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Towards a noncommutative geometric approach to matrix compactification
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In this paper we study generic M~atrix! theory compactifications that are specified by a set of quotient
conditions. A procedure is proposed which both associates an algebra to each compactification and leads
deductively to general solutions for the matrix variables. The notion of noncommutative geometry on the dual
space is central to this construction. As examples we apply this procedure to various orbifolds and orientifolds,
including ALE spaces and quotients of tori. While the old solutions are derived in a uniform way, new
solutions are obtained in several cases. Our study also leads to a new formulation of gauge theory on quantum
spaces.@S0556-2821~98!06314-0#

PACS number~s!: 11.25.Sq, 11.25.Mj
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I. INTRODUCTION

According to the M~atrix! model proposal@1#, M theory
in 11-dimensional uncompactified spacetime is microsco
cally described by the largeN limit of the maximally super-
symmetricU(N) Yang-Mills quantum mechanics. For finit
N the model is conjectured to describe the discrete light c
quantization of M theory@2#, in which one light-cone direc-
tion is compactified on a circle. An attractive feature of M~a-
trix! theory is that for the nine transverse directions, the
tion of physical space is a derived one in the theory. Si
the coordinate variables are valued in the Lie algebra
U(N), the description of space is novel from the beginnin1

A well-known generalization of classical~or commuta-
tive! geometry for studying novel spaces is the noncomm
tative geometry pioneered by Connes@4#. By now it is
known to be relevant to M~atrix! theory at two different lev-
els. First, a given configuration of the matrix variables
finite N can be identified with a regularized membrane@5#,
whose world volume is a quantum~or noncommutative!
space. For instance, a regularized spherical membrane@5–7#
coincides with the quantum sphere defined in various form
lations of noncommutative geometry@8#. Interpreted in a dif-
ferent way, the M~atrix! model action can also be thought
as describing the dynamics ofN D0-branes in the infinite
momentum frame@1#. Previously two of us@9# have shown
that this action can be understood as a gauge theory
discrete noncommutative space consisting ofN points.

Accordingly, at the second level, compactification in M~a-

*Present address: Department of Physics, Jadwin Hall, Princ
University, Princeton, NJ 08544.

†On sabbatical from Department of Physics, University of Ut
Salt Lake City, UT 84112-0830.

1Because of supersymmetry, at large distances the space ca
approximately classical@3#.
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trix! theory is a priori of a noncommutative nature, sinc
compactification implies a certain specification of allow
background configurations. The M~atrix! model compactified
on a torus and various orbifolds and orientifolds has alre
been discussed in the literature. For toroidal compactifi
tions @1,10,11#, the original gauge symmetry turns out
give rise to the usual gauge field theory on a dual tor
while the winding modes for one-cycles in the original com
pactified space become the momentum modes in the
space. Recently in two interesting papers@12,13# it was
shown that M~atrix! theory compactification on a torus ca
lead to a deformed Yang-Mills theory on the dual spa
which is a quantum torus, and can be interpreted as an
theory configuration with a nonvanishing three-form bac
ground on the compactified light-cone and toroidal dire
tions. This provides a strong physical motivation for stud
ing generic M~atrix! compactifications from the
noncommutative point of view.

In this paper we report our recent progress towards a n
commutative geometric approach to a wide class of ma
compactifications, i.e., those onM/G, assuming the matrix
model on a simply connected spaceM is known, withG a
discrete group acting onM. The compactification is deter
mined by a set of quotient conditions, one for each gener
of G. We will describe a procedure for solving general so
tions to the quotient conditions. Before doing this, our p
cedure naturally associates with each compactification a n
commutative algebra in which the matrix variables ta
values. It starts from here that the notion of noncommutat
geometry using algebras to describe the geometry of qu
tum spaces comes into play. Furthermore, our proced
leads, in a deductive manner, to solutions which turn ou
be gauge theories on dual quantum space. We will use
eral examples to show how our procedure works in pract
Not only are old solutions, obtained before as classical ga
theories, reproduced by our systematic procedure in a
form way, new compactification on quantum spaces is a
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derived for several cases, including the Klein bottle, Mo¨bius
strip, and asymptotically locally Euclidean~ALE! orbifolds.
Two different descriptions@14,15# for dual space in the cas
of the Klein bottle were thought to be in conflict with eac
other in the literature; we show that they are both corre
and a continuous interpolation is found between them us
quantum spaces.

What we obtain corresponds to the ‘‘untwisted’’ secto
which may be an anomalous gauge theory in some cases
leave for the future the question about how to derive direc
from the M~atrix! model the ‘‘twisted’’ sector that is neede
for orbifold and orientifold compactifications to achiev
anomaly cancellation.

We first reexamine toroidal compactifications in Sec.
rederiving the results for the quantum torus with our o
procedure. The procedure for generic M~atrix! compactifica-
tion is described in Sec. III. Then in Secs. IV and V, we w
demonstrate how our procedure works for the Klein bo
@14,15# and the ALE spaceC2/Zn @16,17#. After that some
comments on various aspects of M~atrix! compactifications
are made in subsequent sections. In the Appendixes we
consider as examplesT2/Z3, the finite cylinder@18–20#, and
the Möbius strip@14,15#.

II. TOROIDAL COMPACTIFICATION REVISITED

A d-dimensional torus can be defined as the quoti
spaceRd/Zd, where Zd is generated by$c1 ,...,cd% freely
acting onRd as

ci :$xj%→$xj1ei j %, ~1!

whereei j define ad-dimensional lattice inRd. The toroidal
compactification is defined by the quotient conditio
@1,10,11#

Ui
†XjUi5Xj1ei j , i , j 51,...,d. ~2!

Standing as a fundamental theory, M~atrix! theory itself
should contain the answer for all compactifications descri
by relations of this type. Although a complete answer inclu
ing ‘‘twisted’’ sectors is not yet generally known to us, as
first step in this paper we will try to solve these equations
the ‘‘untwisted’’ sector, completely inside the framework
the theory.

