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USp„2k… matrix model: Nonperturbative approach to orientifolds
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We discuss the theoretical implications of the largek USp(2k) matrix model in zero dimensions. The model

appears as the matrix model of type IIB superstrings on a largeT6/Z̃2 orientifold via the matrix twist
operation. In the small volume limit, the model behaves four dimensionally and itsT dual is a six-dimensional
worldvolume theory of type I superstrings in ten spacetime dimensions. Several theoretical considerations
including the analysis on planar diagrams, the commutativity of the projectors with supersymmetries, and the
cancellation of gauge anomalies are given, providing us with the rationale for the choice of the Lie algebra and
the field content. A few classical solutions are constructed which correspond to Dirichletp-branes and some
fluctuations are evaluated. The particular scaling limit with matrixT duality transformation is discussed which
derives theF theory compactification on an elliptic fiberedK3. @S0556-2821~98!00214-8#

PACS number~s!: 11.25.Sq, 11.25.Mj
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I. INTRODUCTION

This paper discusses in depth the theoretical implicati
of theUSp(2k) matrix model in zero dimensions introduce
in Ref. @1#. A particular emphasis will be given to the aspec
of the model as a nonperturbative framework to deal w
orientifold compactification.

Gauge fields and strings have governed our thoughts
unified theory of all forces including gravity and constituen
for more than two decades. One of our current theoret
endeavors is, it seems, to take gauge fields as dynam
variables of noncommuting matrix coordinates@2# to con-
struct string theory from matrices. This approach strives
overcome some of the difficulties of the first quantized
perstring theory, which have led to an inevitable impas
one may list, among other things, the existence of infinit
degenerate perturbative vacua, the problem of supermo
etc. The one-dimensional matrix model@3# of M theory @4#
has obtained success on the agreement of the spectrum
other properties with the low energy eleven-dimensional
pergravity theory while the zero-dimensional model@5# of
type IIB superstrings lays its basis on the corresponde
@6–8,5# with the first quantized action of the Schild typ
gauge@9# and appears to be numerically accessible. We w
often refer to the latter case as the reduced model. See R
@10# for some of the references on the subsequent deve
ments.

We would like to show that the reduced model presen
in this paper descends from the first quantized nonorient
type I superstring theory@11#, which is believed to be relate
to heterotic string theory@12# by S duality @4,13#. In this
sense, it is expected that the model is exposed to phen
enological questions of particle physics by the presence
gauge bosons, matter fermions, and other properties.
pointed out in Ref.@1#, the model, at the same time, captur
one of the exact results in string theory, namely theF theory
compactification on an elliptic fiberedK3, which is origi-
nally deduced geometrically@14# from the SL(2,Z) duality
@15#: it is nonetheless exact quantum mechanically.

In the next section, the definition of theUSp(2k) matrix
0556-2821/98/58~2!/026002~15!/$15.00 58 0260
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model introduced in Ref.@1# is recalled. The relationship o
the parts not involving the fields in the fundamental rep
sentation with the type IIB matrix model is given precise
by introducing projectors onto theUSpadjoint as well as the
antisymmetric representation. This is found to be usefu
developing the analysis in the remaining sections. The d
nition of the model appears to be ratherad hocat first. In the
subsequent three sections, we will show that our mo
passes in fact several stringent criteria which the largek
reduced model of orientifold must satisfy. We will be able
provide the rationales for our choice of the Lie algebrausp,
for the choice of the number of the noncommuting coor
nates belonging to the adjoint representation and that to
antisymmetric representation, and finally for the number
multiplets needed, denoted bynf , belonging to the funda-
mental representation.

The most basic notion of the largek reduced models is
that the dense set of Feynman diagrams in the largek limit
forms the string worldsheet@16#. This is not limited to a
combinatorial equivalence. The reducedU(2k) Yang-Mills
model goes to the string action in the Schild gauge. The
algebrau(2k) becomes isomorphic to the area preserv
diffeomorphisms on a sphere. In Sec. III, we begin w
showing how this fact is extended to nonorientable strin
We examine the role played by the matrixF in largek USp
Feynman diagrams, ignoring the diagrams coming from
fields belonging to the fundamental representation. This
combined with the analysis relatingF to the worldsheet in-
volution in the largek limit, telling us that the surfaces cre
ated by the dense set of Feynman diagrams are nonor
able. The correspondence with the first quantized oper
approach confirms thatF is a matrix analog of the twis
operation. This is strengthened by showing that Eq.~3.9!
changes sign under the matrixT duality transformation@17#.
In Sec. IV, we examine the commutativity of the projecto
with dynamical as well as kinematical supersymmetry. T
cases which pass this criterion with eight dynamical a
eight kinematical supercharges are found to be very sca
The field content of our model stands as the most nat
choice. In Sec. V, we discuss the role played by the fields
© 1998 The American Physical Society02-1
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the fundamental representation and the cancellation of ga
anomalies. Obviously, these fields create boundaries of
surfaces.

Combining these analyses in Secs. III, IV, and V, w
conclude that the model in its original form is the largek
reduced model of type IIB superstrings on a largeT6/Z2

orientifold. In the other limit, namely the small volume lim
in which the model behaves as in four-dimensional
spacetime, theT duality transformation takes this model in
the six-dimensional worldvolume theory representing typ
superstrings in ten spacetime dimensions. The anomaly
cellation of this worldvolume gauge theory in Sec. V sele
nf516, telling us that this is the matrix counterpart of t
original Green-Schwarz cancellation leading toSO(32) type
I nonorientable superstrings.

In Sec. VI, we turn to constructing classical solutio
which correspond to a D-string and two~anti-!parallel D-
strings. A formula for the one-loop effective action on
general background is obtained. This is used to evaluate
potential between two antiparallel D-strings. Evidently, tw
additional dimensions are not generated in this naive largk
limit. These solutions are straightforwardly generalized
solutions representing a Dp-brane and parallel Dp-branes,
which we illustrate in the case ofp53 in Sec. VII. In Sec.
VIII, applying some of the results obtained in Secs. III, I
and V, we supplement the discussion of Ref.@1# on the con-
nection with theF theory compactification on an elliptic fi
beredK3.

II. DEFINITION OF THE USp„2k… MATRIX MODEL

We adopt a notation that the inner product of the twok
dimensional vectorsui andv i invariant underUSp(2k) are

^u,v&5uiF
i j v j , ~2.1!

Fi j 5S 0 I k

2I k 0 D . ~2.2!
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I k is the unit matrix. The raising and lowering of the indic
are done byF5Fi j and F215Fi j . The elementX of the
usp(2k) Lie algebra satisfyingXtF1FX50 andX†5X can
be represented as

X5S M N

N* 2MtD ~2.3!

with M†5M and Nt5N. It is sometimes convenient to
adopt the tensor product notation:

X5S 11s3

2 D ^ M1S 12s3

2 D ^ ~2Mt!1s1
^ N1s2

^ N* ,

~2.4!

where s1, s2, and s3 are Pauli matrices, ands6[(s1

6 is2)/2. On the other hand, the elementY of the antisym-
metric representation of theUSp(2k) is

Y5S A B

C AtD ~2.5!

with Bt52B and Ct52C. The hermiticity condition can
be imposed. In the tensor product notation, Eq.~2.5! be-
comes then

S 11s3

2 D ^ A1S 12s3

2 D ^ At1s1
^ B1s2

^ ~2B`!

