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Chiral quark model in a Tamm-Dancoff inspired approximation
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A procedure inspired by the Tamm-Dancoff method is applied to the chiral quark model. It is illustrated here
by the chirals model embedded in the chiral bag environment. This simple model is used as an example and
as the test for the Tamm-Dancoff inspired approximation~TDIA !. Here the TDIA is employed in two ways:~i!
a set of field operator equations of motion is solved between quark states and~ii ! the Hamilton field operator
is averaged between suitable hadron states, and the equations of motion are derived for these mean fields. The
second approach is analogous to the usual one which employs hedgehog quarks, which is also reproduced here.
It turns out that the energy minimum~i.e., hadron masses! can be found with the TDIA also. Model predictions
for the axial-vector coupling constant and for the nucleon magnetic moment obtained in the TDIA are com-
parable to those obtained using the usual hedgehog-based approximation. The TDIA can be used in more
complex models too.@S0556-2821~98!04913-3#

PACS number~s!: 12.39.Ba, 12.39.Fe
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I. INTRODUCTION

The Tamm-Dancoff method~TDM! @1,2# has been ap-
plied to strong interaction problems and was intensively
vestigated during the 1950’s@3#. Recently it has been re
vived @4# in the form of the light-front Tamm-Dancoff field
theory ~LFTD! where problems which occur in equal-tim
field theory@3# are either averted or redefined.

For our purposes it is important to recall that the TDM
a much better approximation than perturbation theory. In
case of the electromagnetic interaction it leads to the C
lomb potential used in the Schro¨dinger equation@3#. One
would not get a good approximation of a bound state pr
lem at all by using perturbation theory on free particle sta
@5#.

Chiral bag models@6,7# are a simple effective theory o
quark bound states, hadrons. Thus it is not unreasonab
hope that the TDM might be useful in that case. We intend
use the chiral bag model in the study of the electrowe
transitions. For that one needs either currents or product
currents which contain strong corrections. Thus it might
more convenient to work in the Heisenberg picture.

In usual applications of the TDM@1–4,8–11# the state
vector of the system under consideration is expanded
terms of the eigenfunctions of the number operators of
free field. The field operators retain the free-field form co
taining only one creation~annihilation! operator for the par-
ticle ~antiparticle! @9#. In the Tamm-Dancoff inspired ap
proximation ~TDIA ! which is used here, one does just t
opposite. Working in the Heisenberg picture@12# we expand
field operators in the free field creation or annihilation o
erators. The state vectors of the system are given in term
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†Email address: bp@phy.hr
‡Email address: tadic@phy.hr
0556-2821/98/58~3!/034003~12!/$15.00 58 0340
-

e
u-

-
s

to
o
k
of
e

in
e
-

-
of

the free particle operators. The TDIA looks similar to a r
versed picture~or photographic negative! of TDM. A brief
comparison, using a nonrelativistic Yukawa model@3# is
sketched in the Appendix. Here the TDIA will be develop
and tested for a simple chirals model@6,7# leading to results
which are quite close to the ones obtained by using
hedgehogAnsatz@6,13–16#.

The chirals model has been used as a transparent ea
treatable example. The TDIA is equally suitable for mod
containing nonlinear interaction with meson fields@17# in-
cluding dielectric binding of the quarks@18#.

A rudimentary form of the TDIA has already appeared
our earlier papers@19#. In the next section this TDIA will be
presented systematically so that it can be easily adopte
related models@17#.

Comparison with the well-established hedgehogAnsatz
@6,13–16#, Sec. IV, is very encouraging. The energy min
mum ~i.e., hadron masses! can be found in the TDIA. The
TDIA predictions for the axial-vector coupling constant a
for the nucleon magnetic moment are comparable with
hedgehog-based results. Moreover, in the TDIA isospin
spin are separately conserved. The analogous situation h
for the theories with SU~3! flavors.

II. TAMM-DANCOFF INSPIRED APPROXIMATION

Working in the Heisenberg picture@12#, we expand field
operators in the operators of the free fields. Probability a
plitudes which weigh those operators@see Eq.~2.3! below,
and the Appendix# should satisfyc-number equations which
follow from the Euler-Lagrange equations of motions~2.4!.
In that way one ends with an infinite set of coupled diffe
ential equations instead of integral ones, which appear in
TDM @3,4#. These differential equations are closely related
the familiar chiral quark model equations.

All this will become quite transparent when illustrated
a particular case of the linears model and the bag formal
© 1998 The American Physical Society03-1
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ism. The Lagrangian containing the linears model embed-
ded in the bag environment has the usual form@6,16,20#

L5LcQ1LintdS1@Lsp2U~s,pW !#Q̄, ~2.1!

where

Lc5
1

2
@c̄~x!gm]mc~x!2]mc̄~x!gmc~x!#,

Lint5
g

2
c̄~x!@s~x!1 i tWpW ~x!g5#c~x!,

~2.2!

Lsp5
1

2
]ms~x!]ms~x!1

1

2
]mpW ~x!]mpW ~x!,

U~s,pW !5
l2

4
@s2~x!1pW 2~x!2n2#22 f pmp

2 s~x!,

and f p50.093 GeV. TheQ function signals thatLc is dif-
ferent from zero inside the bag (r ,Rbag). The surfaced
functiondS gives the surface quark-p ~or s! interaction, and
Q̄ ensures that the potentialU and the (s,pW ) kinetic-energy
terms exist~only! outside the bag. In thesphericalbagQ and
Q̄ becomeu(Rbag2r ) and u(r 2Rbag), respectively. The
self-interaction potentialU contains the symmetry-breakin
~SB! term cs(x)[2 f pmp

2 s(x). The values of other con
stants are fixed by the creation of mass terms for thepW ands
pe
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th
te

n

o
e

03400
fields, by PCAC~partial conservation of axial-vector curren!
and by the requirementU (min)50. In the framework of this
particular model,ms andmp are not necessarily equal to th
physical sigma and pion mass, but play the role of mo
parameters. The Lagrangian~2.1! defines an effective em
pirical quantum field theory which describes quark dyna
ics, as an approximant for the underlying, fundamental a
exact QCD.

