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Local BRST cohomology of the gauged principal nonlinear sigma model

Marc Henneaux*
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The local BRST cohomology of the gauged nonlinear sigma model on a group manifold is worked out for
any Lie groupG. We consider both the case where the gauge field is dynamical and the case where it has no
kinetic term~G/G topological theory!. Our results shed novel light on the problem of gauging the WZW term
as well as on the nature of the topological terms introduced a few years ago by DeWit, Hull, and Rocˇek. We
also consider the BRST cohomology of the rigid symmetries of the ungauged model and recover the results of
D’Hoker and Weinberg on the most general effective actions compatible with the symmetries.
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I. INTRODUCTION

A central theorem in the renormalization of Yang-Mil
gauge models interacting with matter is that the most gen
solution of the Becchi-Rouet-Stora-Tyutin~BRST! invari-
ance conditions*dxm50 is given, up to trivial terms, by the
integral of a gauge invariant polynomial in the fie
strengths, the matter fields and their covariant derivatives~in
odd dimensions, there are also Chern-Simons terms!. This
theorem guarantees that all the divergences appearing in
quantum theory can be absorbed by counterterms that res
the original symmetry, making the theory renormalizable
the ‘‘modern sense’’ in any number of spacetime dimensi
@1,2# ~for related, but different ideas, see@3#!. It also guaran-
tees that gauge invariant operators can be renormalized
gauge independent way.

The theorem, conjectured in@4#, was recently proved in
@5,6# through cohomological arguments~see@7# for earlier
developments!. Its interest transcends the question of ren
malization since the BRST invariance condition also de
mines the allowed deformations of the action, i.e. the ter
that can be consistently added to the classical, gauge in
ant action while maintaining the number of~possibly de-
formed! gauge symmetries@8#.

An important assumption made in@6# was, however, tha
the matter fields transform in linear representations of
symmetry. Now, nonlinear realizations are also import
since nonlinear sigma models coupled to gauge fields o
in supergravity and string theory as well as in the effect
description of low energy interactions among hadrons.

In this paper, we generalize the above theorem to the c
of the gauged nonlinear sigma model on a group manifoldG
~gauged principal sigma model!. For definiteness, the righ
action ofG on itself will be gauged. To simplify the discus
sion, the spacetime manifold is assumed to be homeom
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phic to Rn, leaving only the group manifold as a source f
non-trivial topology.1 We show that the most general defo
mation of the action is, up to trivial redefinitions, the integr
of a strictly gauge invariant term plus winding number term
@Winding number terms are characterized by two features~i!
They involve only group-valued fields, and~ii ! they do not
contribute to the field equations but are not exact in fi
space and hence cannot be eliminated globally by addin
total derivative. These terms are related to the De Rh
cohomology of the group manifold—see Sec. V.# In particu-
lar, we recover from a different perspective the fact that th
is no room in the principal case for the gauged We
Zumino-Witten term. Furthermore, we verify explicitly tha
the Chern-Simons terms actually differ from strictly gaug
invariant terms by~non-invariant! total derivatives plus, pos
sibly, winding number terms, even when the Lie algebra
homology ofG is non-trivial ~G denotes the Lie algebra o
G!. This property also holds for the topological terms d
scribed in @10#, which are equivalent to winding numbe
terms plus strictly gauge-invariant terms in the principal ca
considered here.

At the quantum level, our result implies that the coupl
Yang-Mills–nonlinear-s-model in any number of spacetim
dimensions, even though generically not power-count
renormalizable, is renormalizable in the ‘‘modern sense’’
@2#. Note that in perturbation theory, it is customary to r
strict the fields to a neighborhood of the identity, so that
winding number terms, which are locally trivial, may b
dropped.

We also compute the BRST cohomology for other valu
of the ghost degree. This is relevant for the problem
anomalies in Yang-Mills theory since the Wess-Zumi
compensating field precisely transforms nonlinearly as
group element under gauge transformations@11,12#. Finally,
the cohomology of the ungauged model is analyzed, wh
enables us to recover from a different angle the results

1For a discussion on how to take into account the spacetime
pology ~restricted to product bundles!, see@9#.
© 1998 The American Physical Society17-1
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MARC HENNEAUX AND ANDRÉ WILCH PHYSICAL REVIEW D 58 025017
D’Hoker and Weinberg on the most general effective actio
compatible with the rigidG-symmetry of thes-model @13#.

II. MODEL

The starting point of our analysis is a general action of
form

S0@Am
a ,g,yi #5E L~Am

a ,g,yi !dx, ~2.1!

where Am
a denotes a Yang-Mills connection (a51, . . . ,N)

andg is an element of the corresponding Lie groupG. We
assume thatg belongs to some faithfulk3k matrix represen-
tation of G and adopt matrix notations throughout forg.
UnlessG5GL(k), the matrix elements ofg are not inde-
pendent. One may express them in terms of local coordin
ha on the group,g5g(ha), but because this can usually n
be done globally, we shall avoid explicit parametrizatio
The yi stand for matter fields that transform linearly und
some representation ofG with generators (Ya) j

i . We shall
also often adopt matrix notations forYa , viewing they’s as
column-vectors.

At this stage, we do not specify the exact form of t
action but only assume that it is invariant under the follo
ing gauge transformations:

deAm
a 5]mea1 f a

bcAm
b ec, ~2.2!

deg5gTaea, ~2.3!

dey5Yayea, ~2.4!

and that these transformations form a complete set of ga
symmetries. TheTa are the generators of the Lie algebra
G and f bc

a are the corresponding structure constants.
It is convenient to introduce the flat connectionQm

a de-
fined through

g21dg5Qm
a Tadxm5QaTa , ~2.5!

which in terms of local coordinatesha on G reads

Qa5va
b~h!dhb. ~2.6!

The va
b(h) are the components of the left-invariant form

Qa in the basis of thedha. The matrixva
b(h) is invertible

because the invariant formsQa form a basis. We shall de
note its inverse byVa

b(h):

va
b~h!Vb

c~h!5dc
a . ~2.7!
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The invariant formsQa obey the Maurer-Cartan equation

dQa52
1

2
f a

bcQ
bQc. ~2.8!

It follows that the curvature of the connection~2.5! vanishes
identically:

Fmn
a ~Q!5] [mQn]

a 1 f a
bcQm

b Qn
c50. ~2.9!

