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Gluon propagator in the infrared region

Derek B. Leinweber,* Jon Ivar Skullerud,† and Anthony G. Williams‡

Special Research Centre for the Subatomic Structure of Matter and The Department of Physics and Mathematical Physic
University of Adelaide, Adelaide SA 5005, Australia

Claudio Parrinello§

Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom

~UKQCD Collaboration!
~Received 23 March 1998; published 9 July 1998!

The gluon propagator is calculated in quenched QCD for two different lattice sizes~163348 and 323364!
at b56.0. The volume dependence of the propagator in the Landau gauge is studied. The smaller lattice is
instrumental in revealing finite volume and anisotropic lattice artifacts. Methods for minimizing these artifacts
are developed and applied to the larger lattice data. New structure seen in the infrared region survives these
conservative cuts to the lattice data. This structure serves to rule out a number of models that have appeared in
the literature. A fit to a simple analytical form capturing the momentum dependence of the nonperturbative
gluon propagator is also reported.@S0556-2821~98!50215-9#
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I. INTRODUCTION

The infrared behavior of the nonperturbative gluon pro
gator has been the subject of extensive research and de
Knowledge of this behavior is generally regarded as be
central to understanding the mechanism of confinemen
quantum chromodynamics~QCD!. Moreover, it is of great
importance in various model-based approaches. For
ample, some studies based on Dyson-Schwinger equa
@1–3# have indicated that an infrared enhanced gluon pro
gator may be required for confinement; however, others@4–
6# have pointed to the possibility of a dynamically genera
gluon mass, or other forms leading to an infrared finite~or
even vanishing! propagator~see@7# and references therein!.

Computing the gluon propagator directly on the latti
should provide an opportunity to resolve these contradict
claims. However, previous lattice studies@8,9# have been
unable to access the ‘‘deep’’ infrared region, where the m
interesting nonperturbative behavior is expected. Signific
finite volume effects introduced through zero moment
components prevent the study of the infrared behavior of
propagator on a small lattice.

The main aim of this study is to obtain a definite behav
for the gluon propagator for momenta smaller than 1 Ge
where the interesting physics is expected to reside. In
following, we will report such results for momenta as sm
as 0.4 GeV. These momenta are small enough to reveal
structure in the gluon propagator and to place strong c
straints on its infrared behavior.
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II. THE GLUON PROPAGATOR ON THE LATTICE

The gauge linksUm(x) may be expressed in terms of th
continuum gluon fields as

Um~x!5Peig0*x
x1m̂Am~z!dz5eig0aAm~x1m̂/2!1O~a3!,

~2.1!

whereP denotes path ordering. From this, the dimensionl
lattice gluon fieldAm

L (x) may be obtained via

Am
L ~x1m̂/2!5

1

2ig0
„Um~x!2Um

† ~x!…

2
1

6ig0
Tr„Um~x!2Um

† ~x!…, ~2.2!

which is accurate toO(a2). Denoting the discrete moment
available on a finite, periodic volume byq̂, the momentum
space gluon field is

Am~ q̂![(
x

e2 i q̂•~x1m̂/2!Am
L ~x1m̂/2!

5
e2 i q̂ma/2

2ig0
F „Um~ q̂!2Um

† ~2q̂!…

2
1

3
Tr„Um~ q̂!2Um

† ~2q̂!…G , ~2.3!

where Um(q̂)[(xe
2 i q̂xUm(x) and Am(q̂)[taAm

a (q̂). The

available momentum valuesq̂ are given by

q̂m5
2pnm

aLm
, nm50, . . . ,Lm21 ~2.4!
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whereLm is the length of the box in them direction. The
factor e2 i q̂ma/2, which comes from the gauge fields bein
defined on the links rather than the sites of the lattice
crucial to removingO(a)-errors and in particular obtainin
the correct tensor structure for the gluon propagator@10#.
The gluon propagatorDmn

ab(q̂) is defined by

Dmn
ab~ q̂![^Am

a ~ q̂!An
b~2q̂!&. ~2.5!

We choose to study the gauge dependent propagator in
Landau gauge, which can be implemented numerically
maximizingF@g#5(m,xRTrUm

g (x), where

Um
g ~x!5g~x!Um~x!g†~x1m̂ !. ~2.6!

In the continuum limit, this is related to the fact that fiel
satisfying the Landau gauge condition correspond to stat
ary points ofFcont@g#5iAgi25*d4xTr(Am

g )2(x) @5#.
The Landau gauge gluon propagator in the continuum

the form

Dmn
ab~q!5S dmn2

qmqn

q2 D dabD~q2!. ~2.7!