The equations of motion can be obtained from the L
grangian~2.1! using standard variational methods. The fie
operatorsc, pW , ands are then expanded in terms of the fre
field number operators. For the quark field one introduce

c f
c~x!5fm

f ~x!bm, f
c 1f̃m

f ~x!dm, f
c†

1xm1m2m3

f gh ~x!bm1 , f
c dm2 ,g

e† bm3 ,h
e 1¯ . ~2.3!

Herec is a quark color andf is a quark flavor, whereasm
is the spin projection.bm, f

c anddm, f
c are quark and antiquark

annihilation operators, respectively. This infinite expans
is truncated leading to a physically motivated finite bas
which defines the Tamm-Dancoff inspired approximation

The truncation of thec field ~2.3! as well as theAnsätze
for the pW and s fields are best discussed using the mo
~2.1! as an example. This model is equivalent to the follo
ing set of the Euler-Lagrange equations and boundary c
ditions:
igm]mc~r !50 ~r ,Rbag!,

]m]mpa~r !1l2pa~r !@s~r !21pW ~r !22n2#50 ~r .Rbag!,

]m]ms~r !1l2s~r !@s~r !21pW ~r !22n2#1 f pmp
2 50 ~r .Rbag!, ~2.4!

@]mpa~r !#nmdS2
gp

2
c̄~r !i tag5c~r !dS50 ~r 5Rbag!,

@]ms~r !#nmdS2
gs

2
c̄~r !c~r !dS50 ~r 5Rbag!.
or
For the intended application one needs a static, time inde
dent solution. Here the term ‘‘solution’’ is to be understo
in the TDIA sense. In the field expansion one keeps just
terms which are needed to obtain a nontrivial coupled sys
of differential equations.

The bag formalism leads to considerable simplificatio
as the first equation in Eq.~2.4! is coupled to the rest only
through boundary conditions. The leading approximation f
lows if in Eq. ~2.4! one keeps just the two first terms in th
expansion~2.3!.
n-

e
m

s

l-

The result is then sandwiched between the initial quark
antiquark states

uqf ,r
a &5bf ,r

q† u0& ^q̄f ,r
a u5^0udf ,r

q , ~2.5!

and the vacuum, leading to terms such as

^0ugm]mc~x!uqf ,m
c &5gm]mfm

f ~x!. ~2.6!
3-2
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CHIRAL QUARK MODEL IN A TAMM-DANCOF F . . . PHYSICAL REVIEW D 58 034003
This Dirac equation for the free quark inside the bag@19#
leads to the following approximate TDIAAnsatz for the
quark field:

c f
c~x!5

N

A4p
S j 0

i ~sW r̂ ! j 1
Dxm

f bm, f
c 1

N

A4p
S ~sW r̂ ! j 1

i j 0
Dxm

f dm, f
c† .

~2.7!

Here the quantitiesj 0,1(rv/R) are spherical Bessel function
of the order~0,1! andXm

f is the quark isospinor (x̃ f)-spinor
(xm) product. The Lagrangian~2.1! leads to the decouple
equations~2.4! thus serving as a simple and yet nontriv
model which can be used to illustrate and test the TDIA. T
decoupling allows us to use the Bessel functionsj l (rv/R)
in the Ansatz~2.7!. If one used a more general Lagrangia
continuous in the whole space, the first and second equa
in Eq. ~2.4! would not decouple. One would have to use
Ansatz containing unknown functionsf l (r ). In a simple
case~2.1! c, p, ands fields are coupled through bounda
conditions only.

The inspection of the boundary conditions~2.4! shows
that they can be satisfied with the first two terms in the
pansion~2.3! if the correspondingpW field expansion contains
terms such as

bm, f
c †bm8, f 8

c . ~2.8!

Similar conclusion can be reached for thes field too. The
boundary conditions and the equations of motion~2.4! are
compatible with the approximation~2.7! if one keeps just a
few terms in thepW ands field expansion.

All terms in Eq.~2.4!, either the bispinor ones (c̄Gc) or
the meson ones (pW ,s) must contain the same number a
the same kind of the creation~annihilation! quark operators.
Various coordinate-dependent pieces, which multiply qu
operators have to be equal. Thus thes-field TDIA ansatz is
given by thes-wave component, in terms of chiral-qua
operators, together with the symmetry-breaking term (f p):

s~r !5ss~r !~bm, f
c† bm, f

c 1dm, f
c† dm, f

c !2 f p . ~2.9!

The pion field contains thes- andp-wave components

pa~r !5ps~r !~bm, f
c† dm8, f 8

c†
1dm, f

c bm8, f 8
c

!@xm, f
† taxm8, f 8#

1pp~r !~bm, f
c† bm8, f 8

c
1dm, f

c dm8, f 8
c†

!

3@xm, f
† ~sW r̂ !taxm8, f 8#. ~2.10!

At this level of TDIA expansion only the quark operato
are important. The boson operators can be introduced
on or one can assume that theory~2.1! and~2.2! contains the
fermions only. Then terms such ass2, pW 2, etc., describe
various nonlinear interactions among fermions~quarks!
which have to be coupled in scalar~pseudoscalar! combina-
tions. Such models~theories! @7# would be effective non-
renormalizable field theories. In the following the terms m
son, pion, or sigma are used in that generalized se
refering to expressions such as Eqs.~2.9! and ~2.10!.
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Although expansions~2.9! and ~2.10! for bosonic quanti-
ties might look strange they appeare quite naturally. Th
have been encountered in the past applications of the Ta
Dancoff procedure, as for example in the formula~4.6! of
Ref. @11#. As the operatorsb andd have the opposite parity
@21#, both terms in the expansion~2.10! have the same nega
tive parity. The TDIA conserves parity throughout, as w
become apparent in the applications.

The expansions~2.7!, ~2.9!, and~2.10! represent the lead
ing terms in the TDIA. Further corrections would be o
tained by introducing higher terms in the expansions, suc
indicated in Eq.~2.3!. Corresponding additional terms woul
appear in the expansions for all fields. This would enla
the system of the coupled equations, as discussed below

The boundary conditions in Eq.~2.4! are now specified
using theAnsätze~2.7!–~2.10!. The result is then sandwiche
between the final and initial states

^ f u5^0ubf ,t
c ,

~2.11!

u i &5bi ,u
c u0&,

or

^ f u5^0u,
~2.12!

u i &5di 8,u8
c† bi 8,u8

c† u0&.

