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We discuss the theoretical implications of the lakgd S p(2k) matrix model in zero dimensions. The model
appears as the matrix model of type IIB superstrings on a Ia%&?2 orientifold via the matrix twist
operation. In the small volume limit, the model behaves four dimensionally afiddtsl is a six-dimensional
worldvolume theory of type | superstrings in ten spacetime dimensions. Several theoretical considerations
including the analysis on planar diagrams, the commutativity of the projectors with supersymmetries, and the
cancellation of gauge anomalies are given, providing us with the rationale for the choice of the Lie algebra and
the field content. A few classical solutions are constructed which correspond to Digchlaines and some
fluctuations are evaluated. The particular scaling limit with maErdkuality transformation is discussed which
derives theF theory compactification on an elliptic fiberddB. [S0556-282(198)00214-9

PACS numbdrs): 11.25.Sq, 11.25.Mj

I. INTRODUCTION model introduced in Refl] is recalled. The relationship of
the parts not involving the fields in the fundamental repre-
This paper discusses in depth the theoretical implicationsentation with the type 11B matrix model is given precisely,
of the USp(2k) matrix model in zero dimensions introduced by introducing projectors onto tHgéS p adjoint as well as the
in Ref.[1]. A particular emphasis will be given to the aspectsantisymmetric representation. This is found to be useful in
of the model as a nonperturbative framework to deal withdeveloping the analysis in the remaining sections. The defi-
orientifold compactification. nition of the model appears to be rattae hocat first. In the
Gauge fields and strings have governed our thoughts onsubsequent three sections, we will show that our model
unified theory of all forces including gravity and constituentspasses in fact several stringent criteria which the latge
for more than two decades. One of our current theoreticaleduced model of orientifold must satisfy. We will be able to
endeavors is, it seems, to take gauge fields as dynamicptovide the rationales for our choice of the Lie algebsp,
variables of noncommuting matrix coordinate to con-  for the choice of the number of the noncommuting coordi-
struct string theory from matrices. This approach strives tanates belonging to the adjoint representation and that to the
overcome some of the difficulties of the first quantized su-antisymmetric representation, and finally for the number of
perstring theory, which have led to an inevitable impassemultiplets needed, denoted lny, belonging to the funda-
one may list, among other things, the existence of infinitelymental representation.
degenerate perturbative vacua, the problem of supermoduli, The most basic notion of the lardereduced models is
etc. The one-dimensional matrix mod@&l of M theory[4]  that the dense set of Feynman diagrams in the larGmit
has obtained success on the agreement of the spectrum afedms the string worldshedtl6]. This is not limited to a
other properties with the low energy eleven-dimensional sueombinatorial equivalence. The reduced2k) Yang-Mills
pergravity theory while the zero-dimensional modlg] of = model goes to the string action in the Schild gauge. The Lie
type IIB superstrings lays its basis on the correspondencalgebrau(2k) becomes isomorphic to the area preserving
[6—8,5 with the first quantized action of the Schild type diffeomorphisms on a sphere. In Sec. Ill, we begin with
gauge[9] and appears to be numerically accessible. We willshowing how this fact is extended to nonorientable strings.
often refer to the latter case as the reduced model. See Refdle examine the role played by the matFixin largek USp
[10] for some of the references on the subsequent develog~eynman diagrams, ignoring the diagrams coming from the
ments. fields belonging to the fundamental representation. This is
We would like to show that the reduced model presentedtombined with the analysis relatirfg to the worldsheet in-
in this paper descends from the first quantized nonorientableolution in the largek limit, telling us that the surfaces cre-
type | superstring theorjl 1], which is believed to be related ated by the dense set of Feynman diagrams are nonorient-
to heterotic string theory12] by S duality [4,13]. In this  able. The correspondence with the first quantized operator
sense, it is expected that the model is exposed to phenomapproach confirms thaf is a matrix analog of the twist
enological questions of particle physics by the presence obperation. This is strengthened by showing that E319)
gauge bosons, matter fermions, and other properties. Ashanges sign under the matiixduality transformatio17].
pointed out in Ref[1], the model, at the same time, capturesin Sec. IV, we examine the commutativity of the projectors
one of the exact results in string theory, namelyEhitheory  with dynamical as well as kinematical supersymmetry. The
compactification on an elliptic fibered3, which is origi- cases which pass this criterion with eight dynamical and
nally deduced geometricallyl4] from the SL(2,Z) duality  eight kinematical supercharges are found to be very scarce.
[15]: it is nonetheless exact quantum mechanically. The field content of our model stands as the most natural
In the next section, the definition of th&Sp(2k) matrix ~ choice. In Sec. V, we discuss the role played by the fields in
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the fundamental representation and the cancellation of gauge is the unit matrix. The raising and lowering of the indices
anomalies. Obviously, these fields create boundaries of thgre done byF=F'l and |:*1:|:ij . The elementX of the

surfaces. usp(2k) Lie algebra satisfying(!F + FX=0 andX'=X can
Combining these analyses in Secs. Ill, IV, and V, wepe represented as

conclude that the model in its original form is the large

reduced model of type IIB superstrings on a laff¥ 22 M N

orientifold. In the other limit, namely the small volume limit X= ( T Mt) (2.3

in which the model behaves as in four-dimensional flat
spacetime, th& duality transformation takes this model into \;ith MT=M and N'=N. It is sometimes convenient to
the six-dimensional worldvolume theory representing type 'adopt the tensor product notation:
superstrings in ten spacetime dimensions. The anomaly can-
cellation of this worldvolume gauge theory in Sec. V selects 1+ o3 1—o3
®M+( )@(—M‘)+a*®N+a®N*,

n¢=16, telling us that this is the matrix counterpart of the X= > >
original Green-Schwarz cancellation leading36X32) type (2.4)
| nonorientable superstrings. ‘