The scalar functionD(q2) can then be extracted using

D~q2!5
1

3 (
m

1

8 (
a

Dmm
aa ~q!. ~2.8!

For a→0, the lattice propagator is related to the continuu
one bya2D(q2)5Dcont(q2)1O(a2).

A well-known lattice artifact is that the tree level prop
gator of a massless boson field does not reproduce the
pected continuum result of

D ~0!~q2!5
1

q2 , ~2.9!

but rather produces

a2D ~0!~ q̂!5
a2

(m~2 sin q̂ma/2!2
. ~2.10!

In the following, we are particularly interested in the qua
tity q2D(q2), which is expected to approach 1 up to log
rithmic corrections asq2→`. To ensure this result, we wil
work with the momentum variable defined as1

qm[
2

a
sin

q̂ma

2
. ~2.11!

1The momentaq and q̂ are often defined the other way around
the lattice literature. However, we feel it is more instructive
defineq as above, such that lattice results reproduce the contin
formula ~2.7! and the tree level formula~2.9!.
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III. SIMULATION PARAMETERS

We have analyzed 75 configurations atb56.0, on a 323

364 lattice. Using the value ofa2151.885 GeV based on
the string tension in@11#, this corresponds to a physical vo
ume of (3.35336.70) fm. For comparison, we have als
studied an ensemble of 125 configurations on a smaller
ume of 163348, with the same lattice spacing.

The gauge configurations were generated using a com
nation of seven over-relaxation and one Cabibbo-Marin
updates, with a separation between configurations of 1
combined updates for the large lattice and 800 for
smaller lattice. Both lattices were fixed to Landau gauge
ing a Fourier accelerated steepest descent algorithm@12#. An
accuracy of (1/VNC)(m,xu]mAmu2,10212 was achieved.

IV. FINITE SIZE EFFECTS AND ANISOTROPIC
BEHAVIOR

A. Small lattice analysis

We begin by considering the effect of the kinematic co
rection introduced through the change of variables in E
~2.11!. In the absence of this correction, data in the hi
momentum region are expected to display significant ani
ropy when shown as a function ofq̂. This is confirmed in
Fig. 1, which shows the gluon propagator multiplied byq̂2a2

and plotted as a function ofq̂a. Here and in the following, a
Z3 averaging is performed on the data, where for exam
the momentum along (t,x,y,z)5(1,2,1,1) is averaged with
~1,1,2,1! and ~1,1,1,2!.

We expect the kinematic correction to reduce anisotro
particularly in the large momentum region. Figure 2 sho
the gluon propagator multiplied by the factorq2a2 and plot-
ted as a function ofqa for momenta directed throughout th
lattice. The anticipated reduction of anisotropy forqa.1.5
is nicely displayed in this figure. A similar result was foun
in @9#.

m

FIG. 1. The gluon propagator from our small lattice multiplie

by q̂2a2 plotted as a function of momentaq̂a. Values for each
momentum direction are plotted separately. Only aZ3 averaging
has been performed. Filled squares denote momenta directed a
spatial axes, while filled triangles denote momenta directed al
the time axis. Other momenta are indicated by open circles.
1-2
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Since the low momentum region holds the greatest n
perturbative interest, it is instructive to stress that
low momentum points displayed in Figs. 1 and 2 are ins
sitive to whether one plots as a function ofq or q̂. It is also
useful to note that on any finite lattice,D(q2) will be finite
at q2a250. Hence any lattice calculation must giv
q2a2D(q2)50 at q250.

On the small lattice, we also see significant anisotropy
the data which have their origin in finite volume artifac
Finite size effects are expected to be largest, where the
mentum component along one or more of the lattice axe
zero. Since the length of the lattice in the time direction
three times that of the spatial directions, we notice a cl
difference between points which correspond to momenta
rected along spatial axes from those purely in the time dir
tion. These finite volume artifacts are clearly displayed
small momenta by the discrepancies between the fi
squares~denoting momenta directed along spatial axes!, and
the filled triangles~denoting momenta directed along th
time axis!.

Some residual anisotropy remains at moderate mom
aroundqa;1.5 despite including the kinematical correctio
of Eq. ~2.11!. This anisotropy is clearly displayed in Fig.
by the filled squares and triangles denoting momenta
rected along lattice axes lying below the majority of poin
from off-axis momenta2 for qa;1.4. Since tree-level and
one-loopO(4) breaking effects should be removed by t
kinematical correction, the remaining anisotropy appears
have its origin in quantum effects beyond one loop.