One finds

]

]r
ss~r !U

r 5Rbag

52
N2

4p

gs/s

2
@ j 0

2~v!2 j 1
2~v!#U

r 5Rbag

,

]

]r
ps~r !U

r 5Rbag

52
N2

4p

gp/s

2
@ j 0

2~v!1 j 1
2~v!#U

r 5Rbag

, ~2.13!

]

]r
pp~r !U

r 5Rbag

52
N2

4p

gp/p

2
@ j 0~v! j 1~v!#U

r 5Rbag

.

At spatial infinity thes and p ‘‘fields’’ ~i.e., solitons!
have to vanish:

ss~r !ur→`50, ps~r !ur→`50, pp~r !ur→`50.
~2.14!

Varying L ~2.1! with respect to the fermion field and it
derivative and collecting the corresponding surface ter
one obtains an additional boundary condition

i ~gW r̂ !c~r !ur 5Rbag
5 igss~r !~gW r̂ !c~r !ur 5Rbag

2gptWpW ~r !

3~gW r̂ !g5c~r !ur 5Rbag
. ~2.15!

This boundary condition is ‘‘sandwiched’’ between qua
states, as done with the equations of motion. Betweens-c
and betweenpW -c one inserts the complete set of states. D
pending on the type of states, one obtains relations betw
3-3
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the coupling constants and radial functions evaluated atr 5Rbag. This is a straightforward but somewhat lengthy procedu
The following are some details we use as an example. With theAnsätze~2.7!–~2.10!, the boundary condition~2.15! takes the
following form:

S j 0

i ~sW r̂ ! j 1
Dxm

f bm, f
c 1S ~sW r̂ ! j 1

i j 0
Dxm

f dm, f
c† 52gp/ppp~R!S ~sW r̂ ! j 0

2 i j 1
Dxm

f bm1 , f 1

d† ~tW•tW !bm2 , f 2

d @xm1

f 1†
~sW r̂ !xm2

f 2 #bm, f
c 2gp/ppp~R!

3S ~sW r̂ ! j 0

2 i j 1
Dxm

f dm1 , f 1

d ~tW•tW !dm2 , f 2

d† @xm1

f 1†
~sW r̂ !xm2

f 2 #bm, f
c 2gp/ppp~R!

3S j 1

2 i ~sW r̂ ! j 0
Dxm

f bm1 , f 1

d† ~tW•tW !bm2 , f 2

d @xm1

f 1†
~sW r̂ !xm2

f 2 #dm, f
c† 2gp/ppp~R!

3S j 1

2 i ~sW r̂ ! j 0
Dxm

f dm1 , f 1

d ~tW•tW !dm2 , f 2

d† @xm1

f 1†
~sW r̂ !xm2

f 2 #dm, f
c† 1 igsss~R!

3S i j 1

2~sW r̂ ! j 0
Dxm

f bm1, f 1

d† bm2, f 2

d bm, f
c 1 igsss~R!S i j 1

2~sW r̂ ! j 0
Dxm

f dm1 , f 1

d† dm2 , f 2

d bm, f
c 2 igs f p

3S i j 1

2~sW r̂ ! j 0
Dxm

f bm, f
c 1 igsss~R!S i ~sW r̂ ! j 0

2 j 1
Dxm

f bm1 , f 1

d† bm2 , f 2

d dm, f
c† 1 igsss~R!

3S i ~sW r̂ ! j 0

2 j 1
Dxm

f dm1 , f 1

d† dm2 , f 2

d dm, f
c† 2 igs f pS i ~sW r̂ ! j 0

2 j 1
Dxm

f dm, f
c† 2gp/sps~R!

3S ~sW r̂ ! j 0

2 i j 1
Dxm

f bm1 , f 1

d† ~tW•tW !dm2 , f 2

d† bm, f
† 2gp/sps~R!

3S ~sW r̂ ! j 0

2 i j 1
Dxm

f dm1 , f 1

d ~tW•tW !bm2 , f 2

d bm, f
c 2gp/sps~R!

3S j 1

2 i ~sW r̂ ! j 0
Dxm

f bm1 , f 1

d† ~tW•tW !dm2 , f 2

d† dm, f
c† 2gp/sps~R!

3S j 1

2 i ~sW r̂ ! j 0
Dxm

f dm1 , f 1

d ~tW•tW !bm2 , f 2

d dm, f
c† . ~2.16!
e

ro
th
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m
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:

This boundary condition can be sandwiched between th
nal antiquark statê f u5^q̄p,r

a u and the initial vacuum state
u i &5u0&. It is easy to see by inspection that many terms d
out, so that one ends up with very simple relations. On
left-hand side~LHS! one has

LHS5S ~sW r̂ ! j 1

i j 0
Dxm

f ^0udp,q
n dm, f

c† u0&. ~2.17a!

On the right-hand side~RHS! one has to insert the comple
set of intermediate statesus&^su:

RHS5 igsss~R!S i ~sW r̂ ! j 0

2 j 1
Dxm

f ^0udp,r
a dm2 , f 2

d us&^sudm, f
c† u0&

2gs f pS i ~sW r̂ ! j 0

2 j 1
Dxm

f 13gp/spp~R!

3S j 1

2 i ~sW r̂ ! j 0
Dxm

f ~sW r̂ !. ~2.17b!

Thus one obtains
03400
fi-

p
e

S ~sW r̂ ! j 1

i j 0
D5 igsss~R!S i ~sW r̂ ! j 0

2 j 1
D2 igs f pS i ~sW r̂ ! j 0

2 j 1
D

13gp/ppp~R!S ~sW r̂ ! j 1

2 i j 0
D . ~2.18!

Two equations follow from the above expression~here
R5Rbag!:

j 0~v!gs@ f p2ss~R!#2 j 1~v!@123gp/ppp~R!#50,

j 0~v!@113gp/ppp~R!#2 j 1~v!gs@ f p2ss~R!#50.
~2.19!