~2.6!

with A†5A andBt52B.
Let us recall the definition of theUSp(2k) matrix model

in zero dimensions introduced in Ref.@1#. Our zero-
dimensional model can be written, by borrowingN51, d
54 superfield notation in the Wess-Zumino gauge. One s
ply drops all spacetime dependence of the fields but keep
Grassmann coordinates as they are
S[Svec1Sasym1Sfund,

Svec5
1

4g2 TrS E d2uWaWa1H.c.14E d2ud2ūF†e2VFe22VD ,

Sasym5
1

g2 E du2dū2@T* i j ~e2V~asym!! i j
klTkl1T̃i j ~e22V~asym!! i j

klT̃kl* #1
&

g2 H E du2T̃i j ~F~asym!! i j
klTkl1H.c.J ,

Sfund5
1

g2 (
f 51

nf F E d2ud2ū@Q~ f !
* i ~e2V! i

jQ~ f ! j1Q̃~ f !
i ~e22V! i

j Q̃~ f ! j* #1 H E d2u~m~ f !Q̃~ f !
iQ~ f !i1&Q̃~ f !

i~F! i
jQ~ f ! j !1H.c.J G .

~2.7!

The chiral superfields introduced above are

Wa52
1

8
D̄D̄e22VDae2V, F5F1&uc1uuFF , ~2.8!
2-2
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Qi5Qi1&ucQi1uuFQi , Ti j 5Ti j 1&ucTi j1uuFTi j , ~2.9!

while

Da5
]

]ua
, D̄ ȧ52

]

]ūȧ
, ~2.10!

V52usmūvm1 iuuūl̄2 i ū ūul1
1

2
uuūūD. ~2.11!

We represent the antisymmetric tensor superfieldTi j as

Y[~TF! i
j5S A B

C AtD ~2.12!

with Bt52B, Ct52C. We defineỸ similarly.
In terms of components, the action reads, with indices suppressed,

Svec5
1

g2 Tr~2 1
4 vmnv

mn2@Dm ,F#†@Dm,F#2 ilsm@Dm ,l̄#2 i c̄s̄m@Dm ,c#2 i&@l,c#F†2 i&@ l̄,c̄#F!

1
1

g2 TrS 1

2
DD2D@F†,F#1FF

† FFD , ~2.13!

Sasym5
1

g2 $2~DmT!* ~DmT!2 i c̄Ts̄mDmcT1 i&T* l~asym!cT2 i&c̄Tl̄~asym!T

2~DmT̃!~DmT̃!* 2 i c̄ T̃s̄mDmc T̃2 i&T̃* l~asym!c T̃1 i&c̄ T̃l̄~asym!T̃

22~F~asym!
* T* !~F~asym!T!22~ T̃F~asym!!~ T̃* F~asym!

* !2&~c T̃c~asym!T1T̃c~asym!cT1c T̃F~asym!cT!

2&~ c̄Tc̄~asym!T̃* 1T* c̄~asym!c̄ T̃1cTF~asym!
* c̄ T̃!

1&T̃FF
~asym!T1&T̃* FF*

~asym!T* 1T̃D ~asym!T1T̃* D ~asym!T* %, ~2.14!

Sfund51
1

g2 (
f 51

nf

@2~DmQ~ f !!* ~DmQ~ f !!2 i c̄Q~ f !s̄
mDmcQ~ f !1 i&Q~ f !

* lcQ~ f !2 i&c̄Q~ f !l̄Q~ f !#

1
1

g2 (
f 51

nf

@2~DmQ̃~ f !!~DmQ̃~ f !!* 2 i c̄Q̃~ f !s̄
mDmcQ̃~ f !2 i&Q̃~ f !lcQ̃~ f !1 i&c̄Q̃~ f !l̄Q̃~ f !

* #

1
1

g2 (
f 51

nf

~Q~ f !
* DQ~ f !1Q̃~ f !DQ̃~ f !

* !1
1

g2 (
f 51

nf

$2~m~ f !!
2~Q~ f !

* Q~ f !1Q̃~ f !Q̃~ f !
* !2m~ f !~ c̃Q~ f !cQ~ f !1c̃

¯
Q~ f !c̄Q~ f !!

2&m~ f !~Q~ f !
* F†Q~ f !1Q̃~ f !F

†Q̃~ f !
* 1Q~ f !

* FQ~ f !1Q̃~ f !FQ̃~ f !
* !22Q~ f !

* F†FQ~ f !22Q̃~ f !F
†FQ̃~ f !

*

2&~cQ̃~ f !cQ~ f !1Q̃~ f !ccQ~ f !1cQ̃~ f !FcQ~ f !!2&~ c̄Q~ f !c̄Q̃~ f !
* 1Q~ f !

* c̄c̄Q̃~ f !1c̄Q~ f !F
†c̄Q̃~ f !!

1&Q̃~ f !FFQ~ f !1&Q̃~ f !
* FF

† Q~ f !
* %, ~2.15!

where

Di
j5@F†,F# i

j1(
f 51

nf

~Q~ f !
* j Q~ f !i1Q̃~ f !

j Q̃~ f !i* !12T* jkTki12T̃jkT̃ki* , ~2.16!

FF i
j52(

f 51

nf

~&Q~ f !
* j Q̃~ f !i* !2&T* jkTki* , ~2.17!
026002-3
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HereDm5 ivm with vm in appropriate representations.F (asym), c (asym), andFF
(asym) are the fields in antisymmetric represe

tation.
Let us now find a relationship ofSvec1Sasym in Eq. ~2.7! with the reduced action of the four-dimensionalN54 supersym-

metric Yang-Mills theory written again in terms of superfields. This latter action in turn is related in the component fo
the reduced action of the ten-dimensionalN51 Yang-Mills theory, which is nothing but the type IIB matrix model@5#.

First note thatSvec1Sasym in Eq. ~2.7! is written as

Svec1Sasym[Sadj1asym5
1

4g2 TrS E d2uWaWa1H.c.14E d2ud2ūF†ie2VF ie
22VD

1
1

&g2 TrS E d2ud2ūe i jk@F i ,@F j ,Fk##1H.c.D , ~2.18!
f
y

el

re

he

g

tri-

are
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d

li-
where we have introduced the notation

F1[F, F2[Y, F3[Ỹ. ~2.19!

The form of Eq.~2.18! is nothing but the reduced action o
d54, N54 super Yang-Mills theory, which we denote b
SN54

d54 :

Sadj1asym5SN54
d54 . ~2.20!