The quantityI m
a ,

I m
a 5Qm

a 2Am
a , ~2.10!

transforms homogeneously since it is the difference betw
two connections,

deI m
a 5 f a

bcI m
b ec, ~2.11!

and it can be thought of as some sort of covariant deriva
of the field g @the notationI m

a 5va
b(h)Dmhb is sometimes

used in the literature#. Clearly, all the first-order derivative
]mha of ha can be expressed in terms ofI m

a . The connection
Qm

a can be used to define covariant derivatives of fie
transforming linearly under the symmetry; to avoid conf
sion with theA-covariant derivative, we shall denote the co
responding covariant derivative byDm

(Q) .
There exist two important choices for the action. One

the standard gauged model where both the group-valued
and the Yang-Mills field~as well as the matter fieldsyi if
any! have a kinetic term

L52
1

4
gabFmn

a Fbmn2
1

2
gabI m

a I bm1matter action.

~2.12!

Here,gab is an invertible, invariant metric onG, which we
assume to exist. The field equations are~dropping the matter
part!

Dr
~A!Farm1I am50, ~2.13!

Dm
~Q!I am50. ~2.14!

The first equation follows from varying the vector potent
while the second equation is obtained by varying the gro
element@if one variesha, one really obtains Eq.~2.14! mul-
tiplied by the matrixva

b , which is invertible#. In Eq. ~2.14!,
the covariant derivativeDm

(Q) may be replaced byDm
(A) since

the I ’s commute while the structure constantsf a
bc are anti-
7-2
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LOCAL BRST COHOMOLOGY OF THE GAUGED . . . PHYSICAL REVIEW D 58 025017
symmetric inb andc. This leads to the alternative form o
the equations of motion~2.14!,

Dm
~A!I am50, ~2.15!

which clearly exhibits that theg-equations of motion are a
consequence of the Yang-Mills equations of motion@Eq.
~2.13! implies Eq.~2.15! by taking the covariant divergenc
with Dm

(A)#. Note the interesting feature that the Yang-Mi
equations alone are independent even though the comb
system~2.13! and ~2.14! satisfies non-trivial Noether identi
ties. Note also that in the gaugeg51, which is admissible,
the action~2.12! reduces to the massive Yang-Mills actio
the fieldg appears as a non-Abelian Stu¨ckelberg field.

The other choice is obtained by dropping the Yang-M
kinetic term from Eq. ~2.12!, leading to the topologica
G/G-model with action

L52
1

2
gabI m

a I bm. ~2.16!

The equations of motion are

I am50, ~2.17!

Dm
~Q!I am50. ~2.18!

Again, the g-equation of motion is a consequence of t
A-equation of motion. The model has no local degrees
freedom since in the gaugeg51, the connectionAm van-
ishes.

We shall explicitly discuss below these two cases. Ho
ever, our method also covers more general Lagrangians
ing the same set of fields and gauge symmetries. In fact,
explicit form of the Lagrangian is only used in Sec. X. T
results of the following sections are manifestly independ
of the dynamics and rely solely on the form of the gau
symmetries. And even the results of Sec. X are to a la
extent independent of the Lagrangian.

III. PROBLEM

The BRST transformation@14,15# that incorporates the
gauge symmetries can be constructed by following the g
eral antifield procedure@16,17# described for instance in
@18#. To write the BRST variations of the variables in
convenient form, it is useful to redefine appropriately t
antifields conjugate to the group elementg.

In local coordinates, the BRST transformation of theha

reads

sha5Va
b~h!Cb, ~3.1!
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as follows by replacing the gauge parametersea by the
ghostsCa in the gauge variation ofha. This term is gener-
ated by taking the antibracket ofha with *dnxha* Va

bCb,
which must thus be added to the Yang-Mills solution of t
master equation. Here, theha* are the antifields conjugate t
ha,

„ha~x!,hb* ~y!…5db
ad~x2y!, ~3.2!

„ha* ~x!,hb* ~y!…50. ~3.3!

This implies that the BRST variation of the antifieldsha* is
given by

sha* 5hb*
dVc

b

dha Cc1equation-of-motion terms. ~3.4!

It is possible to replace theha* by new variablesga* , with the
same gradings, defined through

ga* 5hb* Va
b~h!, ~3.5!

which have much simpler BRST transformation rules,

sga* 5gb* f b
acC

c1equation-of-motion terms. ~3.6!

This equation indicates that thega* transform according to
the co-adjoint representation ofG. We shall work in the se-
quel with the antifieldsga* rather thanha* , although they do
not have canonical antibrackets,

~ga* ,gb* !52gc* f ab
c ~3.7!

~g,ga* !52gTa . ~3.8!

Adopting the geometrical interpretation of the antifiel
given in @19#, the ha* may be regarded as the vector fiel
tangent to theha-coordinate lines. Accordingly, they are de
fined only in the coordinate patch covered by theha. By
contrast, thega* are the left-invariant vector fields and a
defined over the entire group manifold. In terms ofga* , the
extra term in the solution of the master equation reads sim
*dnxga* Ca.

We can now write the BRST transformation of all th
variables. Since the gauge transformations close off-sh
the BRST differential splits according to the antighost deg
in the Koszul-Tate differential~d! and the longitudinal dif-
ferential along the gauge orbits~g!, s5d1g, with no extra
terms. The~left! action of these differentials on the field
explicitly reads
7-3
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gAm
a 5]mCa1 f a

bcAm
b Cc5Dm

~A!Ca, dAm
a 50,

gg5gTaCa, dg50,

gyi5~Ya! j
i y jCa, dyi50,

gCa52
1

2
f a

bcC
bCc, dCa50,

gAa*
m5Ab*

m f b
acC

c, dAa*
m5

dS0

dAm
a ,

gga* 5gb* f b
acC

c, dga* 5
dS0

dhb Vb
a~h!,

gyi* 5yj* ~Ya! i
jCa, dyi* 5

dS0

dyi ,

gCa* 5Cb* f b
acC

c, dCa* 52Dm
~A!Aa*

m1ga* 1yi* ~Ya! j
i y j .

~3.9!
t

r
ee
e
ti
tio

-

ld
rn

he

ld
iv

ll

w

y
es

he

s

ne
le-

e

new

d

of
ring
ly
n-

e

uc-
ives
These relations imply

gQm
a 5Dm

~Q!Ca, ~3.10!

and enable us to express the ghost asC5g21gg. In the
usual abbreviationsC5CaTa , one may rewrite the ghos
transformation law asgC52C2 sinceC25 1

2 Taf a
bcC

bCc.
Our goal is to compute the cohomological groupsH(sud)

of the BRST differentials modulo the spacetime exterio
differential d, in the space of local forms. In ghost degr
zero, these groups characterize the counterterms, whil
ghost degree one, they classify the anomalies. In nega
ghost number, they are related to the non-trivial conserva
laws @20#.