These two equations constitute a homogeneous system
the functions j 0,1(v), so the determinant of the syste
should vanish.

The other projection between the vacuum and the o
quark stateu i &5uqp,q

a & gives a system similar to that above

j 0~v!2 j 1~v!@gs f p13gp/sps~R!#50,

~2.20!

3-4
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j 0~v!@gs f p23gp/s~R!#2 j 1~v!50.

The quark eigenenergyv will be determined from the com
patibility of the boundary conditions~2.13! and ~2.15!. One
takes the smallest possiblev, which corresponds to the
ground state in the standard bag model@6,7#. In that case,
instead of a common meson coupling constantg @Eq. ~2.2!#
flavor- and angular-momentum-dependent couplingsgs/s ,
gp/s andgp/p appear. This reflects chiral symmetry breakin
As shown in Eq.~2.21! below, this appears naturally whe
the nonlinear system~2.2! is solved using theAnsätze~2.7!–
~2.10!. One can solve the system of equations~2.19! and
~2.20!. One solution forgp/p5pp(R)/3 gives a trivial solu-
tion for gs , i.e., gs50. The other gives

gs5
J211

2 f pJ
,

gp/s5
12J2

6Jps~R!
,

gp/p5
J221

3~J211!pp~R!
,

ss~R!5 f p

J423J211

~11J2!2 ,

J5 j 1~v!/ j 0~v!. ~2.21!

To extract the equations for thes- and p- wave compo-
nents from the operator equations of motion, Eqs.~2.4! are
sandwiched between the final state^ f u5^qf ,t

c u5^0ubf ,t
c and

the initial stateu i &5uqi ,u
c &5bi ,u

c† u0&. This choice yields the
equation forss(r )

F d2

dr2 1
2

r

d

drG ss~r !5l2@ss~r !2 f p#$@ss~r !2 f p#2

13pp
2~r !2n2%1 f pmp

2 , ~2.22!

and forpp(r )

F d2

dr2 1
2

r

d

dr
2

2

r 2Gpp~r !5l2pp~r !$@s~r !2 f p#2

13pp
2~r !2n2%. ~2.23!

The other choice, i.e.,^ f u5^0u and u i &5uqi ,u
c q̄i 8,u8

c &
5di 8,u8

c† bi ,u
c† u0&, gives the pions-wave component

F d2

dr2 1
2

r

d

drGps~r !5l2ps~r !@ f p
2 136ps

2~r !2n2#.

~2.24!

The problem is to find a set of solutions of the different
equations ~2.4!, ~2.23!, and ~2.24!, $s(r ),ps(r ),pp(r )%,
which satisfy themathematicalboundary conditions~2.13!
and ~2.14!. These solutions must be compatible with E
~2.21! which is independent ofr . Of course,J contains in-
03400
.

l

.

formation on the system of differential equations, so one
a strongly correlated algebraic system~2.19! and ~2.20! and
the system of differential equations.

The parameters~l,n! which enterL ~2.2! are restricted by
the symmetry-breaking behavior of the theory. Usua
@6,20#, the s particle is considered to be a 1.2 GeV res
nance, whereas the pion ‘‘mass’’ is a parameter which,
simplicity ~and lack of knowledge!, is assigned the value o
the physical pion mass~0.137 GeV!. In the present applica
tion, these values have also been used, althoughms andmp

can, in principle, be considered as additional parameters
The usage of the bag model has to some extent decou

the equation for the quark expansion functionsfm
f , f̃m

f , etc.
~2.3! from the rest. It communicates with thepn(r ) (n
5s,p) and s(r ) functions only through algebraic relation
~2.19! and ~2.20!. In some more sophisticated model a no
linear differential equation forfm

f would be a part of the
system containing alsops , pp andss ~2.22!–~2.24!.

Higher order terms in the expansion, such as the th
term in Eq.~2.3! for example, would enlarge the system
the coupled equations. As in the TDM the whole syste
would be coupled sector by sector. That would be gover
by the number of creation~annihilation! operators and by
some additionalu i a& (^ f au) states besides those in Eqs.~2.11!
and ~2.12!. The end results would be completely analogo
to the relations among different sectors in the Fock spac
the TDM, as one should expect from its reversed picture

The results obtained in the leading order of the TDIA f
this simple model, can be used to calculate the nucleon m
netic moment, the axial-vector coupling constant, and
meson mass, by expressing them in terms of functi
j l(vr /R), pp(r ), andss(r ). The magnetic moment operato
is @22#

mW ~rW !5
1

2
@rW3 jWEM~rW !#. ~2.25!

Here

j EM
m ~r !5c̄~r !gmQc~r !1e3i j p i~r !]mp j~r ! ~2.26a!

and

Q5
2

3

11t3

2
2

1

3

12t3

2
. ~2.26b!

The quark contribution tomN is

m~Q!5
2

3

R

v4

~v/2!2~3/8!sin 2v1~v/4!cos 2v

j 0
2~v!1 j i

2~v!22 j 0~v! j 1~v!/v
.

~2.27!

The meson contribution is

mP
~M !5

16p

3

11

3 E
Rbag

`

r 2dr@pp~r !#2mp . ~2.28!

The proton magnetic moment is given by
3-5
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mp5m~Q!1mp
~M ! . ~2.29!

Here and in the following, the expressions like quark con
butions, meson contributions, meson phase, etc., are us
verbal shortcuts. One actually deals with complex and
complicated stationary quark fields. The contributions~2.27!
and ~2.28! were obtained by calculating the matrix eleme

K pU E d3rmW ~r !UpL . ~2.30!

Here up& is the standard three quark proton state

up,↑&5
«abc

A18
~@u~↑,a!

† d~↓,b!
† 2u~�,a!

† d~↑,b!
† #u~�,c!

† !u0&.

~2.31!

The axial-vector coupling constantgA is the matrix ele-
ment of the componentA3

3(rW) of the isovector axial-vecto
current sandwiched between nucleon states and integr
over all space@6,22#. The quark contribution is

gA
~Q!5 K p↑U E d3rWc̄~rW !g3g5

t3

2
c~rW !Un↑ L

5
5

3

1

3

j 0
2~v!1 j 1

2~v!

j 0
2~v!1 j 1

2~v!22 j 0~v! j 1~v!/v
. ~2.32!

