~2.5! to a more physically justified one. More
over, we recall here that recent lattice data@13# confirm that
in the presence of external quark sources the distributio
electric fields and monopoles currents does not fulfill
London limit.

To conclude this section we comment briefly on the tra
lational invariance of the considered correlators. As long
f is considered as an external field in Eq.~3.2!, Gsglr is not
translational invariant and therefore in order to take adv
tage of the decomposition~1.3! we have to fix our reference
frame in such a way that the pointy coincides with the
origin. This fact is by itself not in contradiction with th
duality assumption~2.5! since also the correlator in the dire
theory ^Fmn(x,x0)Flr(y,x0)& is in general not translationa
invariant, and only by choosing the reference pointx0 on the
straight line connectingx with y is invariance recovered
Finally, we notice thatGsglr is translational invariant in
some particular cases: if we assumef constant, as we hav
done in this section, or partially~in the longitudinal coordi-
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nates! if we assume thatf depends only on some~trans-
verse! coordinates. This last situation will be examined in t
next section.

IV. DUAL ABELIAN HIGGS MODEL WITH EXTERNAL
QUARK SOURCES

In this section, for the reasons stated above, we wan
consider a dual Abelian Higgs model with external qua
sources. In particular we want to make a duality assump
on the long-range behavior of the Wilson loop associa
with the dynamics of a two heavy quark bound state. T
assumption will take the place of our previous statem
~2.5!. We will see that some general features will, neverth
less, be preserved.

Following Ref.@19# we assume that the long-range beha
ior of the Wilson loop averageW(G) associated with a two
heavy quark bound state is described by the functional g
erator of a dual Abelian Higgs model with external qua
sources:

W~G!;^e2S~Cm ,f!&, ~4.1!

where^ & means the average over the gauge fieldsCm and
the Higgs fieldf. The Abelian Higgs model is dual in th
sense that it is weakly coupled. Therefore the right-hand s
of Eq. ~4.1! can be evaluated via a classical expansion.

The actionS is given by Eq.~3.1!, but since we want tha
in the l50 limit S describes the dual of a U~1! Yang-Mills
theory with two external pointlike charge sources2g ~par-
ticle! andg ~antiparticle!, we define the field strength tenso
Gmn , now, in such a way that it contains not only the du
gauge fieldsCm but also the field of the external source
@28#:

Gmn~x!5]mCn~x!2]nCm~x!1Gmn
S ~x!, ~4.2!

where

Gmn
S ~x!5gemnabE

0

1

dtE
0

1

ds
]ya

]s

]yb

]t
d4@x2y~t,s!#,

~4.3!

andym(t,s) is a parametrization of a surfaceS(G) swept by
the Dirac string connecting the charges2g andg. Therefore
S(G) is a surface with a fixed contour given byG @ym(t,1)
5z1m andym(t,0)5z2m , wherez1m andz2m are the charge
source trajectories#. Notice that the divergence of the dual o
Gmn

S is just the current carried by a chargeg moving along

the pathG: ]bG̃ab
S (x)52grGdzad4(x2z). The chargeg is

related toe by the usual Dirac quantization conditione
52p/g.

The leading long-distance approximation to the du
theory is the classical approximation

^e2S~C,f!&;e2S~Cm
cl ,fcl!, ~4.4!

whereCm
cl andfcl are solutions of the equations of motion

@]2dnm2]n]m2e2f2~x!dnm#Cn~x!52]nGnm
S ~x!, ~4.5!
0-5
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@]m1 ieCm~x!#@]m1 ieCm~x!#f~x!5l@f2~x!2f0
2#f~x!.

~4.6!

Using these equations it is possible to writeS(Cm
cl ,fcl) as

S~Cm
cl ,fcl!5E d4xE d4y

1

2
Gba

S ~y!

3F1

2
dbmdand4~x2y!2]b

y ]m
xKna~x,y!GGmn

S ~x!

1E d4xF1

2
@]f~x!#21V@f2~x!#G , ~4.7!

where the propagatorKna was defined by Eq.~3.2!. Finally,
integrating by parts, we obtain

S~Cm
cl ,fcl!5

g2

2 E
S~G!

dSsg~v !E
S~G!

dSlr~u!Gsglr~v,u!

