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Local BRST cohomology of the gauged principal nonlinear sigma model
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The local BRST cohomology of the gauged nonlinear sigma model on a group manifold is worked out for
any Lie groupG. We consider both the case where the gauge field is dynamical and the case where it has no
kinetic term(G/G topological theory. Our results shed novel light on the problem of gauging the WZW term
as well as on the nature of the topological terms introduced a few years ago by DeWit, Hull, aid Rz
also consider the BRST cohomology of the rigid symmetries of the ungauged model and recover the results of
D’Hoker and Weinberg on the most general effective actions compatible with the symmetries.
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I. INTRODUCTION phic to R", leaving only the group manifold as a source for
non-trivial topology* We show that the most general defor-
A central theorem in the renormalization of Yang-Mills mation of the action is, up to trivial redefinitions, the integral
gauge models interacting with matter is that the most generdf @ strictly gauge invariant term plus winding number terms.
solution of the Becchi-Rouet-Stora-TyutiBRST) invari-  LWinding number terms are characterized by two featu(gs:
ance conditiorsf dxm=0 is given, up to trivial terms, by the 1 h€Y involve only group-valued fields, arid) they do not
integral of a gauge invariant polynomial in the field contribute to the field equations but are not exact in field
' ; : L space and hence cannot be eliminated globally by adding a
gggngitrzse’ntginn;at:ﬁé:éegsea:g;hce:'r:;r?]\fgzﬁg;get;\:;gss total derivative. These terms are related to the De Rham

cohomology of the group manifold—see Sec] W particu-

theorem guarantees that all the divergences appearing in thig,. e recover from a different perspective the fact that there
quantum theory can be absorbed by counterterms that respgct ,5 room in the principal case for the gauged Wess-

the original symmetry, making the theory renormalizable inz,mino-witten term. Furthermore, we verify explicitly that
the “modern sense” in any number of spacetime dimensionghe Chern-Simons terms actually differ from strictly gauge-
[1,2] (for related, but different ideas, sg&)). It also guaran- jnvariant terms bynon-invarian} total derivatives plus, pos-
tees that gauge invariant operators can be renormalized ingibly, winding number terms, even when the Lie algebra co-
gauge independent way. homology ofG is non-trivial (G denotes the Lie algebra of
The theorem, conjectured @], was recently proved in G). This property also holds for the topological terms de-
[5,6] through cohomological argumentsee[7] for earlier  scribed in[10], which are equivalent to winding number
developments Its interest transcends the question of renorterms plus strictly gauge-invariant terms in the principal case
malization since the BRST invariance condition also deterconsidered here.
mines the allowed deformations of the action, i.e. the terms At the quantum level, our result implies that the coupled
that can be consistently added to the classical, gauge invar¥ang-Mills—nonlinears-model in any number of spacetime
ant action while maintaining the number @fossibly de- dimensions, even though generically not power-counting
formed gauge symmetriegs]. renormalizable, is renormalizable in the “modern sense” of
An important assumption made 6] was, however, that [2]_. Note 'Fhat in pertu_rbatlon theory, it is customary to re-
the matter fields transform in linear representations of thétrict the fields to a neighborhood of the identity, so that the
symmetry. Now, nonlinear realizations are also importantVinding number terms, which are locally trivial, may be
since nonlinear sigma models coupled to gauge fields occi#opped.
in supergravity and string theory as well as in the effective We also compute the BRST cohomology for other values
description of low energy interactions among hadrons. ~ Of the ghost degree. This is relevant for the problem of
In this paper, we generalize the above theorem to the cagdlomalies in Yang-Mills theory since the Wess-Zumino
of the gauged nonlinear sigma model on a group mani@®Ild compensating field precisely transforms nonIme_arIy as a
(gauged principal sigma modelFor definiteness, the right 9roup element under gauge transformatipits 12. Finally,
action of G on itself will be gauged. To simplify the discus- the cohomology of the ungauged model is analyzed, which
sion, the spacetime manifold is assumed to be homeomognables us to recover from a different angle the results of

*Email address: henneaux@ulb.ac.be IFor a discussion on how to take into account the spacetime to-
"Email address: awilch@ulb.ac.be pology (restricted to product bundlgssee[9].
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D’'Hoker and Weinberg on the most general effective actionsThe invariant formg9? obey the Maurer-Cartan equation
compatible with the rigids-symmetry of theo-model[13].

1
Il. MODEL de2=— Efé‘bc(i)b‘?. (2.8

The starting point of our analysis is a general action of the

form . .
It follows that the curvature of the connecti¢A5) vanishes

identically:

SlA?.g.y']= f L(AS,g,y)dx, (2.1 i
F2,(0)=0,0%+f%050°=0. (2.9

where A% denotes a Yang-Mills connectiora€1,. .. N)
andg is an element of the corresponding Lie gro@p We
assume thag belongs to some faithfld <X k matrix represen-
tation of G and adopt matrix notations throughout fgr 12=@2_ Al (2.10
UnlessG=GL(k), the matrix elements off are not inde- oo
pendent. One may express them in terms of local coordinates . o )
h? on the groupg=g(h?), but because this can usually not transforms h_omogeneously since it is the difference between
be done globally, we shall avoid explicit parametrizations WO connections,
They' stand for matter fields that transform linearly under
some representation @ with generators ‘(’a)}. We shall S1d=fa |bc 2.19)
also often adopt matrix notations f¥t,, viewing they’s as €u beinto '
column-vectors.
At this stage, we do not specify the exact form of theand it can be thought of as some sort of covariant derivative
action but only assume that it is invariant under the follow-of the field g [the notationl %= w?,(h)D ,h® is sometimes
ing gauge transformations: used in the literaturie Clearly, all the first-order derivatives
&ﬂha of h? can be expressed in termsl@;f. The connection
®Z can be used to define covariant derivatives of fields
SAL=0,e+ 13 A€, (2.2 transforming linearly under the symmetry; to avoid confu-
sion with theA-covariant derivative, we shall denote the cor-
responding covariant derivative By .
59=0T,€?, (2.3 There exist two important choices for the action. One is
the standard gauged model where both the group-valued field
and the Yang-Mills field(as well as the matter fieldg if
Sy=Yaye, (2.4 any) have a kinetic term

The quantityl ,

and that these transformations form a complete set of gauge
symmetries. Thd@ , are the generators of the Lie algebra of 1 a pour_ Lo apb ;
a a ) L=——=0apF;, F*"— 5 0apl 5,1 °#+ matter action.
G andfy. are the corresponding structure constants. 4 m 2 ®
It is convenient to introduce the flat connectitf, de- (212

fined through
Here,g,p is an invertible, invariant metric og, which we
assume to exist. The field equations @mpping the matter

g 'dg=0;T,dx*=0°T,, 25  par
which in terms of local coordinatds® on G reads (Aca a
D\MFark 1|3k =Q, (2.13
02= w3, (h)dhP. (2.6) o
D13 =0. (2.14