The longitudinal derivativeg is nilpotent off-shell. There-
fore, we can proceed as in@6# and analyze first theg-
cohomology,H(g), and theg-cohomology modulo the ex
terior derivatived, H(gud), in the space of all fields and
antifields. The De Rham cohomology of the group manifo
will play an important role in this context. We shall then tu
to H(sud).

IV. ANALYSIS OF H „g…

The calculation of the cohomology is performed in t
so-called ‘‘jet-space.’’ This space is simply the~infinite-
dimensional! space coordinatized by the field and antifie
components, as well as all their subsequent partial der
tives, K5$Am

a ,g,yi ,Ca%, K* 5$Aa*
m ,ga* ,yi* ,Ca* %, ]mK,

]mK* etc. Because the spacetime manifold is topologica
Rn, these functions are actually globally defined~but note
that they do not provide standard coordinates since theg’s
are not independent!. The differentialg anticommutes with
the exterior derivative, so that the above transformation la
in Eq. ~3.9! can be extended to the whole jet-space.

To describe theg-cohomology, it is convenient to emplo
different jet-space coordinates. The construction of th
new coordinates goes as follows. The quantityI m

a defined in
02501
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Eq. ~2.10! can be used instead of the first derivatives of t
field g. Indeed,I m can be expressed in terms of]mg and,
conversely,]mg5g(I m1Am). Therefore, the jet-coordinate
$g,]mg,Am

a % may be reexpressed in terms of$g,I m
a ,Am

a %. Try-
ing to rearrange the jet-coordinates with two indices, o
finds, for the second derivatives of the group e
ment, ]m]ng5 1

2 g(D (m
(Q)I n)

a Ta1] (mAn)
a Ta1Q (m

a Qn)
b $Ta ,Tb%

2Q (m
a I n)

b @Ta ,Tb#). The derivative of the connection can b
split into a symmetric and an antisymmetric part,]mAn

5 1
2 (] (mAn)1] [mAn] ). But the curvature Fmn5] [mAn]

1@An ,An# is already contained in the antisymmetrizedQ-
covariant derivatives of I m , D [m

(Q)I n]52Fmn1@ I m ,I n#.
Therefore, only the symmetrized derivatives ofAm have to
be kept. Furthermore, there are no relations between the
variables that could constrain theDm

(Q)I n
a . Thus, the coordi-

nates with up to two indices,$g,]mg,]m]ng,Am
a ,]mAn

a%, may
be rearranged in the set$g,I m

a ,Dm
(Q)I n

a ,Am
a ,] (mAn)

a %.
The claim is now thatg, Am

a and all their derivatives can
be replaced byg, Am

a with its symmetrized derivatives, an
I m

a with its successiveQ-covariant derivatives (k51,2,...):

$g,]a1¯ak
g, ]a1¯ak21

Aak

a %

→$g,] (a1¯ak21
Aak)

a , Da1¯ak21

~Q! I ak

a %. ~4.1!

A good way of checking the equivalence of the two sets
coordinates is to compare their size. Indeed, remembe
that the indexa takes N values and that there are on
N independentg’s, it is easy to see that each set co
tains N1N( l 51

k n(n11)¯(n1 l )/ l ! 1Nn( l 51
k21n(n11)¯

(n1 l )/ l ! independent coordinates, as should be the cas~n
is the spacetime dimension!. The explicit proof that the two
sets of coordinates are equivalent may be obtained by ind
tion. Assume the above statement to be true up to derivat
of orderk for g and of orderk21 for Am

a ~i.e. for coordinates
with k spacetime indices!. The derivatives of orderk of Am

a

7-4
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can be expressed in terms of symmetrized derivatives ofAm
a

and derivatives of orderk21 of Fmn
a . But terms of the form

]a1¯ak21
Fakak11

a are contained inDa1¯ak21

(Q) D [ak

(Q)I ak11]
a .

The derivatives of orderk11 for g are generated by takingk
symmetrizedQ-covariant derivatives ofI m : D (a1¯ak

(Q) I ak11)

;] (a1¯ak
Qak11)1 ‘ ‘ lower order’’ ;g21] (a1¯ak11)g

1 ‘ ‘ l.o.’ ’ , which completes the proof that the above chan
of coordinates is indeed invertible.

As new basis of jet-coordinates, we can thus choose
following combinations of fields and derivatives:

the group elementg and the ghostC without derivatives,
the I m

a with all subsequentQ-covariant derivatives,
the matter fieldsyi with Q-covariant derivatives,
the antifieldsK* with Q-covariant derivatives,
the Yang-Mills connectionAm

a and its symmetrized de
rivatives, and the derivatives of the ghostC.

The vector potentialAm
a with its symmetrized derivatives an

the derivatives ofCa form contractible pairs, as observed
@9#. Accordingly, they do not contribute to theg-
cohomology.

The fieldsxA
ª$I m

a ,yi ,K* % all transform linearly under
the action ofg, gxA;(Za)B

AxBCa @see Eq.~3.9!#. The (Za)B
A

are the generators of some representation ofG, for instance
of the adjoint representation in the case ofI m

a . It is possible
to combine these fields with the group elementg to form
invariant quantitiesx̃A5U(g)B

AxB, gx̃A50. Here, U(g)
stands for the representative of the group elementg in the
relevant representation~generated byZa!. SinceU(g) trans-
forms contragrediently to the corresponding fields or a
fields,

gU~g!52~2 !exU~g!ZaCa, ~4.2!

the variablesx̃A are invariant,gx̃A50, i.e., one may replace
covariant fields by invariant fields~the ex denote the parity
of the field x!. Furthermore, a short calculation shows th
]mx̃A5U(g)Dm

(Q)xA. It is therefore possible to replace th
jet-variablesxA and their Q-covariant derivatives by the
quantitiesx̃A and their ordinary derivatives. The introductio
of the tilde variables follows the pattern of@21# ~see also
@2#!.

In the new basis of jet-coordinates and after eliminat
of the trivial pairs, the action of the longitudinal derivativeg
reduces to the simple form

gg5gC, ~4.3!

gC52C2, ~4.4!

g@x̃A#50, ~4.5!

which fits with the general conditions on ‘‘good’’ jet
coordinates given in@22#. The square brackets aroundx̃A

stand forx̃A and all the subsequent ordinary derivatives.
follows from Eq.~4.5! that the most general solution of th
cocycle conditiongm50 is, up to trivial terms, a linear com
bination of polynomials in the gauge-invariant variabl
02501
e

i-

t

n

t

@ x̃A# times a solution ofgn50 involving only theg’s and
the C’s. To complete the analysis of the cohomology ofg,
we thus need to compute the cohomology defined by

gg5gC, ~4.6!

gC52C2. ~4.7!