In Sec. VI, we turn to cqnstructing clafssical solutions  here ol, o2, and o® are Pauli matrices, and== (o
which correspond to a D-string and twanti-parallel D- i ;2)5> On the other hand, the elementof the antisym-
strings. A formula fqr the _one-loop gﬁectlve action on a matric representation of thdSp(2k) is
general background is obtained. This is used to evaluate the
potential between two antiparallel D-strings. Evidently, two A B
additional dimensions are not generated in this naive large Y:( t)
limit. These solutions are straightforwardly generalized to cC A
solutions representing afbrane and parallel p-branes, ) . . o .
which we illustrate in the case @f=3 in Sec. VII. In Sec. With B'=—B and C'=—C. The hermiticity condition can
VIII, applying some of the results obtained in Secs. IlI, Iv, P& imposed. In the tensor product notation, E25) be-
and V, we supplement the discussion of Héf.on the con- comes then
nection with theF theory compactification on an elliptic fi-

(2.5

1+¢° -3
beredK 3. ( 5| ®A+ )@A‘+o*®8+a®(—8°°)
Il. DEFINITION OF THE USp(2k) MATRIX MODEL (2.6)
We adopt a notation that the inner product of the two 2 with AT=A andB'=—B.
dimensional vectors; andv; invariant undeilJ Sp(2k) are Let us recall the definition of th&l Sp(2k) matrix model
i in zero dimensions introduced in RgL]. Our zero-
(uv)=uiFl;, (2D dimensional model can be written, by borrowing=1, d
=4 superfield notation in the Wess-Zumino gauge. One sim-
Fii = 0 2.2 ply drops all spacetime dependence of the fields but keeps all
—l 0)° ' Grassmann coordinates as they are

S= Svec+ Sasym+ Sfund '

1 —
Svec= g Tr( f d?0WW, +H.c.+4 f d2ed?eodTe?Vde 2V

1 — ~ ~ V2 ~
Sasymz? f d02d02[T*”(ezv(asym)ijk'TH-l—T”(eZv(asym)ijk'Tm-l—?[fd@zT”((I)(asym)ijk'TH-l— H.C.],

1 X — . ~ ~ ~ -
Stund= 7 Zl [J dzedza[Q?fl)(ezv)ijQ(f )i+ Qs )(e_zv)iJQ?f )j]+: f d?0(met Qs ) Qe i +v2Q1 ) ()i Q¢ )j)+H-C-}
2.7

The chiral superfields introduced above are

1
W,=-3 DDe 2VD_e?V, d=d+v20y+ 06F, (2.9
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Qi=Qi+\/§6)¢Qi+ 00FQi! Tij=Tij+\/§0¢Tij+00FTij, (29)
while
Jd — J
D,=—, Do=——, (2.10
a0“ a6«
V=—0Um6’vm+|000)\—|6’00)\+§ 06606D. (2.1)

We represent the antisymmetric tensor superfigjdas

(2.12

(A

with B'= —B, C'=—C. We defineY similarly.
In terms of components, the action reads, with indices suppressed,

Svec= 12 TH(— 20 mp ™= [ Dy, @[ D™, D]~ iIN ™[ Dy N~ i 0™ [ Dy, 4] — iVI[N, ] DT —iVZ[ N, ] D)

1 (1 ¢
+?Tr EDD—D[cI>T,<I>]+Fq,l:q, , (2.13

1 - -
Sasyni= gz { = (D) * (DT) —ipr 0™ Dy + VAT NEI D~ iv2ymh 0T
— (D) (D"T)* — i Y50 Dytfis — IVIT* Nyt /2 g\ @YMT
Z(CD asyrr)T* )(d) asyn)T) 2(Tq)(asym)(T* q)(aSym) ‘/2( w?w(asyn)T_FAT'lp(asym ¢T+ (ﬂ?q)(asyn) ’pT)
— VAP ST T YA Yt ey )

+VITFEYMT +v2T* Fy@YMT* 4 TD(BYMT 4 T* plasymT* ), (2.19

Stung= T [ (DmQ(t ))*(D™Q(s y) — iZQ(f Yo" Dbt ) +1V2Q[ N o )_i‘/iaQu );Qa )]

g
1 - - - - .
& [ = (DmQt V(D™Qqs )* =190t )0 ™" Prnthdy(1 )~ 1V2Qqr N b1 ) +1V245(1 ANQf )]

+

1 - — _
2 Q) DQ(f)+Q(f)DQ(f) 2 {—(m¢))? (Qf )Qf)+Qf)Q(f ) =M (P ) Yoo ) T Pambam)

—v2Zm(Qf ,2'Q( )+ Qi1 2 TQf, + Q| @ Qs )+ Q1 Qs ) —2Qf \ @ TPQ ¢, —2Q(1 )@ TPQf

—V2(W Qi)+ Que W )+ Wit P e ) —V2(gir ¥R+ Qf W+ o @)

+V2Q(1 FoQur )+ V2ZQ FLQf ) (2.15
where
Nt
DiJ:[(DT’q)]‘J+Zl (QFY)Qur i+ Q(r)Qf )i)+2T*]kai+2TJkT:i, (2.16
f
_21 (V2QY\Qfy ) — VAT T, (2.17

026002-3



H. ITOYAMA AND A. TOKURA

Here Dy, =iv, with vy, in appropriate representationBasym),
tation.
Let us now find a relationship @,ect+ Sasymin Eq. (2.7) with

PHYSICAL REVIEW D 58 026002

@™ and F Y™ are the fields in antisymmetric represen-

the reduced action of the four-dimensioé=4 supersym-

metric Yang-Mills theory written again in terms of superfields. This latter action in turn is related in the component form to
the reduced action of the ten-dimensionak 1 Yang-Mills theory, which is nothing but the type IIB matrix mod8l.

First note thatS e+ Syeymin Eq. (2.7) is written as

1
Stect SasymE Sadj+asym: 4_92 Tr

1 —
2pA2 ik .
* A TrUd 6d29€ K[ @,

where we have introduced the notation

D,=P, D,=Y, d=Y. (2.19

The form of Eq.(2.18 is nothing but the reduced action of
d=4, N=4 super Yang-Mills theory, which we denote by

S\
(2.20

It is expedient to introduce the projector acting d(2k)
matrices:

_ cd=4
Saderasym_S =4

Z)I-E%(-IF’UF). (2.21)

The action ofp_ and that ofp, take anyU(2k) matrix into
the matrix lying in the adjoint representation 0OfS p(2k)

and that in the antisymmetric representation, respectively.