The w?,(h) are the components of the left-invariant forms
02 in the basis of thelh®. The matrixw®,(h) is invertible  The first equation follows from varying the vector potential
because the invariant forr@®? form a basis. We shall de- while the second equation is obtained by varying the group
note its inverse by)?,(h): elementif one variesh?, one really obtains Eq2.14 mul-
tiplied by the matrixw?,, which is invertiblg. In Eq.(2.14),
the covariant derivativ® () may be replaced bp{" since
®3(h)QP(h)=653. (2.7 thel’s commute while the structure constarfifg, are anti-
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symmetric inb andc. This leads to the alternative form of as follows by replacing the gauge parametefsby the

the equations of motiof2.14), ghostsC? in the gauge variation dfi®. This term is gener-
ated by taking the antibracket ¢ with [d"xh¥Q3?,CP,
which must thus be added to the Yang-Mills solution of the

D;A)Iaf‘zo, (2.15 maaster equation. Here, tth& are the antifields conjugate to

h?,

which clearly exhibits that thg-equations of motion are a

consequence of the Yang-M_iIIs equation; of mot[qu. (h3(x),h¥ (y))= 828(x— ), (3.2

(2.13 implies Eq.(2.15 by taking the covariant divergence

with D{V]. Note the interesting feature that the Yang-Mills

equations alone are independent even though the combined (h* (x),h# (y))=0. (3.3

system(2.13 and (2.14) satisfies non-trivial Noether identi-

ties. Note also that in the gauge=1, which is admissible,

the action(2.12 reduces to the massive Yang-Mills action; This implies that the BRST variation of the antifield$ is

the fieldg appears as a non-Abelian 8kelberg field. given by
The other choice is obtained by dropping the Yang-Mills
kinetic term from Eq.(2.12, leading to the topological S0P
G/G-model with action sht =hy 6hac C°+ equation-of-motion terms. (3.4)
1 aybu It is possible to replace tH&; by new variableg , with the
L=- Egablnl . (210 same gradings, defined through
The equations of motion are
q gx =hgQb(h), (3.5
[3+=0, (2.17  which have much simpler BRST transformation rules,

D(®)au_ (219 sgt =g} f?,.C°+ equation-of-motion terms. (3.6)
" . :

. } o This equation indicates that thgg transform according to
Again, the g-equation of motion is a consequence of thethe co-adjoint representation 6t We shall work in the se-

A-equation of motion. The model has no local degrees ofye| with the antifieldg? rather tharh? , although they do
freedom since in the gaugg=1, the connectiomA, van- 1ot have canonical antibrackets

ishes.

We shall explicitly discuss below these two cases. How-
ever, our method also covers more general Lagrangians hav- (9% ,08)=—0g5 S, (3.7
ing the same set of fields and gauge symmetries. In fact, the
explicit form of the Lagrangian is only used in Sec. X. The
results of the following sections are manifestly independent (9.9%)=—gT,. (3.9
of the dynamics and rely solely on the form of the gauge

symmetries. And even the results of Sec. X are to a large . . . . o
extent independent of the Lagrangian. Adopting the geometrical interpretation of the antifields

given in[19], the hy may be regarded as the vector fields

tangent to thén®-coordinate lines. Accordingly, they are de-

fined only in the coordinate patch covered by thie By
The BRST transformatioil4,15 that incorporates the contrast, theg are the left-invariant vector fields and are

gauge symmetries can be constructed by following the gerdefined over the entire group manifold. In termsgdf, the

eral antifield procedurg16,17] described for instance in extraterm in the solution of the master equation reads simply

[18]. To write the BRST variations of the variables in a [d"xg} C®.

convenient form, it is useful to redefine appropriately the We can now write the BRST transformation of all the

Ill. PROBLEM

antifields conjugate to the group element variables. Since the gauge transformations close off-shell,
In local coordinates, the BRST transformation of thife  the BRST differential splits according to the antighost degree
reads in the Koszul-Tate differentials) and the longitudinal dif-

ferential along the gauge orbitg), s= 6+ y, with no extra
terms. The(left) action of these differentials on the fields
sh*=023,(h)C", (3.1)  explicitly reads
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a_ b —n(A) a_
yAZ=3,Co+ {3 APCO=DNC?,  5A%=0,

'yg:gTaCa, 5920,
yy'=(Ya)jylC?, 8y'=0,
a 1 a brc a
'yC=—§f pcC°CE, 8C?=0,
S
VA;M:A;beacCCv 5A;#:5,§60‘ '
o
Sy
79;:g§fbacccy 59;:%59ba(h)!
_ 8
yyi =y; (Ya)IC? 5V1*=§r7
VC; :C;fbaccca 5C; = _D,ELA)A;M—’_g; +y,*(Ya);yJ
(3.9
|
These relations imply Eqg. (2.10 can be used instead of the first derivatives of the
o field g. Indeed,l, can be expressed in terms &fg and,
y0%=D\"'C?, (310  converselyd,g=g(l ,+A,). Therefore, the jet-coordinates

. {9,0,9,A%} may be reexpressed in terms{gf 1% ,A%}. Try-
and enable us to express the ghostGasg™"yg. In the  ing to rearrange the jet-coordinates with two indices, one
usual abbreviation€=C"T,, one may rewrite the ghost finds, for the second derivatives of the group ele-
transformation law agC= —C? sinceC?=3T,f%,.C°CC. ment, 9,0,9=1g(DI®I T, +d,A%T,+O% O[T, T,}
Our goal is to compute the cohomological groups|d) Np e 2R ) A k) At (e Tt @ b
9 ; P gical g _ —08,1%[T,,Ty]). The derivative of the connection can be
of the BRST differentials modulo the spacetime exterior split MinI'Eo a symmetric and an antisymmetric pa#t,A

differential d, in the space of local forms. In ghost degree:;(a( A, +dgA,). But the curvature F,,=dp A,
u u v/ mv Y7

zero, these groups characten_ze the counterterms, whlle_ IQL[AV,AV] is already contained in the antisymmetriz&d
ghost degree one, they classify the anomalies. In negative

. . . (0) -
ghost number, they are related to the non-trivial conservatioﬁ_ova”am derivatives Oﬂf“. Dp, I”J . Fuvtlloly].
laws [20]. herefore, only the symmetrized derivatives Af have to

The longitudinal derivativey is nilpotent off-shell. There- be kept. Furthermore, there are noo)relations between the new
: : , 9) a .
fore, we can proceed as if6] and analyze first they- variables that could constrain tﬂiia(ﬂ I%,. Thus, the coordi-

cohomology,H(), and they-cohomology modulo the ex- Nates with up to two mdme:ﬁg,a@g,aMavg,Ai,aﬂAi}, may
terior derivatived, H(y|d), in the space of all fields and be rearranged in the sgg,17,,D,, N2A200,A)

antifields. The De Rham cohomology of the group manifold The claim is now thag, A7, and all their derivatives can
will play an important role in this context. We shall then turn be replaced by, AZ with its symmetrized derivatives, and

to H(s|d). 1%, with its successivé-covariant derivativesk=1,2,..):

a
IV. ANALYSIS OF H(y) {9.94, 0,8, 9 At

apA-1

The calculation of the cohomology is performed in the
so-called “jet-space.” This space is simply tH@finite-
dimensional space coordinatized by the field and antifield
components, as well as all their subsequent partial deriva® good way of checking the equivalence of the two sets of
tives, IC={AZ,g,yi,Ca}, K*={Ar* g5 yf.Cs}, 49,k coordinates is to compare their size. Indeed, remembering
d,K* etc. Because the spacetime manifold is topologicallythat the indexa takesN values and that there are only
R", these functions are actually globally defindsit note N independentg’s, it is easy to see that each set con-
that they do not provide standard coordinates sincegtie tains N-+NIZf_;n(n+1)---(n+1)/I1+NnZ| n(n+1)---
are not independentThe differentialy anticommutes with  (n+1)/1! independent coordinates, as should be the ¢ase
the exterior derivative, so that the above transformation law#s the spacetime dimensiprirhe explicit proof that the two
in Eg. (3.9 can be extended to the whole jet-space. sets of coordinates are equivalent may be obtained by induc-

