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In this paper we study generic (8trix) theory compactifications that are specified by a set of quotient
conditions. A procedure is proposed which both associates an algebra to each compactification and leads
deductively to general solutions for the matrix variables. The notion of nhoncommutative geometry on the dual
space is central to this construction. As examples we apply this procedure to various orbifolds and orientifolds,
including ALE spaces and quotients of tori. While the old solutions are derived in a uniform way, new
solutions are obtained in several cases. Our study also leads to a new formulation of gauge theory on quantum
spaces[S0556-282(198)06314-(

PACS numbds): 11.25.Sq, 11.25.Mj

[. INTRODUCTION trix) theory isa priori of a noncommutative nature, since
compactification implies a certain specification of allowed
According to the Matrix) model proposall], M theory  background configurations. The(itrix) model compactified
in 11-dimensional uncompactified spacetime is microscopion a torus and various orbifolds and orientifolds has already
cally described by the largd limit of the maximally super- been discussed in the literature. For toroidal compactifica-
symmetricU(N) Yang-Mills quantum mechanics. For finite tions [1,10,11, the original gauge symmetry turns out to
N the model is conjectured to describe the discrete light congive rise to the usual gauge field theory on a dual torus,
guantization of M theory2], in which one light-cone direc- while the winding modes for one-cycles in the original com-
tion is compactified on a circle. An attractive feature ofaM  pactified space become the momentum modes in the dual
trix) theory is that for the nine transverse directions, the nospace. Recently in two interesting pap¢f,13 it was
tion of physical space is a derived one in the theory. Sincghown that Matrix) theory compactification on a torus can
the coordinate variables are valued in the Lie algebra ofead to a deformed Yang-Mills theory on the dual space
U(N), the description of space is novel from the beginriing. which is a quantum torus, and can be interpreted as an M
A well-known generalization of classicdbr commuta- theory configuration with a nonvanishing three-form back-
tive) geometry for studying novel spaces is the noncommuground on the compactified light-cone and toroidal direc-
tative geometry pioneered by Conng4]. By now it is  tions. This provides a strong physical motivation for study-
known to be relevant to Katrix) theory at two different lev- ing generic Matrix) compactifications from the
els. First, a given configuration of the matrix variables fornoncommutative point of view.
finite N can be identified with a regularized membrdbé In this paper we report our recent progress towards a non-
whose world volume is a quanturfor noncommutative = commutative geometric approach to a wide class of matrix
space. For instance, a regularized spherical memij&an@  compactifications, i.e., those o/T", assuming the matrix
coincides with the quantum sphere defined in various formumodel on a simply connected spasé is known, withT" a
lations of noncommutative geomef§]. Interpreted in a dif-  discrete group acting oW1. The compactification is deter-
ferent way, the Matrix) model action can also be thought of mined by a set of quotient conditions, one for each generator
as describing the dynamics &f DO-branes in the infinite of I'. We will describe a procedure for solving general solu-
momentum fram¢1]. Previously two of ug9] have shown tions to the quotient conditions. Before doing this, our pro-
that this action can be understood as a gauge theory onaedure naturally associates with each compactification a non-
discrete noncommutative space consistingNgboints. commutative algebra in which the matrix variables take
Accordingly, at the second level, compactification ifaM  values. It starts from here that the notion of noncommutative
geometry using algebras to describe the geometry of quan-
tum spaces comes into play. Furthermore, our procedure
*Present address: Department of Physics, Jadwin Hall, Princetdeads, in a deductive manner, to solutions which turn out to
University, Princeton, NJ 08544, be gauge theories on dual quantum space. We will use sev-
TOn sabbatical from Department of Physics, University of Utah,eral examples to show how our procedure works in practice.
Salt Lake City, UT 84112-0830. Not only are old solutions, obtained before as classical gauge
!Because of supersymmetry, at large distances the space can tieories, reproduced by our systematic procedure in a uni-
approximately classicaB]. form way, new compactification on quantum spaces is also
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derived for several cases, including the Klein bottle,diis  assume that the only central elements in the algebra of the

strip, and asymptotically locally EuclidedALE) orbifolds.  U;’s are constant times the unity we are allowed to impose

Two different description§14,15 for dual space in the case the following constraints:

of the Klein bottle were thought to be in conflict with each

other in the literature; we show that they are both correct, UinUiTUJT:qijl 4)

and a continuous interpolation is found between them using )

quantum spaces. or, equivalently,
What we obtain corresponds to the “untwisted” sector,

which may be an anomalous gauge theory in some cases. We

leave for the future the question about how to derive directly

from the M(atrix) model the “twisted” sector that is needed Wri]tgsgg rrclzrte}g]agrt]gs;ﬁ](earcgrO]'[rSs'oEJi'[]cifc?rzintir:hlozﬁestr?;t t?gsf
for orbifold and orientifold compactifications to achieve P y » IMmplying

anomaly cancellation pactification is not completely fixed by the quotient condi-
) S . e . tions.
We first reexamine toroidal compactifications in Sec. Il, The algebra) is the same as the algebra of a quantum
rederiving the results for the quantum torus with our own, [21]9F d=2 the algebrd5) h n%L 27 q i
procedure. The procedure for generi¢difix) compactifica- orusieL. Ford= € algebrd) has anSL(2.Z) symme

tion is described in Sec. lll. Then in Secs. IV and V, we will try

demonstrate how our procedure works for the Klein bottle U UD3(U.)P. U U)S(U,)8 6
[14,15 and the ALE spac€?/Z, [16,17. After that some 1= (UDR(U2)% - Uo= (Un)(U)" ©
comments on various aspects ofatix) compactifications  herea,b,c,d are the entries of aBL(2,Z) matrix. It was
are made in subsequent sections. In the Appendixes we al§@st pointed out in[12,13 that the phase factors; can be
consider as exampl&&/Z;, the finite cylindef18-20, and  related to M theory compactification with a nonzero back-