This is done by relating Eqs.~4.6! and~4.7! to the De Rham
cohomology of the group manifold.

It is the identificationg→d and C→Q that establishes
the link. Here, the exterior derivatived acts in the space ofg
and Q in the same way asg acts in the space ofg and C.
Thus the BRST complex involving the group element a
the ghost is identified with the De Rham complex of t
group manifold. The relevant identities are nowdg5gQ and
dQ52Q2, where the second equation is recognized to
the Maurer-Cartan structure equation for left-invariant for
on the group, which we used already above. Letv I
5v I(Q,g) form a basis ofHDR(G), and letv I(C,g) be the
function of C and g obtained after replacingQ by C in
v I(Q,g). Then, a general cocycle solving the equatio
gm50 has the form

m5(
I

PI~@ x̃A#,dx!v I~C,g!1gn, ~4.8!

where thePI are arbitrary polynomials in the variables@ x̃A#
and the differentials dxm ~we assume no explici
x-dependence!. Furthermore,m is trivial if and only if PI

50 ~for eachI !.
Note that the invariant polynomials in the covariant

transforming quantitiesxA, which are related to the Casim
invariants of the corresponding representation, form a su
of all PI(@ x̃A#,dx).

V. TOPOLOGICAL TERMS

Consider the pullbacks to the spacetime manifold of
formsv I(Q,g). These are just given byv I(Q,g) whereQ is
viewed as the spacetime formQmdxm rather than a 1-form
on the group manifold~andd is the spacetimed rather than
the exterior derivative on the group manifold!. For this rea-
son, we shall denote these pullbacks by the same sym
v I(Q,g). The spacetime exterior formsv I(Q,g) are related
to theg-cocyclesv I(C,g) through the descent equation@20#.

Indeed, expandingṽ I[v I(Q1C,g) according to the
ghost number yields

ṽ I5v I
0,p1v I

1,p211¯1v I
p,0 ~5.1!

wherep is the form degree ofv I(Q,g) and where, inv I
k,l ,

the first superscriptk stands for the ghost number while th
second superscriptl stands for the form degree (k1 l 5p).
Of course,v I

0,p5v I(Q,g) and v I
p,05v I(C,g). Now, ṽ I is

annihilated byg̃5g1d by construction,

g̃ṽ I50 ~5.2!
7-5
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~the previous equation is usually referred to as ‘‘Russian
mula’’ @12,23#!. If one also expands this equation accordi
to the ghost number, one finds a tower of ‘‘descent eq
tions’’ that read explicitly

dv~0,p!50

gv~0,p!1dv~1,p21!50

gv~1,p21!1dv~2,p22!50

]

gv~p21,1!1dv~p,0!50

gv~p,0!50. ~5.3!

It follows from the Poincare´ lemma on the group mani
fold that v I

0,p is locally exact,v I
0,p5dK0,p21. This implies

that all the formsvk,g2k occurring in the descent are als
locally trivial, vk,p2k5dKk,p2k211gKk21,p2k, where
Kl ,p2 l is the component ofK̃(Q1C,g) of ghost numberl .
These relations, however, hold only locally. Globally, it
not possible to bring thev’s to the trivial form. For this
reason, thevk,g2k will be referred to in the sequel as th
‘‘topological terms.’’

The descent equations~5.3! will be exploited in the next
section. A particularly important case arises whenp5n. In
that case, one sees from Eqs.~5.3! that the spacetime integra

E
Rn

v I
0,n ~5.4!

is gauge-invariant since its integrand is gauge-invariant u
a total derivative. It can thus be added to the action with
breaking gauge invariance. However, becausev I

0,n is locally
exact, the topological term~5.4! does not modify the equa
tions of motion. Terms of the form~5.4! are called ‘‘winding
number terms.’’ Although locally trivial, they cannot b
eliminated globally. Also, their integrands do not differ fro
a strictly gauge-invariant integrand up to the exterior deri
tive of a ~globally defined! (n21)-form, since this would
imply that the last element in the corresponding descen
trivial.

For instance in three spacetime dimensions and for a c
pact, simple gauge group such asSU(3), thenon-trivial g-
cocycle Tr(g21ggg21ggg21gg)5Tr C3 corresponds to the
three-form winding number term Tr(g21dgg21dgg21dg)
5Tr Q3. Varying the fieldg in this expression yields a tota
derivative, which indicates that the winding number terms
not contribute to the equations of motion forg. On the other
hand, they cannot be globally written as a total derivative
the space of fields and accordingly, they cannot be drop
from the action. Locally, it is of course always possible
express them as total derivatives.

Finally, we note that the formsv I
p,0 are the only non-

trivial cocycles of the exterior derivatived acting in the al-
gebraA of local forms on the jet-space of the fields, gho
and antifields as described in Sec. IV. This follows from t
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generalization of the so-called ‘‘algebraic Poincare´ lemma’’
to the case where some fields~hereg! belong to a cohomo-
logically non-trivial manifold~here the group manifoldG!
@24,25# ~see also@20#!.

Algebraic Poincare´ lemma.The cohomologyHp(d,A) of
d in the algebra of localp-forms is isomorphic to the De
Rham cohomology ofG in the same form degree forp
,n,

Hp~d,A!.HDR
p ~G!, p,n. ~5.5!

In maximal form degree,HDR
n (G) is isomorphic to the quo-

tient of the variationally closedn-forms by the d-exact
n-forms. Ann-formLdnx is said to be variationally closed i
and only if the Euler-Lagrange derivatives ofL with respect
to all the fields, ghosts and antifields vanish.

For later purposes, we also quote the covariant Poinc´
lemma, which describesH(d) inv , i.e. the cohomology ofd
in the space of invariant polynomials.

