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Chiral quark model in a Tamm-Dancoff inspired approximation
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A procedure inspired by the Tamm-Dancoff method is applied to the chiral quark model. It is illustrated here
by the chiralo model embedded in the chiral bag environment. This simple model is used as an example and
as the test for the Tamm-Dancoff inspired approximafibBIA ). Here the TDIA is employed in two way$)
a set of field operator equations of motion is solved between quark statés)athé Hamilton field operator
is averaged between suitable hadron states, and the equations of motion are derived for these mean fields. The
second approach is analogous to the usual one which employs hedgehog quarks, which is also reproduced here.
It turns out that the energy minimuthe., hadron massgsan be found with the TDIA also. Model predictions
for the axial-vector coupling constant and for the nucleon magnetic moment obtained in the TDIA are com-
parable to those obtained using the usual hedgehog-based approximation. The TDIA can be used in more
complex models tod.S0556-282(98)04913-3

PACS numbd(s): 12.39.Ba, 12.39.Fe

[. INTRODUCTION the free particle operators. The TDIA looks similar to a re-
versed picturgor photographic negatiyeof TDM. A brief

The Tamm-Dancoff methodTDM) [1,2] has been ap- comparison, using a nonrelativistic Yukawa mod8] is
plied to strong interaction problems and was intensively in-sketched in the Appendix. Here the TDIA will be developed
vestigated during the 1950%8]. Recently it has been re- and tested for a simple chiraimodel[6,7] leading to results
vived [4] in the form of the light-front Tamm-Dancoff field Which are quite close to the ones obtained by using the
theory (LFTD) where problems which occur in equal-time hedgehogAnsatz[6,13—-16.
field theory[3] are either averted or redefined. The chiralo model has been used as a transparent easily

For our purposes it is important to recall that the TDM is treatable example. The TDIA is equally suitable for models
a much better approximation than perturbation theory. In th&ontaining nonlinear interaction with meson fields’] in-
case of the electromagnetic interaction it leads to the Coucluding dielectric binding of the quark4.8].
lomb potential used in the Schiinger equation{3]. One A rudimentary form of the TDIA has already appeared in
would not get a good approximation of a bound state probour earlier papergl9]. In the next section this TDIA will be
lem at all by using perturbation theory on free particle statePresented systematically so that it can be easily adopted to
[5]. related model$17].

Chiral bag model§6,7] are a simple effective theory of ~ Comparison with the well-established hedgehdgsatz
quark bound states, hadrons. Thus it is not unreasonable t§:13—16, Sec. IV, is very encouraging. The energy mini-
hope that the TDM might be useful in that case. We intend tgnum (i.e., hadron massgsan be found in the TDIA. The
use the chiral bag model in the study of the electroweakl DIA predictions for the axial-vector coupling constant and
transitions. For that one needs either currents or products d@r the nucleon magnetic moment are comparable with the
currents which contain strong corrections. Thus it might behedgehog-based results. Moreover, in the TDIA isospin and
more Convenient to Work in the Heisenberg picture_ Spln are Separately conserved. The analogous situation holds

In usual applications of the TDM1-4,8—1] the state for the theories with S(B) flavors.
vector of the system under consideration is expanded in
terms of the eigenfunctions of the number operators of the
free field. The field operators retain the free-field form con-
taining only one creatioannihilatior) operator for the par- Working in the Heisenberg pictufd 2], we expand field
ticle (antiparticle [9]. In the Tamm-Dancoff inspired ap- operators in the operators of the free fields. Probability am-
proximation (TDIA) which is used here, one does just the plitudes which weigh those operatdisee Eq.(2.3 below,
opposite. Working in the Heisenberg pictdiie?] we expand and the Appendikshould satisfyc-number equations which
field operators in the free field creation or annihilation op-follow from the Euler-Lagrange equations of motiof2s4).
erators. The state vectors of the system are given in terms &f that way one ends with an infinite set of coupled differ-

ential equations instead of integral ones, which appear in the
TDM [3,4]. These differential equations are closely related to

II. TAMM-DANCOFF INSPIRED APPROXIMATION

*Email address: dubravko.horvat@fer.hr the familiar chiral quark model equations.
"Email address: bp@phy.hr All this will become quite transparent when illustrated in
*Email address: tadic@phy.hr a particular case of the linear model and the bag formal-
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ism. The Lagrangian containing the linearmodel embed- fields, by PCAC(partial conservation of axial-vector currgnt

ded in the bag environment has the usual f§6716,2( and by the requiremend(M™=0. In the framework of this
= particular modelm, andm_. are not necessarily equal to the
L=Ly0+ Lindst[Lyr—U(0,m)]0O, (2.)  physical sigma and pion mass, but play the role of model

parameters. The Lagrangidl.l) defines an effective em-
pirical quantum field theory which describes quark dynam-
1 — _ ics, as an approximant for the underlying, fundamental and
Ly=25 L) ¥4, p(X) = 9, p(X) y*h(X) ], exact QCD. _ _
The equations of motion can be obtained from the La-

where

grangian(2.1) using standard variational methods. The field

ﬁian Z(x)[o(x)ﬂ;ﬁ(x) ysl(X), operatorsy, 7, ando are then expanded in terms of the free
2 2.2) field number operators. For the quark field one introduces
1 1 . ~
E(m=§ o (x)d,o(X)+ > I (X)d,m(X), PE(x) = ¢rfn(x)brcn,f+ ¢In(x)dﬁqTf
2 + X i m (OB (dit b h . (23