We can therefore write

V:IS—\_/! (I)l:ﬁ—(Pli (Di:ﬁ-%—q)il i:213!

(2.22

where the symbols with underlines lie in the adjoint repre-

sentation ofU (2k).

We now invoke the well-known fact that the action af
=4, N=4 super Yang-Mills theory can be obtained from the
dimensional reduction ofi=10, =1 super Yang-Mills
theory down to four dimensiornd.8]. This is stated as

S Wm @M 8D ) = ST Ry ),

|

1_—
—qurM[z_JM,\y]).

_ 1
SV H(um W= Tr

=

7 [omoondle™ o™

(2.23

Here

1 .
q)i:E(U3+i+|U6+i),

f d2oWew,, + H.c.+4f d26d26d eV, e~ 2V

[ P; ,(I)k]]+H.C.), (2.18

and

W = (N,0.401,0,02,0,3,0,00,0,1,0,002,0.403)", (2.24)

which is a 32-component Majorana-Weyl spinor satisfying

CUl=W, I, V=V (2.29
With regard to Eqs(2.24) and (2.25, the same is true for
objects with underlines. The ten-dimensional gamma matri-
ces have been denoted BY'. We will not spell out their
explicit form which is determined from Eq€2.23 and
(2.24.

What we have established through the argument above are
summarized as the following formulas useful in later sec-
tions:

(2.26

d=10,~ ~
Sadj+asym: Syv=1(ppzum,pi=V),

where p,~ is a matrix with Lorentz indices ang;- is a
matrix with spinor indices:

E)bizdiagﬁf 157 1;)7 1;)7 12)7 1;7+ 1ﬁ+ 1277 1;7+ 1.5+)1

1z

prz=p-L4®

0

+p+lg® (2.2

1z

The notable properties of the model discussefilinare,
among other things(1l) it possesses eight dynamical and
eight kinematical supersymmetries, af®) translations in
six out of ten directions are broken. We will discuss impli-
cations of these in subsequent sections.

026002-4



USp(2k) MATRIX MODEL: NONPERTURBATIVE . . . PHYSICAL REVIEW D 58 026002

-
<«

Y A

>
>

< —
FIG. 1. Propagator. >
Ill. USp(2k) PLANAR DIAGRAMS, MATRIX TWIST ’l A4
AND MATRIX T DUAL
We now discusdJSp(2k) planar diagrams to see how FIG. 2. Three point vertex and four point vertex.

they create nonorientable surfaces approximated by the
dense set of Feynman diagrams. We set aside the fields lyirsprface swept by a string is formed by the dense set of Feyn-
in the fundamental representation in this section. We ignorgnan diagrams. To render this more tangible and more than a
fermions as well. It is well known that the largeexpansion combinatorial argument, we note that, via the Schild gauge
of ordinary U(2k) pure Yang-Mills theory in arbitrary di- correspondence, the algebra acting on the functions on the
mensions is a topologicalgenus expansion of the two- string world sheet must be isomorphic to the lakgiémit of
dimensional(discretized surfaces created by the Feynman the appropriate Lie algebra acting on matrices. For this, it is
diagrams[16]. It is simple to see how this is modified by enough to adopt the argument of Pope and Ronia8kon
USp(2k) Feynman diagrams where some of them are in therea-preserving diffeomorphisms @P? and the largek
adjoint while the others are in the nonadjoiantisymmet- limit of the usp(2k) Lie algebra in the present context. Con-
ric). sider first the sphere parametrized by three coordingtes

Recall that the propagator in thé(2k) gauge theory is  i=1,2,3 such thax'x'=1. The complete set of functions on

_ , the sphere is the spherical harmonics represented by
<1_)m FUn i]>: 8,°6) 6mnD =Fig. 1. (3.1

Y(p)(Xi):ai e Xil' “Xip, (35)
From now on we ignore thB function as its dependence on e
the arguments is irrelevant to the present discussion. Thgherea; . i, are totally symmetric and traceless constants.

three and four point vertices are depicted in Fig. 2. The al ebra of area preserving diffeomorphisms is defined
Let G be aU(2k) Feynman diagram. Its dependence onby a brgacket of two fu%ctlons\(f) andB(x )p
g? and onk denoted byr (@) is known to be

r(g):(gzk)g_vkx’ {A,B}E 6iij|(9jA(9kB. (36)

WhenA=Y™ B=Y a finite sum of irreducible polyno-

X=F—&+V=2-2H, 32 mials Y, [m—n|<p=m+n—1 is generated. This alge-
braic structure is obtained by the largdimit of the su(2k)

where& is the number of external lines i@, which is also Lie algebra in the form of maximaiu(2) embeddings:

the number of edges of the surface, whilés the number of
three and four point vertices i@ and is on the surface. The AP =g . SiL..Sip
number of faces or index loops and the number of holes of ER ’
the surface are denoted Wyand by, respectively.

In USp Feynman diagrams, E¢3.1) is modified to p=1~k-1. 37

Here,3' are thesu(2) generators in thekzdimensional rep-
resentation. On the other hanBP? geometry is obtained

from the sphere by the antipodal identificatidr- —x', un-
der which the harmonics splits into even and odd ones. Only

2k2+k

(vm S )= agl (), 5(t%);) S

=(p=),% dun the odd ones are responsible for forming the algebra of area-
preserving diffeomorphism oRP?: this is clear from Eq.
=Fig. 3. (3.3 (3.6). We see that the diffeomorphismsRP? are generated
by the largek limit of the generators
Here we have treated the adjoint and nonadjoint cases col- , ,
lectively. Similarly, letG be aUSp Feynman diagram. As A<2p_1)=ai1mizp_12'l'"2'2"*1,

the propagator contains the second term which reduces the
number of index loops by one(G) depends upon how many p=12,...k (3.9

times double lines representing propagators cross. Clearly
As shown by Pope and Romans, the algebra formed by Eq.

r(G)=r(gG;c)=(g?k)*kx¢, (3.4 (3.9 is the Lie algebrausp. This concludes that the dia-
wherec denotes the number of crossings. > ~
We still need to show that denotes the number of cross . + __/\
caps and not the number of boundaries. Let us recall that, D
according to the present point of view, the two-dimensional FIG. 3. Propagator itJ Sp(2k).
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grams generated from the propagdieg. (3.3 ] and the ver-  The solution in the Fourier transformed space is
tices contairR P?. The theory we are constructing via matri-
ces is the reduced model of nonorientable strings.