Covariant Poincare´ lemma.Let Pk(@ x̃#) be a d-closed
invariant polynomial of form degreek. Then,P may be as-
sumed to bed-exact in the space of invariant polynomial
i.e.

dPk~@ x̃# !50, gP50⇒Pk5dQ~k21!~@x̃#!1ak, gQ50,
~5.6!

whereak is a constant form.
Thus, H(d) inv vanishes in the setting considered he

contrary to the case without the nonlinearly transformi
field g, where the obstructions to choosingQ invariant in
Eq. ~5.6! were identified to be the invariant polynomials
the curvature formF @26,9#. In the presence of the grou
valued fieldg, it is, however, possible to replace covaria
quantities~x! by invariant ones (x̃) and covariant derivatives
by ordinary derivatives~see Sec. IV!. Thus, any polynomial
in @ x̃# is automatically invariant, and the action ofd obvi-
ously does not introduce any new variables. The vanishin
H(d) inv then follows because the invariantsx̃A and all their
derivatives are independent jet-variables~subject to no iden-
tity!. The effect of the group-valued field is particularly stri
ing in the Abelian case, where the curvature itself becom
d-trivial in the space of invariants,F5dI. Here, I is the
gauge invariant quantitydf2A, andg5exp$f%.

VI. ANALYSIS OF H „gzd…

The next step towards a complete description of
BRST cohomology modulod is the calculation of
H (* ,* )(gud). The bi-grading ‘‘~* ,* !’’ refers as before to the
ghost degree and the form degree respectively. Via stan
descent equations one can, again as before, relateH(gud) to
the cohomologyH(g) which is known from the above
analysis.

A representativea(g,p) of some class inH (g,p)(gud) has to
satisfy

ga~g,p!1da~g11,p21!50. ~6.1!
7-6
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If a(g11,p21) happens to be trivial inH(gud), then it can be
eliminated through trivial redefinitions anda(g,p)PHg(g). If
a(g11,p21) is not in the trivial class ofH(gud), then it cannot
be trivially absorbed. In this case, the algebraic Poinc´
lemma ensures the existence of a descent

ga~g1k,p2k!1da~g1k11,p2k21!50, k51,2,. . . ,
~6.2!

which ends whena(g1k11,p2k21)50 for some value ofk,
which happens at the latest when zero-forms are produc2

Any bottom ag1k,p2k of a descent is a cocycle ofg,
gag1k,p2k50. Therefore, the last term in the descent tak
the form, Eq.~4.8!,

ag1k,p2k5(
I

PI~@ x̃A#,dx!v I~C,g!1gn. ~6.3!

The g-trivial part can be absorbed through redefinitions
the previous terms and may be assumed to be absent.

It turns out that some non-trivialg-cocycles are actually
trivial in H(gud) and accordingly must also be discarde
More precisely, ifPI is d-trivial,

PI~@ x̃A#,dx!5dr I~@ x̃A#,dx!, gr I50, ~6.4!

for some invariant polynomialr I , then the corresponding
cocycle inH(g) is g-trivial modulo d,

a~g1k,p2k!5PI~@ x̃A#,dx!v I~C,g!5d~r Iv I !2g~r Iv̂ I !,
~6.5!

wherev̂ I is the second to last term in the descent, Eq.~5.3!,
associated with the De Rham cohomology ofG analyzed in
the previous section,dv I5gv̂ I .

If the descent is non-trivial, so thatag1k,p2k can be lifted
at least once, thenPI must be constant up to terms that a
d-exact in the space of invariants. Indeed, one finds fr
dag1k,p2k1gag1k21,p2k1150 that (dPI)v I1gm850,
which yieldsdPI50 since thev I are independent in coho
mology. The equalityPI5a I1dr I , where thea I are con-
stant forms, then follows from the covariant Poincare´ lemma.
As we have just seen, thedr I component ofPI can be dis-
carded.

The only elements ofH(g) that could serve as bottom o
a non-trivial descent are therefore the basis elements of
De Rham cohomology,v I , multiplied by constantp-forms.
These constant forms may be eliminated from the analysi
imposing Lorentz invariance, which leaves only the ze
forms v I as interesting bottoms. Furthermore, there is
obstruction to liftingv I up to maximal form degree, as fo
lows immediately from Eq.~5.3!. Therefore, any bottom
a Iv I is admissible.

One can summarize the results as follows. The solutiona
of the cocycle conditionga1db50 fall into two classes.

2For more details on this procedure when the cohomology ofd is
non-trivial, as here, see@20#.
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First, there are the solutions that lead to no~non-trivial! de-
scent, i.e. that are strictly annihilated byg ~no d-exact term
occurs!,

ga50. ~6.6!

These solutions can be expressed in terms of the invari

@ x̃A# and the De Rham formsv I(C,g) as in Eq.~6.3!. Sec-
ond, there are the solutions leading to a non-trivial desc
These are the lifts of the De Rham formsv I(C,g), up to
trivial terms and terms strictly annihilated byg. These solu-
tions are locally trivial~locally in field space! but not glo-
bally so. There are no other solutions associated with n
trivial descents besides these topological terms.

VII. COMPARISON WITH THE PURE YANG-MILLS
CASE

It is interesting to compare the results obtained here w
those of the pure Yang-Mills case analyzed in@27,26,9,6# ~or
the case of Yang-Mills fields coupled to matter fields tran
forming according to some linear representation ofG!. Since
the analysis in those works was carried out for reduct
algebras, we shall assume throughout this section thatG is
reductive.

In the linear case~by which we mean ‘‘only linear repre
sentations’’!, the g-cohomology is represented by produc
of elements of the Lie algebra cohomology with invaria
polynomials in the curvature, the matter fields, the antifie
and the corresponding covariant derivatives with respec
the gauge connection~denoted by @ #c!, gm50⇒m
5Pinv

I (@Fmn#c ,@yi #c ,@V* #c)v I
Lie(C)1gn. Thus, the g-

cohomologies in the nonlinear~g present! and linear~g ab-
sent! cases have a similar structure, except that it is the
Rham cohomology that is relevant in one case, while it is
Lie algebra cohomology in the other case. Of course,
compact groups, the two cohomologies are isomorphic.
this is not true in general.