U(o,7)= % [0?(x)+ #2(x) — ¥?]?— f ,m2a(X),

Herec is a quark color and is a quark flavor, whereaa
Ve is the spin projectionby, ; andd;, ; are quark and antiquark
ferent from zero inside the bag {Rpag. The surfaced  ,nninijation operators, respectively. This infinite expansion
function &5 gives the surface quark-(or o) interaction, and s truncated leading to a physicaily motivated finite basis,
ensures that the potentidl and the ¢, ) kinetic-energy  \hich defines the Tamm-Dancoff inspired approximation.
terms exis{only) outside the bag. In thephericalbag® and The truncation of they field (2.3) as well as theAnsdze
become 6(Rpag—r) and O(r —Ryag, respectively. The for the = and o fields are best discussed using the model
self-interaction potentiall contains the symmetry-breaking (2.1) as an example. This model is equivalent to the follow-
(SB) term co(x)=—f,m20(x). The values of other con- ing set of the Euler-Lagrange equations and boundary con-
stants are fixed by the creation of mass terms foritendo  ditions:

andf,.=0.093 GeV. The® function signals that’,, is dif-

iy,0*P(r)=0 (r<Ruag,
99, (1) + N2m (N[ o(N)?+ 7(r)*=1%]1=0  (r>Ryay,

9,0,0(0)+ N2 () [o(r)?+ 7 (r)2=1?]+f,m2=0 (r>Ryyy, (2.9

[4%(0) 10, 85— 2 PO Pyshl1)55=0  (1=Roag),

[#0(1) I, 85~ o $(r)H(T)56=0  (1=Roag).

For the intended application one needs a static, time indepen- The result is then sandwiched between the initial quark or

dent solution. Here the term “solution” is to be understood antiquark states

in the TDIA sense. In the field expansion one keeps just the

terms which are needed to obtain a nontrivial coupled system

of differential equations. PR |af.y=bfl0) (af.|=(oldf,, 29
The bag formalism leads to considerable simplifications

as the first equation in Eq2.4) is coupled to the rest only and the vacuum, leading to terms such as

through boundary conditions. The leading approximation fol-

lows if in Eq. (2.4) one keeps just the two first terms in the ‘

expansion2.3). (O ¥, " P(X)| A m) = V9" Prm(X).- (2.6)
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This Dirac equation for the free quark inside the Ba§] Although expansion§2.9) and(2.10 for bosonic quanti-
leads to the following approximate TDIAnsatzfor the ties might look strange they appeare quite naturally. They
quark field: have been encountered in the past applications of the Tamm-

Dancoff procedure, as for example in the forma6) of
N io N [(&1)] Ref.[11]. As the operatorb andd have the opposite parity
Cly) — i fp .+ S/ fger . .
Pi(x) Jan i(67)f, XmPm,f Jan | iio XmOm,f - [21], both terms in the expansid@.10 have the same nega-
m & 2.7 tive parity. The TDIA conserves parity throughout, as will
' become apparent in the applications.

Here the quantitiefy i(r w/R) are spherical Bessel functions 1€ expansion£2.7), (2.9), and(2.10 represent the lead-

of the order(0,1) andxfn is the quark isospinory(’)-spinor ing terms. in the TDIA. Further C(_)rrections wo.uld be ob-
(xm) product. The Lagrangiat2.1) leads to the decoupled tained by introducing higher terms in the expansions, such as

equations(2.4) thus serving as a simple and yet nontrivial indicateq in EQ(2.3). C'orresponding additional terms would
model which can be used to illustrate and test the TDIA. ThePP€ar In the expansions for aII' fields. Th's would enlarge
decoupling allows us to use the Bessel functipng »/R) the system of the coupled equations, as discussed below.

in the Ansatz(2.7). If one used a more general Lagrangian, The boundary conditions in Eq2.4) are now specified

continuous in the whole space, the first and second equatiqﬁmeg]neﬁ:ﬁ:z(féza(ﬁiég{ ;I'tgteersesult IS then sandwiched

in Eq. (2.4 would not decouple. One would have to use an
Ansatz containing unknown functions (r). In a simple

case(2.1) ¢, m, ando fields are coupled through boundary (f|=<0|b?,t,
conditions only. (213
The inspection of the boundary conditio®.4) shows liy=b¢ |0)

that they can be satisfied with the first two terms in the ex- Lutes
pansion(2.3) if the correspondingr field expansion contains g
terms such as

bt By g1 - (2.9 (f]=(0l, (2.12
Similar conclusion can be reached for thefield too. The liy=dS' bS[0,
boundary conditions and the equations of mot{@mw) are ’ ’
compatible with the approximatiof2.7) if one keeps just a One finds
few terms in thew and o field expansion. . 5

All terms in Eq.(2.4), either the bispinor ones") or 7 o1 _ _N_ Yols [12(0)—jXw)]
the meson ones#, o) must contain the same number anddr ~° F—R 4w 0 ! R
the same kind of the creatidannihilation quark operators. bag bag
Various coordinate-dependent pieces, which multiply quark N2 g
operators have to be equal. Thus théield TDIA ansatz is — w4(r) =——j5(w)+ji(w)] , (213
given by thes-wave component, in terms of chiral-quark r r=Rpag 4w 2 r=Rpag
operators, together with the symmetry-breaking tefry) {
d N2 gﬂ'/p . .
o(N=oyN)(byibh +didh )~ @9 7 ™) =gp Ty U@l
"=Rpag I'=Rpag