UiUj=q;;U;U;, )

the Mabius strip[14,18. ground three-form field in the compactified null and toroidal
directions.
[l. TOROIDAL COMPACTIFICATION REVISITED From the point of view of the covering spadd;’s are

%ranslation operators, and so it is natural to write, Nor 1,
XJ = eijE'i andUi = eXp(—Bi), Whereﬁi = ﬁ/a&;’l + I/Kl is the
covariant derivative for dJ(1) gauge field. By a Fourier
transform, the solution in the dual spacdg1s10,11

A d-dimensional torus can be defined as the quotien
spaceRY/z%, wherez® is generated by{c,,....cq} freely
acting onRY as

G {xi'—={x;+e}, (1) .
i { l} { J IJ} Ui=e"’i, Xj:_ieijDir (7)
wheree;; define ad-dimensional lattice irRY. The toroidal
compactification is defined by the quotient conditions _Jd
UIXUi=X;+ej, ij=1...4d. (2)  In this dual representation, the solution can easily be gener-

alized toNxX N matrices. This is the type of solution we are

. N .._lpoking for in the context of Natrix) compactifications. New
should contain the answer for all compactifications de_scrlbe hysical degrees of freedom residexn while the U’s are
by relations of this type. Although a complete answer 'nCIUd'fixed algebraic elements.
ing “twisted” sectors is not yet generally known to us, as a
first step in this paper we will try to solve these equations for
the “untwisted” sector, completely inside the framework of
the theory. First we review the commutative cagg=1[1,10,11. In

One may choose an infinite dimensional matrix representhis case, the algebra of thg’s is commutative, and now
tation for theU;’s in Eq. (2), motivated by physical consid- they are viewed as coordinate functions on the doadli-
erations. In our treatment, we prefer to think of them asnary) torus parametrized by, and theX’s as covariant

Standing as a fundamental theory,(a¢tix) theory itself

A. Classical torus

algebraic elements tensored with X N unit matrix? derivatives. Mathematically Eq7) is the general solution of
To find the underlying algebra for tHe;’s, we note that Eq. (2), with the X’s andU’s being elements in the product
Eq. (2) implies that of the algebra of differential calculus on a torus and the
. . algebra ofNX N matrices. Physically, the Mtrix) theory
U jUiUj Ui X UiU U U= X (3 compactified orTd for d<3 is the @+ 1)-dimensional su-

. L _persymmetric Yang-Mills(SYM) theory on the dual torus
For toroidal compactifications, we should not have any addi 1].

tional constraints other than those in EB). Therefore, if we Comparing with the uncompactified (strix) theory, we
are adjoining the new element8do; and expio;) to the
algebra ofN X N matrices for the compactification on a torus.
“Thee;;’s on the right-hand side are understood as proportional tol he reason why we are allowed to adjoin these new algebraic
the unity in the algebra tensored with tNex N unit matrix. elements is that the compactification on a torus introduces
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new dynamical degrees of freedom corresponding to the Let the action ofX; on the vacuum be given by
winding string modes that are not present in the uncompac-
tified theory. In general, for compactification on different X-):A-(U)) (13)
spaces we need to adjoin different new elements to the alge- ! J '
bra of NX N matrices. .

whereA,; is a function of theU;’s. Using Eqs.(2) and(13),

B. Quantum torus we can calculate the action &f; on any state:

For g;;#1, we need to find out the new elements to be
adjoined to the algebra of compactification. To define the
algebra and to solve foX in this noncommutative case, we
first define an auxiliary Hilbert spack, on which theU;’s " "
are represented as operators: It by definition consists of the =(gjoi+ADPULT---U D (14
“vacuum,” denoted by), as well as states obtained by acting
polynomials ofU;’s on the vacuum. Fod=2 the symmetry . : g aA . :
(6) induces arBL(2,Z) symmetry on the Hilbert space. This 18 N genfralx‘_e"(?’+A' : where.AJ z,ar(.e flAmCtlonSf of
is the S duality of type 11 B theory. 9i=(Hj¢iqji‘)Ui, obtained by replacin;’s in A;(U) with

The Hilbert space H is spanned by the states U;'s and reversing the ordering of a product.

{Uflnl. . ~Ug'd>} with m, e Z. This Hilbert space is different The solutions of theX;’s are functions of operators com-

from those introduced if12].2 For later convenience, we muting with allU’s, i-e-;UiUL:UjDi for all'i,j. The com-
define a set of operatorg by mutation relations among tHe's are given by

X]UTl .. U?d>:UT1' . U?d(e,Jm,-l-A]))

UL U =muUTt. ..y, 9) ~ e~
M1 d M1 d U,0,=q;'0,0;. (15)