To extend the above argument to higher genera with
crosscaps, let us note that the role of the makixan be

- J .
(X|o)|X"y= —i(&ﬁ—iu,(i)) sH(x=x"), (3.19

seen by the correspondence with the twist operation in the i3
operator formalism of the first quantized string. Ten of the 71(%) = 2 5|(I2)ex _'~ X
noncommuting coordinatesy, , which are dynamical vari- Kozt ’

ables, satisfy

vi=—FuF % ie{{0.1.234=M_, REa'/R (3.10
The matrix T dual is nothing but the Fourier transform: it
interchanges the radius parame®setting the period of the

Thewy, are noncommuting counterparts of the ten string co0riginal matrix index with the dual radiug, which is the
ordinatesX,, . That this is more than just an analogy is C|earper|oc.i of the space Fourier conjugate to the matrix index. Let
as the limit exists from our action to the string action of theUs Write

Schild type gauge. Taking the transpose is interpreted as flip- - .

ping the direction of an arrow drawn on a string. The opera- TL(wDap]=(Xlv/[X"). (3.17

tion F is the matrix analog of the twist operatfof). The
classical counterpart of E43.9) is therefore

vi=Fu,F ! 1e{{56,89}=M,. (3.9

Multiply Eqg. (3.9 written in the bracket notation

Xz = m 0205, 1M (il =+3 (alFIB)NGIacelF d) (@18
b,¢

X(z2,2)=0X,(z,2)Q7 1, leM,.
(310 by (X|&)(d|X")=(a|X)*(x'|d)*. Sum overa andd. From
The presence of four-dimensional fixed surfagasentifold ~ the left-hand side, we obtain
surfaces03s) becomes clear from this equati¢®.10. We
conclude that our model is a matrix model on a large volume
T®/Z2 orientifold. This is consistent with the fact that the
translations in six out of ten directions are broken.

The T duality transformation plays an interesting role in We find
matrix models as it relates worldvolume theories of various

o d o
—IW—M(—X,)

DX —X). (3.19

dimensions via Fourier transforms. We will now find how ~ . +'T'[F]'i’[v|]'i'[F‘1] if leM_,
the matrixT dual behaves undét. First, let us impose pe- YT TR0 TIF Y if leM, (3.20
riodicities with period 2rR for L out of the ten coordinates.
Recall that provided
YE:l\— X 1=Xir— X, 3.1 ~ " ~
| [ I] IR IL ( :D v|(—X )=—U|(X ) (3_21)

+OT[X1(z2)0 Lot leM, It is satisfying to see that the sign change of 120 from
—OT[X1(z,2Q ! if leM,. Eq. (3.9 under the matrixT dual is in accordance with the
(3.12  sign change of Eq3.12 from Eq. (3.10.

One can now imagine imposing periodicities with periods
depending on the directions and letting some of the radii
zero. TheT duality provides worldvolume gauge theories in
various dimensions. We will discuss a few cases later.

T[X1(z.2)=

To impose periodicities on infinite size matrices, we
decomposey; into blocks of nXn matrices. Specify each
individual block by anL-dimensional row vecto@ and an
L-dimensional column vectds: (v))z 5= /a'(d|0||B). Let

the shift vector be IV. USp PROJECTOR AND SUPERSYMMETRY

V) - — We will now derive a set of conditions under which the
U(i))ap= Sa b | Oa b 1. 3.1 | now ; :
Ui)sb (J(l;ln aj’bj) 3 b+l 313 projectorspy+ , pss, Which act respectively ony, andV,
- . . and dynamicab'") as well as kinematica¥'®) supersymme-
The condition to be imposed is try commute. Our choice fqs,~ and that forp;~ emerge as
. - the case which passes the tight constraint of having eight
1., . ’
U(i)oU (i)~ =v= 6, RIa’. (3.149 dynamical and eight kinematical supersymmetries. Let us
start with
n the context of Ref[3], see Ref[20]. sVyy=iel'y?, (4.1
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(4.2
5?yy=0 4.3
Pw=¢ (4.4)
Let us write generically
VM= 5MNIA)Q¥QN )
W p=Spept2 V.- (4.9

The condition[py- ,5"Juyy=0 together with Eq.(4.1)
gives

32
A; (L)Y — Py Wa=0, (4.6)
with index M not summed. The condition

M_UM.={{0,1,2,3,4,5,6,7,899, M_NM.=¢,

A_UA,={{1,2,5,6,9,10,13,14,19,20,23,24,27,28 31132 A_NA, = ¢.

We find that Eq.(4.6) gives

(?FM,)M:(?FMJ/L:O, (4.13
while Eqg. (4.9 gives

(IM-N-e),_=0,
- (4.14

(PM-N-g), =(TMNee), =0,
Equation(4.9) gives

£ =0. (4.15

PHYSICAL REVIEW D 58 026002

[ﬁfi ’5(1)]?|UM~>;}bIQM:0 (47)
together with Eq(4.2) provides
(1-pE)[pprom PEYunN](TMNe)a=0. (4.8

The restriction at Eqi4.7) comes from the fact that E¢.2)
is true only on shell. Equatiofd.3) does not give us any-
thing new while[ p;+ ,8®]¥=0 with Eq. (4.4) gives

Eal=EapiR1,

with index A not summed.
In order to proceed further, we rewrite E¢.5) explicitly
as

4.9

prr=0(MeM_)p_+OMeM,)p,, .10
;’(fA:)E(AEA—)/AJ—+®(AEA+)E’+ )

where

(4.1
4.12

(i) CalculateXA(el'y,)a(€l'y )a- If this value is non-

zero, then both indicedl; and M, belong to eithetM _ or
M . We can, therefore, dividd1_U M into two sets.