It is expedient to introduce the projector acting onU(2k)
matrices:

r̂7•[
1

2
~•7F21• tF !. ~2.21!

The action ofr̂2 and that ofr̂1 take anyU(2k) matrix into
the matrix lying in the adjoint representation ofUSp(2k)
and that in the antisymmetric representation, respectiv
We can therefore write

V5 r̂2VI , F15 r̂2FI 1 , F i5 r̂1FI i , i 52,3,
~2.22!

where the symbols with underlines lie in the adjoint rep
sentation ofU(2k).

We now invoke the well-known fact that the action ofd
54,N54 super Yang-Mills theory can be obtained from t
dimensional reduction ofd510, N51 super Yang-Mills
theory down to four dimensions@18#. This is stated as

SN54
d54 ~vI m ,FI i ,lI ,cI i ,FĪ i ,lĪ ,cĪ i !5SN51

d510~vI M ,CI !,

SN51
d510~vI M ,CI !5

1

g2 TrS 1

4
@vI M ,vI N#@vI M,vI N#

2
1

2
CĪ GM@vI M ,CI # D . ~2.23!

Here

F i5
1

&

~v31 i1 iv61 i !,
02600
y.

-

and

C5~l,0,c1,0,c2,0,c3,0,0,l̄,0,c̄1,0,c̄2,0,c̄3! t, ~2.24!

which is a 32-component Majorana-Weyl spinor satisfyin

CC̄t5C, G11C5C. ~2.25!

With regard to Eqs.~2.24! and ~2.25!, the same is true for
objects with underlines. The ten-dimensional gamma ma
ces have been denoted byGM. We will not spell out their
explicit form which is determined from Eqs.~2.23! and
~2.24!.

What we have established through the argument above
summarized as the following formulas useful in later se
tions:

Sadj1asym5SN51
d510~ r̂b7vI M ,r̂ f 7CI !, ~2.26!

where r̂b7 is a matrix with Lorentz indices andr̂ f 7 is a
matrix with spinor indices:

r̂b75diag~ r̂2 ,r̂2 ,r̂2 ,r̂2 ,r̂2 ,r̂1 ,r̂1 ,r̂2 ,r̂1 ,r̂1!,

r̂ f 75 r̂21~4! ^ S 1~2!

0

1~2!

0

D
1 r̂11~4! ^ S 0

1~2!

0

1~2!

D . ~2.27!

The notable properties of the model discussed in@1# are,
among other things,~1! it possesses eight dynamical an
eight kinematical supersymmetries, and~2! translations in
six out of ten directions are broken. We will discuss imp
cations of these in subsequent sections.
2-4
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III. USp„2k… PLANAR DIAGRAMS, MATRIX TWIST
AND MATRIX T DUAL

We now discussUSp(2k) planar diagrams to see ho
they create nonorientable surfaces approximated by
dense set of Feynman diagrams. We set aside the fields
in the fundamental representation in this section. We ign
fermions as well. It is well known that the largek expansion
of ordinary U(2k) pure Yang-Mills theory in arbitrary di-
mensions is a topological~genus! expansion of the two-
dimensional~discretized! surfaces created by the Feynm
diagrams@16#. It is simple to see how this is modified b
USp(2k) Feynman diagrams where some of them are in
adjoint while the others are in the nonadjoint~antisymmet-
ric!.

Recall that the propagator in theU(2k) gauge theory is

^vI m r
svI n i

j&5d i
sd r

jdmnD5Fig. 1. ~3.1!

From now on we ignore theD function as its dependence o
the arguments is irrelevant to the present discussion.
three and four point vertices are depicted in Fig. 2.

Let G be aU(2k) Feynman diagram. Its dependence
g2 and onk denoted byr (GI ) is known to be

r ~GI !5~g2k!E2Vkx,

x5F2E1V5222H, ~3.2!

whereE is the number of external lines inGI , which is also
the number of edges of the surface, whileV is the number of
three and four point vertices inGI and is on the surface. Th
number of faces or index loops and the number of holes
the surface are denoted byF and byH, respectively.

In USp Feynman diagrams, Eq.~3.1! is modified to

^vM r
svN i

j&5 (
a51

2k26k

~ tn!r
s~ ta! i

jdMN

5~ r̂7!r
s
i
jdMN

5Fig. 3. ~3.3!

Here we have treated the adjoint and nonadjoint cases
lectively. Similarly, letG be aUSp Feynman diagram. As
the propagator contains the second term which reduces
number of index loops by one,r (G) depends upon how man
times double lines representing propagators cross. Clear

r ~G!5r ~G;c!5~g2k!E2Vkx2c, ~3.4!

wherec denotes the number of crossings.
We still need to show thatc denotes the number of cros

caps and not the number of boundaries. Let us recall t
according to the present point of view, the two-dimensio

FIG. 1. Propagator.
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surface swept by a string is formed by the dense set of Fe
man diagrams. To render this more tangible and more tha
combinatorial argument, we note that, via the Schild gau
correspondence, the algebra acting on the functions on
string world sheet must be isomorphic to the largek limit of
the appropriate Lie algebra acting on matrices. For this, i
enough to adopt the argument of Pope and Romans@19# on
area-preserving diffeomorphisms onRP2 and the largek
limit of the usp(2k) Lie algebra in the present context. Co
sider first the sphere parametrized by three coordinatesxi ,
i 51,2,3 such thatxixi51. The complete set of functions o
the sphere is the spherical harmonics represented by

Y~p!~xi !5ai 1 ,¯ i p
xi 1

¯xi p, ~3.5!

whereai 1 ,••• i p
are totally symmetric and traceless constan

The algebra of area preserving diffeomorphisms is defi
by a bracket of two functionsA(xi) andB(xi):

$A,B%[e i jkxi] jA]kB. ~3.6!

WhenA5Y(m), B5Y(n), a finite sum of irreducible polyno-
mials Y(p), um2nu<p<m1n21 is generated. This alge
braic structure is obtained by the largek limit of the su(2k)
Lie algebra in the form of maximalsu(2) embeddings:

L~p!5ai 1¯ i p
S i 1

¯S i p,

p51;k21. ~3.7!

Here,S i are thesu(2) generators in the 2k-dimensional rep-
resentation. On the other hand,RP2 geometry is obtained
from the sphere by the antipodal identificationxi→2xi , un-
der which the harmonics splits into even and odd ones. O
the odd ones are responsible for forming the algebra of a
preserving diffeomorphism onRP2: this is clear from Eq.
~3.6!. We see that the diffeomorphisms ofRP2 are generated
by the largek limit of the generators

L~2p21!5ai 1¯ i 2p21
S i 1

¯S i 2p21,

p51,2, . . . ,k. ~3.8!

As shown by Pope and Romans, the algebra formed by
~3.8! is the Lie algebrausp. This concludes that the dia

FIG. 2. Three point vertex and four point vertex.