One may choose an infinite dimensional matrix repres
tation for theUi ’s in Eq. ~2!, motivated by physical consid
erations. In our treatment, we prefer to think of them
algebraic elements tensored with anN3N unit matrix.2

To find the underlying algebra for theUi ’s, we note that
Eq. ~2! implies that

U jUiU j
†Ui

†XkUiU jUi
†U j

†5Xk . ~3!

For toroidal compactifications, we should not have any ad
tional constraints other than those in Eq.~2!. Therefore, if we

2Theei j ’s on the right-hand side are understood as proportiona
the unity in the algebra tensored with theN3N unit matrix.
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assume that the only central elements in the algebra of
Ui ’s are constant times the unity1, we are allowed to impose
the following constraints:

UiU jUi
†U j

†5qi j 1 ~4!

or, equivalently,

UiU j5qi j U jUi , ~5!

with qi j certain phase factors. Different choices of the
phases may lead to different solutions, implying that co
pactification is not completely fixed by the quotient cond
tions.

The algebra~5! is the same as the algebra of a quantu
torus@21#. For d52 the algebra~5! has anSL(2,Z) symme-
try

U1→~U1!a~U2!b, U2→~U1!c~U2!d, ~6!

wherea,b,c,d are the entries of anSL(2,Z) matrix. It was
first pointed out in@12,13# that the phase factorsqi j can be
related to M theory compactification with a nonzero bac
ground three-form field in the compactified null and toroid
directions.

From the point of view of the covering space,Ui ’s are
translation operators, and so it is natural to write, forN51,
Xj5ei j s̃ i andUi5exp(2D̃i), whereD̃ i5]/]]s̃ i 1 iÃ i is the
covariant derivative for aU(1) gauge field. By a Fourier
transform, the solution in the dual space is@1,10,11#

Ui5eis i, Xj52 iei j Di , ~7!

Di5
]

]s i
1 iAi~s!. ~8!

In this dual representation, the solution can easily be ge
alized toN3N matrices. This is the type of solution we a
looking for in the context of M~atrix! compactifications. New
physical degrees of freedom reside inX, while theU ’s are
fixed algebraic elements.

A. Classical torus

First we review the commutative caseqi j 51 @1,10,11#. In
this case, the algebra of theUi ’s is commutative, and now
they are viewed as coordinate functions on the dual~ordi-
nary! torus parametrized bys i , and theX’s as covariant
derivatives. Mathematically Eq.~7! is the general solution o
Eq. ~2!, with theX’s andU ’s being elements in the produc
of the algebra of differential calculus on a torus and t
algebra ofN3N matrices. Physically, the M~atrix! theory
compactified onTd for d<3 is the (d11)-dimensional su-
persymmetric Yang-Mills~SYM! theory on the dual torus
@1#.

Comparing with the uncompactified M~atrix! theory, we
are adjoining the new elements]/]s i and exp(isi) to the
algebra ofN3N matrices for the compactification on a toru
The reason why we are allowed to adjoin these new algeb
elements is that the compactification on a torus introdu

o
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new dynamical degrees of freedom corresponding to
winding string modes that are not present in the uncomp
tified theory. In general, for compactification on differe
spaces we need to adjoin different new elements to the a
bra of N3N matrices.

B. Quantum torus

For qi j Þ1, we need to find out the new elements to
adjoined to the algebra of compactification. To define
algebra and to solve forX in this noncommutative case, w
first define an auxiliary Hilbert spaceH, on which theUi ’s
are represented as operators: It by definition consists of
‘‘vacuum,’’ denoted by&, as well as states obtained by actin
polynomials ofUi ’s on the vacuum. Ford52 the symmetry
~6! induces anSL(2,Z) symmetry on the Hilbert space. Th
is the S duality of type II B theory.

The Hilbert space H is spanned by the state
$U1

m1
•••Ud

md&% with miPZ. This Hilbert space is differen
from those introduced in@12#.3 For later convenience, we
define a set of operators] i by

] iU1
m1
•••Ud

md&5miU1
m1
•••Ud

md&. ~9!

It follows that

] iU j5U j~] i1d i j !. ~10!

Thus] i is the~quantum! derivative with respect to the expo
nent ofUi .

The inner product onH should be invariant under th
groupĜ(A) of gauge transformations of theUi ’s which pre-
serve the quotient conditions~2!. Since Xi is generic, the
only possible such transformation is

Ui→gi
†Uigi5eif iUi , ~11!

wheregi5exp(2ifi]i). This implies that the inner product i
defined by^ f ug&5^ f †g&, where f ,g are functions ofU and

^Ui
mi
•••Ud

md&5d0
m1
•••d0

md ~12!

up to normalization. Note that the vacuum expectation va
^•& happens to be equal to the trace over the Hilb
space, which can be determined directly by requiring t
it have the property of cyclicity:̂ f g&5^g f& for any two
functions of U. By a Fourier transform on the basis,us&
5(nexp(inisi)U1

n1
•••Ud

nd&, where s5(s1 ,...,sd) and n
5(n1 ,...,nd), the trace onH turns into the integration on a
d-torus parametrized bys. The integration on a quantum
torus can be independently defined with respect to
Ĝ(A)-invariant measureP iUi

†dUi by using Stoke’s theorem

3In the notation of@12# ourH superficially corresponds to the cas
with p51, q50, butp/q appears in some of the relations given
them.
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Let the action ofXj on the vacuum be given by

Xj&5Âj~U !&, ~13!

whereÂj is a function of theUi ’s. Using Eqs.~2! and ~13!,
we can calculate the action ofXj on any state:

XjU1
m1
•••Ud

md&5U1
m1
•••Ud

md~ei j mi1Âj !&

5~ei j ] i1Aj !U1
m1
•••Ud

md&; ~14!

i.e., in generalXj5ei j ] j1Aj , where Aj are functions of
Ũ i5(P j Þ iqj i

] j)Ui , obtained by replacingUi ’s in Âj (U) with

Ũ i ’s and reversing the ordering of a product.
The solutions of theXi ’s are functions of operators com

muting with all U ’s, i.e., Ũ iU j5U jŨi for all i , j . The com-
mutation relations among theŨ ’s are given by

Ũ i Ũ j5qi j
21Ũ j Ũ i . ~15!