The meson contribution is

gA
~M !5

5

3

4p

3 E
Rbag

`

dr r 2H @ss~r !2 f p#Fpp8~r !1
2pp~r !

r G
2pp~r !ss8~r !J . ~2.33!

Finally,

gA
~p!5gA

~Q!1gA
~M ! . ~2.34!

The physical meson mass is

mp
phys5mQ1mM . ~2.35a!

HeremQ is the well known@7,16# quark phase contribution
while mM is given by

mM54pE
Rbag

`

r 2drS F12~ps8!21~pp8!1
2pp

2

r 2 G
1

l2

4
@n424n2~ss2 f p!224n2~pp

2112ps
2!#

22 f pmp
2 ~ss2 f p! D . ~2.35b!

III. ALTERNATIVE APPROXIMATION

In order to test the TDIA we will compare it with the we
known and successfull hedgehogAnsätze @6,16,17# which is
03400
-
as
r

ted

described below in Sec. IV. In thoseAnsätze only p-wave
meson fields appear. Thus we will develop an alternat
version of the TDIA.

We will retain thep-wave component for the pion field
only. The corresponding equations of motion are deriv
from an effective classical Hamiltonian, which is obtained
averaging the quantized Hamiltonian over a baryon~proton,
d!. The baryon wave functions in terms of chiral quarks b
long to the conventional56 representations of SU~6! ~2.31!.
The fields appearing in the quantized Hamiltonian are giv
in the TDIA. For thec field one uses Eq.~2.7! while thes
and pion fields are given by

pW ~r !5pp~r !@xs8
a8tW~sW r̂ !xs

a#bs8
†a8bs

a ,
~3.1!

s~r !5
ss~r !

3
bs

†a~m!bs
a~n!2 f p .

The Hamiltonian is

H5E d3xH c†~2 iaW ]W !cQ1@c†gg0~s1 ig5tWpW !#cdS

1F ~]Ws!21
1

2
~]WpW a!21U~s,pW !GQ̄J . ~3.2!

For the proton~2.31!, the expectation value ofH has the
following form:

^puHup&5Hp

53
v

R
14pE

R

`

drr 2H ~ss8!2

2
1

1

2

Sp

3

3S pp
21

2pp
2

r 2 D 1 f pmp
2 ~ss2 f p!

1
l2

4 F ~ss2 f p!21pp
2 Sp

3
2n2G2J . ~3.3!

For D, one finds

^DuHuD&5HD53
v

R
14pE

R

`

drr 2H ~ss8!2

2
1

1

2

Sp

3

3 S ~pp8!21
2pp

2

r 2 D 1 f pmp
2 ~s2 f p!1

l2

4

3F ~ss2 f p!21pp
2 SD

3
2n2G2

1
l2

4
pp

416J .

~3.4!

HereSp,D are the matrix elements of the spin-isospin ope
tors averaged over the spinor-isospinor part of thep/D wave
function @7#, for example,

Sp5^pu~s it j !~s it j !up&. ~3.5!
3-6
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The variational procedure leads to the equations of mo
~corresponding to the proton!

ss91
2

r
ss85l2~ss2 f p!F ~ss2 f p!21

Sp

3
pp

22n2G ,
~3.6!

pp91
2

r
pp82

2

r 2 pp5l2ppF ~ss2 f p!21
Sp

3
pp

22n2G
1l2pp

3 48

SD
.

The boundary conditions for the meson profile functio
are

]

]r
ss~r !U

r 5Rbag

52
3N2

4p

g

2
@ j 0

2~v!2 j 1
2~v!#,

~3.7!

]

]r
pp~r !U

r 5Rbag

52
3N2

4p
g@ j 0~v! j 1~v!#,

and

ss~r !ur→`50, pp~r !ur→`50. ~3.8!

Using the same method as in the preceding section one
tains the consistency condition for the quark eigenener
from

j 0~v!g@ f p2ss~R!#1 j 1~v!S 12
11

3
gpp~R! D50,

~3.9!

j 0~v!S 11
11

3
gpp~R! D2 j 1~v!g@ f p2ss~R!#50.

Thus the expression for the coupling constantg is @see Eq.
~2.21!#

g5
1

A@ss~R!2 f p#21~11/9!pp~R!
. ~3.10!

Here the number 11 arises from the matrix elementS ~3.5!.
The other equation analogous to Eq.~2.21! is

1

J
5

12g~11/9!pp~R!

g@ f p2ss~R!#
5

12~SD/9!pp~R!/3

g@ f p2s~R!#
. ~3.11!

The electromagnetic properties are calculated taking
account the electromagnetic current~2.26a! and~2.26b!. The
quark contribution to the magnetic moment retains the fo
~2.27! but with thev determined from~3.9!. For the proton,
one finds thatmp

(M ) again has the form~2.28!.
The axial-vector coupling constantgA has the quark con

tribution ~2.32! and the meson contribution~2.33!. As al-
ready mentioned, thev value and all parameter values co
responds to the model defined by Eqs.~3.3!–~3.11!.

The physical pion massmp
phys is given in Eq.~2.35a! but

heremM is given by
03400
n

s

b-
s

to

mM54pE
Rbag

`

r 2drS S

6 F ~p8!21
2p2

r 2 G
1

l2

4
@~s2 f p!21Sp22n2#22 f pmp

2 ~s2 f p! D .

~3.12!

IV. THE HEDGEHOG ANSÄTZE

This section is intended to provide a detailed comparis
between the TDIA used in the preceding section and
hedgehogAnsätze. At the classical level there is not muc
difference between the results obtained in this section
the results presented in Sec. III. The equations of motion
similar and their~classical! solutions are almost identica
~see Sec. V!. There is a slight difference in the quantizatio
procedure. Usually@6,16#, one quantizes~hedgehog! quarks
and ~hedgehog! mesons as elementary fermion and bos
fields. Coherent states are used@6,15,16# to provide a quan-
tum representation of the boson fields.