FIG. 3. Propagator inUSp(2k).
2-5
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grams generated from the propagator@Eq. ~3.3!# and the ver-
tices containRP2. The theory we are constructing via matr
ces is the reduced model of nonorientable strings.

To extend the above argument to higher genera w
crosscaps, let us note that the role of the matrixF can be
seen by the correspondence with the twist operation in
operator formalism of the first quantized string. Ten of t
noncommuting coordinatesvM , which are dynamical vari-
ables, satisfy

v i
t52Fv iF

21, i P$$0,1,2,3,4,7%%[M2 ,

v I
t5Fv IF

21, I P$$5,6,8,9%%[M1 . ~3.9!

ThevM are noncommuting counterparts of the ten string
ordinatesXM . That this is more than just an analogy is cle
as the limit exists from our action to the string action of t
Schild type gauge. Taking the transpose is interpreted as
ping the direction of an arrow drawn on a string. The ope
tion F is the matrix analog of the twist operation1 V. The
classical counterpart of Eq.~3.9! is therefore

Xi~ z̄,z!52VXi~z,z̄!V21, i PM2,

XI~ z̄,z!5VXI~z,z̄!V21, I PM1 .
~3.10!

The presence of four-dimensional fixed surfaces~orientifold
surfaces,O3s! becomes clear from this equation~3.10!. We
conclude that our model is a matrix model on a large volu
T6/Z2 orientifold. This is consistent with the fact that th
translations in six out of ten directions are broken.

The T duality transformation plays an interesting role
matrix models as it relates worldvolume theories of vario
dimensions via Fourier transforms. We will now find ho
the matrixT dual behaves underF. First, let us impose pe
riodicities with period 2pR for L out of the ten coordinates
Recall that

Yl[T̂@Xl #[XlR2XlL , ~3.11!

T̂@Xl #~ z̄,z!5H 1VT̂@Xl #~z,z̄!V21 if l PM2,

2VT̂@Xl #~z,z̄!V21 if l PM 1 .
~3.12!

To impose periodicities on infinite size matricesv l , we
decomposev l into blocks of n3n matrices. Specify each
individual block by anL-dimensional row vectoraW and an

L-dimensional column vectorbW : (v l)aW ,bW[Aa8^aW uv̂ l ubW &. Let
the shift vector be

„U~ i !…aW ,b̄5S )
j ~Þ i !

daj ,bj D dai ,bi11 . ~3.13!

The condition to be imposed is

U~ i !v lU~ i !215v l2d l ,iR/Aa8. ~3.14!

1In the context of Ref.@3#, see Ref.@20#.
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The solution in the Fourier transformed space is

^xW uv̂ l uxW8&52 i S ]

]xl 1 i ṽ l~xW ! D d~L !~xW2xW8!, ~3.15!

ṽ l~xW !5 (
kWPZL

v5 l~kW !expS 2 ikW•xW

R̃
D ,

R̃[a8/R. ~3.16!

The matrix T dual is nothing but the Fourier transform:
interchanges the radius parameterR setting the period of the
original matrix index with the dual radiusR̃, which is the
period of the space Fourier conjugate to the matrix index.
us write

T̂@~v l !aW ,bW #[^xW uv̂ l uxW8&. ~3.17!

Multiply Eq. ~3.9! written in the bracket notation

^dW uv̂ l uaW &57(
bW ,cW

^aW uF̂ubW &^bW uv̂ l ucW &^cW uF̂21udW & ~3.18!

by ^xW uaW &^dW uxW8&5^aW uxW &* ^xW8udW &* . Sum overaW and dW . From
the left-hand side, we obtain

2F2 i
]

]x8 l2 ṽ l~2xW8!Gd~L !~xW82xW !. ~3.19!

We find

T̂@v l #
t5H 1T̂@F#T̂@v l #T̂@F21# if l PM2 ,

2T̂@F#T̂@v l #T̂@F21# if l PM1 ,
~3.20!

provided

ṽ l~2xW8!52 ṽ l~xW8!. ~3.21!

It is satisfying to see that the sign change of Eq.~3.20! from
Eq. ~3.9! under the matrixT dual is in accordance with the
sign change of Eq.~3.12! from Eq. ~3.10!.

One can now imagine imposing periodicities with perio
depending on the directions and letting some of the ra
zero. TheT duality provides worldvolume gauge theories
various dimensions. We will discuss a few cases later.

IV. USp PROJECTOR AND SUPERSYMMETRY

We will now derive a set of conditions under which th
projectorsr̂b7 , r̂ f 7 , which act respectively onvI M andCI ,
and dynamicald (1) as well as kinematicald (2) supersymme-
try commute. Our choice forr̂b7 and that forr̂ f 7 emerge as
the case which passes the tight constraint of having e
dynamical and eight kinematical supersymmetries. Let
start with

d~1!vI M5 i ēGMCI , ~4.1!
2-6
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d~1!CI 5
i

2
@vI M ,vI N#GMNe,

~4.2!

d~2!vI M50, ~4.3!

d~2!CI 5j. ~4.4!

Let us write generically

vM[dM
Nr̂b7

~N!vI N ,

CA[dABr̄ f 7
~B!CI B . ~4.5!

The condition @ r̂b7 ,d (1)#vI M50 together with Eq.~4.1!
gives

(
A51

32

~ ēGM !A~ r̂ f 7
~A!2 r̂b7

~M !!CI A50, ~4.6!

with index M not summed. The condition
m

s

an

02600
@ r̂ f 7 ,d~1!#CI uvI M→ r̂b7vI M
50 ~4.7!

together with Eq.~4.2! provides

~12 r̂ f 7
~A!!@ r̂b7

~M !vI M ,r̂b7
~N!vI N#~GMNe!A50. ~4.8!

The restriction at Eq.~4.7! comes from the fact that Eq.~4.2!
is true only on shell. Equation~4.3! does not give us any
thing new while@ r̂ f 7 ,d (2)#CI 50 with Eq. ~4.4! gives

jA15jAr̂ f 7
~A!1, ~4.9!

with index A not summed.
In order to proceed further, we rewrite Eq.~4.5! explicitly

as

r̂b7
~M ![Q~MPM2!r̂21Q~MPM1!r̂1,

~4.10!

r̂ f 7
~A![Q~APA2!r̂21Q~APA1!r̂1 ,

where
M2øM15$$0,1,2,3,4,5,6,7,8,9%%, M2ùM15f, ~4.11!

A2øA15$$1,2,5,6,9,10,13,14,19,20,23,24,27,28,31,32%%, A2ùA15f. ~4.12!
th

ill

t-
We find that Eq.~4.6! gives

~ ēGM2
!A1

5~ ēGM1
!A2

50, ~4.13!

while Eq. ~4.8! gives

~GM2N1e!A2
50,

~4.14!

~GM2N2e!A1
5~GM1N1e!A1

50.

Equation~4.9! gives

jA2
50. ~4.15!

As we consider the case of eight kinematical supersym
tries, the number of elements of the sets denoted by](A6)
must be

]~A2!58 and ]~A1!58. ~4.16!