This is just the algebra for a quantum torus related to tha
U by a transformationqi j→qi j

21 @12#. The Hilbert space is

also spanned by$Ũ1
m1
•••Ũd

md&%, and the operators] j act on

Ũ i in the same way as they act onUi . It is thus natural to
think thatXj are the covariant derivatives on the dual qua
tum torus given byŨ i .

The same result was obtained in@12# in a different way.
They noticed that a generic solution of Eq.~2! is composed
of a special solution and a homogeneous solution, and
homogeneous solutions are the elements in the algebra c
muting with all theUi ’s. Also, they used a Hilbert spac
different from ours. While the set ofU-commuting elements
may be found by brute force when the algebra is given,
see that they automatically arise in our procedure. For a
ferent compactification associated with another set of q
tient conditions, the trick of usingU-commuting operators
may no longer work, but we will demonstrate below that t
same procedure we used above always works.

Let us now make a remark about the gauge fieldAi . As in
usual gauge theories, the gauge fieldAi does not have to be
a well-defined function on the dual quantum torus. Witho
going into details about the notion of the principal bund
and connection on quantum spaces@4#, we simply say that
the requirement onAi is that all quantities invariant under

Xj→Xj1ei j ~16!

are well defined. For instance (2 i log Ui) is only defined up
to 2np. Yet Aj52 imi log(Ui)eij with integersmi is accept-
able, because the ambiguity in its value matches preci
the gauge transformation~16!. In fact these are the configu
rations of D-branes wrapping on the torus.
6-3
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III. GENERIC COMPACTIFICATION

Consider the compactification of M~atrix! theory on the
quotient spaceM/G,4 whereM is a simply connected spac
@p1(M)51# on which the M~atrix! theory is known, andG
is a discrete group acting onM. If G acts freely, it is the
fundamental group of the compactified space.

Denote the action ofcPG on M by F(c). Then the
compactified M~atrix! theory is obtained by imposing th
following constraints: For each elementcPG,

U~c!†XaU~c!5Fa~c!~X!, ~17!

where Xa represent all M~atrix! theory variablesA0 , Xi ,
andC. If G is generated by a set of elements$ci%, one may
only need to write down such relations for each generatorci .
We will call these relations ‘‘quotient conditions.’’

For orientifolds, the groupG is endowed with aZ2 grad-
ing: We associate a numbern(c)50,1 with each elementc
PG, and if c1c25c3 , thenn(c1)1n(c2)5n(c3) ~mod 2).
The quotient condition~17! is generalized to

U~c!†XaU~c!5H Fa~c!~X! if n~c!50

@Fa~c!~X!#* if n~c!51.
~18!

Here the complex conjugation * corresponds to the transp
for Hermitian matricesX, which implies orientation reversa
of open strings stretched between D0-branes.

The quotient conditions have to be consistent with
action. Since the action of M~atrix! theory is invariant under
gauge transformations,X→U†XU, the quotient conditions
are consistent with the action only if the action is also inva
ant under the transformations,

Xa→Fa~c!~X! ~19!

for all cPG. A function of theX’s and their time derivatives
is a gauge-invariant physical observable if it is invariant u
der ~19!.

We will give below a procedure for solving relations
the type~17! or ~18!. By this we mean that we shall defin
the algebraA in which the relations are understood, and th
find the most general solution ofXa as algebraic elements i
the algebraA. The physical degrees of freedom of theXa’s
reside in the moduli of the solutions to the quotient con
tions.

To define the algebraA, first we note that all theU ’s are
considered as fixed elements inA. They form a subalgebra
of A which is constrained by the quotient conditions by
quiring that the quotient conditions exhaust all desired c
straints onX. If there is a relationc1c2•••cn51 in the group
G, from the quotient conditions for thesec’s, we will get
equations of the form

4In fact we should consider the quotient of a superspace in o
to include the fermionic part from the beginning.
02600
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P~U !†XP~U !5X for all X’s, ~20!

where P(U)5U(c1)U(c2)•••U(cn) is the corresponding
product of theU ’s. This relation would impose a new con
straint onX unless

P~U !5q1, ~21!

whereq is a phase factor. For orientifolds, letC denote the
complex conjugation operator,

CaC5a* , ~22!

for all aPA. We haveC†5C andC251. Equation~18! is
then equivalent to

R~c!†XaR~c!5Fa~c!~X!, ~23!

whereR(c)5U(c)Cn(c). So Eq.~21! is replaced byP(R)
5q1. We define the algebra ofU, called theU-algebra, by
imposing all such relations. We can view nonorientifolds
the special case withn(c)50 for all cPG.

It can be shown@22# that these relations can be charact
ized by a faithful projective representation ofG. Following
@12,13#, it is natural to suggest that the cohomologically i
variant phases in a nontrivial two-cocycle onG associated
with the projective representation correspond to a nontriv
background field on the compactified space. According
compactification defined by the quotient conditions is co
pletely characterized by projective representations of
groupG, and the moduli space of theU-algebra~more pre-
cisely, the space of cohomologically invariantq parameters
in a two-cocycle! may correspond to part of the moduli of M
theory compactifications. We take this as a strong motivat
for studying M~atrix! theory compactification with nontrivia
two-cocycles.

Knowing theU-algebra, we can construct a Hilbert spa
H to represent it, which consists of a ‘‘vacuum’’ denoted
& and all polynomials of theR(c)’s acting on the vacuum
The algebraA is then defined as the tensor product of t
algebra of operators onH with the algebra ofN3N matri-
ces. In the action of M~atrix! theory, the total trace is now
composed of the trace overH and the trace overN3N ma-
trices.