The pion field contains the- and p-wave components At spatial infinity the o and 7 “fields” (i.e., soliton$

+ have to vanish:
73(r)=mo(r) (b ¢y ¢+ S b5 ()X ™ Xme 1]

O-S(r)|r—>OO:OI Ws(r)lr—mozoa Wp(r)|r—>oozo-

:
+arp(r)(bfr by, o +dS de) ) (2.19
XXt (1) 7 X 1] (2.10 Varying £ (2.1) with respect to the fermion field and its

) . derivative and collecting the corresponding surface terms,
are important. The boson operators can be introduced later

on or one can assume that the62yl) and(2.2) contains the i(i/f)zp(r)h:Feba =igaa(r)(iff)z/f(r)l,:Rba —g,7m(r)
fermions only. Then terms such a€, %2, etc., describe o A o
various nonlinear interactions among fermioguarks X(f’r)?’sl//(r)|r=Rbag- (2.19

which have to be coupled in scalgrseudoscalarcombina-

tions. Such model$theories [7] would be effective non- This boundary condition is “sandwiched” between quark
renormalizable field theories. In the following the terms me-states, as done with the equations of motion. Betweeh

son, pion, or sigma are used in that generalized sensand betweenr- i one inserts the complete set of states. De-
refering to expressions such as Es9 and(2.10. pending on the type of states, one obtains relations between
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the coupling constants and radial functions evaluatet=aR,,4. This is a straightforward but somewhat lengthy procedure.
The following are some details we use as an example. WitAtiszze (2.7)—(2.10, the boundary conditiof2.15) takes the
following form:

Jo (a7)j (61)jo -
(i(o-’.f)jl)XInbcm,f+( iio 1)Xrnd::ntf=_gw/p77p(R)( —ij, XInbﬂ"lTl,fl(T'T)b f[X (O'r)Xm ]b g»rr/pﬂ'p(R)

x((if”?lo)xm (7 7)ddr f[X (ar)xfnz]b —mpmp(R)

o'r) ) my,f 7_: ;)b fz[leTillf(&F)X;fz]dfn‘tf_g‘n’/pﬂ-p(R)

Ur)l) my 1,( 7 Al f[X (Ur)erﬁ]dmer'ga(fs(R)

1 . .
_(&%)jO)Xrnbg;rl,flb%?fzb%,f_"'goo's(R)(_(&f)j )ded £, 0, 1,19,
i]
_(5.%)] )mercnf+'gaffs(R)(

i1

(Uf)lo) f pdt

-1

-

|

( i m, f,Om 2,f2deT,f+iga<Ts(R)
(Tt i, T it g )
( Xmbh 1,(F- Ddi ¢ b = G ysms(R)

(—ij )xfndﬁql,fl(?'r)bmz £,0m. = Gmiss(R)

( {(60)] ) Wb ¢ (F- DAY del i~ gasm(R)
1o

m T T)bm f2 CTf (21@

This boundary condition can be sandwiched between the fi- (aD)j.) . (6D)jo\ . (D)o
nal antiquark statéf|=(q3,| and the initial vacuum state ( ij o ) 9,0 s(R)( .y ) Ufﬂ( )

=]
[i)=|0). Itis easy to see by inspection that many terms drop !

out, so that one ends up with very simple relations. On the (U )
left-hand side(LHS) one has +301p7p(R) (2.18
LHS= (a1)j1 f<o|dn dCTf|O>. (2173 _Two gquatlons follow from the above expressitrere
ijo JXm\“Fpatm, R=Rpag:

On the right-hand sidéRHS) one has to insert the complete jo(@)g,[fr—0s(R)]—j1(@)[1—-37g,,,ms(R)]=0,
set of intermediate statés)(s|:

()i Jo(@)[1+39pmp(R) ] = j1(@)g,[ f =~ 0s(R)]=0.
1] yig0la, . Js)(ld 10 219

RHS=ig,04R) .y
1

i(67)] These two equations constitute a homogeneous system for
—g(,f,,( B 0) mT 39ms7p(R) the functionsjq,(w), so the determinant of the system
J1 should vanish.

i1 - The other projection between the vacuum and the one-
_i(d’.f)jo)Xm(Ur)- (2179 quark statdi)=|q3 ,) gives a system similar to that above:
Thus one obtains jolw) = j1(w)[gsf 7+ 39sms(R)]=0,

(2.20
034003-4
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Jo(@)[gof 7= 39ms(R)]—j1(w)=0.

The quark eigenenergy will be determined from the com-
patibility of the boundary condition€.13 and(2.15. One
takes the smallest possible, which corresponds to the
ground state in the standard bag mof&l7]. In that case,
instead of a common meson coupling cons@fEq. (2.2)]
flavor- and angular-momentum-dependent coupliggs,

PHYSICAL REVIEW D 58 034003

formation on the system of differential equations, so one has
a strongly correlated algebraic systét19 and (2.20 and
the system of differential equations.