To describe the~cohomology, it is convenient to employ tion. Assume the above statement to be true up to derivatives
different jet-space coordinates. The construction of thesef orderk for g and of ordek—1 for Af (i.e. for coordinates
new coordinates goes as follows. The quaritfgdefined in  with k spacetime indicgs The derivatives of ordek of AZ

H{gia(al---akfl Zk) ’ D(g) 12 } (41)

@y X—1 Ak
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can be expressed in terms of symmetrized derivativelsf‘pf [x¥*] times a solution ofyn=0 involving only theg's and
and derivatives of ordét—1 of FZ But terms of the form  the C’s. To complete the analysis of the cohomology6f
d Fa are contained |nD(0) ()2 we thus need to compute the cohomology defined by

ap g agayyg g Ley gl
The derivatives of ordeét+ 1 for g are generated by takirlg _aC 4.6
symmetrized®-covariant derivatives of ,: D{Z)..., la, ) v9=g% '
m ‘e o ~—1

Na(al"'akak+1)+ lower order g &(al...akﬂ)g ’}/C:_CZ. (47)

+"l.o.”’, which completes the proof that the above change _

of coordinates is indeed invertible. This is done by relating Eq$4.6) and(4.7) to the De Rham
As new basis of jet-coordinates, we can thus choose theohomology of the group manifold.

following combinations of fields and derivatives: It is the identificationy—d and C—© that establishes
the group elemerg and the ghos€ without derivatives, the Iink.. Here, the exterior derivat'i\deacts in the space af
the 1%, with all subsequen®-covariant derivatives, and @ in the same way ay acts in the space af andC.
the matter fields/' with ®-covariant derivatives, Thus the BRST complex involving the group element and
the antifieldskC* with ®-covariant derivatives, the ghost is identified with the De Rham complex of the
the Yang-Mills connectio®? and its symmetrized de- 9rOUp manifold. The relevant identities are ndg=g® and
rivatives. and the derivative’g of the gh@t d®=—02, where the second equation is recognized to be

the Maurer-Cartan structure equation for left-invariant forms
on the group, which we used already above. Let
=w,(0,g) form a basis oHpg(G), and letw,(C,g) be the
function of C and g obtained after replacin@® by C in
(0,9). Then, a general cocycle solving the equations
ym=0 has the form

The vector potentiaAz with its symmetrized derivatives and
the derivatives ofC? form contractible pairs, as observed in
[9]. Accordingly, they do not contribute to they-
cohomology.

The fields y*: {Ia ,y',K*} all transform linearly under
the action ofy, yx ~(za)BXBca [see Eq(3.9]. The Z.)5
are the generators of some representatiofs ofor instance _
of the adjoint representation in the casel dt It is possible m=>, P'([x"],dX)w(C,g)+ yn, 4.9
to combine these fields with the group elemgnto form !

~TA_ ~
invariant quantitiesy®=U(g)gx® yx"=0. Here, U(g) where theP' are arbitrary polynomials in the variablgg”]

stands for the representative of the group elengei the and the differentials dx* (we assume no explicit

relevant representatiogenerated by,). SinceU(g) trans-  _janendende Furthermorem is trivial if and only if P'
forms contragrediently to the corresponding fields or anti- =0 (for eachl).

fields, Note that the invariant polynomials in the covariantly

. o A . . .
yU(g)=—(—)U(g)Z,C?, (4.2) f[rans_formmg quantitieg”, Whlch are related. to the Casimir
invariants of the corresponding representation, form a subset

the variableg¢® are invariantyx*=0, i.e., one may replace of all P'([x*],dx).
covariant fields by invariant field&he e, denote the parity
of the field y). Furthermore, a short calculation shows that V. TOPOLOGICAL TERMS

(0) A
‘9*;)( Ub(lg)D,L d I:h's th.erefore p?szlble t,:) replgceﬂ:he Consider the pullbacks to the spacetime manifold of the
jet-varia esX an eir ®-covariant derivatives by the formsw,(®,g). These are just given by, (®,g) where® is
quantitiesy” and their ordinary derivatives. The introduction yjewed as the spacetime forf,dx* rather than a 1-form

of the tilde variables follows the pattern g21] (see also g the group manifoldandd is the spacetime rather than

[2]). the exterior derivative on the group manifpldror this rea-

In the new basis of jet-coordinates and after eliminationsgn we shall denote these pullbacks by the same symbol
of the trivial pairs, the action of the longitudinal derivatiye , (@,g). The spacetime exterior forms (©,g) are related
reduces to the simple form to the y-cocyclesw,(C,g) through the descent equatif20].

yg=gC, 4.3 Indeed, expandingw,=w,(®+C,g) according to the
ghost number yields
C=-C?, (4.9 -
4 W= p+a)lp l+---+w|p’o (5.0
Ax"=0, (4.5

wherep is the form degree ob,(0,g) and where, inof',
which fits with the general conditions on “good” jet- the first superscripk stands for the ghost number while the
coordinates given iff22]. The square brackets around ~ Second superscriptstands for the form degreé ¢ |=p).

0_ ~ .
stand fory” and all the subsequent ordinary derivatives. tOf course w*=w(0,9) and wf’=w(C,g). Now, v, is
follows from Eq.(4.5) that the most general solution of the annihilated byy=y+d by construction,

cocycle conditionym=0 is, up to trivial terms, a linear com- L
bination of polynomials in the gauge-invariant variables vy, =0 (5.2
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(the previous equation is usually referred to as “Russian forgeneralization of the so-called “algebraic Poincamma”
mula” [12,23). If one also expands this equation accordingto the case where some fieltleereg) belong to a cohomo-
to the ghost number, one finds a tower of “descent equalogically non-trivial manifold(here the group manifolds)

tions” that read explicitly [24,25 (see alsd20]).
(0p) Algebraic Poincardemma.The cohomologyHP(d,.A) of
do'™P'=0 d in the algebra of locap-forms is isomorphic to the De
001 do1P D=0 Er:]e,lm cohomology ofG in the same form degree fqu
yo P Y+ dw?P72=0 HP(d, A)=HBx(G), p<n. (5.5)

In maximal form degreet 3 x(G) is isomorphic to the quo-
tient of the variationally closedh-forms by the d-exact
n-forms. Ann-form £d"x is said to be variationally closed if
(.0 _ and only if the Euler-Lagrange derivatives 6fwith respect
yw' PP =0. (53 1o all the fields, ghosts and antifields vanish.

For later purposes, we also quote the covariant Poincare
lemma, which described (d);, , i.e. the cohomology oél
in the space of invariant polynomials.