Physically the states inH correspond to string mode
winding around noncontractible one-cycles in the compa
fied space associated with elements in the groupG. By ad-
joining this Hilbert space to the space ofN-vectors on which
the algebra ofN3N matrices is represented, we take care
the new string winding modes arising from the compact
cation.

For a given algebraA we define the unitary groupU(A)
to be the group of all unitary elements inA. Let G(A) be the
subgroup ofU(A) which preserves the quotient condition
i.e.,

R~c!†g†XagR~c!5Fa~c!~g†Xg!, ~24!er
6-4
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for all gPG(A). G(A) can be viewed as the group of gau
transformations onX,5

Xa→g†Xag, ~25!

which survives the compactification. As was shown in t
previous section, the definition of the dual space may
inferred from the gauge field or, equivalently, from the gau
group G(A). In general the compactified M~atrix! theory
may not be identified with a traditional gauge theory on
classical manifold. We will consider this as a natural gen
alization of the notion of gauge theories.

On the other hand,G(A) induces a group of transforma
tions onR(c), denoted byĜ(A),

R~c!→gR~c!g†, gPG~A!, ~26!

which preserve the quotient conditions~18!. Because we
shall allow the most general solution ofX, the only possible
transformation onR(c) is to multiply them by certain phas
factors, and thus the groupĜ(A) is an Abelian group. Since
different choices of theR(c)’s related byĜ(A) are equiva-
lent by a gauge transformation, the compactification sho
be invariant underĜ(A). Roughly speaking,Ĝ(A) is the
translation group of the dual space.

The prescription for deriving the general solution forX in
the algebraA was first invented by Zumino@23# to study
problems in quantum differential calculi.~Mathematically
these two problems are similar in nature.! The prescription is
the following.

~1! As mentioned above, we define a Hilbert spaceH
consisting of all polynomials of theR(c)’s acting on the
vacuum. The inner product onH has to be fixed to respec
the symmetry groupĜ(A). The algebraA is defined to be
the tensor product of the algebra of operators onH with the
algebra ofN3N matrices.

~2! We require theXa’s be operators acting onH and
write the action ofXa on the vacuum as

Xa&5Âa~R!&, ~27!

where Âa(R) is a function of theR(c)’s. All physical de-
grees of freedom ofXa reside inÂa , which gives the gener
alized gauge field. The action ofXa on an arbitrary basis
state can be obtained by using the quotient conditions
commuteXa through theR(c)’s until it reaches the vacuum
and then using Eq.~27!.

~3! To find an explicit expression forXa ,6 one needs to
find a set of convenient operators onH. The type of opera-

5In fact G(A) contains more than what we usually call a gau
group on the dual space for it also contains the translation gr

Ĝ(A) to be introduced below.
6It is not necessary to have an explicit expression ofXa in terms

of other operators as long asXa is already well defined as an op
erator onH as in step~2!. But it can be helpful in studying the
model.
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tors ~9! used for toroidal compactification are often very us
ful. As we did in Sec. II B, to writeXa as a function of] i and
Ui , one needs to find the action ofXa on a state
U1

m1
•••Ud

md& as a functionF(m1 ,...,md ;U) acting on the

state. Then we can replaceF by another functionF̃ of ] and
U.

To gain some insight into the compactified theory, w
note that in general we may view the resulting theory a
~deformed! gauge field theory on a dual quantum space.
the spirit of noncommutative geometry, theU-algebra can be
viewed as the algebra of functions on the dual quant
space. In addition one may follow the standard proced
used in the study of quantum differential calculus on qu
tum spaces with quantum group symmetry7 @24# to define a
deformed differential calculus on theU-algebra. Once the
derivatives~such as the] i in the previous section! on the
dual quantum space are defined, we can use them to exp
Xa and see that the bosonicXi ’s can be thought of as cova
riant derivatives. In other words, the present approach ca
directly used to define gauge theory on a quantum space
is different from most other existing approaches to defin
them in the following sense: Given the algebra of functio
on a quantum space, usually one will define the gauge fi
to be a function on the quantum space, but in general
procedure gives a gauge field as an operator, for instan
pseudodifferential operator, on the quantum space.

We will demonstrate below how our above procedu
works, for example, for the compactification on the orien
fold of Klein bottle and the ALE space ofC2/Zn . In the
Appendixes, we will also apply the prescription to the fo
lowing orbifolds and orientifolds:T2/Z3, cylinder (S1

3S1/Z2), and Möbius strip.

IV. KLEIN BOTTLE

The Klein bottle can be defined asR2/G, whereG acts on
R2 by

c1 :~x1 ,x2!→~x112pR1 ,x2!, ~28!

c2 :~x1 ,x2!→~2x1 ,x21pR2!. ~29!

The groupG is generated byc1 ,c2 with the commutation
relation

c1c2c1c2
2151. ~30!

As an orientifold, itsZ2 grading is defined byn(c1)50 and
n(c2)51.

Thus the quotient conditions are@14,15#

Ui
†XjUi5Xj12pd i j Rj , i , j 51,2, ~31!

U3
†X1U352X1* , ~32!

p

7In our problem the symmetry group isĜ(A), which is just a
classical group. But they play similar roles in this formulation.
6-5
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U3
†X2U35X2* 1pR2 , ~33!

where U15U(c1), U25U(c2
2) and U35U(c2). Note that

sinceX’s are Hermitian, we haveXT5X* . The conditions
for U2 are direct results of Eqs.~32!, ~33!.

SinceR(c)5U(c)Cn(c), it is easy to verify that the fol-
lowing relations are compatible with the quotient conditio
~31!–~33!:

U1U25q12U2U1 , ~34!

U1U35q13U3U1
T , ~35!

U2U35q23U3U2* , ~36!

U3U3* 5q3U2 . ~37!