The parameteré\,v) which enterf (2.2) are restricted by
the symmetry-breaking behavior of the theory. Usually
[6,20], the o particle is considered to be a 1.2 GeV reso-
nance, whereas the pion “mass” is a parameter which, for
simplicity (and lack of knowledgke is assigned the value of

d./s andg,,, appear. This reflects chiral symmetry breaking.the physical pion mas®.137 GeV. In the present applica-
As shown in Eq.(2.21) below, this appears naturally when tion, these values have also been used, althooglandm,.

the nonlinear syster(2.2) is solved using thénsaze (2.7)—

(2.10. One can solve the system of equatid@sl9 and
(2.20. One solution forg ,;,=7,(R)/3 gives a trivial solu-
tion for g, i.e.,g,=0. The other gives

_JZ+1
9"_2wa'

1-J?
gw/s—my

!
970 =302+ D) my(R)”

Rt J*-33%+1
os(R)= LTS

J=]1(0)/jo(w). (2.21)

To extract the equations for the and p- wave compo-
nents from the operator equations of motion, H@s4) are
sandwiched between the final stdtd=(qf,/=(0|bf, and
the initial state|i)=|qf,)=b{"|0). This choice yields the
equation forog(r)

d> 2d

aztrar oo(N=N{oyr)—f H{[osr)—f,]?

+3mp(r) v+ f.mZ, (222
and for arp(r)

d2
dr?

2d 2
g r—z} (1) = N2mp(D{[a(r) = £ ]2

(2.23

The other choice, i.e.(f|=(0] and [i)=|af,q;, )

=dic,T,U,bff[,|O>, gives the piors-wave component

+37T,2)(r)— v}

2
[Fdr + % %} (1) =N2mg(r)[ 2 +36m5(r) — v2].
(2.24

The problem is to find a set of solutions of the differential

equations (2.4), (2.23, and (2.24), {o(r),ms(r),mx(r)},
which satisfy themathematicalboundary conditiong2.13

and (2.14). These solutions must be compatible with Eq.

(2.27) which is independent af. Of course,J contains in-

can, in principle, be considered as additional parameters.

The usage of the bag model has to some extent decoupled
the equation for the quark expansion functiafls, ¢, etc.
(2.3) from the rest. It communicates with the,(r) (n
=s,p) and o(r) functions only through algebraic relations
(2.19 and(2.20. In some more sophisticated model a non-
linear differential equation fo@{n would be a part of the
system containing alse, 7, ando (2.22—(2.24).

Higher order terms in the expansion, such as the third
term in Eq.(2.3 for example, would enlarge the system of
the coupled equations. As in the TDM the whole system
would be coupled sector by sector. That would be governed
by the number of creatioannihilation operators and by
some additionalii ;) ((f,]) states besides those in E¢®.11)
and(2.12. The end results would be completely analogous
to the relations among different sectors in the Fock space in
the TDM, as one should expect from its reversed picture.

The results obtained in the leading order of the TDIA for
this simple model, can be used to calculate the nucleon mag-
netic moment, the axial-vector coupling constant, and the
meson mass, by expressing them in terms of functions
Ji(wr/R), my(r), andog(r). The magnetic moment operator
is [22]

>

1
M(F):E [FXTem(N)]. (2.29

Here
J (D)= (1) Y*Qu(r) + egij m (1) 0% (r) (2268
and

_21+T3 11_T3

Q=373 3772 (2.260

The quark contribution tquy, is

2R (w/2)—(3/8)sin 2w+ (w/4)cos 2v

Q=" )
T3 0% 1 w) il w) - 2iw)(w)e
(2.27
The meson contribution is
167 11 (=
(My_——" —— 2 2
Mp 3 3 RIDaIgr drlmp(r)]“up. (2.28

The proton magnetic moment is given by
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Mp:M(Q)+ME)M)' (2.29  described below in Sec. IV. In thos&nsdze only p-wave
meson fields appear. Thus we will develop an alternative
Here and in the following, the expressions like quark contri-version of the TDIA.
butions, meson contributions, meson phase, etc., are used asWe will retain thep-wave component for the pion field
verbal shortcuts. One actually deals with complex and/oonly. The corresponding equations of motion are derived
complicated stationary quark fields. The contributi¢p®7  from an effective classical Hamiltonian, which is obtained by
and(2.28 were obtained by calculating the matrix element averaging the quantized Hamiltonian over a barymmoton,
8). The baryon wave functions in terms of chiral quarks be-
<pf d®r i(r)|p

> (2.30 long to the conventiond6 representations of S6) (2.31).
Here|p) is the standard three quark proton state

The fields appearing in the quantized Hamiltonian are given
in the TDIA. For they field one uses Eq2.7) while the ¢
and pion fields are given by

abc

E R [N ta’
Ip.1)= NiT: ([ul 20l o = uf| 0l 61Ul )]0). @ (r)=m(r)[ x5 (1) x2bg, b2, -
(2.31
— Us(r) bTa b2 —f
The axial-vector coupling constant, is the matrix ele- o(r)= 3 s (mbg(n) =T
ment of the componem (f) of the isovector axial-vector
current sandwiched between nucleon states and integrated The Hamiltonian is
over all spacg6,22]. The quark contribution is
— 7 Hzf d3x{ W (—iad)p®+[y'gy°(o+iys77) Pds
g&?>=<mJd3rw<r>y3y57¢<r) m>
51 J§(0)+if(w) 232 +/(90)%+ 5 (37)*+U (0, 7) |© (32
33 j3(0)+ji(0) —2jg(@)iw)/e
L For the proton2.31), the expectation value ¢ has the
The meson contribution is following form:
547 (= 2,(r)
g<AM>=§? ] drrz{[as(r)—fw][w;,(rw f( } (pIH|p)="H,
bag © (0_5)2 1 2
=3—+47rf drrdy ——+ -
—mp(Nag(r) . (2.33 R 2 2 3
272
Finally, x| mh+ r—zp +f,m2(os—f,)
g =ga> +gn" . (2.39 A2 s 2
) ) + — (Us—f7)2+7'r'2) - ] 3.3
The physical meson mass is 4 3
M= mq+my, . (2.353 For A, one finds