Covariant Poincarelemma.Let PX([y]) be ad-closed

yo P10+ dePO=0

It follows from the Poincardemma on the group mani-
fold that 0" is locally exact,w?®=dK’P~1. This implies
that all the formsw*9~¥ occurring in the descent are also

F k,p—k_— k,pfkfl_i_ k—=1,p—k
locally ~trivial, w di K , Where invariant polynomial of form degrek. Then,P may be as-

Lp—1 %
K"P~"is the component oK(® +C,g) of ghost numbet. - ;e to bed-exact in the space of invariant polynomials,
These relations, however, hold only locally. Globally, it is; o

not possible to bring thevw's to the trivial form. For this
reason, thew*9 ¥ will be referred to in the sequel as the
“topological terms.”

The descent equatior{5.3) will be exploited in the next
section. A particularly important case arises whean. In
that case, one sees from E¢5.3) that the spacetime integral

dPX([x])=0, yP=0=P*=dQ* Y([x])+a* »Q=0,
(5.6)

whereaX is a constant form.

Thus, H(d);,, vanishes in the setting considered here,
contrary to the case without the nonlinearly transforming
f wl” (5.4  field g, where the obstructions to choosii@gy invariant in

R" Eq. (5.6) were identified to be the invariant polynomials in

is gauge-invariant since its integrand is gauge-invariant up t(t)he curv_ature for_rrF [26.9]. In the.presence of the group
a total derivative. It can thus be added to the action Withouyalueq,f'eldg’ 't_ 'S, hpwever, BOSSIbIe 0 r?place F:ovgrlant
breaking gauge invariance. However, becam%@ is locally quantlt'|es(X) byllnvgnant onesy) and covariant derlvatl\{es
exact, the topological terr6.4) does not modify the equa- by clrdlnary derivativegsee Sec. Y. Thus, any polynomial
tions of motion. Terms of the forrtb.4) are called “winding  in [ x] is automatically invariant, and the action dfobvi-
number terms.” Although locally trivial, they cannot be ously does notintroduce any new variables. The vanishing of
eliminated globally. Also, their integrands do not differ from H(d);,, then follows because the invariang and all their
a strictly gauge-invariant integrand up to the exterior derivaderivatives are independent jet-variabl{esbject to no iden-
tive of a (globally defined (n—1)-form, since this would tity). The effect of the group-valued field is particularly strik-
imply that the last element in the corresponding descent ifng in the Abelian case, where the curvature itself becomes
trivial. d-trivial in the space of invariantd=dl. Here, | is the

For instance in three spacetime dimensions and for a congauge invariant quantitd¢— A, andg=exp{¢}.
pact, simple gauge group such a8)(3), thenon-trivial y-
cocycle Tr@_.lygg_lygg_l'yg) =Tr C3lcorreislpondislto the VI. ANALYSIS OF H(y|d)
three-form winding number term Tg( “dgg “dgg “dg)
=Tr 3. Varying the fieldg in this expression yields a total The next step towards a complete description of the
derivative, which indicates that the winding number terms ddBRST cohomology modulod is the calculation of
not contribute to the equations of motion fpr On the other H®* *)(y|d). The bi-grading ‘(*,*)” refers as before to the
hand, they cannot be globally written as a total derivative inghost degree and the form degree respectively. Via standard
the space of fields and accordingly, they cannot be droppedescent equations one can, again as before, relgjéd) to
from the action. Locally, it is of course always possible tothe cohomologyH(y) which is known from the above
express them as total derivatives. analysis.

Finally, we note that the formsP° are the only non- A representativa(9P) of some class it (9P)(y|d) has to
trivial cocycles of the exterior derivative acting in the al-  satisfy
gebraA of local forms on the jet-space of the fields, ghosts
and antifields as described in Sec. IV. This follows from the ya9P) +da9tir~Y=0, (6.2)
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If a(9*1P~1) happens to be trivial itd(y|d), then it can be First, there are the solutions that lead to (non-trivial) de-
eliminated through trivial redefinitions amd%™ e H9(y). If ~ scent, i.e. that are strictly annihilated y(no d-exact term
a9 1P~ 1) is not in the trivial class oH(y|d), then it cannot  occurs,

be trivially absorbed. In this case, the algebraic Poincare

lemma ensures the existence of a descent ya=0. (6.6)

ya9tkp=k 4 dglotktlp—k=D=q k=12 .., These solutions can be expressed in terms of the invariants

(6.2) [X¥"] and the De Rham forme,(C,g) as in Eq.(6.3). Sec-
ond, there are the solutions leading to a non-trivial descent.
OIThese are the lifts of the De Rham forms(C,g), up to
trivial terms and terms strictly annihilated by These solu-
tions are locally trivial(locally in field spacg but not glo-
s‘Dally so. There are no other solutions associated with non-
trivial descents besides these topological terms.

which ends whera(9"**1P~k=1)=0 for some value ok,
which happens at the latest when zero-forms are prodtice
Any bottom a? P~k of a descent is a cocycle of,
ya9"kP~k=0. Therefore, the last term in the descent take
the form, Eq.(4.8),

akPTh=23) PI([X"].dwi(C,g)+ 0. (63 VIl. COMPARISON WITH THE PURE YANG-MILLS
CASE
The y-trivial part can be absorbed through redefinitions of
the previous terms and may be assumed to be absent.
It turns out that some non-triviaj-cocycles are actually
trivial in H(y|d) and accordingly must also be discarded.
More precisely, ifP' is d-trivial,

It is interesting to compare the results obtained here with
those of the pure Yang-Mills case analyzed2i,26,9,8 (or
the case of Yang-Mills fields coupled to matter fields trans-
forming according to some linear representatioisgf Since
the analysis in those works was carried out for reductive
P ([%ALdx =dp' [¥.d%).  yp'=0, 6.4 ?el?ji?:{?/sé_we shall assume throughout this section Ghiat

In the linear caséby which we mean “only linear repre-
sentations’], the y-cohomology is represented by products
of elements of the Lie algebra cohomology with invariant
polynomials in the curvature, the matter fields, the antifields
and the corresponding covariant derivatives with respect to
the gauge connection(denoted by [ ].), ym=0=m
=Ploy((FuJe [Y'1e [0 1) o[ ®(C) + yn. Thus, the y-
cohomologies in the nonlinedg present and linear(g ab-
senj cases have a similar structure, except that it is the De
Rham cohomology that is relevant in one case, while it is the
Lie algebra cohomology in the other case. Of course, for
compact groups, the two cohomologies are isomorphic. But
Mhis is not true in general.