In the example provided here the bosonic phase is qu
tized in the same way as used in theAnsätze ~3.1!. The end
result is the same as that obtained using coherent states

The baryons are given in hedgehog form

uh&5b1
†b2

†b3
†u0&; ^huh&51. ~4.1!

The pion state is ap wave and it assumes a hedgeh
form as well,

pa~rW !5 r̂ ap~r !bi
†bi ~4.2!

and s is given by the scalar component and the symme
breaking term

s~rW !5s~r !bi
†bi2 f p . ~4.3!

The hedgehog baryon is neither a nucleon nor aD, and it has
to be projected into a spin-isospin eigenstate@6,20#.

The hedgehog form~4.2! is closely related to theAnsätze
~3.1!. If the isospinor-spinor combinationxm

f in Eq. ~3.1! is
replaced by the hedgehog combination, i.e.,

xm
f 5x̃ fxm→

1

&

~ x̃ f 5uxm521/22x̃ f 5dxm51/2!5xh ,

~4.4a!

then one finds

xh
†~sW r̂ !taxh5 r̂ a. ~4.4b!

Thus the mapping~4.4! transforms theAnsätze~3.1! into the
corresponding Eqs.~4.2! and ~4.3!. It is not surprising that
the ~classical! equations of motion barely change. Th
change comes from the fact that with the hedgehogAnsätze
there is only one universal baryonuh& ~4.1!. However, the
s-wave components~2.10! do vanish when the replaceme
~4.4a! is effected. One obtains
3-7
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xh
†taxh50. ~4.4c!

Thus the solution presented in this section differs in an
sentied way from the one discussed in Sec. II.

The expectation value of the normal-ordered Hamilton
~3.2! is

^huHuh&5Hh

53N24pE
0

R

drr 2F j 0~vr /R!

3S 2 j 1~vr /R!

r
1 j 18~vr /R! D

2 j 1~vr /R! j 08~vr /R!G14pE
R

`

drr 2

3H 1

2 F S ]s

]r D 2

1S ]p

]r D 2

1
2

r 2 p2G
1

l2

4
~s21p22n2!21 f pmp

2 sJ . ~4.5!

The Euler-Lagrange equations are given in terms of m
fields approximated by the static expectation values.

Instead of Eq.~3.6! one finds

s91
2

r
s85l2~s~r !2 f p!$@s~r !2 f p#2

1@p~r !#22n2%1 f pmp
2 ~4.6!

and

p91
2

r
p82

2

r 2 p5l2p~r !$@s~r !2 f p#21@p~r !#22n2%.

~4.7!

The boundary condition fors(r ) is

ds

dr U
r 5Rbag

52
3g

8p
N2@ j 0

2~v!2 j 1
2~v!#, ~4.8!

whereg is calculated from the fields at the boundary

g5
1

A@s~Rbag!#
21@p~Rbag!#

2
. ~4.9!

For the pion phase one gets

dp

dr U
r 5Rbag

52
3g

4p
N2@ j 0~v! j 1~v!#. ~4.10!

The electromagnetic properties are calculated using E
~2.25!, ~2.26a!, and~2.26b!.

The quark contribution to the proton magnetic mome
retains the form~2.27!. Also, mn

(Q)52 2
3 mp

(Q) . With the
hedgehogAnsätze for meson fields one finds@6#
03400
s-

n

n

s.

t

m~M !5
4p

3 E
Rbag

`

r 2dr@p~r !#2. ~4.11!

The quark contribution to the nucleon axial-vector coupli
constantgA retains the form~2.32!.

The meson part of the axial-vector constant is@6#

gA
~M !5

8p

3 E
Rbag

`

r 2drF @s~r !2 f p#p8~r !2p~r !s8~r !

1
2@s~r !2 f p#p~r !

r G . ~4.12!

The difference in constant factors between Eqs.~2.28!, ~2.29!
and Eqs.~4.11!, ~4.12!, respectively, can be traced to ave
aging over Eq.~4.1! rather than over the proton wave fun
tion, as done in Sec. III.

The quantum properties~4.2! and ~4.3! of boson solitons
follow from the hedgehog version of the boundary conditi
~2.15!. Thus our baryon~4.1! differs from the usual form@6#
which uses the coherent states. However, with the hedge
Ansätze, both methods lead to an identical expression for
energyHp ~4.5!.

Using the trial wave function of Ref.@6#,

uhcoh&5exp~As
1!exp~Ap

1!uh&, ~4.13!

one easily finds

Hh5
^hcohuHuhcoh&

^hcohuhcoh&
. ~4.14!

Here As
1 contains the elementarys-field operatora0

1(k),
i.e.,

As
15E d3k

vsk

2
F̃~k!a0

1~k!,
~4.15!

s~r !5
2

~2p!3 E d3keikW rWF̃~k!,

and analogously forAp
1 . Variation with respect top(r ) and

s(r ) leads to the above equations of motion.
A possible generalization of the coherent state which c

serves spin and isospin is considerably more complica
than Eq. ~4.13!. Even the one pion approximation@23# is
quite involved.

V. THE NUMERICAL PROCEDURE

Numerics will be illustrated here for the nonlinear syste
of coupled ordinary differential equations which were d
rived in Sec. II. The other two approaches, the TDIA wi
hadron averaging and hedgehogAnsätze, lead to very similar
systems which differ only in some superficial details.

This system determines fermion and boson radial fu
tions appearing in theAnsätze, for example in Eqs.~2.7!–
~2.10!. The boson radial functions had to satify Eqs.~2.22!–
~2.24!. These equations were supplemented by the bound
3-8
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conditions given by Eqs.~2.13! and ~2.14!. The conditions
~2.14! were dictated by the~physical! requirement that the
~massive! field solitons should vanish at infinity.

In Eq. ~2.13! the normalization constantN can be ex-
pressed in terms of Bessel functions and quark eigenfreq
ciesv:

N25
1

R3 F j 0
2~v!1 j 0

2~v!2
2 j 0~v! j 1~v!

v G . ~5.1!