Equations ~4.13! and ~4.14! are regarded as the one
which determine the anticommuting parametere, and the sets
A1 , A2 , M1, andM2 . In addition they must satisfy the
conditions~4.11!, ~4.12!, and~4.16!.

We search for solutions by first trying out as an input
appropriate 32-component anticommuting parametere satis-
fying the Majorana-Weyl condition.

Givene, we see if we can determineA1 , A2 , M1, and
M2 successfully. Our strategy is as follows.

~i! Calculate (ēGM)A and (GMNe)A for all M , N, andA.
e-

~ii ! CalculateSA( ēGM1
)A( ēGM2

)A . If this value is non-

zero, then both indicesM1 andM2 belong to eitherM2 or
M1 . We can, therefore, divideM2øM1 into two sets.

~iii ! From Eq.~4.14! we see that if (GM2N1e)AÞ0, then
APA1 . If ( GM2N2e)AÞ0 or (GM1N1e)AÞ0, then A
PA2 . Use the results of~i! and ~ii ! to determineA2 and
A1 . We must then check if](A2)58, ](A1)58 and
A2ùA15f. If these are not satisfied, our original inpute
is not a solution.

~iv! From Eq.~4.13! we see that if (ēGM2
)AÞ0 thenA

PA2 , and if (ēGM1)AÞ0 thenAPA1 . DetermineA2 and
A1 . If A2 andA1 determined this way are consistent wi
the result from~iii !, we obtain a solution to Eqs.~4.13! and
~4.14!. This also determinesM2 andM1 as we have two
ways of choosing them from~ii !.

We have tried out many cases, some of which we w
describe. The case leading to our model is

e5~e0,0,e1,0,0,0,0,0,0,ē0,0,ē1,0,0,0,0! t. ~4.17!

Note thate0 , e1 , ē0 andē1 are two-component anticommu
ing parameters. From step~ii !, we seeM2øM1 are di-
vided into two sets:

$$0,1,2,3,4,7%% and $$5,6,8,9%%. ~4.18!

From step~iii !, we find

A25$$1,2,5,6,19,20,23,24%%,
2-7
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A15$$9,10,13,14,27,28,31,32%%.
~4.19!

From step~iv!, we obtain

M25$$0,1,2,3,4,7%%,

M15$$5,6,8,9%%. ~4.20!

We conclude that

r̂b75diag~ r̂2 ,r̂2 ,r̂2 ,r̂2 ,r̂2 ,r̂1 ,r̂1 ,r̂2 ,r̂1 ,r̂1!,

r̂ f 75 r̂21~4! ^ S 1~2!

0

1~2!

0

D
1 r̂11~4! ^ S 0

1~2!

0

1~2!

D , ~4.21!

which are the projectors of our model.
Among other cases, we have tried the following one:

e5~e0,0,e1,0,e2,0,e3,0,0,e0,0,e1,0,e2,0,e3! t. ~4.22!

From step~ii !, we obtain

$$0,1,2,3,4,7%% and $$5,6,8,9%%. ~4.23!

We find thatA2 andA1 determined from step~iii ! do not
satisfyA2ùA15f.

We have examined the following cases~and their permu-
tations! as well with no success:

e5~e0,0,e1,0,e2,0,e3,0,0,2e0,0,2e1,0,2e2,0,2e3! t,

e5~e0,0,e1,0,0,0,e3,0,0,ē0,0,e1,0,0,0,e3! t,

e5~e0,0,e1,0,0,0,e3,0,0,ē0,0,e1,0,0,0,2e3! t, ~4.24!

e5~e0,0,e1,0,0,0,e3,0,0,ē0,0,2e1,0,0,0,2e3! t,

e5~e0,0,e1,0,0,0,e1,0,0,ē0,0,ē1,0,0,0,ē1! t.

There is, however, another solution which we have fou
Let

e5~e0,0,e1,0,0,0,0,0,0,0,0,0,0,ē2,0,ē3! t. ~4.25!

The consistent sets

A25$$1,2,5,6,27,28,31,32%%,
~4.26!

A15$$9,10,13,14,19,20,23,24%%,

M25$$4,7%%,
~4.27!

M15$$0,1,2,3,5,6,8,9%%,
02600
.

are obtained from steps~i!, ~ii !, ~iii !, and~iv!. The projectors
~4.10! are

r̂b75diag~ r̂1 ,r̂1 ,r̂1 ,r̂1 ,r̂2 ,r̂1 ,r̂1 ,r̂2 ,r̂1 ,r̂1!,

r̂ f 75 r̂21~4! ^ S 1~2!

0

0

1~2!

D
1 r̂11~4! ^ S 0

1~2!

1~2!

0

D . ~4.28!

This is the case considered in Refs.@20,21# in the context
of M theory compactification to the lightcone hetero
strings@with e0 , e1 , ē2 and ē3 in Eq. ~4.25! all real#.

V. THE ROLE OF THE FUNDAMENTAL
REPRESENTATION AND ANOMALY CANCELLATION

OF WORLDVOLUME THEORY

So far, we have ignored the fields in the fundamen
representation. These fields do not contribute to the diagr
in spherical topology. They are irrelevant to the questio
concerning the spacetime coordinates. They create, howe
disk diagrams and higher genera with boundaries and
responsible for creating an open string sector. This is in f
required, as nonorientable closed strings by themselves
not consistent. It is well known that the simplest way
establish the consistency is through the~global! cancellation
of dilaton tadpoles between disk and RP2 diagrams@22,23#,
leading to theSO(32) Chan-Paton factor. This survives to
oidal compactifications with or without discrete projectio
@24#. It should be that the sum of an infinite set of diagram
of the matrix model contributing to the disk/RP2 geometry
yields the string partition function of the disk/RP2 diagram.
The Chan-Paton trace at the boundary corresponds to
trace with respect to the flavor index. Thenf should therefore
be fixed by the tadpole cancellation. The flavor symmetry
the model is the local gauge symmetry of strings.