We shall rescaleU2 to setq351. Using Eq.~37! we find
q2351 from Eq. ~36!. Consistency also requires thatq12

5q13
2 . We will denoteq13 by q. ~So the projective represen

tations of the groupG are labeled only by a phase factorq.!
We will see below that the case studied in@14# corre-

sponds to the caseq51 where the dual space is a cylinde
and the case studied in@15# corresponds to the caseq521
where the dual space is a Klein bottle. We have obtaine
one-parameter moduli for this compactification.

The Hilbert spaceH is defined to be

H5$U1
m~U3C!n&um,nPZ%,

or, equivalently,$U1
mU2

n&,U1
mU2

nU3C&um,nPZ%. We define
some operators for later convenience:

]1U1
m~U3C!n&5mU1

m~U3C!n&, ~38!

]2U1
mU2

n~U3C!s&5nU1
mU2

n~U3C!s&, ~39!

KU1
m~U3C!n&5U1

m~U3C!n11&, ~40!

eU1
m~U3C!n&5~21!nU1

m~U3C!n&,
~41!

where m,nPZ and s50,1. It follows that ]1 ,]2 act on
U1 ,U2 as derivatives. The commutation relations betwe
the derivatives and functions can easily be derived.

Following the prescription described in the last sectio
we see that the solution is of the form of a gauge field,

X152pR1]11
1

2
Â1~q2NU1 ,K !~11e!

2
1

2
Â1* ~qNU1

21 ,K !~12e!, ~42!

X25pR2N1
1

2
Â2~q2NU1 ,K !~11e!

1
1

2
Â2* ~qNU1

21 ,K !~12e!, ~43!
02600
a

n

,

whereN52]21(12e)/2 acts onH by

NU1
m~U3C!n&5nU1

m~U3C!n&. ~44!

While the Klein bottle is a quotient of the torus, we wi
see below that the compactification on the former is a ga
theory on a quotient of the dual torus for the latter. We ha

X152pR1]11A1 , X252pR2S ]21
12e

4 D1A2 .

~45!

The gauge fields are given by

Ai5
1

2
~Ai01Ai1K !~11e!1~21! i

1

2
~Bi01Bi1K !~12e!,

~46!

where Ai j and Bi j ( i 51,2 and j 50,1) are functions of
Ũ1 ,Ũ2 with Ũ15q22]2U1 and Ũ25q2]1U2 satisfying the
algebra of the dual torus:

Ũ1Ũ25q22Ũ2Ũ1 . ~47!

It is

Ai j ~s12h,2s2!5Bi j* ~s1 ,s2!, i 51,2, j 50,1,
~48!

where q5exp(ih), Ũ15exp(is1), and Ũ25exp(is2). It can
be checked that

U3
†AiU35~21! iAi* , i 51,2, ~49!

and all quotient conditions are automatically satisfied.
The condition ~48! relates Ai(s1* 1h,2s2* ) to

Ai(s1 ,s2)* , which is a function of (s1* ,s2* ). So if the value
of Ai at (s11h,s2) is known, then its value at (s1 ,2s2) is
fixed. If q5exp@i2p/(2k)# for an integerk, the fundamental
region on which the values ofAi can be freely assigned is
Klein bottle of area (2p)2/(2k). If q5exp@i2p/(2k11)#, the
fundamental region is a cylinder of area (2p)2/2(2k11). In
particular, forq51 it is a cylinder, and forq521 it is a
Klein bottle. It was argued in@15,20# that only the latter case
gives the area-preserving diffeomorphism group as the ga
group of the model in the largeN limit. The gauge group in
the bulk of the fundamental region isU(2N) and the gauge
group on fixed points of the map (s1 ,s2)→(s12h,2s2) is
O(2N).

K ande can be represented by 232 matrices. Let

K5eis2/2S 0 1

1 0D , e5t35S 1 0

0 21D , ~50!

Ai5S a i b i

g i d i
D 5S Ai0 ~21! iBi1eis2/2

Ai1eis2/2 ~21! iBi0
D .

~51!

The results above can then be rewritten as
6-6
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S d i g i

b i a i
D U

~s11h,s2!

5~21! iS a i* b i*

g i* d i*
D U

~s1 ,2s2!

.

~52!

The 232 unit matrix andK ~for ‘‘fixed’’ s2) generate
the algebra of functions onZ2, ande is a derivative onZ2 in
the sense of noncommutative geometry@4#. ThusXi can be
viewed as covariant derivatives on the dual space whic
the product of a classical space parametrized bys1 ,s2 and a
quantum space of two points (Z2). The Hilbert space can
also be written as a column of two functions ofŨ1 andŨ2.
Thus it is natural to say that the dual space has coordin
Ũ1 , Ũ2 , and K, where Ũ i satisfy the same algebra asUi
( i 51,2) with q→q21.

The trace overH is equivalent to the composition of th
integration over (s1 ,s2) and the trace over the 232 repre-
sentation ofK ande. The integration has the cyclicity prop
erty so that the M~atrix! theory action is gauge invariant.

As was noted in@12#, the algebra of the dual quantum
torus~47! can be realized on functions on a classical torus
the star product:

~ f * g!~s!5q]2]182]1]28 f ~s!g~s8!us85s . ~53!

Therefore the action of M~atrix! theory appears to be th
action for a field theory defined onT2 with higher derivative
terms. It is yet to be studied how to make sense of s
theories.

As a side remark we note that the calculation above
be done with a little more ease if we impose the rea
conditions U1* 5U1

21, U2* 5U2 , and U3* 5U3 , which are
consistent with theU-algebra. The result is independent
such conditions.

So far we have ignored the transverse bosonic and fe
onic fields in the M~atrix! theory. The quotient conditions o
them are@14,15#

Ui
†A0Ui5A0 , U3

†A0U352A0* , ~54!

Ui
†XaUi5Xa , U3

†XaU35Xa* , ~55!