Heremg is the well known[7,16] quark phase contribution ® (ol)2 13
while my, is given by <A|H|A>=HA=3§+477J drr [ +-F

2 2 3
mM=47-rf rzdr(
Rbag

A2
+ 7z [v*—412(og— f7)2—41/2(7rf,+ 12775)]

2

27 A2
’ p
(7Tp)2+ r2

+imi(o—f)+

N2 ! 27TF2)
12w+ (mp)+ —"

A
X[ (og— fw)2+ 77'F2J ——?

3 4

2 2 .
+—’7Tp16 .

(3.9

—2f,.mi(os—f,)|. (2.35h

HereX , are the matrix elements of the spin-isospin opera-
Il ALTERNATIVE APPROXIMATION tors e_lveraged over the spinor-isospinor part ofgh& wave
function[7], for example,
In order to test the TDIA we will compare it with the well
known and successfull hedgehagsaze[6,16,17 which is 3 p=(pl(oi7)(oi7)|p). (3.5

034003-6
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The variational procedure leads to the equations of motion

(corresponding to the proton

p)
(O'S—f,T)Z-I— I

()'"-i-E ol=\%(os—f_)
S r S S T

3P '
(3.9
2 2
77";-!- r Tré— 2 7Tp=)\277p (O'S—fﬂ.)z‘l‘ ?p 71"2)— 12
48
2,3
+A (L E_A
The boundary conditions for the meson profile functions
are
d N°g , "
5 os(1) T2 [io(w)—ji(e@)],
020 (3.7)
J _oeNE
= (1) ST m glio(w)ji(w)],
r=Rpaq
and
0s(N]—»=0, mp(r)],_.=0. (3.9

Using the same method as in the preceding section one ob-

PHYSICAL REVIEW D 58 034003

» p3 272
mM=477J r2dr E (7T’)2+—rz—

Rbag
)\2
+ 7 [(a—fw>2+2w2—v2]2—fwmi(a—fﬂ>).
(3.12

IV. THE HEDGEHOG ANSATZE

This section is intended to provide a detailed comparison
between the TDIA used in the preceding section and the
hedgehogAnsdze At the classical level there is not much
difference between the results obtained in this section and
the results presented in Sec. Ill. The equations of motion are
similar and their(classical solutions are almost identical
(see Sec. Y. There is a slight difference in the quantization
procedure. Usually6,16], one quantizeshedgehoy quarks
and (hedgehoy mesons as elementary fermion and boson
fields. Coherent states are ugécil5,14 to provide a quan-
tum representation of the boson fields.

In the example provided here the bosonic phase is quan-
tized in the same way as used in thasaze (3.1). The end
result is the same as that obtained using coherent states.
The baryons are given in hedgehog form

|h)=bibjb|0):;

(hhy=1. 4.1

tains the consistency condition for the quark eigenenergies

from

11
J’o(w)g[fw—os(R)]ﬂl(w)( 1-3 gwp(R)) =0,
(3.9

jo(w)

11
1+3 gﬂp(R)> —Ji(0)g[f,—oy(R)]=0.

Thus the expression for the coupling constgris [see Eq.

(2.21]

1
o R, 2+ (119, (R)

g (3.10

Here the number 11 arises from the matrix elemernB8.5).
The other equation analogous to Eg.21) is

1 1-g(1U9my(R)  1-(3,/9)my(R)/3

1T gt —eR]  dif.mer] - G

The pion state is @ wave and it assumes a hedgehog
form as well,
ma(1)=Fam(r)b]by 4.2
and o is given by the scalar component and the symmetry-
breaking term
a(F)=o(r)blb,—f.,. 4.3
The hedgehog baryon is neither a nucleon ndr and it has
to be projected into a spin-isospin eigens{d@0].
The hedgehog fornfd.2) is closely related to th&nsdze
(3.2). If the isospinor-spinor combinatioxafn in Eq. (3.1 is
replaced by the hedgehog combination, i.e.,

1

The electromagnetic properties are calculated taking inthen one finds

account the electromagnetic curré@dt26g and(2.26h. The

quark contribution to the magnetic moment retains the form
(2.27 but with thew determined from(3.9). For the proton,

one finds tha{" again has the forni2.28).