The radial parts of the quark wave functions appearing
Eq. ~2.7! are Bessel functionsj l(vr /R) for any spherical bag
with radiusR. At the bag boundary, wherer 5R, these func-
tions have to satisfy the relations~2.19! and ~2.20! which
combine the quark frequencyv with the coupling constants
gs , gp , f p , etc. The algebraic relations among the coupl
constants stem from the requirement that the homogen
system of linear equations should have the vanishing de
minant. Therefore, the coupling constants have to satisfy
consistency conditions given by Eq.~2.21!

The linears-model parameters satisfy the following rel
tions derived from the symmetry breaking pattern~see Sec.
II ! @6,16,22#:

l25
ms

22mp
2

2 f p
2 , n25 f p

2 2
mp

2

l2 , d5
1

2
f p

2 mp
2

2ms
223mp

2

ms
22mp

2 .

~5.2!

Here the value ofd is determined by the requirement th
U(s,pW ) should have zero minima. Thes meson is expected
to have a mass of about 1 GeV@20#. Thus theparameter
massesms and mp are selected to be 1.2 and 0.139 Ge
respectively. The physical pion massmp

phys is determined ei-
ther by the formula~2.35! or the formula~3.12!.

One has to solve simultaneously the system contain
nonlinear differential equations~2.22!, ~2.23!, and ~2.24!,
Eqs.~2.13! and~2.14!, and the algebraic relations~2.21! and
~5.2!. This determines the meson functionss(r ), ps(r ), and
pp(r ), the quark frequencyv, and various coupling~gp ,
gs , etc.!.

This complex system has been solved using the c
COLSYS, the collocation system solver developed by Ash
Christiansen and Russel@24#. The boundary conditions ar
set at@Rbag,R#, whereR is set to be so large that the field
can be approximated by zero atR. The initial guesses hav
been supplied. From the asymptotic behavior and some
lier experience the input was rather simple and converge
has been achieved quickly.

The problem turns out to be rather sensitive to the der
tive boundary conditions which in all cases involve the co
pling constant~s!. Although the asymptotic behavior of th
solutions can be inferred from the system itself~see, also,
Ref. @25#!, COLSYS is able to handle rather general initi
~guess! solutions.

Upon return the routine gives error estimates for com
nents and its derivatives. The problem parameters can
gradually changed~increased! by using a continuation
03400
n-

n

us
r-
e

,

g

e
,

ar-
ce

-
-

-
be

method inCOLSYS which is left to choose the initial mes
points, and in the continuation procedure it refines and re
tributes the~former! mesh.

There are additional chiral-bag-model parameters,
same as those used in the MIT bag, i.e.,B, Z0 , and as
@6,7,19,21#. They are connected with the bag properti
(B,Z0) and with the effective gluon exchange (as) which
removes the nucleon (N)-resonance~D! mass degeneracy
Some earlier experience~see Ref.@19#! suggested that thes
parameters would remain within typical chiral-bag-mod
values. Here these parameters are used to fix theN and D
masses within 1% accuracy. The numerical values depen
the particularAnsätze used. Thus for example for solutio
described in Sec. IV~see Table I, below! one findsR56.0,
v51.80, Z050.12, B1/450.14, andas50.12 orR55.0, v
52.10,Z050.3, B1/450.15, andas50.25.

The solutions are compared against the consistency
ditions ~2.21! and the iterative procedure is continued un
the matching is obtained. The iteration consists in perfor
ing a self-consistent calculation: the coupling constants
the chiral quarks nonhedgehog method are set to be the s
at the beginning~their value is set to be equal to 10.00! and
after every iteration new coupling constants are calcula
from Eq.~2.21!. These new values are replaced in the bou
ary conditions to calculate new solutions. The proced
converges rather rapidly. When the matching is achieved,
magnetic moment, the axial constant and thephysicalpion
mass are calculated from the obtained solutions, i.e., fr
either$s(r ),ps(r ),pp(r )% for the TDIA or $s(r ),p(r )% for
the hedgehogAnsätze.

VI. RESULTS, COMMENTS, AND CONCLUSION

The Tamm-Dancoff inspired approximation~TDIA ! ~Sec.
II ! leads to results which depend strongly on the quark eig
frequencyv, as shown in Table I. There are several sets
the coupling constantsgi which satisfy the consistency con
dition ~2.21!, thus producing several sets ofgA , m, andmp

phys

values.
However, one is more interested here in comparison

methods. As shown in Table II, TDIA based mean-fie
method gives consistently too largegA values and somewha
betterm values. The pion masses are always too large.
example withR56.00 GeV21; g510.93 one obtainsmp

phys

50.501 GeV. WithR54.97 GeV21 andg511.28 one finds
mp

phys50.756 GeV. All predictions are very similar to thos
found using the hedgehog mean-field method~Sec. IV!.

The hedgehog-based@6# results are displayed in Table III
Here they were obtained by using parameters compar
with those used in Tables I and II, which facilitates the co
parison. It is not surprising that the values in Tables II and
are similar. Equations~3.6!, ~4.6!, and ~4.7! are not very
different. The same goes for the theoretical expressions
gA andm. The values ofm in Table II look somewhat close
to themepx. However, this could be just an accidental effe
of a particular parametrization.

The method described in Sec. II treats the quark and
son fields~or phases! as operator equations, which are a
proximately solved. Thepp(r ), ps(r ), and ss(r ) are
3-9
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TABLE I. The results for the chiral-quark model in the TDIA. The bag radius is in GeV21 units.

magn. moment ax. const.gA

R v mQ mM m tot gA/Q gA/M gA/tot mp
phys

4.00 2.10 1.53 1.41 2.94 1.01 0.12 1.13 0.208
5.00 1.90 1.77 0.44 2.21 1.06 0.23 1.29 0.142
5.00 2.10 1.01 0.91 1.92 1.06 0.06 1.12 0.198
6.00 1.80 2.09 0.28 2.37 1.06 0.05 1.21 0.132
6.00 1.90 2.09 0.34 2.43 0.91 0.25 1.16 0.166
7.00 1.80 3.02 0.25 3.27 1.03 0.18 1.21 0.155
7.00 2.10 2.55 0.06 2.61 1.06 0.21 1.27 0.156

parameters

l59.062 ms51.2 GeV mexp52.79 mp
exp50.139 GeV

n50.092 f p50.093 GeV gA/exp51.26 mp50.140 GeV
n
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smoothly decreasing with distance, as required by the bou
ary conditions. The largem values in Table I are for the sam
v always associated with smallergA values, thus both being
simultaneously closer to the experimental data. In Tab
one can see that such behavior is caused by the meson-p
contributions which here contain boths wave andp wave.
They are proportionally much larger in the case ofm as it
should be. The same richer structure of the pion phase
to better predictions formp

phys.
It is interesting that the TDIA can lead to acceptable

lutions of the chiral quark model. The results seem to
comparable with those obtained using the hedgehogAnsätze.
The TDIA leads to some more complex description of t
pion phase, what seems to improve the quality of the ca
lated results. Although everything strongly depends on
parametrization, these preliminary results seem to encou
further application of the TDIA.