The lack of the combinatorial argument and the abse
of the vertex operator construction at this moment, howev
prevent us from proceeding to such calculations via matric
Instead, we will examine gauge anomalies of worldvolum
theories by taking theT dual and subsequently the zero vo
ume limit of T6/Z2. In particular, let us do this for all six
adjoint directions. The resulting theory is the si
dimensional worldvolume gauge theory obeying Eq.~3.21!
with matter in the antisymmetric and fundamental repres
tation. This is the type I superstrings in ten spacetime dim
sions. This case is also the first nontrivial case of gettin
potentially anomalous theory. In fact, by acting
2-8
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G~6![G0G1G2G3G4G7 ~5.1!

on C, we see that the adjoint fermionsl andc1 have chiral-
ity plus whilec2,3 have chirality minus. The fermions in th
fundamental representation have chirality minus. The s
dard technology to compute non-Abelian anomalies is p
vided by the family’s index theorem and the descent eq
tions @11,25#. We find that the condition for the anoma
cancellation

tradjF
42trasymF

42nf trF
4

5~2k18!trF413~ trF2!2

2@~2k28!trF413~ trF2!2#2nf trF
4

5~162nf !trF
450, ~5.2!

where we have indicated the traces in the respective re
sentations. The casenf516 is selected by the consistency
the theory. In the case discussed in Eq.~4.28!, we conclude
from similar calculations that the anomaly cancellation of
worldvolume two-dimensional gauge theory selects 16 co
plex fermions.
02600
n-
-
-

re-

e
-

VI. ONE-LOOP EFFECTIVE ACTION
AND D-STRING SOLUTIONS

A. One-loop effective action

In this subsection, we will establish a formula for th
one-loop effective action of theUSp matrix model on a ge-
neric bosonic background.2 Let us first find one-loop fluctua
tions on a generic classical solution of theUSp(2k) matrix
model. We write

vm5pm1gam , ~m50;3!, l5x01gf0 ,
~6.1!

v I5pI1gaI , ~ I 54;9!, c i5x i1gf i , ~ i 51;3!

with (pm ,pi ,x0 ,x i) a configuration satisfying equations o
motion. In order to fix the gauge invariance we add the gh
and the gauge fixing term

Sg f gh5
1

2
Tr~@pM ,aM#22@pK,b#@pK ,c# !, ~6.2!

wherec andb are, respectively, the ghosts and the antigho
lying in the adjoint representation ofUSp(2k). Denote by
S(2) the part inSadj1asym which is quadratic ina andf. The
one-loop effective actionWone-loop is
note

e
n

Wone-loop52 i log E @dam#@daI #@df0#@df̄0#@df i #@df̄ i #@dc#@db#exp@ iS~2!1 iSg f gh#. ~6.3!

Instead of resorting to the direct Gaussian integrations of the expression above, let us use Eqs.~2.26! and ~2.27!.
In the same way as Eq.~6.1!, we decomposevI M andCI into the backgrounds and the quantum fluctuations. Let us de

the fluctuations byvI M
( f l ) andCI ( f l ) . Then from Eq.~2.26! we have

S~2!5SN51
d510 ~2!~r̂b7vIM

~fl! ,r̂f7CI ~ f l !!, ~6.4!

whereSN51
d510 (2)( r̂b7vI M

( f l ) ,r̂ f 7CI ( f l )) is the part in the action ofd510,N51 super Yang-Mills theory which is quadratic in th
fluctuations. As the variables are explicitly projected either ontoUSp(2k) adjoint or onto antisymmetric matrices, we ca
safely replace the integration measure by that of theu(2k) Lie algebra valued matrices. We obtain

Wone-loop52 i log E @dvI M
~ f l !#@dCI ~ f l !#@dcI #@dbI #exp@ iSN51

d510 ~2!~ r̂b7vI M
~ f l ! ,r̂ f 7CI ~ f l !!1 iSg f gh~ r̂2bI ,r̂2cI !#

5
1

2
log det~Obr̂b7!2

1

2
log detXOf r̂ f 7S 11G11

2 D C2 log det~ P̂KP̂Kr̂2!, ~6.5!

where

ObL
M 52dL

MP̂KP̂K12i F̂ L
M , Of52GMP̂M, ~6.6!

2The solutions we will construct in the next subsection and in Sec. VII are relevant only in the largek limit. We will, therefore, ignore the
fields lying in the fundamental representation.
2-9
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P̂K•5@pK ,•#, F̂KL•5 i @@pK ,pL#,•#. ~6.7!

In obtaining Eq.~6.6!, we have set all fermionic background
x0 andx i to zero. As a consequence, the one-loop effec
action on a generic bosonic background is given by3

Wone-loop5S 6

2
2

4

2
21DTr log~ P̂KP̂Kr̂2!

1S 4

2
2

4

2DTr log~ P̂KP̂Kr̂1!1Wb1Wf , ~6.8!
lu
ta

tri
he
n

02600
e

Wb5
1

4
Tr logF S dL

M1
4

~ P̂KP̂K!2
F̂L

NF̂N
M D r̂b7G ,

~6.9!

Wf52
1

4
Tr logF S 11

i

2P̂KP̂K
GMNF̂MND

3 r̂ f 7S 11G11

2
D G . ~6.10!

We put the matrixF̂MN into the following form with respect
to the Lorentz indices:
F̂MN51
0 2B̂1 0 0 0 0 0 0 0 0

B̂1 0 0 0 0 0 0 0 0 0

0 0 0 2B̂2 0 0 0 0 0 0

0 0 B̂2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2B̂3 0 0

0 0 0 0 0 0 0 0 2B̂4 0

0 0 0 0 0 0 0 0 0 2B̂5

0 0 0 0 B̂3 0 0 0 0 0

0 0 0 0 0 B̂4 0 0 0 0

0 0 0 0 0 0 B̂5 0 0 0

2 . ~6.11!
llel
e

When the classical configuration is BPS saturated,F̂MN50
andWone-loopvanishes.

B. D-string solution

Let us construct a few particular classical bosonic so
tions of the model. We set the fields lying in the fundamen
representation ofUSp(2k) to zero. The equation of motion
is

@pN ,@pM,pN##50. ~6.12!

There are three cases of solutions representing a D-s
configuration, depending upon which two directions t
worldsheet extends to infinity. When both of the directio
are the adjoint directions, sayv0 and v1 , the nonvanishing
components are

p05S 11s3

2 D ^ x1S 12s3

2 D ^ ~2xt!,
~6.13!

3The calculation in what follows parallels those of Refs.@5,26#.
-
l

ng

s

p15S 11s3

2 D ^ p1S 12s3

2 D ^ ~2pt!.

When both are in the antisymmetric directions, sayv5 and
v8 , the nonvanishing components are

p55S 11s3

2 D ^ x1S 12s3

2 D ^ xt,
~6.14!

p85S 11s3

2 D ^ p1S 12s3

2 D ^ pt.

When one is in the adjoint direction, sayv0 , and the other is
in the antisymmetric direction, sayv8 ,

p05S 11s3

2 D ^ x1S 12s3

2 D ^ ~2xt!,
~6.15!

p85S 11s3

2 D ^ p1S 12s3

2 D ^ pt.

In above expressions,x andp are infinite size matrices with
the commutator@p,x#52 i .

Let us now turn to the solutions representing two para
D-strings and two antiparallel D-strings. We will illustrat
2-10
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this by the most interesting case that the two D strings
extended in the two directions~v5 andv8! of antisymmetric
representations separated byd in the v4 direction which is
the adjoint direction. The nonvanishing components are

p55S 11s3

2 D ^ S x 0

0 xD 1S 12s3

2 D ^ S xt 0

0 xtD ,

p85S 11s3

2 D ^ S p 0

0 p
D 1S 12s3

2 D ^ S pt 0

0 ptD ,

~6.16!

p45S 11s3

2 D ^ S 2d/2 0

0 d/2D 1S 12s3

2 D
^ S d/2 0

0 2d/2D ,

for two parallel D-strings, and

p55S 11s3

2 D ^ S x 0

0 xD 1S 12s3

2 D ^ S xt 0

0 xtD ,

p85S 11s3

2 D ^ S p 0

0 2p
D 1S 12s3

2 D ^ S pt 0

0 2ptD ,

~6.17!

p45S 11s3

2 D ^ S 2d/2 0

0 d/2D 1S 12s3

2 D ^ S d/2 0

0 2d/2D ,

for two antiparallel D-strings.