It follows that
This is just the algebra for a quantum torus related to that of
U by a transformatiory;; —q;; * [12]. The Hilbert space is

also spanned by -- U9}, and the operators; act on
Thusé, is the(quantum derivative with respect to the expo- U, in the same way as they act &h . It is thus natural to

nent ofU; . think thatX; are the covariant derivatives on the dual quan-
The inner product orf{ should be invariant under the tum torus given byJ; .
groupG(A) of gauge transformations of thé;’s which pre- The same result was obtained[it?] in a different way.
serve the quotient condition®). Since X; is generic, the They noticed that a generic solution of Hg) is composed
only possible such transformation is of a special solution and a homogeneous solution, and that
_ homogeneous solutions are the elements in the algebra com-
Ui—glUg=€e"%u;, (1)  muting with all theU,’s. Also, they used a Hilbert space

different from ours. While the set &f-commuting elements
whereg; =exp(—i¢#). This implies that the inner product is may be found by brute force when the algebra is given, we
defined by(f|g)=(f'g), wheref,g are functions oJ and  see that they automatically arise in our procedure. For a dif-
. " " " ferent compactification associated with another set of quo-
(Uit U =651 84° (120 tient conditions, the trick of using)-commuting operators
may no longer work, but we will demonstrate below that the
up to normalization. Note that the vacuum expectation Va|U%ame procedure we used above a|WayS works.
(+) happens to be equal to the trace over the Hilbert |etusnow make a remark about the gauge fieldAs in
space, which can be determined directly by requiring thay;sual gauge theories, the gauge fidlddoes not have to be
it have the property of cyclicity{fg)=(gf) for any two 3 well-defined function on the dual quantum torus. Without
functions of U. By a Fourier transform on the basisr)  going into details about the notion of the principal bundle
=Enexp6nim)U'1‘1---U2d), where o=(04,...,04) and n and connection on quantum spad¢d$ we simply say that
=(ny,...,ng), the trace or#{ turns into the integration on a the requirement o is that all quantities invariant under
d-torus parametrized by. The integration on a quantum
torus can be independently defined with respect to the X;—X+e; (16)
G(A)-invariant measurél;UdU; by using Stoke’s theorem.
are well defined. For instance-( log U;) is only defined up
to 2nw. Yet Aj=—im; log(U;)g; with integersm; is accept-
3In the notation of 12] our M superficially corresponds to the case able, because the ambiguity in its value matches precisely

with p=1, q=0, butp/q appears in some of the relations given by the gauge transformatioi16). In fact these are the configu-
them. rations of D-branes wrapping on the torus.
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IIl. GENERIC COMPACTIFICATION

Consider the compactification of (strix) theory on the

quotient spaceV/T',* where M is a simply connected space

[ 71(M)=1] on which the Matrix) theory is known, and’
is a discrete group acting aM. If T" acts freely, it is the
fundamental group of the compactified space.

Denote the action oteI’ on M by ®(c). Then the

compactified Matrix) theory is obtained by imposing the

following constraints: For each element I,

U(c)™XaU(c)=d4(c)(X), 17
where X, represent all Natrix) theory variablesA,, X;,
andW. If I is generated by a set of elemefits}, one may
only need to write down such relations for each genergtor
We will call these relations “quotient conditions.”

For orientifolds, the groug’ is endowed with &, grad-
ing: We associate a numbafc)=0,1 with each element
eI, and if c,c,=c3, thenn(cy)+n(c,)=n(cz) (mod 2).
The quotient conditior{17) is generalized to

®,(c)(X) if n(c)=0

T _
VEXUO= 10,001 i n(e)=1

(18
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P(U)™XP(U)=X forall X’s, (20)
where P(U)=U(c;)U(c,)---U(c,) is the corresponding
product of theU’s. This relation would impose a new con-

straint onX unless

P(U)=ql, 21
whereq is a phase factor. For orientifolds, I€t denote the
complex conjugation operator,

CaC=a*, (22
for all ae A. We haveC'=C and C?=1. Equation(18) is
then equivalent to

R(c)"™XaR(c)=P4(c)(X), (23
where R(c)=U(c)C"®. So Eq.(21) is replaced byP(R)
=g1. We define the algebra &, called theU-algebra, by
imposing all such relations. We can view nonorientifolds as
the special case with(c)=0 for allceT.

It can be shown22] that these relations can be character-
ized by a faithful projective representation Bf Following
[12,13, it is natural to suggest that the cohomologically in-

Here the complex conjugation * corresponds to the transposéariant phases in a nontrivial two-cocycle dhassociated
for Hermitian matrices<, which implies orientation reversal With the projective representation correspond to a nontrivial

of open strings stretched between DO-branes.

background field on the compactified space. Accordingly,

The quotient conditions have to be consistent with thecompactification defined by the quotient conditions is com-

action. Since the action of {dtrix) theory is invariant under

pletely characterized by projective representations of the

gauge transformation{—U'XU, the quotient conditions groupT’, and the moduli space of tHd-algebra(more pre-
are consistent with the action only if the action is also invari-Cisely, the space of cohomologically invariapiparameters

ant under the transformations,

Xa— D ,(c)(X) (19

in a two-cocyclé may correspond to part of the moduli of M
theory compactifications. We take this as a strong motivation
for studying Matrix) theory compactification with nontrivial
two-cocycles.

Knowing theU-algebra, we can construct a Hilbert space

for all ce I'. A function of theX's and their time derivatives 4, 1 represent it, which consists of a “vacuum” denoted by
is a gauge-invariant physical observable if it is invariant UN-y and all polynomials of thek(c)’s acting on the vacuum.

der (19).