The axial-vector coupling constagp has the quark con-

tribution (2.32 and the meson contributio(®.33. As al-

f_~ ~f= ~fe
Xm=xfxm—>5(xf “Ym=—12—= X'~ Xm=1/2) = Xn

(4.49

X;r](&f)TaXh:fa_ (4.4b

Thus the mapping4.4) transforms theAnsaze(3.1) into the
corresponding Eq94.2) and (4.3. It is not surprising that
the (classical equations of motion barely change. The

ready mentioned, the value and all parameter values cor- change comes from the fact that with the hedgeRogdze

responds to the model defined by E¢3.3—(3.11).
The physical pion massi?™Sis given in Eq.(2.353 but
herem,, is given by

there is only one universal barydh) (4.1). However, the
s-wave component§2.10 do vanish when the replacement
(4.4 is effected. One obtains
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Xt xn=0. (4.40
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©

" =§ r2dr[(r)]2 411

Thus the solution presented in this section differs in an es- Roag

sentied way from the one discussed in Sec. Il.

The quark contribution to the nucleon axial-vector coupling

The expectation value of the normal-ordered Ham"toniarbonstantgA retains the form(2.32.

(3.2 is
(h[H[h)="H,
R
=3N2477f drr?|jo(wr/R)
0
2j r/IR
x(#ﬂﬂwrm))
—j1(wrR)ji(wrR) +47rj drr?
R
1[[dc\? [om\? 2 )
X E ﬁ_l' + E +r7’77
)\2
+ T (o2 + 72— V2)2+fﬂm§r0'] . (4.5

The meson part of the axial-vector constanid$

g =— rdr
Rbag

2[o(r)=f,]m(r)
* r

[o(r)—f ]m"(r)—m(r)a’(r)

. (4.12

The difference in constant factors between Eg<8), (2.29
and Egs.(4.1]), (4.12), respectively, can be traced to aver-
aging over Eq(4.1) rather than over the proton wave func-
tion, as done in Sec. lll.

The quantum propertie@.2) and (4.3 of boson solitons
follow from the hedgehog version of the boundary condition
(2.15. Thus our baryori4.1) differs from the usual formi6]
which uses the coherent states. However, with the hedgehog
Ansdze both methods lead to an identical expression for the
energyH, (4.5).

The Euler-Lagrange equations are given in terms of mean Using the trial wave function of Ref6],

fields approximated by the static expectation values.
Instead of Eq(3.6) one finds

2
o+ = o' =N (o)~ T [ o(r) ~ 12

+[m(r)P= v+ f,m2 (4.6
and
"+ % w' = r2_2 a=Nm(N){[o(r)—f 2+ [7(r)]°— v}
4.7

The boundary condition fos(r) is

d 3
d_(rr :—ﬁ N[j5(@)—ji(w)], (4.9

r=Ryag

whereg is calculated from the fields at the boundary

1
9= : (4.9
VI[7(Roag 17+ [ 7(Rpag 12
For the pion phase one gets
dm B 39 . _
dr == 7. Nlio(@)ja(w)]. (4.10

r=Rpag

[heon =eXp(AL)exp(Al)|h), (4.13

one easily finds

_ (heon M| heon
i <hCOI‘J hCOl"> .

Here A, contains the elementary-field operatora, (k),
ie.,

(4.149

Al = f d%k wT”k F(kag (k),
4.15
2

70

fd3keikf|:(k),
and analogously foA” . Variation with respect ter(r) and
o(r) leads to the above equations of motion.

A possible generalization of the coherent state which con-
serves spin and isospin is considerably more complicated
than Eq.(4.13. Even the one pion approximatidi23] is
quite involved.

V. THE NUMERICAL PROCEDURE

Numerics will be illustrated here for the nonlinear system
of coupled ordinary differential equations which were de-
rived in Sec. Il. The other two approaches, the TDIA with
hadron averaging and hedgehagsaze lead to very similar

The electromagnetic properties are calculated using Egqsystems which differ only in some superficial details.

(2.25, (2.263, and(2.268.

This system determines fermion and boson radial func-

The quark contribution to the proton magnetic momenttions appearing in thénsaze for example in Eqs(2.7)—

retains the form(2.27. Also, u{®=-3u{Y. With the

hedgehogAnsdze for meson fields one find$]

(2.10. The boson radial functions had to satify E¢a22)—
(2.24). These equations were supplemented by the boundary
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conditions given by Egs(2.13 and (2.14). The conditions method incoLsys which is left to choose the initial mesh
(2.14) were dictated by théphysica) requirement that the points, and in the continuation procedure it refines and redis-

(massive field solitons should vanish at infinity. tributes the(formen mesh.

In Eq. (2.13 the normalization constaril can be ex- There are additional chiral-bag-model parameters, the
pressed in terms of Bessel functions and quark eigenfrequesame as those used in the MIT bag, iB,, Z;, and aq
ciesw: [6,7,19,2]. They are connected with the bag properties

(B,Zp) and with the effective gluon exchange.d) which

2jo(@)j1(w) removes the nucleonN)-resonancgA) mass degeneracy.
— (5.1 Some earlier experiendsee Ref[19]) suggested that these
parameters would remain within typical chiral-bag-model
values. Here these parameters are used to fix\thend A
The radial parts of the quark wave functions appearing imasses within 1% accuracy. The numerical values depend on
Eg.(2.7) are Bessel functiong(wr/R) for any spherical bag the particularAnsaze used. Thus for example for solution
with radiusR. At the bag boundary, where=R, these func- described in Sec. I\(see Table I, beloyone findsR=6.0,
tions have to satisfy the relatior®.19 and (2.20 which  ©=1.80,Z,=0.12, B¥*=0.14, andas=0.12 orR=5.0,
combine the quark frequenay with the coupling constants =2.10,Z,=0.3,BY4=0.15, andas=0.25.
0,: 9., T, etc. The algebraic relations among the coupling The solutions are compared against the consistency con-
constants stem from the requirement that the homogeneoufitions (2.21) and the iterative procedure is continued until
system of linear equations should have the vanishing detethe matching is obtained. The iteration consists in perform-
minant. Therefore, the coupling constants have to satisfy thiang a self-consistent calculation: the coupling constants for
consistency conditions given by E.21) the chiral quarks nonhedgehog method are set to be the same
The linears-model parameters satisfy the following rela- at the beginnindtheir value is set to be equal to 10)Chd
tions derived from the symmetry breaking patté¢see Sec. after every iteration new coupling constants are calculated
I [6,16,22: from Eq.(2.2]). These new values are replaced in the bound-
ary conditions to calculate new solutions. The procedure