We turn now to the cohomologyH(gud) and assume tha
the Lie algebra cohomology and the De Rham cohomolo
are isomorphic, to emphasize the differences that arise w
working ‘‘modulo d. ’’ The elements ofH(gud) that are not
equivalent to elements ofH(g) can be characterized by th
bottom of their associated non-trivial descent, which is
g-cocycle. So we have to compare the bottoms that can
lifted in both cases. We have seen that in the nonlinear c
the only non-trivial bottoms involve only the ghosts, but n
other fields. This is not true in the linear case, where o
may have bottoms that contain the curvature forms. Mo
over, while there may be obstructions to lifting bottoms mo
than once in the linear case@27#, this is not true in the non-
linear case, where any bottom can be lifted to maxim
form degree. For instance, only the primitive elements of
Lie algebra cohomology can be lifted all the way up to ma
mum form degree in the linear case@27#. An example is
given by the product (TrC3)(Tr C5) @in SU(5), say# which
cannot be lifted all the way up to form degree 8 because
encounters the obstruction TrF2 at form degree 4. Clearly
Tr F2 is non-trivial in H(g). When the group elementg is
7-7
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present, then any combinationl Iv I can be lifted up to maxi-
mal form degree. The product Tr(C3)Tr(C5) lifts for ex-
ample to Tr(g21dg)3Tr(g21dg)5. A way to understand the
removal of the obstruction in the nonlinear case is to obse
that one may lift the ghosts using the flat connectionQ. The
obstructions are known to involve the curvatures@27#. They
are absent here because the curvature ofQ identically van-
ishes.

Finally, we note that in the linear case, the Chern-Sim
forms cannot be replaced by strictly gauge-invariant ter
By contrast, in the nonlinear case, the Chern-Simons fo
differ from strictly gauge-invariant terms by total derivativ
and winding number terms that are locally trivial and do n
contribute to the equations of motion. For instance,
Chern-Simons term 3Tr(AdA1 2

3 A3) and the winding num-
ber term TrQ3 descend on the same cocycle TrC3. Thus,
their difference descends on zero and hence is equivalen
strictly gauge invariant term modulo a total derivativ
An explicit calculation yields indeed Tr(AdA1 2

3 A3)
5Tr$ID QI 2 2

3 I 3%2 1
3 Tr Q32dTr QA with I 5I m

a Tadxm.

VIII. RELATION TO THE WORK
OF De WIT, HULL AND ROČ EK

The same conclusions apply to the topological terms c
sidered in@10#. These again differ from strictly gauge invar
ant terms by total derivatives~and locally trivial winding
number terms if the De Rham cohomology of the gro
manifold in form degreen does not vanish!. From this point
of view, the interesting construction of@10# does not bring in
new terms in the principal case, even when the group is
semi-simple.

To illustrate this point, we recall the construction of@10#,
specializing to the principal case and considering four spa
time dimensions for definiteness.

When trying to construct gauge theories with a no
compact gauge groupG, it is natural to consider action
involving integrands of the form@28#

T5Si j ~g!Fi∧F j . ~8.1!

This term is strictly gauge invariant,de(Si j (f)Fi∧F j )50, if
Si j (g) transforms in the following way:

deSi j 52Sl j f ik
l ek2Sli f jk

l ek522Sl ( j f i )k
l ek. ~8.2!

When Si j is an invariant symmetric tensor, the ter
Si j F

i∧F j defines a characteristic class and is a topolog
invariant.

In @10#, De Wit, Hull and Rocˇek generalize the abov
setting through modifications of the action. As in@29#, they
modify the above term by adding to it an appropriate no
gauge-invariant term,

Tmod5Sjk~g!F j∧Fk1
2

3
Ci , jkAi∧Aj S dAk1

3

8
f lm

k AlAmD ,

~8.3!
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and observe that Eq.~8.3! is invariant up to a total derivative
if at the same time the transformation law forSi j , Eq. ~8.2!,
is modified to

deSi j 5~22Sl ( j f i )k
l 1Ck,i j !e

k, ~8.4!

where the constantsCk,i j 5Ck, j i are subject~i! to obey
C(k,i j )50 and ~ii ! to satisfy the 1-cocycle condition of th
Lie algebra cohomology ofG in the symmetric tensor prod
uct of the adjoint representation space with itse3

1
2 Cm,i j f lk

m1 f i [k
m Cl ],m j1 f j [k

m Cl ],mi50. The term involving
bareA’s in Eq. ~8.3! is reminiscent of a Chern-Simons term

As the authors of@10# also observe, any exact contribu
tion to Ck,i j of the form Ck,i j 5 f k( i

m sj )m can be absorbed
through a constant shift ofSi j . Thus, if Ck,i j is a cobound-
ary, the term~8.3! can be brought back to the form~8.1! by
redefinition ofSi j and the addition of a total derivative an
therefore is not a true generalization of Eq.~8.1!.

Our point is that even whenCk,i j is a non-trivial 1-
cocycle of the Lie algebra cohomology ofG in the symmetric
tensor product of the adjoint representation space with it
~which can only occur whenG is non-semi-simple!, one can
redefine Eq.~8.3! @or, for that matter, even Eq.~8.1!# by
adding a total derivative so that this term is strictly gau
invariant and involves only the manifestly invariant variabl

@ x̃A# constructed above, up to possible locally trivial win
ing number terms.

This is an immediate consequence of our general anal
and is particularly striking when the gauge group isRk,
which is a non-compact, Abelian group. We denote its g
erators byTa , a51,...,k, @Ta ,Tb#50. The fieldg is then
exp@faTa# wherefa is a vector inRk. The relevant transfor-
mation laws simply read

sfa5Ca, ~8.5!

sCa50, ~8.6!

sAm
a 5]mCa. ~8.7!

As usual,Fa5dAa anddFa5deF
a50. The De Rham coho-

mology of G is trivial except for the constants,HDR
k (G)

50 for kÞ0, HDR
0 (G)5R, while the Lie algebra cohomol

ogy of G consists of the polynomials in the ghostsC,
H(G)5P(C). In particular, there is no winding numbe
term. Furthermore, since the structure constants are zero
constant Ck,i j with Ck,i j 5Ck, j i defines a non-trivial 1-
cocycle with a value in the symmetric product of the adjo
representation. We assumeC(k,i j )50 in the sequel so as to
satisfy the first condition~i! above.

Equations~8.3! and ~8.4! simplify to

Tmod5Sjk~f!F jFk1
2

3
Ci , jkAiAjFk, ~8.8!

sSi j 5Ck,i j C
k. ~8.9!