2In Fig. 2 it appears that this anisotropy disappears as one go
even larger momenta. However, this is not necessarily the c

Only momentum components up toq̂ma5432p/16 have been se
lected in preparing Fig. 2. This means that the largest momenta
not accessed through any single Cartesian direction.

FIG. 2. The gluon propagator from our small lattice multiplie
by q2a2 plotted as a function of momentaqa. Values for each
momentum direction are plotted separately. Only aZ3 averaging
has been performed. The symbols are as in Fig. 1. Finite volu
errors are expected to be largest for the purely time-like mome
as the three shorter spatial directions have momentum compon
equal to zero and hence the effects of the nearby spatial bound
are expected to be at a maximum.
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In order to minimize lattice artifacts for large momentu
components, we select momentum vectors lying within a c
inder directed along the diagonal (t,x,y,z)5(1,1,1,1) of the
lattice. This allows one to access the largest of momenta w
the smallest of components. We found the selection o

cylinder with a radius of one spatial momentum unit~Dq̂a
,132p/Ls , whereLs is the number of sites along a spati
axis! provides a reasonable number of points falling alon
single curve for large momenta. The data surviving this
are displayed in Fig. 3.

However, this cut does not address the large finite volu
errors surviving in Fig. 3. To remove these problematic m
menta, we consider a further cut designed to remove mom
tum vectors which have one or more vanishing compone
This is implemented by keeping only momentum directio
that lie within a certain solid angle of the diagonal. We fou
that a cone of angle 20° measured from the diagonal at
origin was sufficient to provide a set of points lying along
smooth curve. The solid points in Fig. 3 represent these d
After these conservative cuts, there is relatively little stru
ture left in the infrared region on our small lattice. Arme
with this knowledge of how to obtain reliable lattice data, w
now turn our attention to the gluon propagator data obtai
from our larger lattice.

B. Large lattice analysis

Figure 4 displays the gluon propagator data for all m
mentum directions and values on the larger lattice. Aga
only aZ3 averaging has been performed. Examination of
infrared region indicates that finite volume artifacts are ve
small on the larger lattice. In particular, the agreement
tween purely spatial~filled squares! and time-like momen-
tum vectors~filled triangles! at qa50.20 appears to indicate
that finite size effects are relatively small on this lattice. Su
an observation is consistent with topological studies of
QCD vacuum which provide some insight into the typic
scale of QCD vacuum fluctuations.

to
e.

re

e
a,
nts
ies

FIG. 3. The gluon propagator from our smaller lattice multipli
by q2a2. The points displayed in this plot lie within a cylinder o

radius Dq̂a,132p/16 directed along the diagonal (t,x,y,z)
5(1,1,1,1) of the lattice. The solid points also lie within a cone
20° measured from the diagonal at the origin.
1-3
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At large momenta,qa.1.0, significant anisotropy is ob
served, similar to those displayed in Fig. 2. The fact that t
anisotropy occurs at the same momentum values and
the same magnitude on both lattices confirms our previ
argument that they result from finite lattice spacing errors
opposed to finite volume errors. Similar behavior is expec
in this region as the lattice action and lattice spacing are
same for our two lattices. To side-step this problem,
adopt the same cut as before. On this larger lattice, all
menta must lie within a cylinder of radius two spatial m
mentum units directed along the lattice diagonal. Figur
displays the momenta surviving this cut.

FIG. 4. The gluon propagator from our larger lattice multipli
by q2a2 plotted as a function of momentaqa. Values for each
momentum direction are plotted separately. Only aZ3 averaging
has been performed for the data shown in this figure. Plotting s
bols are as in Fig. 1. Finite volume errors are greatly reduced c
pared to the results from the smaller lattice, as displayed by
overlap of points obtained from spatial and time-like moment
vectors. However, significant anisotropy is apparent for larger m
menta.

FIG. 5. The gluon propagator from our larger lattice multipli
by q2a2. The points displayed in this plot lie within a cylinder o

radiusDq̂a,232p/32 directed along the diagonal of the lattic
The solid points also lie within a cone of 20° measured from
diagonal at the origin. The first data point will be ignored in all fi
since it is not possible to assess the finite size effects for this p
The agreement between the next pair of data points indicates
finite size effects here are small.
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While the two points atqa50.20 indicate that finite vol-
ume errors are small on this lattice, we also consider
additional angular cut, requiring that all points must
within a cone of opening angle 20° from the diagonal at
origin. The data surviving this cautiously conservative c
are illustrated by the solid points in Fig. 5. It is interesting
see that the turnover inq2a2D(q2) in the infrared region
survives even this extreme cut on our larger lattice.