(iii) From Eq.(4.14 we see that if [M-N*€),#0, then
AcA,. If (TM-N"g),#0 or M+N*¢),#0, then A
e A_ . Use the results ofi) and (ii) to determine4_ and
A, . We must then check ift(A_)=8, #(A,)=8 and
A_NA,=¢. If these are not satisfied, our original inpat
is not a solution.

(iv) From Eq.(4.13 we see that if éI"y, ),#0 thenA

e A_, and if (eI'M+),#0 thenAe A, . DetermineA_ and
A, . If A_ and. A, determined this way are consistent with
the result from(iii ), we obtain a solution to Eq$4.13 and

As we consider the case of eight kinematical supersymme4.14. This also determines1_ and M, as we have two

tries, the number of elements of the sets denoted @¥-.)
must be

#(A_)=8 and#(A;)=8. (4.16

Equations(4.13 and (4.14) are regarded as the ones

ways of choosing them frortii).
We have tried out many cases, some of which we will
describe. The case leading to our model is

E:(EO!0561vololoyoxoacg(]voaaoyouoaot' (417)

which determine the anticommut-ir)g parameteand the sets  Note thateg, €;, €y ande, are two-component anticommut-
Ay Ao, My, andM_ . In addition they must satisfy the ing parameters. From stefii), we seeM_UM, are di-

conditions(4.11), (4.12, and(4.16).

We search for solutions by first trying out as an input an
appropriate 32-component anticommuting parameteatis-

fying the Majorana-Weyl condition.

Given ¢, we see if we can determiné, , A_, M., and

M _ successfully. Our strategy is as follows.
(i) Calculate €I'™), and CMNe), for all M, N, andA.

vided into two sets:
{{0,1,2,3,4,7} and {{5,6,8,9}. (4.18

From step(iii ), we find

A_={{1,2,5,6,19,20,23,24,
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A;={{9,10,13,14,27,28,31,3p

(4.19
From step(iv), we obtain
M_={{0,1,2,3,4,7},
M, ={{5,6,8,9}. (4.20

We conclude that
ﬁbizdiagi)f 1137 1’37 ,Z), 1137 !’AJJr 1;)+ 1;)7 !;)Jr 1;)+)l

1z

1o

+p4 1)@ (4.20)

12

which are the projectors of our model.
Among other cases, we have tried the following one:

€=(€0,0,61,0,65,0,65,0,0€0,0,61,0,65,0,63)".  (4.22
From step(ii), we obtain
{{0,1,2,3,4,7} and {{5,6,8,9}. (4.23
We find thatA_ and.A, determined from stefiii) do not
satisfyA_NA, = ¢.
We have examined the following cas@sd their permu-
tationg as well with no success:
€=(€,0,61,0,65,0,63,0,0,— €¢,0,— €1,0,— €5,0,— 63)t,
€=(€0,0,€1,0,0,0¢3,0,0£0,0,€1,0,0,0¢3)",
€=(€0,0,61,0,0,0¢3,0,0€0,0,61,0,0,0— €3), (4.24
6:(6010161101010531050;0!01_615010105_63)t1

6=(60,0,61,0,O,Ofl,O,OE,,OE,O,O,O?l)t.

PHYSICAL REVIEW D 58 026002

are obtained from ste$), (ii), (i), and(iv). The projectors
(4.10 are

ﬁbizdiaQﬁﬁ— !ﬁ+ iﬁ+ !;)-%— lﬁ— iﬁ-%— !i)-%— !ﬁ— iﬁ-%— !;)-%—)1

0

(4.28

This is the case considered in Rdf20,21] in the context
of M theory compactification to the lightcone heterotic
strings[with €, €1, €, ande; in Eq. (4.25 all real].

V. THE ROLE OF THE FUNDAMENTAL
REPRESENTATION AND ANOMALY CANCELLATION
OF WORLDVOLUME THEORY

So far, we have ignored the fields in the fundamental
representation. These fields do not contribute to the diagrams
in spherical topology. They are irrelevant to the questions
concerning the spacetime coordinates. They create, however,
disk diagrams and higher genera with boundaries and are
responsible for creating an open string sector. This is in fact
required, as nonorientable closed strings by themselves are
not consistent. It is well known that the simplest way to
establish the consistency is through flgéobal cancellation
of dilaton tadpoles between disk and Ritagramg[22,23,
leading to theSQ(32) Chan-Paton factor. This survives tor-
oidal compactifications with or without discrete projection
[24]. It should be that the sum of an infinite set of diagrams
of the matrix model contributing to the disk/RBeometry
yields the string partition function of the disk/REliagram.

The Chan-Paton trace at the boundary corresponds to the
trace with respect to the flavor index. Thegshould therefore
be fixed by the tadpole cancellation. The flavor symmetry of

There iS, hOWeVer, another solution which we have foundthe model is the local gauge Symmetry of Strings_

Let
e=(€0,0,,,0,0,0,0,0,0,0,0,0,8;,0,€5)". (4.2
The consistent sets
_={{1,2,5,6,27,28,31,32,
A=Y 3 .26
A, =1{{9,10,13,14,19,20,23,24
_={{47,
M_={{47) 27

M, ={{0,1,2,3,5,6,89,

The lack of the combinatorial argument and the absence
of the vertex operator construction at this moment, however,
prevent us from proceeding to such calculations via matrices.
Instead, we will examine gauge anomalies of worldvolume
theories by taking th& dual and subsequently the zero vol-
ume limit of T% 22, In particular, let us do this for all six
adjoint directions. The resulting theory is the six-
dimensional worldvolume gauge theory obeying E821)
with matter in the antisymmetric and fundamental represen-
tation. This is the type | superstrings in ten spacetime dimen-
sions. This case is also the first nontrivial case of getting a
potentially anomalous theory. In fact, by acting
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T 6 =T°Tr2rerer? (5.1) VI. ONE-LOOP EFFECTIVE ACTION
AND D-STRING SOLUTIONS
on ¥, we see that the adjoint fermionsand ¢; have chiral-
ity plus while ¢, 3 have chirality minus. The fermions in the
fundamental representation have chirality minus. The stan- In this subsection, we will establish a formula for the
dard technology to compute non-Abelian anomalies is proone-loop effective action of the/Sp matrix model on a ge-
vided by the fam”y’s index theorem and the descent equanerlc bosonic baCkgrOUn?dLet us first find One-lOOp fluctua-

tions [11,25. We find that the condition for the anomaly tions on a gen_eric classical solution of the&S p(2k) matrix
model. We write