The values displayed in Table I are also comparable w
the Skyrme model @14# where, typically, m52.48,
gA50.61 or with the Nambu-Jona-Lasinio model@23#,
where m52.76 andgA51.86. This test of the TDIA was
made in a simple chiral quark model, which leads to the le
03400
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complex, albeit already extensive, numerics. A first tentat
conclusion is that the TDIA works for a field theory versio
of the model. However, this has to be further tested, in m
complex and realistic models@16–18#.

ACKNOWLEDGMENTS

One of us~D.H.! wishes to thank Andrew Kurn~Simon
Fraser University, Computing Department! and Davor Grgic´
~University of Zagreb! for their assistance with the softwar
application. D.T. would like to thank the Theory Group~Pro-
fessor L. Fonda!, University of Trieste, Italy for the hospi
tality.

APPENDIX: TDIA IN A SIMPLE MODEL

In order to avoid inessential complexity we consider
system consisting of stationary baryon~nucleon! field c in-
teracting with a neutral scalar~meson! field f. The baryon
field is described nonrelativistically; spin is being ignore
The interaction is of Yukawa type. This simple model is us
here merely to illustrate the relation between two a
roject
t.
TABLE II. The TDIA based calculation. The nonhedgehog mean-field method has been used to p
the physical states. The bag radius is in GeV21 units. The bag parameters are explained in the main tex

magn. moment axial const.gA

R v g mQ mM m tot gA/Q gA/M gA/tot

4.97 1.0238 9.299 1.20 0.83 2.02 1.51 0.39 1.90
5.00 0.979 9.311 1.155 1.377 2.531 1.53 0.53 2.06
6.00 1.285 9.799 1.741 1.116 2.857 1.42 0.51 1.93
7.00 1.78 10.799 2.52 0.09 2.61 1.22 0.29 1.50

parameters

l59.062 ms51.2 GeV mexp52.79
n50.092 f p50.093 GeV gA/exp51.26
3-10
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TABLE III. The chiral-bag-model calculation. The hedgehog mean-field method has been used to p
the physical states. The bag radius is in GeV21 units.

magn. moment axial const.gA

R v g mQ mM m tot gA/Q gA/M gA/tot

5.00 1.280 11.250 1.45 0.27 1.72 1.43 0.42 1.85
6.00 1.637 10.878 2.060 0.144 2.204 1.28 0.33 1.61
7.00 1.783 10.799 2.519 0.092 2.610 1.22 0.29 1.504

parameters

l59.062 ms51.2 GeV mexp52.79
n50.092 f p50.093 GeV gA/exp51.26
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proaches, the TDM and TDIA.
The Schro¨dinger equation is given by

~H01H int!uc,qW &5Euc,qW &,

H05E d3xc* ~xW !S 2
\2

2mDDc~xW !

1
1

2 E d3x$@¹f~xW !#21m2f2~xW !1pW 2~xW !%

H int5GE d3xc* ~xW !c~xW !f~xW !, ~A1!

with

uc,qW &5A~qW !bq
†1E d3rd3su,B~rW,sW !br

†as
†1¯ ~A2!

one easily finds the first Tamm-Dancoff equation

qW 2

2m
A~qW !1gE d3l B~ lW ,qW 2lW !5EA~qW !. ~A3!

Herebq andaq are the annihilation operators for thec andf
fields, respectively.

The Hamiltonian~A1! corresponds, in the Heisenberg pi
ture, to the equation

2
\2

2m
Dc1Gfc5Ec5Oc. ~A4!

By expanding

f~xW !5(
n

@ f n~xW !an1 f n* ~xW !an
1#,

~A5!

c~xW !5(
m

gn~xW !bm1(
a,b

ha,b~xW !baab1¯

one obtains

^0uOcubt&5E^0ucubt&
03400
2
\2

2m
Dgt~xW !1G(

m
ht,n~xW ! f n* ~xW ! ~A6!

5Egt~xW !.

The Fourier-transform of expression~A6! has the same over
all form as the Tamm-Dancoff equation~A3!:

gt~xW !5E d3keikWxWgt~kW !,

f n* ~xW !5E d3peipW xW f t* ~pW !
1

~2p!3 E d3xe2 iqW xW

3F S 2
\2

2m
Dgt1G(

n
ht,nf n* D 2EgtG

5
q2

2m
gt~qW !1GE d3k(

n
f n* ~qW 2kW !gt~kW !

2Egt~qW !50. ~A7!

One can find such parallels for the whole system of TD
or TDIA equations. In the more sophisticated case, inve
gated in this paper, such a task would be rather forbidding
seems that the TDM and TDIA lead to comparable althou
not exactly equivalent approximations. Functions such
g(xW ) or their Fourier transformg(gW ) @A(q)# are probability
amplitudes for finding that system consists of partic
whose position isxW ~momenta areqW , kW2kW , etc.! @26#.

The overall structure of Eqs.~A3!, ~A6!, and ~A7!, re-
garding the mixture ofuc& and uc,f& states, resembles ver
closely the integral equations~8! and~9!, Ref. @3#, p. 201 or
Eqs.~7! and ~8! of Ref. @8#. However, our system is simpli
fied even in comparison with Ref.@3#, not to mention the
sophisticated approaches@8,9# based on the light front
Yukawa model.
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