3For useful information on Lie algebra cohomology, see@30#.
7-8



tly

iv

a

ie

n

o
ce

t
rm

ts

of
er
a

nl
ul

igh
g

av
-
so

n
-

nd

.
b
-

on

ss-
t
.

of

o-

xists

ry
d

s of

ms
t

e-

lds,
ed,
gh

uge
the

n

ugh

LOCAL BRST COHOMOLOGY OF THE GAUGED . . . PHYSICAL REVIEW D 58 025017
The transformation law ofSjk impliesSjk(f)5Ci , jkf i up to
an irrelevant constant. The above termTmod is gauge invari-

ant up to a total derivative,gTmod52 2
3 dCi , jk(CiAjFk

1AiCjFk). From the point of view of@10#, the expression in
Eq. ~8.8! represents a non-trivial extension of the stric
gauge invariant theory, sinceCk,i j is a non-trivial Lie algebra
cocycle. However, by adding an appropriate total derivat
to it, one straightforwardly verifies thatTmod is equivalent to
the strongly gauge invariant expression2

3 Ci , jk(df i2Ai)
3(df j2Aj )Fk,

Tmod[
2
3 Ci , jk¹f i¹f jFk1 2

3 Ci , jkdS f iAjFk2
1

2
f idf jFkD ,

~8.10!

where¹f i5df i2Ai may be regarded as the exterior cov
riant derivative off and is just the invariantI i introduced
above,¹mf i5I m

i .
This shows that in the principal case it is not the L

algebra cohomology that controls the ‘‘novelty’’ of Eq.~8.3!.
This term is always equivalent to a strictly gauge invaria
term @plus winding number terms ifHDR

4 (G) happens to be
non-trivial#. It would be interesting to extend the analysis
this issue to scalar fields taking values in quotient spa
G/H, for which the general construction of@10# was de-
vised.

IX. GAUGED WESS-ZUMINO-WITTEN TERM

The above calculation ofH(gud) sheds also a new ligh
on the problem of gauging the Wess-Zumino-Witten te
@11,31–33#. The Wess-Zumino-Witten termLWZW(g) is a
term that can be added to the Lagrangian of the~ungauged!
nonlinears-model without breaking its rigid symmetries. I
characteristic property~which may be used as its definition!
is that it is not strictly invariant under the rigid symmetries
the model, but only invariant up to a surface term. Furth
more, one cannot ‘‘improve’’ it by a surface term such th
the sum is strictly invariant~even locally in field space!.

Because the Wess-Zumino-Witten term is invariant o
up to a non-trivial surface term, its gauging raises diffic
ties. These have been analyzed in@32,33#, with the conclu-
sion that in the principal case in which one gauges the r
action~as here!, there are unremovable obstructions to gau
ing the Wess-Zumino-Witten term. These obstructions h
been related in@33# to the equivariant cohomology. The im
possibility of gauging the Wess-Zumino-Witten term is al
a direct consequence of our analysis.

Indeed, suppose that one has found a functio
LWZW(@g#,@Am

a #) that ~i! reduces to the Wess-Zumino
Witten termLWZW(g) when the gauge field is set to zero a
~ii ! is gauge-invariant up to a surface term,

gLWZW~@g#,@Am
a # !1da~0,n21!~ @g#,@Am

a #,C!50. ~9.1!

Such a term would provide a ‘‘gauging’’ of the WZW term
But our results indicate that such a term would necessarily
equivalent to a strictly invariant term, modulo winding num
ber terms that do not contribute to the equations of moti
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LWZW~@g#,@Am
a # !5L inv~@g#,@Am

a # !1dm

1 ‘ ‘winding number terms’’

~9.2!

for somem. This would imply, upon settingAm
a and its sub-

sequent derivatives equal to zero, that the original We
Zumino term is~locally! equivalent to the strictly invarian
term L inv(@g#,@Am

a #50), which we know cannot be true
„The strict invariance ofL inv(@g#,@Am

a #50) under rigid
transformations follows from the strict invariance
L inv(@g#,@Am

a #) under gauge transformations.… This means
that there simply is no room for a gauged Wess-Zumin
Witten term.

Our approach is less explicit than the analysis of@33#
since it does not identify the nature of the obstruction~it just
indicates that there is an obstruction!. At the same time, it is
more complete because we show that the obstruction e
even if one allowsLWZW to depend on the individual field
components and all their derivatives. As pointed out ve
clearly in @33#, the previous calculations were performe
only in the ‘‘universal’’ algebra generated byg, the 1-form
A and their exterior derivativesdg, dA ~but not in the alge-
bra generated by all the separate individual component
the fields and their higher order derivatives!. So these calcu-
lations excluded only gauged Wess-Zumino-Witten ter
LWZW depending ong, A and their exterior derivatives bu
still left open the possibility of gaugingLWZW in the ‘‘big
algebra’’ containing all the field components and their d
rivatives individually@33#.

X. ANALYSIS OF H „szd…

In order to characterize the cohomology modulod of the
complete BRST operator in the space of fields and antifie
it is necessary to specify the dynamics of the theory. Inde
s contains information on the equations of motion throu
the Koszul-Tate differentiald, and the BRST cohomology
will in general depend on the dynamics although the ga
transformations are not affected. We shall first develop
analysis in the case of the usual action~2.12!, which is, if
one reinstates explicitly the coupling constants,

L52
1

4
gabFmn

a Fbmn2m2
1

2
gabI m

a I bm1matter action

~10.1!

Fmn
a 5]mAn

a2]nAm
a 1a f a

bcAm
b An

c ~10.2!

I m
a 5~vb

a~h!]mhb2aAm
b ! ~10.3!

wherea is the Yang-Mills coupling constant. We shall the
explain how the results extend to more general actions.

The idea follows the pattern developed in@6,8#. One con-
trols the antifield dependence of the BRST cocycles thro
expansion of the condition

sa1db50 ~10.4!
7-9
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according to the antighost number,a5a01¯1ak and b
5b01¯1bm . Only the case where the highest antigho
degree ofa is equal to that ofb (k5m) shall be described
here because the other cases can be easily reduced to
one. At highest antighost numberk–which we take to be.0
since otherwise there is no antifield–the above cocycle c
dition reads

gak1dbk50. ~10.5!

This implies gbk1dck50 and hence, according to ou
analysis ofH(gud), bk must be trivial~it must be liftable at
least once but it contains the antifields and therefore can
be a pure topological term!. We can thus assumegak50;
i.e., up to trivial redefinitions,ak5PIv I . Next, the sublead-
ing equation in the above decomposition of the cocycle c
dition has to be used:

dak1gak211dbk2150. ~10.6!

Acting with g on this equation producesdgbk2150 and
thus gbk211dck2150. By the same reasoning as abov
one finds thatck21 is trivial if k.1, and thus one may as
sumebk215QIv I . If k51, b05b0

inv1b0
top may have a non-

trivial, topological component. The resulting equati
gb0

top1dc050 may be lifted toga0
top1db0

top50. By sub-
tracting, if necessary, the topological terma0

top from a0 , it is
possible to eliminate the non-invariant component ofb0 and
to assumebk215QIv I also fork51.