A. One-loop effective action

cancellation
g4 — gy 4 — NgtrF Um=Pmtdan, (M=0~3), N=xot+09d¢y, .
— (2k+ 8)trE4 + 3(1rF?)2 vi=ptga, (1=4~9), ¢=xi+g9¢, (i=1~3)
~[(2K~B)trF+ 3(rF?)2] - nrF? motion T br S o i the gauge mvatiance we add the ghost
— (16-n)trE=0, (5.2 and the gauge fixing term
where we have indicated the traces in the respective repre- nggh:% Tr([pm.a"1?=[p".bl[pk.c]), (6.2

sentations. The case =16 is selected by the consistency of

the theory. In the case discussed in E28), we conclude wherec andb are, respectively, the ghosts and the antighosts
from similar calculations that the anomaly cancellation of thelying in the adjoint representation &fSp(2k). Denote by
worldvolume two-dimensional gauge theory selects 16 comS(?) the part iNS,qj+asym Which is quadratic ira and ¢. The
plex fermions. one-loop effective actioVyne.joopiS

Wone-loop= 1 Iogf[dam][dal][d¢0][d$0][d¢i][d$i][dc][db]exq—is(z)+ngfgh]- (6.3

Instead of resorting to the direct Gaussian integrations of the expression above, let us U&2Bgand (2.27).
In the same way as E@6.1), we decompose,, and ¥ into the backgrounds and the quantum fluctuations. Let us denote
the fluctuations by (" and¥(") . Then from Eq.(2.26 we have

S =817 @i o M), (6.9

whereSi= % A (py-u{V, o= ¥ is the part in the action af=10, N'=1 super Yang-Mills theory which is quadratic in the
fluctuations. As the variables are explicitly projected either dn®p(2k) adjoint or onto antisymmetric matrices, we can
safely replace the integration measure by that ofufk) Lie algebra valued matrices. We obtain

Wone io05= —1 109 f [do I dw ™I dcl[dblexdiSh=Y @ (pp=o ) o=V ™) +iSyign(p-b,p-C)]

1 . 1 . (14T P
= 5 l0g detOppyz) — 5 log de{Orpez| —— | |~ log detPPp_), (6.9

where
Ol';AL:_‘SLMﬁ)Kﬁ)K+2iIELM: Of:_rMﬁ)M, (6.6)

2The solutions we will construct in the next subsection and in Sec. VII are relevant only in thexIkngie We will, therefore, ignore the
fields lying in the fundamental representation.
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lE’K'Z[pKa']y 'EKL':i[[pKvpL]v']-

In obtaining Eq(6.6), we have set all fermionic backgrou

Xo and y; to zero. As a consequence, the one-loop effective

action on a generic bosonic background is givef by

(6.7

nds

6 4 o
Wone-toop=| 57~ 5~ 1)Tr log(PP"p_)
+|5- E)Tr log(P«PKp ) +Wp+W;, (6.8
|
0O -B, 0 0 O
B, 0 0 0 O
0O 0 0 -B, O
o 0 B, 0 0
. 0O 0 0 0 0
Fn™l 9 0 0 o0 o
0O 0 0 0 0
0O 0 0 0 B,
0O 0 0 0 0
o 0 0 0

When the classical configuration is BPS saturafé,qN=0
andWne.ioop Vanishes.

B. D-string solution

Let us construct a few particular classical bosonic solu-
tions of the model. We set the fields lying in the fundamental

representation of) Sp(2k) to zero. The equation of moti
is

[pn.[PM,pN]]=0. (6.12

There are three cases of solutions representing a D-

configuration, depending upon which two directions

on

stri

worldsheet extends to infinity. When both of the directions
are the adjoint directions, say, andv,, the nonvanishing

components are

3

2

1+0°
2

p(): QXX+

)®(—XU.
(6.13

3The calculation in what follows parallels those of Rdf526].
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1 4 A oa
Wp=-Trlo 5M+7FNFMA;,
b= 9| o (P PX)2 L PN | Po
(6.9
sz—lTr log| | 1+ ——=— TMNF,,
4 2P PX
XPf:( > . (6.10

We put the matri>dEMN into the following form with respect
to the Lorentz indices:

0 0 0 0 O
o 0 0 0 0
o 0 0 0 0
o 0 0 0 0
0 0 -B; 0 O
0O 0 0 -B, O ©-19
0O 0 0 0 -Bg
0 0 0 0 0
B, 0 O 0 0
0B, 0 0 0
[
p1= 1+203 @ m+ _203)09(—711).

When both are in the antisymmetric directions, sayand
vg, the nonvanishing components are

1+ 02 1-¢o° ‘
p5= 2 QX+ 2 R X,
(6.19
1+0° 1-¢°
Pe=|—5—|@mt|— ® .

When one is in the adjoint direction, say, and the other is

N the antisymmetric direction, sayg,

the
1+ o3 —g°
Po=|— X+ 5 ®(—xY,
(6.15
1+0° 1-g°
pe=|——|@mt| — )®77t.

In above expressiong,and s are infinite size matrices with
the commutatof ar,x]= —i.