Ui
†CUi5C, U3

†CU35G01C* , ~56!

wherei 51,2,a53,...,9, andC is in the Majorana represen
tation. It is straightforward to solve these relations in t
same way. These quotient conditions can be determine
required surviving supersymmetry~SUSY! or by their con-
sistency with the M~atrix! theory Lagrangian@1#

L5TrS 1

2
~D0Xi !

21
1

4
@Xi ,Xj #

22
1

2
C†D0C

2
1

2
C̄G i@Xi ,C# D , ~57!

whereD05]/]t 1 iA0.
The dynamical SUSY transformation of M~atrix! theory is

@1#
02600
is

es

s

h

n
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by

dXm5 i ēGmC, m50,...,9, ~58!

dC5~D0Xi !G
0ie1

i

2
@Xi ,Xj #G

i j e, i , j 51,2,...,9, ~59!

and the kinetic SUSY transformation is

d̃Xm50, d̃C5 ẽ. ~60!

One-half of the dynamical SUSY is preserved by the co
pactification on a Klein bottle.

V. C2/ZN

The quotient condition forC2/Zn is

U†ZaU5qZa , a51,2, ~61!

where Z15X11 iX2, Z25X31 iX4 , and q5exp(2pi/n). It
follows that U2nZaUn5Za . Following our procedure, the
U-algebra is given byUn5p1, wherep is a phase. Rescaling
U by p1/n, we find

Un51. ~62!

The Hilbert space isH5$Um&um50,1,...,n21%. Let
Za&5Aa(U)&, whereAa(U)5(m50

n21 aamUm. The action ofZ
onH is

ZaUm&5qmUmAa& ~63!

5Aa~U !qMUm&, ~64!

whereM is defined byMUm&5mUm&. The solution ofZa is
thus Za5Aa(U)qM. Instead ofM , one can also useV de-
fined by UV5qVU and V&5&. Thus Z can also be ex-
pressed as

Za5Aa~U !V21. ~65!

U andV can be realized asn3n matrices:

Ui j 5d i ,~ j 21! , Vi j 5qid i j , ~66!

whereUi j is nonvanishing only ifi 5 j 21 ~modn). We find

~Za! i j 5(
m

aamq2 jd i ,~ j 2m! , i , j 50,1,...,n21. ~67!

This is exactly what one would expect through the same
of reasoning Taylor used@10# for toroidal compactifications.
The coefficientam represents the string stretched betwe
D0-branes separated bym copies of the fundamental region

In the representation~66!, U is viewed as an operator tha
shifts one point inZn to the next point. In a dual represen
tation whereUi j 5q2 id i j , U can be viewed as the generat
of the algebra of functions on the dual quantum spaceZn ,
andV becomes the shift operator. Thus we see that the d
of Zn is alsoZn .
6-7
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The groupG(A) is generated byU andV. A unitary func-
tion g(U) induces a gauge transformationA(U)
→g†(U)A(U)g(qU). In the dual representation whereU is
diagonal, it is easy to see that the gauge group of this the
is U(N)n. The fieldsAa are now diagonal blocks ofN3N
matrices with each block transforming in the fundamen
and antifundamental representations under two adja
U(N) factors@17#.

The gauge transformation byVk is A(U)→A(qkU),
which is in fact a translation~cyclic permutation! on the dual
spaceZn . This also corresponds to the only nontrivial el
ments in Ĝ(A): U→qkU. Requiring its invariance unde
Ĝ(A), the inner product onH is fixed to be^Uk&5d0

k for
k50,1,...,n21.

Note that in M~atrix! theory it is only the field strength
defined by@Xi ,Xj # ~for flat space! and other gauge-invarian
quantities that need to be well defined on the dual space.
instance,U1/n is only defined up to an integral power ofq.
But it is acceptable to haveA(U)5Um/nF(U) with m
50,1,...,n21, whereF(U) is a polynomial ofU. The rea-
son is that this ambiguity is precisely of the form of a gau
transformation onX, and so all gauge-invariant quantitie
are still well defined.

DenoteX05A0. The rest of the quotient conditions are

U†XmU5Xm , m50,5,...,9, ~68!

U†CU5LC, ~69!

where L5exp@2p(G121G34)/n#. BecauseLn521, Eq.
~62! should be replaced byUn5(21)F, whereF is the fer-
mion number operator. It is easy to see thatA0, Xm , andC
are in the adjoint representation ofU(N)n.

It is easy to see that the quotient conditions forC2/Zn
preserve one-half of the dynamical SUSY and one-half of
kinetic SUSY.

VI. NONCOMMUTATIVE GEOMETRY AND T DUALITY

Let us recall how the notion of noncommutative geome
naturally arises as a generalization of classical geometry.
know that if a classical space is given, one can immedia
define the algebra of functions on that space. According
the Gelfand-Naimark theorem, the converse is also true:
commutativeC* algebra is isomorphic to the algebra
functions~vanishing at infinity! on a locally compact Haus
dorff space, which can be constructed as the space of m
mal ideals of the algebra. The notions of the algebra of fu
tions and that of the underlying space are dual to each o
via the Gelfand map. This motivates the generalization
classical spaces to quantum spaces. A quantum space is
ply defined as the underlying space of a noncommuta
algebra.

The dual space for a M~atrix! compactification can thus
be roughly viewed as the underlying space on which
M~atrix! theory is defined as a field theory. When t
U-algebra is noncommutative, the dual space is a quan
space. Thus in a sense T duality naturally introduces
ideas of a noncommutative geometry into M~atrix! theory.
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For the compactifications onM/G with M simply con-
nected, we have seen in the above examples that for a fa
of Z in G there is a factor ofS1 in the dual space.~Note that
this statement is more general than the statement that
dual space of a circle is a circle, because there can be di
ent compactifications with the same groupG. They lead to
different field theories on the same dual space.! In the above
we also see that for a factor ofZn in G there is a factor of the
dual Zn in the dual space. It would be useful to know mo
about the correspondence between the groupG and the dual
space.