1,
N?==3 | i§(w)+i§(w)

2_ .2 2 2_am? converges rather rapidly. When the matching is achieved, the
2 Mo ” My 2_g2_Mn _1iepp 2M 3Ty magnetic moment, the axial constant and fihgsical pion
Mo vl dep M e J ’ : yscalp
. o Ma mass are calculated from the obtained solutions, i.e., from

(5.2 either{o(r),ms(r),mp(r)} for the TDIA or{o(r),m(r)} for
the hedgehod\nsaze
Here the value ofl is determined by the requirement that
U(O’,’ﬁ') should have zero minima. Themeson is expected VI. RESULTS, COMMENTS, AND CONCLUSION
to have a mass of about 1 G€¥20]. Thus theparameter
massean, andm,, are selected to be 1.2 and 0.139 Gev, 'he Tamm-Dancoff inspired approximati¢fiDIA) (Sec.
respectively. The physical pion masg™®is determined ei- II) leads to results which depend strongly on the quark eigen-
ther by the formula2.35 or the formula(3.12. frequencyw, as shown in Table I. There are several sets of
One has to solve simultaneously the system containin!® coupling constantg; which satisfy the consistency con-

nonlinear differential equation2.22, (2.23, and (2.24, dition (2.21), thus producing several setsg{, x, andm?™®
Egs.(2.13 and(2.14), and the algebraic relatiorf2.21) and  values.

(5.2). This determines the meson function&), m4(r), and However, one is more interested here in compariso_n of
g, etc). method gives consistently too largg values and somewhat

This complex system has been solved using the codketter u values. The pion masses are always too large. For
. ; _ 1. ~N— R phys

coLsys the collocation system solver developed by Ashergxample withR=6.00 GeV ~; g=10.93 one obtainsn’;
Christiansen and Russg24]. The boundary conditions are =0.501 GeV. WithR=4.97 GeV ! andg=11.28 one finds
set at[ Ryaq,R], WhereR is set to be so large that the fields mPYs=0.756 GeV. All predictions are very similar to those
can be approximated by zero Rt The initial guesses have found using the hedgehog mean-field metiiSdc. V).
been supplied. From the asymptotic behavior and some ear- The hedgehog-bas¢f] results are displayed in Table III.
lier experience the input was rather simple and convergencdere they were obtained by using parameters comparable
has been achieved quickly. with those used in Tables | and I, which facilitates the com-

The problem turns out to be rather sensitive to the derivaparison. It is not surprising that the values in Tables Il and IlI
tive boundary conditions which in all cases involve the cou-are similar. Equationg3.6), (4.6), and (4.7) are not very
pling constar(s). Although the asymptotic behavior of the different. The same goes for the theoretical expressions for
solutions can be inferred from the system its@ée, also, g, andu. The values ofu in Table Il look somewhat closer
Ref. [25]), coLsys is able to handle rather general initial to the uqq,. However, this could be just an accidental effect
(guess$ solutions. of a particular parametrization.

Upon return the routine gives error estimates for compo- The method described in Sec. Il treats the quark and me-
nents and its derivatives. The problem parameters can b&on fields(or phasesas operator equations, which are ap-
gradually changed(increaseyl by using a continuation proximately solved. Thew,(r), m4(r), and og(r) are
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TABLE |. The results for the chiral-quark model in the TDIA. The bag radius is in Gevhits.

magn. moment ax. congii,

R o Mo 2y Mot gdag gam Oaltot mps
4.00 2.10 1.53 1.41 2.94 1.01 0.12 1.13 0.208
5.00 1.90 1.77 0.44 2.21 1.06 0.23 1.29 0.142
5.00 2.10 1.01 0.91 1.92 1.06 0.06 1.12 0.198
6.00 1.80 2.09 0.28 2.37 1.06 0.05 1.21 0.132
6.00 1.90 2.09 0.34 2.43 0.91 0.25 1.16 0.166
7.00 1.80 3.02 0.25 3.27 1.03 0.18 1.21 0.155
7.00 2.10 2.55 0.06 2.61 1.06 0.21 1.27 0.156

parameters
\=9.062 m,=1.2 GeV fexg=2.79 meP=0.139 GeV
»=0.092 f_=0.093 GeV Onverp=1.26 m._=0.140 GeV