1E d4xF1

2
@]f~x!#21V@f2~x!#G , ~4.8!

where the tensorGsglr is the same as that given by Eq.~3.3!.
Comparing with Eq.~2.2! we conclude thatGsglr plays the
same role in the dual theory as the two point correlator in
stochastic vacuum model if we neglect the contribution
the Higgs field to the action in Eq.~4.8! . In the London limit
the contribution of the Higgs field to Eq.~4.8! vanishes and
the identification is exact.

In the general case we are considering here also the H
part gives a contribution to the nonperturbative dynam
But let us neglect the dependence of the Higgs field, via
equations of motion, on the strings and take into account
contribution coming from the Higgs part as a finite contrib
tion to the string tension. Then, also in the general ca
Gsglr can be considered equivalent to the QCD two-po
nonlocal condensate and in principle gives information
the validity of the decomposition~1.3! and on the existence
and the behavior of theD andD1 functions.

Notice that in the derivation of Eq.~4.8! we have not
considered surfacelike contributions which would arise fr
the functional integral on the right-hand side of Eq.~4.1!
once singular Higgs phase contributions are taken into
count ~these are also called Abrikosov-Nielsen-Oles
strings!. These surface terms would interfere with the surfa
terms coming from the external quarks loop. We make
assumption that these interference terms are unimporta
order to evaluate the long-range behavior of the~heavy
quark! Wilson loop average after the duality assumpti
~4.1!. In this way all the contributions coming from the sin
gular Higgs phase factorize in the functional integral to
constant and play no role in the dynamics~see also the dis
cussion on this assumption made in the context of the L
don limit in Sec. III!.

We now evaluate Eq.~4.8! beyond the London limit. Let
us write a pointx in the four-dimensional Minkowski spac
asx5(xi ,x'), wherexi5(x1 ,x4) andx'5(x2 ,x3) are now
two-dimensional vectors. Let us indicate with lower case
03401
e
f

gs
.
e
e

-
e,
t
n

c-
n
e
e
in

-

t-

ters the components ofx belonging toxi ~e.g.,xa ,xb , . . . )
and with capital letters the components ofx belonging tox'

~e.g.,xA ,xB , . . . ). In order to simplify the problem and to
allow us to give an analytic evaluation of Eq.~4.8! we
choose the surfaceS(G) @see Eq.~4.3!# to belong to the
planex'50. It is reasonable in this case to assume, at le
far away from the charge sources~i.e., in the middle of the
flux tube!, that the Higgs field depends only on the transve
coordinatex':

f5f~x'!. ~4.9!

We will make this crucial assumption for the rest of th
section.

From Eqs. ~4.9! and ~3.2! we have Kma(x,y)
5Kma(xi2yi ,x' ,y'). In this situation we have that Eq
~4.8! can be written as

S~Cm
cl ,fcl!5

g2

2 E
S~G!

dS14~xi!E
S~G!

dS14~yi!G1414~xi2yi!

1Higgs sector, ~4.10!

G1414~xi2yi!5d4~xi2yi!2e14ABe14CD]C
y ]A

xKBD

3~xi2yi ,x' ,y'!ux'5y'50 . ~4.11!

After some simple manipulations it is possible to obtain fro
Eq. ~3.2! an equation only for the transverse components
the gauge field propagator:

@]'
2 dCB2]B]C2e2f2~x'!dCB#KCA~xi2yi ,x' ,y'!

1] i
2@dCB2]B~]'

2 2e2f2~x'!!21]C#

3KCA~xi2yi ,x' ,y'!52dBAd4~x2y!, ~4.12!

where] i
2[]a]a and]'

2 []A]A .
We look for a solution of Eq.~4.12! of the type

e14CD]C
yKBD~xi2yi ,x' ,y'!uy'50

[2e14CBxCK~xi2yi ,x'!. ~4.13!

This is reasonable since in the transverse plane we have
tational invariance. The functionK is unknown, but from Eq.
~4.12! we have that it satisfies the equation

@]22e2f2~x'!#xAK~xi ,x'!52d2~xi!]Ad2~x'!.
~4.14!