VII. COMMENTS AND DISCUSSION

Finally we make a few remarks.
To be treated as a fundamental theory by itself, M~atrix!

theory needs to know everything without consulting stri
theory or supergravity. Since the notion of spacetime is fr
the very beginning noncommutative in M~atrix! theory, a
priori one is allowed to consider compactifications on spa
which are exotic from a classical point of view. The criterio
for an admissible compactification is only whether the c
responding generalized gauge theory on the dual space
make sense.

For compactifications on a classicald-torus, the funda-
mental group is commutative and isd dimensional; thus it
results in ad-dimensional dual space. For compactificatio
on Riemann surfaces of higher genus, the fundamental gr
is noncommutative and therefore the dual space must b
quantum space.

A Riemann surface of genusg.1 can be obtained as
quotient of the Lobachevskian disk which is simply co
nected. The quotient conditions are of the form

Ui
†ZUi5

aiZ1bi1

ciZ1di1
, i 51,...,2g, ~70!

where (ci

ai
di

bi) areSU(1,1) matrices anduZu,1. It is a chal-

lenge to find the solution forZ.
For two classical compactifications, it is possible th

there is a family of compactifications on nonclassical spa
with sensible dual theories interpolating them. Such inter
lation may help our understanding of the various dualit
@25#.

Obviously there are a lot of important issues we need
clarify before we can proceed further. If the solution of t
quotient conditions gives us an anomalous gauge the
what we have obtained in this paper is only the so-cal
untwisted sectors in M~atrix! theory. To view M~atrix!
theory as a fundamental theory, we also need to learn ho
determine the twisted sectors for anomaly cancellation w
out consulting with string theory. On the other hand, for t
consideration of quantum spaces to be physically relevan
is urgent to look for more correspondence between M~atrix!
compactification on quantum space and the moduli spac
M theory compactification.
6-8
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APPENDIX A: T2/Z3

The quotient conditions forT2/Z3 are

U1
†ZU15Z11, ~A1!

U2
†ZU25Z1t, ~A2!

U3
†ZU35qZ, ~A3!

wheret5q5exp(2pi/3) andZ5(X11 iX2)/R1.
The U-algebra is given by

U1U25q12U2U1 , ~A4!

U1U35q13U3U1
†U2

† , ~A5!

U3U15q31U2U3 , ~A6!

U3U25q32U1
†U2

†U3 , ~A7!

U3
35q31, ~A8!

whereq12,q13,q31 are phases and consistency requiresq32

5q13q31
21 . By rescaling theU ’s we can set all theq factors

to 1 except thatq12 is still arbitrary.
The Hilbert spaceH is $U1

mU2
nU3

s&um,nPZ,s50,1,2%.
Define the operators] i ,Ds ,K by

]1U1
mU2

nU3
s&5mU1

mU2
nU3

s&, ~A9!

]2U1
mU2

nU3
s&5nU1

mU2
nU3

s&, ~A10!

DsU1
mU2

nU3
s8&5dss8U1

mU2
nU3

s8&, ~A11!

KU1
mU2

nU3
s&5U1

mU2
nU3

s11&, ~A12!

wheredss851 if s2s850 ~mod 3!, and vanishes otherwise
Let Z&5Â(U)& and Â(U)5(mnsamnsU1

mU2
nU3

s . Then

ZU1
mU2

nU3
s&5U1

mU2
nU3

s~m1tn1qsÂ!&

5~]11t]21A!U1
mU2

nU3
s&, ~A13!

where
02600
p-
-
-

A5 (
m,nPZ;s50,1,2

amnsK
s

3S (
s850,1,2

~U3
s8Ũ2U3

2s8!n~U3
s8Ũ1U3

2s8!mqs8Ds8D ,

~A14!

whereŨ15q12
2]2U1 and Ũ25q12

]1U2. It is not hard to calcu-

late U3Ũ1U3
215Ũ2, U3

2Ũ1U3
225U3Ũ2U3

215Ũ1
21Ũ2

21 and

U3
2Ũ2U3

25Ũ1. The solution ofZ is thus

Z5]11t]21A. ~A15!

To put the result in a more amiable form, letU1
5exp(is1) andU25exp(is2). Also let U35PsU, whereU
is given by Eq.~66! for n53 andP is an algebraic operation
defined by

Ps1P215s2 , P2s1P2252s12s2 , ~A16!

Ps2P2152s12s2 , P2s2P225s1 . ~A17!

Then it is easy to see that Eq.~A15! can be rewritten as

Z5S 2 i
]

]s1
2 i t

]

]s2
D11A~s1 ,s2!, ~A18!

where1 is the 333 unit matrix andA is a 333 matrix of
functions of (s1 ,s2) satisfying

Ai 21,j 21~s1 ,s2!5qAi j ~s2 ,2s12s21p/3!, ~A19!

where the indices are defined modulo 3. The dual spac
againT2/Z3.

The rest of the quotient conditions are fixed by the L
grangian~57! to be

U†XmU5Xm , m50,3,...,9, ~A20!

U†CU5L3C, ~A21!

whereL35exp(2pG12/3). BecauseL3
3521, strictly speak-

ing Eq. ~A8! should be replaced byU3
35(21)F, whereF is

the fermion number operator. All the SUSY is broken in th
case.

APPENDIX B: FINITE CYLINDER

Matrix compactification on the orientifoldS13S1/Z2 is
related to the heterotic string theory@18,19#. The quotient
conditions are8 @18,19#

Ui
†XjUi5Xj12pd i j Rj , i , j 51,2, ~B1!

8In general there can be an additional term of 2kpR1 for any
integerk in Eq. ~32!, but it can be absorbed in a shift ofX1 by
X1→X11kpR1.
6-9
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U3
†X1U352X1* , ~B2!

U3
†X2U35X2* . ~B3!

The U-algebra is

U1U25q12U2U1 , ~B4!

U1U35q13U3U1
T , ~B5!

U2U35q23U3U2* , ~B6!

U3U3* 5q31. ~B7!