We turn now to the cohomologyl (y|d) and assume that
the Lie algebra cohomology and the De Rham cohomology
are isomorphic, to emphasize the differences that arise when
working “modulo d.” The elements oH(y|d) that are not
equivalent to elements dfi(y) can be characterized by the
bottom of their associated non-trivial descent, which is a

L . cocycle. So we have to compare the bottoms that can be
a non-trivial descent are therefore the basis elements of the:. in both cases. We have seen that in the nonlinear case
De Rham cohomologyy, , mult|p_I|e_d by constanp-forms._ the only non-trivial bottoms involve only the ghosts, but no

These constant forms may be eliminated from the analysis by,e\ fie|ds. This is not true in the linear case, where one
imposing Lorentz invariance, which leaves only the zero,y haye hottoms that contain the curvature forms. More-
forms @ as mFerestmg bottoms.. Furthermore, there is NOover, while there may be obstructions to lifting bottoms more
obstruction to liftingw, up to maximal form degree, as fol- 5 once in the linear ca§g7), this is not true in the non-

|°|W5 immediately from Eq.(5.3). Therefore, any bottom |inear case, where any bottom can be lifted to maximum

@ o, is admissible. _ form degree. For instance, only the primitive elements of the
One can summarize the results as foII_ows. The solutions | je algebra cohomology can be lifted all the way up to maxi-
of the cocycle conditionya+db=0 fall into two classes. um form degree in the linear ca§g7]. An example is
given by the product (TE3)(Tr C°) [in SU(5), say which
cannot be lifted all the way up to form degree 8 because one
2For more details on this procedure when the cohomologyisf ~ encounters the obstruction T at form degree 4. Clearly,
non-trivial, as here, s¢0]. Tr F2 is non-trivial in H(y). When the group elemert is

for some invariant polynomiap', then the corresponding
cocycle inH(y) is y-trivial modulod,

al0tkP=l = p!([3A] dx) w0 (C,g)=d(p'w)) — y(p' @),
(6.5

whereaw, is the second to last term in the descent, &),
associated with the De Rham cohomologyG®fanalyzed in
the previous sectiorw, = yw, .

If the descent is non-trivial, so thaf* %P~k can be lifted
at least once, theR' must be constant up to terms that are
d-exact in the space of invariants. Indeed, one finds fro
dadtkP ki ygotk=1p=k+l=0 that @P")w,+yu'=0,
which yieldsdP'=0 since thew, are independent in coho-
mology. The equalityP'=a'+dp', where thea' are con-
stant forms, then follows from the covariant Poinclamma.
As we have just seen, thdp' component ofP' can be dis-
carded.

The only elements ofi(y) that could serve as bottom of
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present, then any combinatiatiw, can be lifted up to maxi- and observe that E@8.3) is invariant up to a total derivative
mal form degree. The product T@¢)Tr(C®) lifts for ex-  if at the same time the transformation law 8y, Eq.(8.2,
ample to Trg 1dg)®Tr(g 1dg)°. A way to understand the is modified to

removal of the obstruction in the nonlinear case is to observe | ‘

that one may lift the ghosts using the flat connect®riThe 05 = (=25t Cyij) €, (8.9
obstructions are known to involve the curvatufgg]. They

are absent here because the curvatur® aflentically van- where the constant€y;=C; are subject(i) to obey
ishes. Cx,ijy=0 and(ii) to satisfy the 1-cocycle condition of the

Finally, we note that in the linear case, the Chern—Simoné’ie algebra cohomology of in the symmetric tensor prod-

forms cannot be replaced by strictly gauge-invariant terms-ct ofmthem adjoint representation - space with |_t§elf,
By contrast, in the nonlinear case, the Chern-Simons formg Cmij fik* figkCiy,mj* fjiCiy,mi=0. The term involving
differ from strictly gauge-invariant terms by total derivatives PareéA’s in Eq. (8.3) is reminiscent of a Chern-Simons term.
and winding number terms that are locally trivial and do not  AS the authors of10] also observe, any exact contribu-
contribute to the equations of motion. For instance, thdion to Cyjj of the form Cyj;="fiis)m can be absorbed
Chern-Simons term 3TAdA+ 2A3) and the winding num- through a constant shift &; . Thus, ifCy;; is a cobound-
ber term Tr®?3 descend on the same cocycle@%. Thus, ary, the term(8.3) can be brought back to the for(8.1) by
their difference descends on zero and hence is equivalent to'gdefinition ofS; and the addition of a total derivative and
strictly gauge invariant term modulo a total derivative. therefore is not a true generalization of E8.1).

An explicit calculation vyields indeed TAdA+2A%) Our point is that even whei€;; is a non-trivial 1-
=TH{ID®1 - 213}~ 1Tr @3—dTr OA with | =| AT dx". cocycle of the Lie algebra cohomology @fin the symmetric

tensor product of the adjoint representation space with itself
(which can only occur wheg is non-semi-simplg one can
VIII. RELATION TO THE WORK redefine Eq.(8.3 [or, for that matter, even Eg8.1)] by
OF De WIT, HULL AND ROC EK adding a total derivative so that this term is strictly gauge

The same conclusions apply to the topological terms Coni_nvariant and involves only the manifestly invariant variables

sidered i 10]. These again differ from strictly gauge invari- LX"] constructed above, up to possible locally trivial wind-
ant terms by total derivativegand locally trivial winding ~ INg number terms. _
number terms if the De Rham cohomology of the group This is an immediate consequence of our general analysis
manifold in form degrea does not vanish From this point ~ @nd is particularly striking when the gauge groupRS,
of view, the interesting construction [£0] does not bring in ~ Which is a non-compact, Abelian group. We denote its gen-
new terms in the principal case, even when the group is ndRrators byT,, a=1,...k, [T,,Tp]=0. The fieldg is then
semi-simple. exf ¢°T,] where$? is a vector inR¥. The relevant transfor-

To illustrate this point, we recall the construction[@p], ~ Mation laws simply read
specializing to the principal case and considering four space-

a__ a
time dimensions for definiteness. s¢7=C" 8.5
When trying to construct gauge theories with a non- _
A . . sC?=0, (8.6)
compact gauge groufs, it is natural to consider actions
involving integrands of the forr28] sAizaMCa. 8.7)
7=S;(9)F'OF. (8.)  AsusualF?=dA*anddF2=§_F2=0. The De Rham coho-

mology of G is trivial except for the constantsk-,l'gR(G)

This term is strictly gauge invariand(S;;(¢)F'OF/)=0,if ~ =0 for k=0, HgR(G): R, while the Lie algebra cohomol-
S;j(9) transforms in the following way: ogy of G consists of the polynomials in the ghosG
H(G)=P(C). In particular, there is no winding number
term. Furthermore, since the structure constants are zero, any
constantC, ;; with C, ;;=Cy;; defines a non-trivial 1-
cocycle with a value in the symmetric product of the adjoint
When §; is an invariant symmetric tensor, the term representation. We assun@, ;;y=0 in the sequel so as to
S”-F'DFJ defines a characteristic class and is a topologicakatisfy the first conditiorti) above.
invariant. 5 Equations(8.3) and(8.4) simplify to

In [10], De Wit, Hull and Roek generalize the above

5ESJ:_Sljf:kek_slif}kek:_ZSI(jfE)kfk. (82)

setting through modifications of the action. As[29], they B ik 2 Ak
modify the above term by adding to it an appropriate non- Tiod=Sik(¢)F'F '+ §Ci,ikAA F 8.8
gauge-invariant term,
$§;=Cy,;C~. (8.9
T =S imrks 2 aimall daks S gk alam
mod=Sik(9)FIOF + 2 C; j A'DA!| dA™+ 2 fLAIAT ),
(8.3 SFor useful information on Lie algebra cohomology, §8€].
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TheT transformation law of;, implies S,-k(cﬁ)_: Ci jko' upto ﬁwzw([g],[/-\‘;])=Ci””([g],[Ai])+dm
an irrelevant constant. The above tefy,q is gauge invari-
ant up to a total derivative,yZyoq=— 5dC; ;(C'AIF¥
+AICIFX). From the point of view of10], the expression in 9.2

Eq. (8.8 represents a non-trivial extension of the strictly

gauge invariant theory, sin& ;; is a non-trivial Lie algebra  for somem. This would imply, upon setting\Z and its sub-
cocycle. However, by adding an appropriate total derivativesequent derivatives equal to zero, that the original Wess-
to it, one straightforwardly verifies th&f,,q is equivalent to  Zumino term is(locally) equivalent to the strictly invariant
the strongly gauge invariant expressi(iici,jk(d(b'—A') term Li””([g],[Ai]=O), which we know cannot be true.