We will give below a procedure for solving relations of
the type(17) or (18). By this we mean that we shall define
the algebrad in which the relations are understood, and then

The algebraA is then defined as the tensor product of the
algebra of operators oK with the algebra ofNXN matri-
ces. In the action of Natrix) theory, the total trace is now
composed of the trace ovét and the trace ovel XN ma-

find the most general solution o, as algebraic elements in /.ag.

the algebrad. The physical degrees of freedom of tKg's

reside in the moduli of the solutions to the quotient condi-

tions.
To define the algebral, first we note that all thé&)’s are

considered as fixed elements.ih They form a subalgebra

Physically the states if{ correspond to string modes
winding around noncontractible one-cycles in the compacti-
fied space associated with elements in the grbuBy ad-
joining this Hilbert space to the spaceMfvectors on which
the algebra oN X N matrices is represented, we take care of

of .A which is constrained by the quotient conditions by re-ina new string winding modes arising from the compactifi-

quiring that the quotient conditions exhaust all desired con

straints onX. If there is a relatiort,c,- - - ¢c,= 1 in the group
I', from the quotient conditions for thesgs, we will get
equations of the form

“4In fact we should consider the quotient of a superspace in order

to include the fermionic part from the beginning.

cation.

For a given algebrad we define the unitary groug(.A)
to be the group of all unitary elements.t Let G(A) be the
subgroup ofi/(.A) which preserves the quotient conditions,
ie.,

R(c)Tg"™XagR(c)=d,(c)(g"Xg), (24)
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for all ge G(A). G(A) can be viewed as the group of gauge tors(9) used for toroidal compactification are often very use-
transformations orX,” ful. As we did in Sec. Il B, to writeX, as a function of; and
N U;, one needs to find the action ok, on a state
Xa—9 X4, (25) UT™--UT9 as a functionF(my,...,my;U) acting on the

which survives the compactification. As was shown in thestate. Then we can repla€eby another functior of 9 and
previous section, the definition of the dual space may b&J.

inferred from the gauge field or, equivalently, from the gauge To gain some insight into the compactified theory, we
group G(A). In general the compactified (dtrix) theory  note that in general we may view the resulting theory as a
may not be identified with a traditional gauge theory on a(deformed gauge field theory on a dual quantum space. In
classical manifold. We will consider this as a natural generthe spirit of noncommutative geometry, tblealgebra can be

alization of the notion of gauge theories. viewed as the algebra of functions on the dual quantum
On the other handj(.A) induces a group of transforma- space. In addition one may follow the standard procedure
tions onR(c), denoted byG(A), used in the study of quantum differential calculus on quan-
tum spaces with quantum group symmétr4] to define a
R(c)—gR(c)g’, geG(A), (26) deformed differential calculus on thd-algebra. Once the

_ ) N derivatives(such as they; in the previous sectignon the
which preserve the quotient conditiori#8). Because we gual quantum space are defined, we can use them to express
shall allow the most general solution Xf the only possible x_ and see that the bosoni¢’s can be thought of as cova-
transformation orR(c) is to multiply them by certain phase riant derivatives. In other words, the present approach can be
factors, and thus the grouf(.A) is an Abelian group. Since directly used to define gauge theory on a quantum space and
different choices of th&k(c)’s related byG(.A) are equiva- IS different from most other existing approaches to defining
lent by a gauge transformation, the compactification shouldhem in the following sense: Given the algebra of functions

be invariant unde@(A). Roughly speakingQ(A) is the ©ON aquantum space, usually one will define the gauge field
translation group of the dual space. to be a function on the quantum space, but in general our

The prescription for deriving the general solution ¥0in procedure giveg a gauge field as an operator, for instance a
the algebraAd was first invented by Zuming23] to study pswdodl_ﬁeaentlal otpetrat%r, Ion tue quantun;)space. q
problems in quantum differential calculiMathematically € will demonstraté below now our above procedure

these two problems are similar in natyr&€he prescription is works, for Qxample, for the compacitification on the orient-
the followirr:g v P P fold of Klein bottle and the ALE space ot%/Z,. In the

- : : Appendixes, we will also apply the prescription to the fol-
(1) As mentioned above, we define a Hilbert spage : . T S . 1
consisting of all polynomials of th&(c)’s acting on the lowing orbifolds and orientifolds:T</Z3, cylinder (S

vacuum. The inner product 6K has to be fixed to respect X S'Z5), and Mdius strip.

the symmetry grougi(.A). The algebra4 is defined to be

the tensor product of the algebra of operatorsrowith the

algebra ofNX N matrices. _ The Klein bottle can be defined &/T, wherel acts on
(2) We require theX,'s be operators acting ot and R2 by

write the action ofX, on the vacuum as

Xa)=A4(R)), (27)

whereAa(R) is a function of theR(c)’s. All physical de-

grees of freedom oX, reside inA,, which gives the gener- The groupl’ is generated by,,c, with the commutation
alized gauge field. The action of, on an arbitrary basis relation
state can be obtained by using the quotient conditions to
commuteX, through theR(c)’s until it reaches the vacuum clczcchTl: 1 (30
and then using Eq27).

(3) To find an explicit expression foX,,® one needs to As an orientifold, itsZ, grading is defined by(c,)=0 and
find a set of convenient operators h The type of opera- n(c,)=1.

Thus the quotient conditions af&4,15

IV. KLEIN BOTTLE

C1:(Xq,X2) = (X1 +27Ry,X5), (28

C2:(X1,X2) = (= X1, X+ 7Ry). (29

, UTXUi=X;+2m8;R;, 1,j=1,2, (31)
SIn fact G(A) contains more than what we usually call a gauge
group on the dual space for it also contains the translation group

G(A) to be introduced below.

81t is not necessary to have an explicit expressioXgfin terms
of other operators as long as, is already well defined as an op- .
erator on’H as in step(2). But it can be helpful in studying the  ‘In our problem the symmetry group §(.4), which is just a
model. classical group. But they play similar roles in this formulation.