C. Force between antiparallel D-strings

We would like to determine the scale of our spaceti
given by the model. This can be done by computing the fo
mediating two classical objects which are by themselve
non-Bogomoln’yi-Prasad-Sommerfield~BPS! configuration.
rc
de
iv

02600
re

e
e
a

We will evaluate theWb and theWf in the case of the two
antiparallel D-strings separated by distanced, which have
been constructed in the preceding subsection. We com
the force exerting with each other. From Eq.~6.17! we have
P̂05 P̂15 P̂25 P̂35 P̂65 P̂75 P̂950, B̂15B̂25B̂35B̂550,
P̂KP̂K5( P̂4)21( P̂5)21( P̂8)2, P̂45(d/2)B̂4 and, after some
algebra, we obtain

@ P̂5,P̂8#52 iB̂4 , @ P̂4,P̂5#50, @ P̂4,P̂8#50.
~6.18!

When we take trace with Lorentz indices in Eq.~6.9! and
with spinor indices in Eq.~6.10!, we arrive at the following
expressions:

Wb5
1

2
TrF logS 12

4B̂4B̂4

~ P̂KP̂K!2D r̂1G , ~6.19!

Wf52TrF logS 12
1

~ P̂KP̂K!2
B̂4B̂4D r̂2

1 logS 12
1

~ P̂KP̂K!2
B̂4B̂4D r̂1G . ~6.20!

In the Appendix, the eigenvalues ofB̂4B̂4 , their degenera-
cies and the eigenmatrices are determined. We compile
results in Table I for the antisymmetric eigenmatrices and
Table II for the adjoint eigenmatrices.~See tables in the Ap-
pendix.!

Using these tables, we obtain

Wb5
k

2
(
n50

`

logS 12
16

~d214n12!2D , ~6.21!

Wf522k(
n50

`

logS 12
4

~d214n12!2D . ~6.22!

Putting all these together, we find
Wone-loop52
k

2
logF S d2

4
D 24 d2/411/2

d2/421/2 S GS d2

4
1

1

2
D

GS d2

4
D D 8G52

k

2
H 8

d6 1O~d28!J . ~6.23!
g

This potential provides the asymptotic behavior of the fo
mediating two antiparallel D-strings. From this we conclu
that the dimension of spacetime is ten at least in this na
largek limit.
e

e

VII. CONSTRUCTION OF D3-BRANE SOLUTIONS

It is not difficult to extend the construction of the D-strin
solutions in the previous section to general Dp-brane solu-
2-11
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tions. We will illustrate this by a D3-brane, two parallel D
branes and multiple D3-branes which are parallel to one
other.

Let us first consider a D3-brane solution. When the wor
volume extends inv5 , v8 , v6, andv9 directions, the nonva-
nishing components are given by

p55S 11s3

2 D ^ x11S 12s3

2 D ^ x1
t ,

p85S 11s3

2 D ^ p11S 12s3

2 D ^ p1
t ,

~7.1!

p65S 11s3

2 D ^ x21S 12s3

2 D ^ x2
t ,

p95S 11s3

2
D ^ p21S 12s3

2
D ^ p2

t .

It is straightforward to check that this configuration satisfi
the equation of motion. In the above expression,x1, x2, p1
and p2 are operators~infinite matrices! with the commuta-
tors

@p1 ,x1#52 iAV4

k
, @p2 ,x2#52 iAV4

k
. ~7.2!
02600
n-

-

s

Here we must take the limit ofk→` with V4 /k fixed to
(a8)2.

Now let us calculate the value of the action. We have

@p5,p8#5s3
^ ia81k , @p6,p9#5s3

^ ia81k . ~7.3!

When we substitute these into the action,

S5
1

g2~a8!2 TrS 1

2
@p5,p8#@p5 ,p8#1

1

2
@p6,p9#@p6 ,p9# D

;
1

g2~a8!2 V45T3-braneV4 . ~7.4!

Hereg2 is regarded as string couplinggst. This is consistent
with the D-brane action which is given by the tension tim
the volume of the D-brane. Therefore it is appropriate
think of the above solution as a D3-brane solution.

Next, take two parallel D3-branes which are separated
distanced in thev4 direction. The nonvanishing componen
are
e

p55S 11s3

2 D ^ S x1 0

0 x1
D 1S 12s3

2 D ^ S x1
t 0

0 x1
t D ,

p85S 11s3

2 D ^ S p1 0

0 p1
D 1S 12s3

2 D ^ S p1
t 0

0 p1
t D ,

p65S 11s3

2 D ^ S x2 0

0 x2
D 1S 12s3

2 D ^ S x2
t 0

0 x2
t D , ~7.5!

p95S 11s3

2 D ^ S p2 0

0 p2
D 1S 12s3

2 D ^ S p2
t 0

0 p2
t D ,

p45S 11s3

2 D ^ S 2d/2 0

0 d/2D 1S 12s3

2 D ^ S d/2 0

0 2d/2D .

Finally let us considerN parallel D3-branes which are separated in thev4 andv7 directions. We denote the position of th
i th D3-brane byv45d4

( i ) and v75d7
( i ) . The worldvolume extends in thev5 , v8 , v6 and v9 directions. The nonvanishing

components are
2-12
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p55S 11s3

2 D ^ S x1

�

x1

D 1S 12s3

2 D ^S xt
t

�

xt
t
D ,

p85S 11s3

2 D ^ S p1

�

p1

D 1S 12s3

2 D ^S p 1
t

�

p 1
t
D ,

p65S 11s3

2 D ^ S x2

�

x2

D 1S 12s3

2 D ^S x2
t

�

x2
t
D ,

~7.6!

p95S 11s3

2 D ^ S p2

�

p2

D 1S 12s3

2 D ^S p 2
t

�

p 2
t
D ,

p45S 11s3

2 D ^S d4
~1!

�

d4
~N!
D 1S 12s3

2 D ^S 2d4
~1!

�

2d4
~N!
D ,

p75S 11s3

2 D ^S d7
~1!

�

d7
~N!
D 1S 12s3

2 D ^S 2d7
~1!

�

2d7
~N!
D .
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VIII. F THEORY ON AN ELLIPTIC FIBERED K3

We will now show that the model is able to describe theF
theory compactification on an elliptic fiberedK3 @14,27#.
Our objective here is to demonstrate that the matrix mode
fact derives one of the very few exact results in critical str
theory. While the original construction of Vafa is purely ge
metrical in nature, our model provides an action princip
and path integrals to theF theory compactification.