+‘“‘winding humber terms’’

X(dg!— AlFK, (The strict invariance ofﬁi”"([g],[Ai]=O) under rigid
1 transformations follows from the strict invariance of
inv a . .
T =2C VA VHE+2C d|l dAIEK— = pidgiEK], L™ ([g],[A%]) under gauge transformatiopsThis means
mod= 3CikV IV & 3Ciad| ¢ 2 #de that there slimeIy is no room for a gauged Wess-Zumino-

(8.10  witten term.
i i ) Our approach is less explicit than the analysis[338]
whereV ¢'=d¢'—A" may be regarded as the exterior cova-gjnce it does not identify the nature of the obstructiibjust
riant derivative of¢p and is just the invariant' introduced jyicates that there is an obstructioAt the same time, it is
aboveV,¢'=1,. o . _ more complete because we show that the obstruction exists
This shows that in the principal case it is not the Lie gyen if one allowsCy,y to depend on the individual field
algebra cohomology that controls the “novelty” of E§.3.  components and all their derivatives. As pointed out very
This term is always equivalent to a strictly gauge mvarlantdeaﬂy in [33], the previous calculations were performed
term [plus winding number terms i 3(G) happens to be only in the “universal” algebra generated ly the 1-form
non-trivial]. It would be interesting to extend the analysis of A and their exterior derivativedg, dA (but not in the alge-
this issue to scalar fields taking values in quotient spacepra generated by all the separate individual components of
G/H, for which the general construction ¢10] was de-  the fields and their higher order derivatiyeSo these calcu-
vised. lations excluded only gauged Wess-Zumino-Witten terms
Lwzw depending org, A and their exterior derivatives but
IX. GAUGED WESS-ZUMINO-WITTEN TERM still left open the possibility of gaugingyzy in the “big
algebra” containing all the field components and their de-

The above calculation dfi(y|d) sheds also a new light rivatives individually[33].

on the problem of gauging the Wess-Zumino-Witten term
[11,31-33. The Wess-Zumino-Witten ternfy,,w(g) is a
term that can be added to the Lagrangian of negauged X. ANALYSIS OF H(s|d)

nonlinearo-model without breaking its rigid symmetries. ItS |4 order to characterize the cohomology moddlof the
characteristic propertjwhich may be used as its definitibn  complete BRST operator in the space of fields and antifields,
is that it is not strictly invariant under the rigid symmetries of j; j5 necessary to specify the dynamics of the theory. Indeed
the model, but onI)‘/‘_lnvarlar],t up to a surface term. Furtherg contains information on the equations of motion through
more, one cannot “improve” it by a surface term such thatine Koszul-Tate differentiab, and the BRST cohomology
the sum is strictly invarianteven locally in field spage will in general depend on the dynamics although the gauge

Because the Wess-Zumino-Witten term is invariant onlyyransformations are not affected. We shall first develop the
up to a non-trivial surface term, its gauging raises d'ff'C“"anaIysis in the case of the usual acti@l12, which is, if

ties. These have been analyzed 32,33, with the conclu- e reinstates explicitly the coupling constants,
sion that in the principal case in which one gauges the right

action(as herg there are unremovable obstructions to gaug- 1 1
ing the Wess-Zumino-Witten term. These obstructions have L= -— ZgabFi‘wa“V—m2 Egabl;‘ll bu 4 matter action
been related if33] to the equivariant cohomology. The im-

possibility of gauging the Wess-Zumino-Witten term is also (10.
a direct consequence of our analysis. a . na a borc
Indeed, suppose that one has found a functional Fuv=0,A, = A+ “fabcAuAv (102

EWZM[g],[Ai]) that (i) reduces to the Wess-Zumino- o
Witten termZy,>w(g) When the gauge field is set to zero and 1%=(wp(h)d,h°— aA?) (10.3
(i) is gauge-invariant up to a surface term,
where« is the Yang-Mills coupling constant. We shall then
YLwzw[91[AS]) +da® = Y([g],[A3],C)=0. (9.1)  explain how the results extend to more general actions.
The idea follows the pattern developed 88]. One con-
Such a term would provide a “gauging” of the WZW term. trols the antifield dependence of the BRST cocycles through
But our results indicate that such a term would necessarily bexpansion of the condition
equivalent to a strictly invariant term, modulo winding num-
ber terms that do not contribute to the equations of motion, sat+db=0 (10.9
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according to the antighost numbe=ay+---+a, andb non-trivial cocycles oH3(8|d) are known to be\?C} up to
=bg+---+bp. Only the case where the highest antighosttrivial terms. These terms cannot be deformed to cocycles of
degree ofa is equal to that ob (k=m) shall be described the full theory whena#0, even in the Abelian casghe
here because the other cases can be easily reduced to thisdifferentiated terng} in 6C; prevents it and thus we

one. At highest antighost numblerwhich we take to be-0  may conclude thaiH}(5|d) vanisheswe refer the reader to
since otherwise there is no antifield—the above cocycle cor34] for a detailed explanation of the method

dition reads Note also that ifPE([}A]) is a trivial invariant polyno-

ya +db,=0. (10.5  mial, PR(IXAT) =8My, ;+dNgY, then it is also trivial in
the space oinvariant polynomials, as one can see by setting

This implies yb,+dc,=0 and hence, according to our all variables equal to zero iNy, ; andNg~* but the gauge
analysis ofH(y|d), b, must be trivial(it must be liftable at invariant[ y*]. In contrast to the situation analyzed [i8],
least once but it contains the antifields and therefore cannahe invariance oM}, ; andN} ! is thus not an issue here.
be a pure topological termWe can thus assumga,=0; Let us come back to the analysis of the cocycle condition
i.e., up to trivial redefinitionsa, = P'w, . Next, the sublead- sa+db=0. The fact that the only non-vanishing cohomol-
ing equation in the above decomposition of the cocycle conpgy groupHY(8|d) is H7(8|d) implies that the BRST co-

dition has to be used: cycles may be assumed to have an expansion that stops after
the second summand=ay+a;, wherea; may be chosen
dat ya—1+dby,=0. (10.6 {0 be invarianta;=P'w, andP'ecH}(5|d). If gh(a)<O,