UIXUz=—X¥, (32
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UIXoUg=X3 +7R,, (33
where U;=U(c;), U,=U(c3) and Us=U(c,). Note that
since X’s are Hermitian, we hav&"™=X*. The conditions
for U, are direct results of Eq$32), (33).
SinceR(c)=U(c)C"©, it is easy to verify that the fol-

lowing relations are compatible with the quotient conditions

(3D)—(33):
U1Uz=0q3U,Uy, (34)
U1Us=0q13U3U7, (35)
UoUs=02dU3U3, (36)
UsU3 =0q3U,. 37

We shall rescaldJ, to setq;=1. Using Eq.(37) we find
g,3=1 from Eq. (36). Consistency also requires thgi,
= qfs. We will denoteqq3 by g. (So the projective represen-
tations of the grouf” are labeled only by a phase factpy
We will see below that the case studied [it4] corre-

sponds to the casg=1 where the dual space is a cylinder,

and the case studied ji5] corresponds to the casg=—1

PHYSICAL REVIEW D58 026006

whereN=249,+(1—€)/2 acts onH by

NUT(U3C)")=nUT(U5C)"). (44)
While the Klein bottle is a quotient of the torus, we will
see below that the compactification on the former is a gauge
theory on a quotient of the dual torus for the latter. We have

4

X1:2’7TR1071+A1, XZZZWRZ( 072+ +A2'
(45

The gauge fields are given by

1 1
A =7 (Aig+AilK)(1+€)+(—1)' 5 (Bio+ BiK)(1-e),
(46)
where Aj; and Bj; (i=1,2 andj=0,1) are functions of

U,,0, with U;=q 22U, and U,=q?1U, satisfying the
algebra of the dual torus:

U,0,=q7%0,0,. (47)

: ; . It is
where the dual space is a Klein bottle. We have obtained a

one-parameter moduli for this compactification.
The Hilbert spacé is defined to be

H={UT(U3C)"|m,ne Z},

or, equivalently {UT'U%),UTUSU;C)m,ne Z}. We define
some operators for later convenience:

91 UT(UsC)") =mUT(U3C)"), (39)
9,UTU3(U5C)%)=nUTU3(U5C)), (39)
KUT(UsC)"=UT(UsC)" "), (40
eUT(U3C)"M=(—1)"UT(UsC)"), w

where m,ne Z and s=0,1. It follows thatd,,d, act on

Aij(Ul_h,_(Tz):Bﬁ(O'l,O'z), i=112! j=0,1,

(48)

where q=exp(h), U;=exp(oy), and U,=exp(o>). It can
be checked that
UIAU;=(-1)'A*, i=1.2, (49
and all quotient conditions are automatically satisfied.
The condition (48) relates Ai(o} +h,—a%) to
Ai(o1,0,)*, which is a function of ¢ ,o%). So if the value
of A, at (o1 +h, o) is known, then its value ato(;, — o) is
fixed. If g=exdi2#/(2k)] for an integerk, the fundamental
region on which the values &; can be freely assigned is a
Klein bottle of area (2r)%/(2k). If q=exi2x/(2k+1)], the
fundamental region is a cylinder of arearf®/2(2k+1). In
particular, forg=1 it is a cylinder, and fog=—1 it is a

U,,U, as derivatives. The commutation relations betweerl/€in bottle. It was argued ifil5,2q that only the latter case

the derivatives and functions can easily be derived.

gives the area-preserving diffeomorphism group as the gauge

Following the prescription described in the last section dr0upP of the model in the larghl limit. The gauge group in

we see that the solution is of the form of a gauge field,

1.
Xl:27TRl(91+ EAl(q_NU]_,K)(lJF 6)

1
- SAT (VUL K)(1-e),

5 (42
1.
X,=mRyN+ EAZ(q’Nul,K)(l—i- €)
1"* Nyj—1
+§ Z(q Ul 1K)(l_€)1 (43)

the bulk of the fundamental region i$(2N) and the gauge
group on fixed points of the mar(,0,)— (01— h,—ay) is
O(2N).

K and e can be represented byx2 matrices. Let

0 1 1
1 0/ ™70

ai B Aio (_1)iBi1ei02/2)
yi &) A€ (—1)'Bjo

: 0
K= el 0’2/2< B 1) , (50)

.

(51)

The results above can then be rewritten as

026006-6
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Ve

The 2X2 unit matrix andK (for “fixed” o,) generate
the algebra of functions of,, ande is a derivative orZ, in
the sense of noncommutative geomdiy. ThusX; can be
viewed as covariant derivatives on the dual space which is
the product of a classical space parametrized pyr, and a

quantum space of two pointZ{). The Hilbert space can one-half of the dynamical SUSY is preserved by the com-
also be written as a column of two functionsdf andU,. pactification on a Klein bottle.
Thus it is natural to say that the dual space has coordinates

U,, U,, andK, whereU; satisfy the same algebra &k V. C?/Z,
(i=1,2) withgq—q L. . . 27
The trace ovef is equivalent to the composition of the ~ The quotient condition fo€*/Z,, is
integration over §,,0,) and the trace over theX22 repre- + _ _
sentation ofK ande. The integration has the cyclicity prop- U'Z.U=0qz., a=12, (61)
erty so that the Nhtrix) theory action is gauge invariant. where Z.=X.+iXo. Z-=X++iX,. and a=exp(27i/n). It
As was noted if12], the algebra of the dual quantum follows tlhattlJ*”ZZLJ”iZ .3 Follé\'/ving ocllr prgéedurga. the
torus(47) can be realized on functions on a classical torus ag) _algebra is givenabyl":a;l)l wherep is a phase Resc’aling
the star product: U by p™, we find ' '

S i
Bi aj

:(_1)i 5X#:i61—‘,u\lf, M:O,...,g, (58)

(oq+h,05)

(0'11*0'2)

i )
(52 SV = (DX e+ S Xile, i,j=1,2,..,9, (59

and the kinetic SUSY transformation is

3X,=0, V=l (60)

(f*9)(0) =21~ 1% (0)g(0" ) yroy. (53 un=1. 62)

Therefore the action of ktrix) theory appears to be the  The Hilbert space isH={UM|m=0,1,..,n—1}. Let
action for a field theory defined OFf with higher derivative Z,)=A4(U)), whereA,(U)==""1 . U™ The action oz
terms. It is yet to be studied how to make sense of sucly, 7/ is

theories.