In Secs. IV, V, and VI, we have seen that our model is
matrix model of type IIB superstrings on a largeT6/Z2 ori-
entifold. The coupling constant has no spacetime depend
and is abona fideparameter. One can make the coupli
space-dependent by taking the matrixT dual in various ways
to go to higher dimensional worldvolume gauge theories
we have already discussed in the previous sections. The
pling constant then starts running with the coordinates la
ling the quantum moduli space, i.e., VEV, which is denot
by uW . This is in accordance with the marginal scalar def
mation of the original action to a type of nonlinears model.
The background field appearing through this procedure
massless axion-dilaton field. The running coupling const
is, therefore, identified as the space-dependent axion-dil
background fieldl(uW ).

Let uW be the complex coordinates on a compl
n-dimensional base spaceBn . F theory compactification of
an elliptically fiberedC2Y (n11) fold Mn11 on the base
02600
in

e

ce

s
u-
l-

d
-

a
nt
on

Bn is defined by saying that theu-dependent axion-dilaton
background field of type IIB superstrings onBn3R922n.1 is
the modular parameter of the fiberT2 as a function ofuW . We
would like to show that this is in fact the case in our mat
model. To provideF theory setup as a reduced model for t
casen51, we are going to send the periodR of the four out
of the six adjoint directionsv0 , v1 , v2 , v3 to zero and to
take the matrixT dual. The resulting model in the limit o
vanishing mass parameters is type IIB on a largeT2/Z2 ori-
entifold, namely on CP1, equipped with sixteen D7-brane
Coupling starts running as we turn on the mass parame
Following Sen@27#, we would now like to take the scaling
limit

R̃→`,

miR̃→finite i 51,;4, ~8.1!

miR̃→` i 55,;16,

simultaneously taking the matrixT dual. The second and th
third lines of this equation come from the consistency w
the RR charge counting. The resulting worldvolume theo
around one of the fourO7’s is thed54, N52 supersym-
metric USp(2k) gauge theory with one massless antisy
metric hypermultiplet and four fundamental hypermultiple
with massesmi . The special properties of this theory val
2-13
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for all k are that it is UV finite and that at least low energ
physics is the same for allk @28#. One can, therefore, deduc
theu dependence of the coupling of the model in the largk
limit by simply looking at thek52 case, namely, theSU(2)
SUSY gauge theory with four flavors. Theu dependence o
the couplingl is supplied by the work of Seiberg-Witte
~SW! @29#. The work of Sen@27# shows that the way the
modular parameter of the bare torus in the massless lim
dressed by the four mass parameters in the SW curve o
massive four flavor case is mathematically identical to
description ofF theory in the neighborhood of the consta
coupling. One can therefore safely conclude that the c
pling l(u) of the model is in fact the modular parameter
the spectral torus. This is what we wanted to show.
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APPENDIX

In this appendix we will determine the eigenvalues of t
operatorsB̂4B̂4 and P̂KP̂K . We consider both cases that th
eigenmatrices are in the adjoint and the antisymmetric r

TABLE I. Results for the antisymmetric eigenmatrices.

The eigenvalue ofB̂4B̂4 The degeneracy

4 k22k
0 k2

The eigenvalue ofP̂KP̂K The degeneracy

d214n12 k
to

02600
is
he
e

u-

p-

resentations inUSp(2k). These eigenvalues and their d
generacy are needed in order to calculate the one-loop e
tive action.

Suppose that an operatorÔ has an adjoint action on a
2k32k matrix a:

Ôa5@o,a#. ~A1!

Here o is the 2k32k matrix. Let us first consider the cas
that the matrixa is given by Eq.~2.6!. Note that the operato
B̂45 i @ P̂5 ,P̂8# is represented by the matrixb452s3

^ s3

^ 1(k/2) .
It is not difficult to see that the eigenvalues ofB̂4B̂4 are

either 0 or 4. For the 0 eigenvalue we simply sol
B̂4a(asym)

(0) 50 and the eigenmatrices are

S 11s3

2 D ^ 1~2! ^ H01S 12s3

2 D ^ ~1~2! ^ H0! t,

S 11s3

2 D ^ s3
^ H31S 12s3

2 D ^ ~s3
^ H3! t,

~A2!

s1
^ s1

^ A11s2
^ $2~s1

^ A1!* %,

s1
^ s2

^ A21s2
^ $2~s2

^ A2!* %.

Since the (k/2)3(k/2) matrices satisfyH0,3
† 5H0,3, A1

t 5

2A1 and A2
t 5A2 , the degeneracy isk2. As for the eigen-

value 4, the solution is

TABLE II. Results for the adjoint eigenmatrices.

The eigenvalues ofB̂4B̂4 The degeneracy

4 k21k
0 k2

The eigenvalue ofP̂KP̂K The degeneracy

d214n12 k
S 11s3

2 D ^ ~s1
^ H11s2

^ H1!1S 12s3

2 D ^ ~s1
^ H11s2

^ H1! t,

S 11s3

2 D ^ ~s1
^ H22s2

^ H2!1S 12s3

2 D ^ ~s1
^ H22s2

^ H2! t,
~A3!

s1
^ ~1~2! ^ A01s3

^ A0!1s2
^ „2~1~2! ^ A01s3

^ A0!* …,

s1
^ ~1~2! ^ A32s3

^ A3!1s2
^ „2~1~2! ^ A32s3

^ A3!* …,
and the degeneracy isk22k because ofH1,2
† 5H1,2 andA0,3

t

52A0,3.
Let us now calculate the eigenvalues of the opera

P̂KP̂K5 1
4 B̂4B̂41 P̂5P̂51 P̂8P̂8. Clearly B̂4B̂4 and P̂5P̂5
r

1P̂8P̂
8 are simultaneously diagonalized. WhenP̂5P̂5

1 P̂8P̂8 acts on the eigenstates with eigenvalue 4 ofB̂4B̂4 ,
we replaceB̂4B̂4 by its eigenvalue. LetP̂[ P̂5B̂4/2& and
Q̂[ P̂8 /&. We obtain
2-14
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@ P̂,Q̂#52 i .

The eigenvalues ofP̂5P̂51 P̂8P̂852(P̂P̂1Q̂Q̂) are those of
the harmonic oscillator and are given by 4n12 with integer
n. The degeneracy isk for largek. We summarize the result
in Table I. Our calculation of the effective action does n
y

l.

.
L

A
.

.

,
2

;

02600
t

require the case in which the eigenvalue ofB̂4B̂4 is zero.
Similarly, the eigenmatrices lying in the adjoint represe

tation @Eq. ~2.4!# can be determined. The difference is th
off-diagonal degrees of freedom, which change the deg
eracy of B̂4B̂4 eigenvalues. The degeneracy of theP̂KP̂K

eigenvalues is the same as in the previous case. Summin
the adjoint case, we obtain Table II.
d

ys.

y,

l.
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