smoothly decreasing with distance, as required by the boundtomplex, albeit already extensive, numerics. A first tentative
ary conditions. The largg values in Table | are for the same conclusion is that the TDIA works for a field theory version
w always associated with smallgp values, thus both being of the model. However, this has to be further tested, in more
simultaneously closer to the experimental data. In Table tomplex and realistic mode[46-18§.
one can see that such behavior is caused by the meson-phase
contributions which here contain bothwave andp wave.
They are proportionally much larger in the caserofs it
should be. The same richer structure of the pion phase lead One of us(D.H.) wishes to thank Andrew KurfSimon
to better predictions fomP™s, Fraser University, Computing Departmgand Davor Grgic
It is interesting that the TDIA can lead to acceptable so-(University of Zagreb for their assistance with the software
lutions of the chiral quark model. The results seem to beapplication. D.T. would like to thank the Theory Gro(Rro-
comparable with those obtained using the hedgekgrze  fessor L. Fondp University of Trieste, Italy for the hospi-
The TDIA leads to some more complex description of thetality.
pion phase, what seems to improve the quality of the calcu-
lated results. Although everything strongly depends on the
parametrization, these preliminary results seem to encourage
further application of the TDIA. In order to avoid inessential complexity we consider a
The values displayed in Table | are also comparable witlsystem consisting of stationary bary@micleon) field ¢ in-
the Skyrme model [14] where, typically, ©=2.48, teracting with a neutral scaldmeson field ¢. The baryon
gar=0.61 or with the Nambu-Jona-Lasinio modgR3], field is described nonrelativistically; spin is being ignored.
where u=2.76 andg,=1.86. This test of the TDIA was The interaction is of Yukawa type. This simple model is used
made in a simple chiral quark model, which leads to the leashere merely to illustrate the relation between two ap-

ACKNOWLEDGMENTS

APPENDIX: TDIA IN A SIMPLE MODEL

TABLE Il. The TDIA based calculation. The nonhedgehog mean-field method has been used to project
the physical states. The bag radius is in G&Wnits. The bag parameters are explained in the main text.

magn. moment axial congf,

R o g 1o AM Mot gao 9am Oavtot
4.97 1.0238 9.299 1.20 0.83 2.02 1.51 0.39 1.90
5.00 0.979 9.311 1.155 1.377 2.531 1.53 0.53 2.06
6.00 1.285 9.799 1.741 1.116 2.857 1.42 0.51 1.93
7.00 1.78 10.799 2.52 0.09 2.61 1.22 0.29 1.50

parameters
A=9.062 m,=1.2 GeV Mexp=2.79
r=0.092 f,=0.093 GeV Oasexp—1.26
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TABLE Ill. The chiral-bag-model calculation. The hedgehog mean-field method has been used to project
the physical states. The bag radius is in G&Wnits.

magn. moment axial congf
R ® g 2z Awm Ftot dag gdam Javtot
5.00 1.280 11.250 1.45 0.27 1.72 1.43 0.42 1.85
6.00 1.637 10.878 2.060 0.144 2.204 1.28 0.33 1.61
7.00 1.783 10.799 2.519 0.092 2.610 1.22 0.29 1.504
parameters
A=9.062 m,=1.2 GeV Mexp=2.79
»=0.092 f_=0.093 GeV Jaexp=1.26
proaches, the TDM and TDIA. K2 R R R
The Schrdinger equation is given by ~5m Agt(X)JrGEm: hi,n(X) 5 (X) (AB)
(Ho+Hin|#,G) =E[.,0),
§ —fds vl 2 s =Eg(X).
0= XYt (X)| — 5 [AY(X)
1 3 o 22 o The Fourier-transform of expressigh6) has the same over-
t3 f d3*{[V (X)]°+ p=¢*(X) + 75(X)} all form as the Tamm-Dancoff equatigA3):
H; =GJd3x*>2 X) p(X), Al

- Y* (X)P(R) p(R) (A1) 00— f kg (R,

with

~ N I 1
|z//,q>=A(q)bg+f d3rd3s|,B(F,§)blal+--- (A2) f:()‘(’):J' d3peP* () PEE f d3xeidx

one easily finds the first Tamm-Dancoff equation
X

ﬁ2
~5m Agﬁ—G; ht,nf:) - Egt}
2

q . Lo >
= gt(q)+Gf a2 f1(G-k)gk)
Herebq andaq_are the annihilation operators for tileand ¢ n
fields, respectively. —Eg(q§)=0. (A7)
The Hamiltonian(Al) corresponds, in the Heisenberg pic-
ture, to the equation

=2
=A@+ /B a-/)-EAG). (A9

52 One can find such parallels for the whole system of TDM
— — AY+Goy=Ey=04y. (A4)  or TDIA equations. In the more sophisticated case, investi-
2m gated in this paper, such a task would be rather forbidding. It
seems that the TDM and TDIA lead to comparable although
not exactly equivalent approximations. Functions such as
g(X) or their Fourier transforng(g) [A(q)] are probability
¢()z):2 [fa(X)a,+fr(X)al], amplitudes for finding that system consists of particles
n (A5) whose position iX (momenta arej, K—K, etc) [26].
The overall structure of EqgA3), (A6), and (A7), re-
o S - garding the mixture ofy) and |¢,¢) states, resembles very
l//(x)_§ gn(x)bm+32’b ha o(X)bady closely the integral equatiori8) and(9), Ref.[3], p. 201 or
Egs.(7) and(8) of Ref.[8]. However, our system is simpli-

By expanding

one obtains fied even in comparison with Ref3], not to mention the
sophisticated approachd®,9] based on the light front
(0[Oyby) =E(O|y|by) Yukawa model.
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