As a side remark we note that the calculation above can Z,U™=qg™UMA,) (63)
be done with a little more ease if we impose the reality
conditionsU¥ =U; %, U5=U,, and U$=U;, which are =A,(U)gMum), (64)
consistent with theéJ-algebra. The result is independent of
such conditions. whereM is defined byMU™)=mU™). The solution ofZ, is

So far we have ignored the transverse bosonic and fermthus Z,=A,(U)g". Instead ofM, one can also us¥ de-
onic fields in the Matrix) theory. The quotient conditions on fined by UV=qVU and V)=). Thus Z can also be ex-

them arg[14,15 pressed as
UlAU=A,, UlAU;=—A%, (54) Z.=A,(U)V L (65)
UiTXan:Xaa ngauszx; ) (55) U andV can be realized asx n matrices:
UMvU =¥, UIWU=Tg0*, (56) Uij=8G-1. Vij=a'd, (66)

wherei=1,2,a=3,...,9, and¥ is in the Majorana represen- WhereUj is nonvanishing only if =j—1 (modn). We find
tation. It is straightforward to solve these relations in the
same way. The_se guotient conditions can be det_ermined by (Za);j => a’amq_jéi,(jfm)v i,j=0,1,...n—1. (67
required surviving supersymmet(USY) or by their con- m
sistency with the Natrix) theory Lagrangiahi]
This is exactly what one would expect through the same line
1 , 1 , 1. of reasoning Taylor useld.0] for toroidal compactifications.
L=Tr| 5 (DX 7 [Xi X1 = 5 ¥ Do¥ The coefficienta,, represents the string stretched between
DO-branes separated loy copies of the fundamental region.

1_— . In the representatio(66), U is viewed as an operator that
N Eq’r [Xi W], (57 shifts one point inZ, to the next point. In a dual represen-
tation whereU;; =q“5”- , U can be viewed as the generator
whereDy=d/dt +iA,. of the algebra of functions on the dual quantum spage
The dynamical SUSY transformation of(ktrix) theory is  andV becomes the shift operator. Thus we see that the dual
[1] of Z,, is alsoZ,.

026006-7



PEI-MING HO, YI-YEN WU, AND YONG-SHI WU PHYSICAL REVIEW D58 026006

The groupg(.A) is generated by andV. A unitary func- For the compactifications om/T" with M simply con-
tion g(U) induces a gauge transformatiorA(U) nected, we have seen in the above examples that for a factor
—g"(U)A(U)g(qU). In the dual representation whelteis  of Z in I there is a factor o8 in the dual spacgNote that
diagonal, it is easy to see that the gauge group of this theorthis statement is more general than the statement that the
is U(N)". The fieldsA, are now diagonal blocks dfi XN dual space of a circle is a circle, because there can be differ-
matrices with each block transforming in the fundamentalent compactifications with the same grolip They lead to
and antifundamental representations under two adjacemtifferent field theories on the same dual spatethe above
U(N) factors[17]. we also see that for a factor &f, in I there is a factor of the

The gauge transformation by is A(U)—A(g*U), dualZ, in the dual space. It would be useful to know more
which is in fact a translatiofcyclic permutatiohon the dual  about the correspondence between the gidumd the dual
spaceZ,. This also corresponds to the only nontrivial ele- space.
ments inG(A): U—qg*U. Requiring its invariance under
G(A), the inner product or is fixed to be(U¥)= sk for
k=0,1,..,n—1.

Note that in Matrix) theory it is only the field strength Finally we make a few remarks.
defined by[ X;, X;] (for flat spacg¢ and other gauge-invariant ~ To be treated as a fundamental theory by itselfatvix)
guantities that need to be well defined on the dual space. FQheory needs to know everything without consulting string
instance U™ is only defined up to an integral power gf  theory or supergravity. Since the notion of spacetime is from
But it is acceptable to havé\(U)=U™"F(U) with m  the very beginning noncommutative in (Mrix) theory, a
=0,1,..,n—1, whereF(U) is a polynomial ofU. The rea- priori one is allowed to consider compactifications on spaces
son is that this ambiguity is precisely of the form of a gaugewhich are exotic from a classical point of view. The criterion
transformation onX, and so all gauge-invariant quantities for an admissible compactification is only whether the cor-
are still well defined. responding generalized gauge theory on the dual space can

DenoteXy=A,. The rest of the quotient conditions are make sense.