In the limit for x'→0, we look for a solutionxAK of the
type

xAK~xi ,x'![]AK p~x!1xAf ~xi!g~x'!, ~4.15!

whereK p is defined by

]2K p52d4~x!,

therefore
0-6
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K p5
1

~2p!2

1

x2

and we normalizef by imposing*d2xi f (xi)51. The un-
known functionsg and f satisfy the equation

] i
2f ~xi!@xAg~x'!#1 f ~xi!]'

2 @xAg~x'!#2e2f2~x'! f ~xi!

3@xAg~x'!#5e2f2~x'!]AK p~x!. ~4.16!

Integrating over the longitudinal coordinates on both sides
the equation, we get

@]'
2 2e2f2~x'!#@xAg~x'!#52

1

2p
e2f2~x'!

xA

x'
2 ,

where we used*d2xi]AK p(x)52(1/2p)(xA /x'
2 ). This is

exactly Eq.~A5! of the Appendix. Moreover, the boundar
conditions are also the same since

Cm~x!5E d4yKma~x,y!]nGna
S ~y!.

Therefore, a solution exists~for small x') and is given by

g~x'!5
e

2p

Cnp~x'!

x'

. ~4.17!

For the definition ofCnp see the Appendix. Using the expa
sion ~A7!, for smallx' we have

g~x'!5
Sc

2p
2

Sf
2

16p
x'

2 1•••,

xAg~x'!5
Sc

2p
xA1•••,

]'
2 xAg~x'!52

Sf
2

2p
xA1•••,

where Sc and Sf are some constants defined asSc
[ limx'→0eCnp(x')/x' and Sf[ limx'→0

ef(x')/x' . By
solving numerically the static equations of motion~4.5! and
~4.6! ~with quark sources at infinities! these constants can b
calculated as a function of the Ginzburg-Landau param
l/e2, see Table I, where for convenience we have introdu

TABLE I. Some values of the dimensionless quantitiesSc8 , Sf8 ,
andsH8 as a function of the Ginzburg-Landau parameterl/e2, ob-
tained by solving the static equations of motions with quark sour
at infinities.

Type of superconductor l/e2 Sc8 Sf8 sH8

I 1/32 0.1125 0.2516 1.142
between I and II 1/2 0.25 0.6 p/2
II 2 0.38 1.017 1.82
II 8 0.568 1.823 2.06
II 16 0.685 2.49 2.16
03401
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the dimensionless quantitiesSc8[Sc /M2 and Sf8 [Sf /M2.
The numerical solution of the equations of motion shows t
both Sc andSf exist, are real and positive@29#. Expanding
Eq. ~4.16! for small x' and keeping only the leading term
we get an equation for the functionf :

] i
2f ~xi!5

Sf
2

Sc
f ~xi!2

Sf
2

Sc
d2~xi!. ~4.18!

A solution of this equation is

f ~x!5
1

2pl 2 K0S uxu
l

D , ~4.19!

where l [ASc/Sf . We remember thatK0(uxu/l );2g
1 ln 22ln(uxu/l ) in the short-range region (uxu→0) and
K0(uxu/l );A(p/2)(l /uxu)e2uxu/l in the long-range region
(uxu→`). Since a solution exists our technical assumptio
~4.13! and ~4.15! are self-consistent.

Putting Eq.~4.13! into Eq. ~4.11! we obtain

G1414~xi2yi!52] i
2K p~xi2yi!1

Sc

p
f ~xi2yi!.

~4.20!

The long-distance exponential falls off and the weakly s
gular @; ln(uxu)# short-range behavior of the nonperturbati
contribution toG1414 in Eq. ~4.20! is compatible with the
lattice parametrization~1.4!. This fact provides an extremel
interesting consistency check to the validity of the dual
assumption~4.1!. Moreover this suggests the identification
the correlation lengthTg , associated with the longrange b
havior of the QCD nonlocal condensate with the dual qu
tity l @see Eq.~4.19!#. Notice that at variance with respect t
the London limit result, here the correlation length is n
simply given by the massM of the dual gluon.

Because of the almost regular short-range behavior of
nonperturbative part of Eq.~4.20! the static potential can be
calculated exactly without the use of an ultraviolet cutoff@at
variance with respect to the London limit case, see
~3.10!#, and it is given by

V0~R!5 lim
T→`

1

T
S~Cm

cl ,fcl!