, . . . then of coursea=a; [andgh(a) is actually equal to—1].
Acting with y on this equation producesyb,—;=0 and  There are thus two types of cocycles f(s|d): those for
thus yby_,+dc,_,=0. By the same reasoning as above,hich a, does not vanisiithey involve non-trivially the an-
one finds thaty., is trivial if k>1, ar:d thus one may as- tifie|ds) and those for whicta,=0. We shall call the first
sumeby_;=Q'w . If k=1,by=bg" +bg’* may have anon- ¢jass “type |,” while solutions in the second class will be of
trivial, topological component. The resulting equation«iype ).
ybgP+dco=0 may be lifted toyayP+dby?=0. By sub- The analysis of the BRST cohomology for other gauge-
tracting, if necessary, the topological teai® from ay, itis  invariant Lagrangians proceeds in exactly the same fashion.
possible to eliminate the non-invariant componenbgfind  If these gauge invariant Lagrangians satisfy the rather mild
to assuméd,_;=Q'w, also fork=1. “normality condition” given in[34], the groupsH}(8|d) are

Upon inserting the explicit forms oy, andby—; in Eq.  also zero fokk>1. Thus, the solutions of the BRST cocycle
(10.6), it is straightforward to derive thatP'+dQ'=0. Fur-  conditionsa+db=0 fall again in two classes, just as for the
thermore, ifP' is in the trivial class ofHy(5|d), i.e. if P'  specific Lagrangiari2.12.
=6M'+dN', thena, can be absorbed through trivial redefi-
nitions. The antighost dependenceaois thus controlled by A. Type |
Hg(s|d). It is through these cohomological groups that the
dynamics enter.

The groupH(5]d) has been shown if84] to Ee isomor-

hic to the characteristic cohomology" *(d|s) of P — — i -
gntifield-independentd— k)-forms that are weakl|y closed Tulat 0Ca=0. ¥6=0, antighca) =1 (10.9
(i.e. closed modulo the equations of motidut not weakly  (thec,’s define the rigid symmetries associated with the con-

exact. Thus,H](4|d) is isomorphic to the space of non- served currentt [34]). The solutions of type | take the form
trivial weakly conserved currents. It does not vanish for the

Let {j4} be a complete set of gauge-invariant conserved
currents and let, be such that

above theory, which is Poincaievariant. For higher antig- kf*(jﬁ&)'MJrcAw'), (10.8
host degred>1, the groupsH(§|d) turn out, however, to
be trivial [34]. where theo'(g,C) are the De Rham cocycles angh!,

The triviality of H(5]d) for k>2 follows from the gen-  +4,0'=0. In order to completely list all the independent
eral theorems 0f34,24,33. The triviality of H3(5|d) is  solutions of type I, it is necessary to know all the local con-
demonstrated by following the perturbative argument ofserved currents. This is a question that depends on the de-
[34]: the theory obtained by taking the limi¢=0 in the tailed form of the Lagrangian and that will not be pursued
action (10.1) describes a set dfi(1) gauge fields together here. Two remarks should however be ma@g:Potential
with a nonlinearg-field with rigid G-symmetry, which does anomalies are classified throug'™(s|d). The above re-
not interact with the gauge fieldsin that limit, the only  sults indicate that there is no anomaly of type 1, i.e. that the

antifield dependence of anomalies may be eliminated
through trivial redefinitions iH35(G)=0, no matter what
“The corresponding equations of motion are obtained by keepind€ conserved currents are. In a similar manner, one can get
in the original equations of motion the terms with the maximumfid of the antifields in HOM(s|d) if Hpr(G)=0.
number of derivatives. Thus, the perturbative methofBdfindeed ~ H®"(s|d) classifies the observables of the theory, and is
applies. relevant for renormalization and deformation issu@ég.The
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solutions of type | become trivial upon restricting the fields of the identity ofG homeomorphic tdR* (denoted byG in
to lie in a neighborhood of the identity since the formisare h Then HX (B)=0 for k HC (BY=R
then trivial. Again, this is true independently of the form of the sequel Then, Hpe(G) =0 for k0 andHpe(G)=R.

This greatly simplifies the analysis.
the conserved currents. 9 y P Y

First, one finds that the ghos®&® drop out from the co-

homology. Indeed, one may redefine@the ghosts a€?

—D2=Q2(h)CP. These new variables form contractible
The solutions of type Il do not involve the antifields. The pairs with theh?,

BRST cocyclessa+db=0 are theny-cocycles, ya+db

=0 (sa=ya). As we have seen, the solutions of this latter vha=D23 yD?%=0 (12.1)

equation also fall into two classes: those that are strictly in-

variant and those that are invariant only modulo a total deand also

rivative, the so-called topological termsee Sec. Y. Al-

though the cocycle condition of the mod d cohomology sh*=D? sD%=0. (12.2

reduces to the cocycle condition of thgmodd cohomology ~

whena does not contain the antifields, the coboundary conThus, H(y) is given by the functions of thg and their

dition is different. Some classes ®f(y|d) are trivial in  derivatives as observed j12]. This implies thaH*(y) van-

H(s|d), namely, those that are zero when the equations oshes unlessk<1. The De Rham cocycles'(g,C) are

motion hold(or, more generally, aré-exac). The dynamics trivial in G.

plays thus a central role for determining the explicit form of  Second, because the ghosts drop out fkb(ry), only the

the most general coboundary of type I. This is particularlycocycles of one type survive iH(y|d), namely those that

obvious in the topologicalG/G-model, to which we now lead to trivial descents and that can be redefined so as to be

turn. strictly annihilated byy. The topological cocycles disappear.

At ghost number zero, the terms that are gauge invariant only

XI. G/G TOPOLOGICAL THEORY up to a total derivative can thus be replaced by strictly gauge

For the topological action, Eq2.16 [36-41, the local invariant terms involving only thé(—variables and their de-

; ivatives.
BRST cohomologyH(s|d) reduces to the topological terms rivatl . ©n)
of Sec. V. There is no other cohomological class. The most (fﬂ;’:\lly, only th_e cohomological grou_pls (Sld) and
expedient way to see this is to redefine the gauge-invariaff (s|d) are different from zero. This is again because

~ . . the ghosts drop out from the cohomology. Hence, in the
E:)c()%t\r/:élt?bt:figsi?se Eq.4.2] in such a way that they form expansion of the BRST cocycles(sa+db=0) according

. L to the antighost number, one may assume that there is only
With the definition one term,a=a,, with gh(a)= —k= —antigh@), ya,=0,
éa+db,_,=0. Non-trivial solutions are obtained only for
k=0,1. The solutions wittk=1 correspond to the gauge
invariant conserved currents considered above. The solutions
with k=0 are the observables and can be assumed to be

B. Type Il

6’;:’6;_(3’#"&;#’ (ll])

the s-variations of the new tilde variables simply become

sA;”:Tg, sl#=0 (11.2 strictly gauge invariant, i.e. to involve only tHe/] (note
again that the conditioda,+db,_,=0 is empty fork=0
sf:; 25,; , s~g’; =0. (11.3 sincea contains then no antifield, but that the coboundary

condition is non-trivial and eliminates the on-shell vanishing

For deriving the previous equations, one has to take int@bservables _ _ _

account Eqgs(2.17), (2.18, as well as the interchangebility ~ In particular, there is no perturbative anomaly. This pro-

of D¥W and D'® acting onl#. Thus, the gauge-invariant Vides a cohomological interpretation of the Wess-Zumino
w w d

anomaly cancellation mechanisft1,12,43. By enlarging

1the original field space with the group elememtgif the

complete gauge group is broKerthe anomaly becomes

trivial, i.e. eliminable through a local counterterm. In the

sg=gC, sC=-Cz2 (11.4  antifield language, this means that there exists a local coun-

terterm M; which trivializes the anomalyAS, yM;