For compactifications on a classicddtorus, the funda-

VIl. COMMENTS AND DISCUSSION

U™, U=X,, »=05,..9, (68)  mental group is commutative and dsdimensional; thus it
+ results in ad-dimensional dual space. For compactifications
UPU=AY, (69 on Riemann surfaces of higher genus, the fundamental group

is noncommutative and therefore the dual space must be a

where A=exd—#('*?+13%/n]. BecauseA"=-1, Eq. quantum space V Hal sp .
—(_1YF ; :

(62) should be replaced by"=(—1)", whereF is the fer- A Riemann surface of genug>1 can be obtained as a

mion number operator. Itis easy to see gt X,,, and¥ ¢ qtient of the Lobachevskian disk which is simply con-

. 9 ‘ A
are in the adjoint representation 0(N)". nected. The quotient conditions are of the form
It is easy to see that the quotient conditions @%/Z,

preserve one-half of the dynamical SUSY and one-half of the
kinetic SUSY. a,Z+bl

ufzu

‘ZU=og i=1,...3, (70

VI. NONCOMMUTATIVE GEOMETRY AND T DUALITY

Let us recall how the notion of noncommutative geometry b . )
naturally arises as a generalization of classical geometry. W&here C,' g) areSU(1,1) matrices angZ|<1. Itis a chal-
know that if a classical space is given, one can immediatelyenge to find the solution foz.
define the algebra of functions on that space. According to For two classical compactifications, it is possible that
the Gelfand-Naimark theorem, the converse is also true: anthere is a family of compactifications on nonclassical spaces
commutativeC* algebra is isomorphic to the algebra of with sensible dual theories interpolating them. Such interpo-
functions(vanishing at infinity on a locally compact Haus- lation may help our understanding of the various dualities
dorff space, which can be constructed as the space of maxi25].
mal ideals of the algebra. The notions of the algebra of func- Obviously there are a lot of important issues we need to
tions and that of the underlying space are dual to each othelarify before we can proceed further. If the solution of the
via the Gelfand map. This motivates the generalization ofjuotient conditions gives us an anomalous gauge theory,
classical spaces to quantum spaces. A quantum space is simhat we have obtained in this paper is only the so-called
ply defined as the underlying space of a noncommutativeintwisted sectors in Katrix) theory. To view Matrix)
algebra. theory as a fundamental theory, we also need to learn how to

The dual space for a [@trix) compactification can thus determine the twisted sectors for anomaly cancellation with-
be roughly viewed as the underlying space on which theout consulting with string theory. On the other hand, for the
M(atrix) theory is defined as a field theory. When the consideration of quantum spaces to be physically relevant, it
U-algebra is noncommutative, the dual space is a quantuns urgent to look for more correspondence betwegathik)
space. Thus in a sense T duality naturally introduces theompactification on quantum space and the moduli space of
ideas of a noncommutative geometry intdaix) theory. M theory compactification.
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APPENDIX A: T?/Z,

The quotient conditions fof2/Z are

ulzu,=z+1, (A1)

ulzu,=z+r, (A2)

UlzUs=qz, (A3)

where r=q=exp(2ri/3) andZ=(X;+iX5)/R;.
The U-algebra is given by

U Uz=0q:UsUy, (Ad)
U;Us=0;3U5U71U7, (A5)

UsU;=031U,Us3, (A6)
UsU,=0gU1UUs, (A7)

U3=dsl, (A8)

whereqq,,013,031 are phases and consistency requines
=(13047 - By rescaling théJ’s we can set all the) factors
to 1 except thatyy, is still arbitrary.

The Hilbert spaceH is {UTUSU3)m,neZ,5s=0,1,2.
Define the operatorg; ,A¢,K by

9;UTUSUS) =mUTUjUS), (A9)
dUTU3U3) =nUTUUS), (A10)
ALUTUIUS Y= 6,4 UTURUS Y, (A11)
KUTUSUS)=UTUsUS" Y, (A12)

whered,g =1 if s—s'=0 (mod 3, and vanishes otherwise.
Let Z)y=A(U)) andA(U) == nsrmndd TUSUS . Then

ZUTUjUS)=UTUusUS(m+ mn+g°A))
=(0,+1a,+AUTULUS),  (A13)

where

PHYSICAL REVIEW D 58 026006

A= 25 ammKS

m,neZ;s=0,1,2

>

s'=0,1,2

(U3 0,U5)"(U30,U5*) g% A |,
(A14)

whereU,=q,,2U; andU,=q;3U,. It is not hard to calcu-

late U3U,U;*=U,, U30,U;2=U,0,U;'=0;'0," and

U30,U3=0,. The solution ofZ is thus
To put the result in a more amiable form, lé&t;

=exploy) andU,=exp(oy). Also letUz;=POU, whereU

is given by Eq(66) for n=3 andP is an algebraic operation

defined by

PoP =0, P20P ?=—0;—0,, (A16)

PooP == 0y-0y Pl =gy (A7)

Then it is easy to see that EGA15) can be rewritten as

:

wherel is the 33 unit matrix andA is a 3X 3 matrix of
functions of (1,0,) satisfying

1+A(O’l,0'2), (A18)

—i——ir
(?O']_

(90’2

Ai—l,j—l(alvUZ):inj(GZ!_0-1_0-2+77/3)! (Alg)

where the indices are defined modulo 3. The dual space is
againT?/Z,.
The rest of the quotient conditions are fixed by the La-
grangian(57) to be
t _
U'™X,u=X,,

©=0,3,..,9, (A20)

UTrU=A,V, (A21)
whereA ;=exp(—mT*%3). Because\ 3= — 1, strictly speak-
ing Eq. (A8) should be replaced by3=(—1)", whereF is
the fermion number operator. All the SUSY is broken in this
case.