5
g2

2p
ScE

0

R

dx12~R2x1!E
2`

1`

dx4

1

2pl 2 K0

3SAx4
21x1

2

l
D 2

g2

4p

1

R
1Higgs contributions

5R
g2

2p
Sc1~e2R/l 21!

g2

2p
Scl 2

g2

4p

1

R
1RsH

~4.21!

→
R→`

R
g2

2p
Sc1RsH . ~4.22!

s
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For the simple case off5f(x') the Higgs contribution to
the static potential turns out to be given by a linear term w
string tensionsH .4 Taking explicitly into account this con
tribution, the total string tension iss5(g2/2p)Sc1sH

5f0
2(2pSc81sH8 ) wheresH8 [sH /M2. For some values o

sH8 see Table I. In particular, for a superconductor on
border (l/e251/2) from Table I we haveV0(R)5pf0

2@R
1l (e2R/l 21)#2(g2/4p)(1/R). In order to compare this
potential with the heavy quark static potential we have
multiply it by the color factor 4/3. For a typical value o
f0.210 MeV we gets5 4

3 pf0
2.(430 MeV)2. In Fig. 1

we compare the static potential of Eq.~4.21! for a supercon-
ductor on the border between type I and type II for so
typical values of the parameters with the lattice fit of R
@30#.

One of the most interesting points is to relate the dim
sional parametersF2 andTg , the gluon condensate and th
correlation length of QCD, to the dimensional parametersf0
andl , the Higgs condensate and this characteristic lengt
the dual Abelian Higgs model. Our derivation identifiesl
with the correlation lengthTg and eventually explains th
existence of a finite correlation length in terms of an und
lying dual Meissner effect that gives a mass to the dual fie
In the dual theory@28# using trace anomaly it is possible t
relate the Higgs condensate to the gluon condensateF2

;lf0
4. Using the above value off0 and l/e251/2, one

obtains for the gluon condensate the value found by Ref.@1#,
F2.0.013 Gev4. This is how it was originally shown in
DQCD that the QCD vacuum is compatible with a dual s
perconductor on the border between type I and II@14#. Fi-
nally, we notice that in pure gluodynamics the lowest dime

4The comparison between Eq.~4.21! and Eq.~2.3! suggests that
we identify D(xi) with f (xi)Sc /p. The same string tension~as far
as the non-Higgs part is concerned! would, then, be obtained by
using Eq.~2.4!. We see, therefore, that the string tension is alwa
emerging in the limit of large interquark distances and via an in
gral on a function depending on the correlation length. Theref
our calculation confirms the existence of the nonlocal conden
and traces their origin back to a dual Meissner effect.

FIG. 1. The static potential of Eq.~4.21! for a superconductor
on the border between type I and type II withf05210 MeV, l

50.22 fm, and4
3 g2/4p 5 0.32 in comparison with the lattice fit o

Ref. @30#.
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sional gauge and Lorentz-invariant operator has dimensio
and its vacuum expectation value is the gluon condensate
the dual model we have a relevant condensate, the H
condensatef0

2, of dimension 2. This could yield some inte
esting consequences in renormalon physics@31#.

Using the numerical solution of the coupled equations
Cm andf and subsequent numerical interpolation, it is a
possible to calculate the form of all semirelativisticqq̄ po-
tentials @19,28#. In principle, we could obtain an analyti
solution also for the spin-dependent and velocity-depend
potentials following the same line of this paper. However,
this aim the calculation of different components of the ten
Gsglr is necessary and some technical difficulties arise
to the fact that the simple assumption~4.13! is no longer
valid. In the present situation we can try to gain some in
cations from the London limit result. Although, as we ha
seen, this is not the right limit in which to calculate th
potentials, the qualitative long-range behavior for the fie
strength correlator is reasonable. In fact, in that limiting ca
it is possible to calculate the whole tensorGsglr unambigu-
ously in terms of some functionsD andD1 @see Eq.~3.5!#.
Once we accept that in the presence of the quarks the s
range behavior of the Higgs field would regularize the
functions on the flux-tube string, using the formulas of R
@20# we can express all the heavy-quark potentials in ter
of integrals over these functionsD andD1. Since these func-
tions are reasonably compatible with the lattice fit~1.4! this
would explain the striking similarities in the long-distanc
behavior of the potentials obtained in DQCD and in t
Gaussian approximation of QCD@20#.