Consistency of theU-algebra imposes constraints on the p
rametersqi j ’s. Taking the complex conjugation of Eq.~B7!,
we find q3561. Equation~B7! and the transpose of Eq
~B5! imply that q13561. RescalingU2 can giveq2351.
The U-algebra is therefore parametrized by a phaseq
5q12, q13561 and q3561. For q5q135q351 we get
the same algebra as in@18,19#.

The Hilbert space isH5$U1
mU2

n(U3C)s&um,nPZ,s
50,1%. Define] i ,K ande by

] iU1
m1U2

m2~U3C!s&5miU1
m1U2

m2~U3C!s&, ~B8!
u

u

d

02600
-

KU1
mU2

n~U3C!s&5U1
mU2

n~U3C!s11&, ~B9!

eU1
mU2

n~U3C!s&5~21!sU1
mU2

n~U3C!s&.
~B10!

To follow Zumino’s prescription, we consider

XiU1
m1U2

m2&5U1
m1U2

m2@2pmiRi1Âi~U1 ,U2 ,U3!#&

5@2pRi] i1Ai~Ũ1 ,Ũ2 ,K !#U1
m1U2

m2&.

~B11!

If

Âi5(mnsamns
i U1

mU2
n~U3C!s,

then

Ai5(mnsamns
i Ũ2

nŨ1
mKs,

where

Ũ15q2]2U1, Ũ25q]1U2.

Similarly,
XiU1
m1U2

m2U3C&5U1
m1U2

m2U3C@2pmiRi1~21! i Âi~U1 ,U2 ,U3!#&

5@2pRi] i1~21! iAi* ~q13Ũ1
21 ,Ũ2 ,K !#U1

m1U2
m2U3&. ~B12!
e
tive

e-

m-
Therefore we get

Xi52pRi] i1
1

2
Ai~Ũ1 ,Ũ2 ,K !~11e!

1~21! i
1

2
Bi~Ũ1 ,Ũ2 ,K !~12e!, ~B13!

whereBi(s1 ,s2 ,K)5Ai* (s12h13,2s2 ,K) with Ũ15eis1,

Ũ25eis2, and q135eih13 (h1350,p). The fundamental re-
gion on which the gauge field can be freely assigned is a d
cylinder: s1P@0,2p), s2P@0,p# for q1351. For q13521
it is a dual Klein bottle.

Let Ai5Ai0(Ũ1 ,Ũ2)1Ai1(Ũ1 ,Ũ2)K and similarly for
Bi . The Hermiticity ofAi implies that

Ai0
† 5Ai0 , Bi0

† 5Bi0 , Ai1
† 5~21! iq3Bi1 . ~B14!

Clearly,]1 ,]2 are derivatives on the dual space. In factK
can also be viewed as a function onZ2 ande as the deriva-
tive on Z2 in the sense of a noncommutative geometry@4#.
Hence the dual quantum space is the product of the d
cylinder with Z2. Furthermore, the form ofX resembles the
covariant derivative on the dual quantum space as define
al

al

in

@4,26#. A similar construction was used for rewriting th
standard model as a gauge theory on a noncommuta
space@26#.

The algebra on theZ2 factor of dual space can be repr
sented by Pauli matrices. For instance,K5t1 ande5t3 for
q351. From Eq. ~B13!, Xi52 i2pRi ]/]s i 1Ai(s1 ,s2),
where

Ai5S Ai0 ~21! iBi1

Ai1 ~21! iBi0
D ~B15!

is a Hermitian matrix. Each entry of the 232 matrices is an
N3N matrix.

The quotient conditions for other coordinates for the co
pactification on a cylinder are@18,19#

Ui
†A0Ui5A0 , U3

†A0U352A0* , ~B16!

Ui
†XaUi5Xa , U3

†XaU35Xa* , ~B17!

Ui
†CUi5C, U3

†CU35G01C* ,
~B18!
6-10
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where i 51,2, anda53,...,9. The M~atrix! theory on a cyl-
inder is related to the heterotic string theory@18,19#. It is a
gauge theory with the gauge groupU(2N) in the bulk of the
dual cylinder but with the gauge groupO(2N) (q1351) or
USp(2N) (q13521) on the boundary@18#. One-half of the
dynamical SUSY is preserved.

APPENDIX C: MÖ BIUS STRIP

The quotient conditions for a Mo¨bius strip@14,15# are Eq.
~B1! and

U3
†X1U35X2* , ~C1!

U3
†X2U35X1* . ~C2!

The U-algebra is

U1U25q12U2U1 , ~C3!

U1U35q13U3U2* , ~C4!

U2U35q23U3U1* , ~C5!

U3U3* 5q31. ~C6!

Considerations similar to those in the previous sections l
to q3561 and q135q2351. The phasesq125q and q3
561 label two one-parameter families of compactificatio
y

x

ys

rg

02600
d

.

The Hilbert space and the operators] i ,K,e can be defined
similarly as in the previous section. We get the solution
X1 ,X2 as

Xi52pRi] i1
1

2
Ai~Ũ1 ,Ũ2 ,K !~11e!

1
1

2
Bi~Ũ1 ,Ũ2 ,K !~12e!, ~C7!

where the A’s and B’s are functions of (Ũ1 ,Ũ2)
5(q2]2U1 ,q]1U2)5(eis1,eis2). It is

Ai~2s2 ,2s1!5Bj* ~s1 ,s2!, ~C8!

where (i , j )5(1,2) or (2,1). From Eqs.~C1!, ~C2!, ~C4!, and
~C5!, the fundamental region is the dual Mo¨bius strip and the
compactified M~atrix! theory is a field theory on the dua
Möbius strip.

The quotient conditions forA0 and Xa (a53,...,9) are
the same as those for a cylinder. Those forC can also be
obtained:

Ui
†CUi5C, ~C9!

U3
†CU35G'C* , ~C10!

whereG'5(1/A2) G0(G12G2). One-half of the dynamica
SUSY is preserved.
’’
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