APPENDIX B: FINITE CYLINDER

Matrix compactification on the orientifol®'x St/Z, is
related to the heterotic string theof$8,19. The quotient
conditions ar&[18,19

UTXUi=X;+278;R;,

i,j=1,2, (B1)

8n general there can be an additional term &R, for any
integerk in Eq. (32), but it can be absorbed in a shift &f; by
X1—>X1+ k’/'TRl

026006-9
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UlIX,Uz=—X7, (B2 KUTUS(U3C)%)=UTUS(U3C)* ), (B9)

UIX,Ug=X5 . (B3) eUTUN(U4C)S)=(—1)SUTUS(U5C)S).
(B10)
The U-algebra is
To follow Zumino’s prescription, we consider

U U=0q12U,U5, (B4)
X;UTU2y=uTul 2emRi+A;(U;,U,,Uq) 1)
U1Us=0;5U5U7, (BS) N toe e
=[27Ri3;+Ai(U1,0,,K)JUTUS?).
UoU3z=0qpU3U3, (B6)
(B11)
UsU3 =dsl. B7)
Consistency of théJ-algebra imposes constraints on the pa- n i meon s
rametersy;;'s. Taking the complex conjugation of E(B7), A= Zmnstmndd1U2(U3C)”,
we find g;==*1. Equation(B7) and the transpose of Eq. then
(B5) imply that q,3=*1. RescalingU, can give(q,;=1.
The U-algebra is therefore parametrized by a phage A=S i OnmKs
=0, Oi3=*1 andgz=*+1. Forq=0;3=03=1 we get i~ Zmns¥mns2H1 B
the same algebra as ji8,19. where
The Hilbert space isH={UTU5(U3C)%)|m,neZ,s
=0,1. Defined; ,K ande by U,=q %2U,;, U,=q"U.,.
#UTTUT?(U5C)%) =mUTUT2(U,C)S), (B8 similarly,
|
XjUT"U2UC) = U MU Z2U5Cl2mmiR; + (— 1)'Ai(U3, U, Ug) 1)
=[27R 3+ (—1)'Af (a0, 1, U, K)JUTUS2U ). (812
|
Therefore we get [4,26]. A similar construction was used for rewriting the
standard model as a gauge theory on a noncommutative

space 26].

The algebra on th&, factor of dual space can be repre-
sented by Pauli matrices. For instankes 7, and e= 75 for
gz=1. From Eq.(B13), X;=—i27R; d/do; + Ai(01,07),
where

1 -
Xi:27TRi(9i+ EAi(ULUZvK)(lJ’_ 6)

+(—1)i%Bi(Ul,UZ,K)(1—e), (B13)

whereB;(oy,05,K) =A* (01— N1z, — 05,K) with U;=e'2, :(Aio (—1)fBi1)
U,=€'"2, and q,5=€"3 (h;3=0,7). The fundamental re- " 1AL (-D)'Bjo

gion on which the gauge field can be freely assigned is a dual - ) ) ]
cylinder: o, €[0,27), o,e[0,7] for qya=1. Forgy=—1 is a Hermitian matrix. Each entry of the<2 matrices is an

it is a dual Klein bottle. NXN matrix. . .
Let A=A o(Uy,0,)+A(U1,0,)K and similarly for The quotient conditions for other coordinates for the com-
i~ MAio\Y1,Y2 i1\~1,%Y2

B;. The Hermiticity of A; implies that pactification on a cylinder ar8,19

(B15)

Al=Aip, Bl=Bjs, Al=(-1)qsB;;. (B14 UlAUi=Ag, UlAU;=—A%, (B16)

Clearly, 9, ,d, are derivatives on the dual space. In fect
can also be viewed as a function @p and e as the deriva- UIXUi=X,, UIXUz=X%, (B17)
tive onZ, in the sense of a noncommutative geome#
Hence the dual quantum space is the product of the dual
cylinder with Z,. Furthermore, the form oK resembles the UiT\IfUi=‘P, U%\I’U3=F01\If*,
covariant derivative on the dual quantum space as defined in (B19)
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wherei=1,2, anda=3,...,9. The Matrix) theory on a cyl-
inder is related to the heterotic string thed®B,19. It is a
gauge theory with the gauge grolx{2N) in the bulk of the
dual cylinder but with the gauge groWp(2N) (q.3=1) or
USp(2N) (gq3= —1) on the boundary18]. One-half of the
dynamical SUSY is preserved.

APPENDIX C: MO BIUS STRIP

The quotient conditions for a Muus strip[14,15 are Eq.
(B1) and

UIX Us=X3, (C1)
UIX,Ug=XF. (C2
The U-algebra is
U U,=qU,U4, (C3
U Usz=0q;3U3U3, (CH
U,Usz=0qp3U3U7, (CH
UsU3 =0sl. (Co)

PHYSICAL REVIEW D 58 026006

The Hilbert space and the operatdrsK, e can be defined
similarly as in the previous section. We get the solution for
X1,X, as

1 .
Xi:2’7TRi(9i+ EAi(UllUZ!K)(1+ E)

+%Bi(01,02,}<><1—e>, (7

where the A’s and B’s are functions of ;,U,)
=(q~%U,q1U,) =(e'"1,e'"2). It is
Ai(—02,—01) =B (01,02), (C8)

where (,j)=(1,2) or (2,1). From Eq9C1), (C2), (C4), and
(C5H), the fundamental region is the dual bias strip and the
compactified Matrix) theory is a field theory on the dual
Mobius strip.

The quotient conditions foA, and X, (a=3,...,9) are
the same as those for a cylinder. Those Yorcan also be
obtained:

ulwvu,=w, (C9

UlWu,=T, ¥*, (C10

Considerations similar to those in the previous sections lead

to qz==*1 and qi3=0Q,3=1. The phasesj;,=qg and g,

= =*1 label two one-parameter families of compactifications.

whereT', =(1/\/2) 'o(I';—T',). One-half of the dynamical
SUSY is preserved.
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