Accordingly, only the cocycle®'(g,C) and their lift appear =(M,S)=iAS[44-4§.

in the BRST cohomologyH(s|d). In particular, the only

non-trivial local observables are the winding numbers. XlIl. GLOBAL GHOSTS

variablesy and their derivatives all drop out from the BRST
cohomology, leaving only the undifferentiated group elemen
g and the ghos€?, the BRST transformations of which are

XIl. PERTURBATION THEORY Finally, the situation of a non—_gauged sigma model shall
be considered. The theory contains only the group elements
The De Rham cohomology detects the global propertiege G and is invariant under the global transformatiégg
of the group manifoldG. It is customary, in the context of =gT,e?, wheree® are constant parameters. The main inter-
perturbation theory, to restrict the fieldso a neighborhood est of this setting lies in the construction of effective actions,
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where it is crucial to have an exhaustive list of all operatorsjya(9+n9=0_ |t follows from the algebraic Poincatemma

that are compatible with the rigid symmetriesee e.g[2]).

The incorporation of rigid symmetries in the antifield for-

malism has been analyzed [A7,4§ in the context of the
sigma model. Further developments may be found4.

The symmetry parametee$ are promoted to anticommuting

that ya9*™9 has to be equal to a constant, which must be of
ghost degreg+n+ 1. In the gauged case, there was no such
constant since the ghosts are fields. Here, however, the

ghosts are constant and $a9*™% may be a polynomial in

constant ghost€? and the relevant transformation laws read :

yg=gT.C?, (13.2

. 1
yC23=— Efabcc:bc:C. (13.2

The aim is now to compute the cohomologyjoin the set of
fields

{C%9,9,9,9,9,9,...}. (13.3

ya9 "0 (g C)=a(C). (13.10

This phenomenon was previously observed in a similar con-
text in [50]. By applying y to Eq. (13.10 it follows that
ya(C)=0. If in addition a(C) is y-trivial in the space of
constants,a(C) = yB(C)=0, then it may be absorbed by
trivial redefinitions of the preceding descent equations. In

that case, the bottora®* "0 satisfies ya(@*"%(g,C)=0
and thus, as we have seen in Sec. VI, is equivalent to a De

Derivatives of the global ghosts obviously cannot occurRham cocyclew,(0,9) e HYL(G). For g=0, these co-

since they are zero. As before, all the derivativeg afay be
reexpressed through the variabl@s=g~*dg and their sub-

sequent derivatives, yielding as new coordinates of the jetl—d

space the set
{C%90,0,,94,0,,...}, (13.9

or equivalently, using the invariant tilde variabldd?
=U(9);50",
{C%9.6,,0,0,,..}. (13.5

In these variables, the action ¢ftakes the simple form

79=9gT.C?, (13.6

. 1
yC=— 5% C°C°, (13.7
Y 02]=0. (13.9

cycles lift up to winding number terms in form degree

Upon restricting theg-field to a neighborhoods of the
entity, the De Rham cocycles become trivial and accord-
ingly can be absorbed through redefinitions. Thusg(€)

vanishes in Eq(13.10, or is y-trivial in the space of con-
stants, the originah(®™ differs from a term strictly annihi-
lated byy by a total divergence. The obstruction to replacing
a term invariant up to a total divergence in the Lagrangian by
a term strictly invariant is thus an element of the Lie algebra
cohomology H(G): if one hits a non-trivial Lie cocycle
a(C) in the descent, there is no way to redefine the Lagrang-
ian so that it is strictly invariant.

Furthermore, any Lie algebra cocycle can be written, in
the neighborhood of the identity, 3s(9*"%(g,C) for some
al9™"9 that involves explicitly ther-field g. This is because
the De Rham cohomology d& is trivial. ReplacingC by
g~ }(d+7y)g in a9*"9(g,C) and keeping the term of form
degreen yields the top of a descent generatia¢C) at the
bottom. Thus, any Lie algebra cocya€C) can be lifted all
the way up to form degree. [On the full group manifolds,

The first two equations can again be identified with the Déhe terma(g+n,0)(g C) will in general not be globally de-

Rham complex while the last equation states thaf ¢ are

invariant. The representatives of thecohomology have
thus the form found above,

m=P'([®])w(C,09), (13.9

where theP' are arbitrary polynomials and the, form a
basis of the De Rham cohomology Gf

fined. This leads to a multiply valued Lagrangian with a
guantization condition on the corresponding coupling con-
stant] It follows that the locah-forms with vanishing ghost
degree that are invariant up to a divergence are classified by
the Lie algebra cohomology at ghost degreel, H"*1(G).

For compact groups, the Lie algebra cohomology is iso-
morphic to the De Rham cohomology of tHeomplete
group manifoldG, which establishes the link to the results of

Apart from the strictly invariant terms, which are exhaus-D’Hoker and Weinberd13] (see alsd51]).

tively classified by Eq(13.9), also the invariant terms that
are invariant only up to a total divergence play an important
role in various physical models. These terms can be analyzed
via descent equations in almost the same way as in Sec. VI. In this paper, we have investigated the local C0h0m0|ogy
A non-trivial solution of the modi cocycle condition at form  of the gauged principal nonlinear sigma-model.

degreen, ya(@M+dal9*1"~1=0, necessarily descends all  The analysis has been pursued by taking due account of
the way down to zero-forms as in E@.2). But now, in the the topology of the group manifold. We have shown that the
last step of the descent, the constants cannot be discardemst general local BRST cocycieis, up to trivial contribu-
any more. Indeed, one gets at the last step the conditiotions, the sum of terms of three different kinds:

XIV. CONCLUSIONS

025017-12
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satdb=0=a=A;+A,+Az+sm+dn. (14.1)

The cocycleA; has been called of “type I” and involves the

PHYSICAL REVIEW D 58 025017

variant up to field equations and total derivatives, while
defines a term which is strictly gauge invariant.
In perturbation theory, it is customary to replaGeby a

antifields linearly, as well as the conserved currents. Th%pobgica”y trivial neighborhooé of the identity. In doing

cocyclesA, and A; do not involve the antifields and are of
“type I.” A, is strictly annihilated byy and involves there-
fore only the gauge invariant variablgé and their deriva-
tives. The cocycléd; depends org and the ghosts. It is a

solution of yAz;+db=0 and is related to the De Rham co-

homology of the group manifoldA, is also related to
H'BR(G), so that bottA; and A; may be regarded as “gen-
eralized winding number terms.”

At ghost number 0 and form degree(observables A;
exists if and only ifH}r(G) #0. Similarly, A, exists if and
only if H%,R(G)aﬁo and if there are non-trivial conserved

s0, bothA; andA; disappear at ghost number 0, and only the
strictly gauge invariant terms are left. Furthermore, there is
no cohomology at positive ghost number. In particular, there
is no non-trivial anomaly.

It would be interesting to extend the analysis to coset
models built on a homogeneous spaéA. Work in this
direction is in progress.
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