Let us now turn to the solutions representing two parallel
D-strings and two antiparallel D-strings. We will illustrate
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this by the most interesting case that the two D strings ar&Ve will evaluate théW, and theW; in the case of the two

extended in the two directionss andvg) of antisymmetric
representations separated @yin the v, direction which is
the adjoint direction. The nonvanishing components are

1+o° x 0 1-¢° xt 0
=127 /%0 «/ T2 %0 x)
1+o° @7 0 1-¢° @ 0
P~ )% 0 &/ "\ T2 )% 0 )
(6.16
1+0° —-d/i2 0 1-¢°
= —_— _l’_ P
Pa=| 0 dr 2
d/2 0
“lo —dr)
for two parallel D-strings, and
1+¢° x 0 1-o° xt 0
=172 %0 «/ T2 %o x)
1+0 @ O 1-o° o 0
Ps 2 ® 0 —m - 2 ® 0o -4
(6.17
1+o0 —-d/i2 0 1—03) d/2 0
= —_— + P
Pa=l 2% 0 ar 2 )% 0 —dr)

for two antiparallel D-strings.

C. Force between antiparallel D-strings

We would like to determine the scale of our spacetime
given by the model. This can be done by computing the force

antiparallel D-strings separated by distartbewhich have
been constructed in the preceding subsection. We compute
the force exerting with each other. From Kf.17) we have
PO=pl=p2=p3=pb=p’=p°=0, B,=B,=B;3=Bs=0,

P«PX=(P%2+ (P%)2+(P8)2, P4=(d/2)B, and, after some
algebra, we obtain

[P* P8]=0.
(6.18

[P5,P8]=—iB,, [P*P5]=0,

When we take trace with Lorentz indices in £§.9) and
with spinor indices in Eq(6.10), we arrive at the following
expressions:

1
Wb:E Tr -, (6.19

| (1 4B,B, .
(0] — ==
)’

Wf:_Tr

1 A A
Iog( 1- (I’:\)T B4B4>

+log| 1— (6.20

1 ...
WBB)

In the Appendix, the eigenvalues 8B,, their degenera-
cies and the eigenmatrices are determined. We compile the
results in Table | for the antisymmetric eigenmatrices and in
Table Il for the adjoint eigenmatrice€See tables in the Ap-
pendix)

Using these tables, we obtain

mediating two classical objects which are by themselves a

non-Bogomoln'yi-Prasad-SommerfielPS configuration.

k
Wone-loop: - E log (Z

This potential provides the asymptotic behavior of the force

d?\ =4 d¥/4+1/2
d?/4—1/2 d?
r

k & 16
b=1 —— |, 6.2
2 2 ( (d2+4n+2)? .21
W= —2k log| 1-———— 6.2
f ngo g( (d2+4n+2)2 6.2
Putting all these together, we find
d 1)\8
ri—+-
4 2 k(8 o
=——1—=+0(d" 6.2
51 g6 (d=");. (6.23

4

VIl. CONSTRUCTION OF D3-BRANE SOLUTIONS

mediating two antiparallel D-strings. From this we conclude
that the dimension of spacetime is ten at least in this naive It is not difficult to extend the construction of the D-string

largek limit.

solutions in the previous section to genergd-Brane solu-
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tions. We will illustrate this by a D3-brane, two parallel D3- - . ,
branes and multiple D3-branes which are parallel to one anHe,rG2 we must take the limit ck—c with V,/k fixed to
other. (al\)lo. let us calculate the value of the action. We have

Let us first consider a D3-brane solution. When the world- wietu u vald on. v
volume extends iws, vg, ve, andvg directions, the nonva-

nishing components are given by
[p°.p8l=0’0ia’l,, [p%p°l=c®®ia’l,. (7.3

1+ o3 1-¢° ¢

pPs= 2 ®X,+ > ®X7,
. . When we substitute these into the action,

1+o 1-0

Ps > )®771+ > ®7Tt1,
(7.2

1+0° 1-o° S= —21—2 2 [p%,p®1[ps.Ps]+ : [p%,p°1[Ps.Po]

Pe=| 2| ®%T| 732 )®th7 g%(a’)? |2 PP LPs:PalT 5 LR P L P,
1

1+¢0° 1-o3 ~ 57 Va= T3 prand/a- (7.9

Po= —2 Q1+ ®1Tt2. 9%(a’)

It is straightforward to check that this configuration satisfiesHereg? is regarded as string coupling,. This is consistent
the equation of motion. In the above expression,x,, 7;  with the D-brane action which is given by the tension times
and m, are operatorginfinite matrice$ with the commuta- the volume of the D-brane. Therefore it is appropriate to
tors think of the above solution as a D3-brane solution.

Next, take two parallel D3-branes which are separated by

[y ,%,]= | /?4' [1,.%]= —i /?4‘ (7.2 glrsétanced in thewv, direction. The nonvanishing components

1+03 [x. O (1_03) x; 0
= +
Ps=1 727 )% 0 %)\ T2 /%o x)
(1+03) m 0 1—03) @ 0
= +
Ps 2 0 m 2 ® 0 'ﬂ'tl '
(l+o’3) X, 0 1—0'3> X, 0
— + .
P 2 %0 % 2 %o Xy) ' (73
1+0° (772 0 1-¢3, (@ O
+ ® ,
Po=| ™2 0 m 2 0
(1-0—0'3 -d/i2 0 (1—0’3) d/2 0
= +|— .
P27/ 0 a2 2 %o —dp

Finally let us consideN parallel D3-branes which are separated indhendv; directions. We denote the position of the
ith D3-brane byv4=d51') and v7=d(7'). The worldvolume extends in thes, vg, ve anduvg directions. The nonvanishing
components are
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X X
1+o° ' ) 1-o° ‘ .
= .. + ..
Ps 2 ® 2 ® '
X3 Xt
7 775.
1+o° 1-o°
+
Ps >—|® >—|® ,
T T
t
X X
1+o° 2 1-o° ?
Ps 2 ® + 2 ® . '
X X (7.6
t
v v
1+ 03 2 1-o° ?
P9 2 ® + 2 ® ’
k) )
dey —dww
( 1+0° ¢ . N 1-o° ¢
p4_ ® . ® ]
i ap) ~dy"
dv —dw
(1+ 03) ! 1- 03) !
p7 0 + ®
i ap) —a
|
VIll. F THEORY ON AN ELLIPTIC FIBERED K3 B, is defined by saying that the-dependent axion-dilaton

background field of type 1B superstrings @&, x R°~ 2" s

h ficati llintic fibereki3 114.2 the modular parameter of the fib€f as a function ofi. We
theory compactitication on an efliptic fiber [14,27. would like to show that this is in fact the case in our matrix