As a final remark, we notice that the flux tube structu
between two heavy quarks has been obtained in DQCD@17#
as well as in the Gaussian approximation of QCD@10# and
the results compare very favorably in both cases with
lattice calculation@32#. The profile of the longitudinal elec
tric field, i.e., along the string between the quarks, as a fu
tion of the transversal distance from the string is control
by the penetration length in one case and by the correla
length in the other.

V. CONCLUSION

Under the assumption that the infrared behavior of QC
is described by an effective Abelian Higgs model we ha
related the nonperturbative behavior of the gau
invariant two-point field strength correlato
^g2Fmn(x)U(x,y)Flr(y)U(y,x)& in QCD with the dual
field propagator in the Abelian Higgs model of infrare
QCD. In this way the origin of the nonlocal gluon conde
sate is traced back to an underlying Meissner effect and
phenomenological relevance of the Gaussian approxima
on the Wilson loop is understood as following from the cla
sical approximation in the dual theory of long-distance QC
In particular the correlation lengthTg of QCD, which we
know from direct lattice measurements, can be expres
completely in terms of the dual theory parameters (l ). As a
further check we have calculated analytically the static
tential and the string tension which are quantities direc
related to phenomenology. It turns out that the string tens

s
-
e
te
0-8
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is given by an integral over a function of the correlati
length which can be identified with the nonlocal gluon co
densate. There is no cutoff introduced in this calculat
since it is not performed in the London limit. We hav
shown that this limit is quite unphysical in the presence
sources and is valid only in the case of large distance fr
the chromoelectric string~which is different from largeqq̄
distances!. Finally, these results shed some light also on
fact that the heavy quark potentials turn out to be equiva
in the SVM and in DQCD at largeqq̄ distances.
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APPENDIX

In this appendix we study the equation of motion~4.5! in
the presence of two static sourcesg and2g evolving from
time 2T/2 to timeT/2 in the positionsR/2 and2R/2 of the
x1 axes, respectively. Thereforex'5(x2 ,x3). Under these
conditions the Dirac string is given by

Gnm
S ~x!5genm14d

2~x'!@u~x41T/2!2u~x42T/2!#

3@u~x11R/2!2u~x12R/2!#. ~A1!

Defining CA(x')[(1/RT)*d2xiCA(x), Eq. ~4.5! can be
written as

@]'
2 dAB2]A]B2e2f2~x'!dAB#CB~x'!
s.

B
-

o

na
cs

03401
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52geBA14]Bd2~x'!.

It is convenient to split the field into the sum of two part
CA5CA

p1CA
np , satisfying the equations

]'
2 CA

p~x'!52geBA14]Bd2~x'!, ~A2!

@]'
2 dAB2]A]B2e2f2~x'!dAB#CB

np~x'!

5e2f2~x'!CA
p~x'!. ~A3!

The solution of Eq.~A2! is

CA
p~x'!52

1

e

eBA14xB

x'
2

52
1

e

1

x'

û, ~A4!

where we have used the Dirac quantization conditiong

52p/e and û[(2x3/x' ,x2/x') is the angular unit vector
in the transverse plane. Substituting Eq.~A4! in Eq. ~A3! and
defining CA

np(x')[eBA14C
np(x')xB /x' ~or CW np(x')

5Cnp(x') û, whereCW np is a vector in the transverse plane!,
we obtain

@]'
2 2e2f2~x'!#S xA

x'

Cnp~x'! D52ef2~x'!
xA

x'
2 ~A5!

or

d

dx'
S 1

x'

d

dx'

@x'Cnp~x'!# D5e2S Cnp~x'!2
1

ex'
Df2~x'!.

~A6!

We can solve Eq.~A6! for small values ofx' , assuming
f(x')5Sfx' /e1•••, obtaining

Cnp~x'!5
Sc

e
x'2

Sf
2

8e
x'

3 1•••, ~A7!

whereSc andSf are some constants.
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