V. MODELING THE PROPAGATOR

The approach we have described here differs in sev
respects from that of@9#. In particular, the momentum vec
tors surviving our cuts are very different. In@9# only a small
number of low-lying spatial momentum values are us
along with all available time momentum values. In contra
we have treated momenta in the spatial and time directi
on an equal footing and selected momenta lying near
4-dimensional diagonal, where lattice artifacts are expec
to be minimal. In fact, nearly all the momenta used in@9#
would be excluded by our cuts to the data.

In addition, we include the kinematical correction of E
~2.11!. The authors of Ref.@9# do not include such a correc
tion when performing their fits. Instead, their fits are co
strained to the low-momentum region where such artifa
are hoped to be small.

We have considered a number of models for the propa
tor which have been suggested in the literature, as wel
some simple analytical forms which are intended to capt
the essence of the nonperturbative gluon propagator. A
tailed analysis of these models is currently in progress@13#.

The data for the fit are those obtained on the large lat
with the cylindrical cut. To balance the sensitivity of the
over the available range ofqa, we average adjacent lattic
momenta lying withinDqa,0.005. In all fits the first point,
at qa;0.1, is omitted as it may be sensitive to the fin
volume of the lattice.

Our results so far indicate that the following analytic
form:

D~q2!5ZS A

~q2a2!11a1~M2!11a 1
1

q2a21M2D ,

~5.1!

provides a satisfactory description of the data over a w
range of momenta. Our best fit to Eq.~5.1! is illustrated in
Fig. 6. This fit yieldsx2/dof53.5, a somewhat high value
However, if the first four points are omitted, a more acce
able value of 1.6 is found.

We have studied the stability of the fits by varying th
fitting range, and formula~5.1! turns out to give stable value
for all the parameters over a wide region of fitting rang
Our best estimates for the parameters, using all the avail
data, are

Z51.21425224
15170 A51.05929265

19145 a50.78424220
14180

M50.37522210
12150, ~5.2!
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where the errors denote the uncertainties in the last digit~s! of
the parameters. The first set of errors are statistical uncer
ties in the fit to the full data set, and the second set of er
are due to fluctuations in the parameters as the fitting inte
is varied. The estimate forM corresponds to a physical valu
for the parameter in the region of 700 MeV.

VI. CONCLUSIONS

We have performed an accurate, nonperturbative stud
the infrared behavior of the gluon propagator in the p
gauge theory on the lattice. We were able to isolate a se
data points for which systematic lattice errors seem to
negligible. Our data indicate an infrared behavior less sin
lar than 1/q2. This can be inferred from our plots by noticin

FIG. 6. The gluon propagator multiplied byq2, with nearby
points averaged. The line illustrates our best fit to the form defi
in Eq. ~5.1!. The fit is performed over all points shown, excludin
the one at the lowest momentum value, which may be sensitiv
the finite volume of the lattice. The scale is taken from the value
the string tension quoted in@11#.
9;
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the clear turnover in the behavior ofq2a2D(q) aroundq2

51 GeV2. This is in agreement with suggestions from pr
vious lattice results. In particular, there is evidence that
nonperturbative gluon propagator may be infrared finite. O
data appear to rule out models such as those proposed in@3#,
which lead to an infrared enhanced propagator.

Work in progress focuses on a detailed analysis of vari
analytic forms for the gluon propagator@13#. A stability
analysis of the fit parameters is central to identifying t
model best able to describe the gluon propagator in both
nonperturbative and the well known perturbative regim
We are also exploring the possibility of extracting the val
of D(q50) in the infinite volume limit, which one may be
able to extrapolate from data at different volumes. A study
the effects of Gribov copies@14# and a complete analysis o
the tensor structure of the gluon propagator are also iss
under consideration.

Finally, one promising line of research appears to be
study of the gluon propagator using improved lattice actio
@15#. These should yield a significant reduction of finite la
tice spacing effects. Then, by performing simulations
larger values of the lattice spacing, one would be able
measure the propagator on larger physical volumes, t
gaining access to very low momentum values. For exam
one may be able to use lattice spacings as large as 0.4 fm
that a modest 164 lattice would have a physical size of 6.
fm.
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