Our objective here is to demonstrate that the matrix model "?nodel. To provideF theory setup as a reduced model for the
fact derives one of the very few exact results in critical string,;gen = 1, we are going to send the perigdof the four out
theory. While the original construction of Vafa is purely geo- 4¢ the six adjoint directions, vy, v,, vs to zero and to
metrical in nature, our model provides an action principleaie the matrixT dual. The resulting model in the limit of

We will now show that the model is able to describe fhe

and path integrals to the theory compactification. ~ vanishing mass parameters is type IIB on a laFgez? ori-
In Secs. IV, V, and VI, we have seen that our m02d9| is theentifold, namely on CB equipped with sixteen D7-branes.
matrix model of type 1IB superstrings on a lar§é 2° ori-  Coupling starts running as we turn on the mass parameters.

entifold. The coupling constant has no spacetime dependen®llowing Sen[27], we would now like to take the scaling
and is abona fideparameter. One can make the couplinglimit

space-dependent by taking the maffidual in various ways

to go to higher dimensional worldvolume gauge theories as R— o,

we have already discussed in the previous sections. The cou- _

pling constant then starts running with the coordinates label- m;R—finite i=1,~4, (8.2
ling the quantum moduli space, i.e., VEV, which is denoted

by G. This is in accordance with the marginal scalar defor- miﬁ_mc i=5~16,

mation of the original action to a type of nonlineamodel.
The background field appearing through this procedure is aimultaneously taking the matrik dual. The second and the
massless axion-dilaton field. The running coupling constanthird lines of this equation come from the consistency with
is, therefore, identified as the space-dependent axion-dilatahe RR charge counting. The resulting worldvolume theory
background field\ (G). around one of the fou®7’s is thed=4, N=2 supersym-
Let d be the complex coordinates on a complexmetric USp(2k) gauge theory with one massless antisym-
n-dimensional base spa&,. F theory compactification of metric hypermultiplet and four fundamental hypermultiplets
an elliptically fiberedC—Y (n+1) fold M,,.; on the base with massean;. The special properties of this theory valid
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TABLE I. Results for the antisymmetric eigenmatrices. TABLE Il. Results for the adjoint eigenmatrices.
The eigenvalue oB,B, The degeneracy The eigenvalues dB,B, The degeneracy
4 k2—k 4 k2+k
0 k? 0 k?
The eigenvalue oPyPK The degeneracy The eigenvalue oP,PX The degeneracy
d?+4n+2 k d?+4n+2 k

resentations ilJSp(2k). These eigenvalues and their de-

for all k are that it is UV fini nd th I low ener .
orall k are that it Is U te and that at least low energy generacy are needed in order to calculate the one-loop effec-

physics is the same for atl[28]. One can, therefore, deduce tive action
theu dependence of the coupling of the model in the ldtge ' - - .

limit by simply looking at thek=2 case, namely, th8U(2) Suppose _thaF an operat@ has an adjoint action on a
SUSY gauge theory with four flavors. Thedependence of 2kX 2k matrix a:

the coupling\ is supplied by the work of Seiberg-Witten éaz[o al. (A1)
(SW) [29]. The work of Sen[27] shows that the way the '

modular parameter of the bare torus in the massless limit islere o is the ZXx 2k matrix. Let us first consider the case
dressed by the four mass parameters in the SW curve of thiaat the matrixa is given by Eq.(2.6). Note that the operator
massive four flavor case is mathematically identical to thq§4:i[|55,|58] is represented by the matrix,= — o’®0®
description ofF theory in the neighborhood of the constant ® L) -

coupling. One can therefore safely conclude that the cou- i is not difficult to see that the eigenvalues jI§4 are

pling A(u) of the mod_el _is in fact the modular parameter of gither 0 or 4. For the 0 eigenvalue we simply solve
the spectral torus. This is what we wanted to show. B4agggym):0 and the eigenmatrices are

_ 3
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cTeoleA+o ®{—(cleA)*},
APPENDIX ot R0?®A+ 0 ®{—(0?®A,)*}.

In this appendix we will determine the eigenvalues of theSince the k/2)x (k/2) matrices satisfyI—IgB: Hos, Al=

operatorsB,B, and PPy . We consider both cases that the —A; andA,=A,, the degeneracy ik?. As for the eigen-
eigenmatrices are in the adjoint and the antisymmetric repvalue 4, the solution is

1+o° -3
> @(ol®H;+o?®H,)+ 5 ®@(o'®H +0?®@H,)",
1+0° —ad
5 ®(ot@H,— 0?®@H,)+ 5 ®@(ot@H,— 0?®@H,)",

(A3)
(T+®(1(2)®A0+ 0'3®A0)+0'7®(_(l(2)®A0+ 0'3®A0)*),

O'+®(1(2)®A3—0'3®A3)+O'_®(_(1(2)®A3—0'3®A3)*),

and the degeneracy i€ —k because oH],=H;,andAj; +PgP® are simultaneously diagonalized. WheRgP®
=~ Aos +PgP? acts on the eigenstates with eigenvalue BgB,,
_ Let us now calculate the eigenvalues of the operatoive replaceB,B, by its eigenvalue. LeP=P;B,/2v2 and
PxPX=%B,B*+PsP°+PgP8 Clearly B,B, and PsP®°  Q=Pg4/v2. We obtain
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[P,Q]=—i. require the case in which the eigenvalueBoB, is zero.
Similarly, the eigenmatrices lying in the adjoint represen-
o R tation [Eq. (2.4)] can be determined. The difference is the
The eigenvalues dPsP°+ PgP8=2(PP+QQ) are those of off-diagonal degrees of freedom, which change the degen-
the harmonic oscillator and are given by-#42 with integer  eracy of B,B, eigenvalues. The degeneracy of tRgPX
n. The degeneracy iIsfor largek. We summarize the results eigenvalues is the same as in the previous case. Summing up
in Table 1. Our calculation of the effective action does notthe adjoint case, we obtain Table II.
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