Upon inserting the explicit forms ofak and bk21 in Eq.
~10.6!, it is straightforward to derive thatdPI1dQI50. Fur-
thermore, ifPI is in the trivial class ofHk

n(dud), i.e. if PI

5dMI1dNI , thenak can be absorbed through trivial rede
nitions. The antighost dependence ofa is thus controlled by
Hk

n(dud). It is through these cohomological groups that t
dynamics enter.

The groupHk
n(dud) has been shown in@34# to be isomor-

phic to the characteristic cohomologyHn2k(dud) of
antifield-independent (n2k)-forms that are weakly close
~i.e. closed modulo the equations of motion! but not weakly
exact. Thus,H1

n(dud) is isomorphic to the space of non
trivial weakly conserved currents. It does not vanish for
above theory, which is Poincare´ invariant. For higher antig-
host degreek.1, the groupsHk

n(dud) turn out, however, to
be trivial @34#.

The triviality of Hk
n(dud) for k.2 follows from the gen-

eral theorems of@34,24,35#. The triviality of H2
n(dud) is

demonstrated by following the perturbative argument
@34#: the theory obtained by taking the limita50 in the
action ~10.1! describes a set ofU(1) gauge fields togethe
with a nonlinearg-field with rigid G-symmetry, which does
not interact with the gauge fields.4 In that limit, the only

4The corresponding equations of motion are obtained by kee
in the original equations of motion the terms with the maximu
number of derivatives. Thus, the perturbative method of@34# indeed
applies.
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non-trivial cocycles ofH2
n(dud) are known to belaCa* up to

trivial terms. These terms cannot be deformed to cocycle
the full theory whenaÞ0, even in the Abelian case~the
undifferentiated termga* in dCa* prevents it! and thus we
may conclude thatH2

n(dud) vanishes~we refer the reader to
@34# for a detailed explanation of the method!.

Note also that ifPk
n(@ x̃A#) is a trivial invariant polyno-

mial, Pk
n(@ x̃A#)5dMk11

n 1dNk
n21 , then it is also trivial in

the space ofinvariant polynomials, as one can see by setti
all variables equal to zero inMk11

n andNk
n21 but the gauge

invariant @ x̃A#. In contrast to the situation analyzed in@6#,
the invariance ofMk11

n andNk
n21 is thus not an issue here

Let us come back to the analysis of the cocycle condit
sa1db50. The fact that the only non-vanishing cohomo
ogy groupHk

n(dud) is H1
n(dud) implies that the BRST co-

cycles may be assumed to have an expansion that stops
the second summand,a5a01a1 , wherea1 may be chosen
to be invariant,a15PIv I and PIPH1

n(dud). If gh(a),0,
then of coursea5a1 @and gh(a) is actually equal to21#.
There are thus two types of cocycles inH(sud): those for
which a1 does not vanish~they involve non-trivially the an-
tifields! and those for whicha150. We shall call the first
class ‘‘type I,’’ while solutions in the second class will be o
‘‘type II.’’

The analysis of the BRST cohomology for other gaug
invariant Lagrangians proceeds in exactly the same fash
If these gauge invariant Lagrangians satisfy the rather m
‘‘normality condition’’ given in @34#, the groupsHk

n(dud) are
also zero fork.1. Thus, the solutions of the BRST cocyc
conditionsa1db50 fall again in two classes, just as for th
specific Lagrangian~2.12!.

A. Type I

Let $ j A
m% be a complete set of gauge-invariant conserv

currents and letcA be such that

]m j A
m1dcA50, gcA50, antigh~cA!51 ~10.7!

~thecA’s define the rigid symmetries associated with the co
served currentj A

m @34#!. The solutions of type I take the form

kI
A~ j A

mv̂m
I 1cAv I !, ~10.8!

where thev I(g,C) are the De Rham cocycles andgv̂m
I

1]mv I50. In order to completely list all the independe
solutions of type I, it is necessary to know all the local co
served currents. This is a question that depends on the
tailed form of the Lagrangian and that will not be pursu
here. Two remarks should however be made:~i! Potential
anomalies are classified throughH (1,n)(sud). The above re-
sults indicate that there is no anomaly of type I, i.e. that
antifield dependence of anomalies may be elimina
through trivial redefinitions ifHDR

2 (G)50, no matter what
the conserved currents are. In a similar manner, one can
rid of the antifields in H (0,n)(sud) if HDR

1 (G)50.
H (0,n)(sud) classifies the observables of the theory, and
relevant for renormalization and deformation issues.~ii ! The

g
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solutions of type I become trivial upon restricting the fiel
to lie in a neighborhood of the identity since the formsv I are
then trivial. Again, this is true independently of the form
the conserved currents.

B. Type II

The solutions of type II do not involve the antifields. Th
BRST cocyclessa1db50 are theng-cocycles,ga1db
50 (sa5ga). As we have seen, the solutions of this lat
equation also fall into two classes: those that are strictly
variant and those that are invariant only modulo a total
rivative, the so-called topological terms~see Sec. V!. Al-
though the cocycle condition of thes mod d cohomology
reduces to the cocycle condition of theg modd cohomology
whena does not contain the antifields, the coboundary c
dition is different. Some classes ofH(gud) are trivial in
H(sud), namely, those that are zero when the equations
motion hold~or, more generally, ared-exact!. The dynamics
plays thus a central role for determining the explicit form
the most general coboundary of type I. This is particula
obvious in the topologicalG/G-model, to which we now
turn.

XI. G/G TOPOLOGICAL THEORY

For the topological action, Eq.~2.16! @36–41#, the local
BRST cohomologyH(sud) reduces to the topological term
of Sec. V. There is no other cohomological class. The m
expedient way to see this is to redefine the gauge-invar

@ x̃# variables@see Eq.~4.2!# in such a way that they form
contractible pairs.

With the definition

g̃8a* 5g̃a* 2]mÃa*
m , ~11.1!

the s-variations of the new tilde variables simply become

sÃa*
m5 Ĩ a

m , s Ĩa
m50 ~11.2!

sC̃a* 5g̃8a* , sg̃8a* 50. ~11.3!

For deriving the previous equations, one has to take
account Eqs.~2.17!, ~2.18!, as well as the interchangebilit
of Dm

(A) and Dm
(Q) acting on I m. Thus, the gauge-invarian

variablesx̃ and their derivatives all drop out from the BRS
cohomology, leaving only the undifferentiated group elem
g and the ghostCa, the BRST transformations of which ar

sg5gC, sC52C2. ~11.4!

Accordingly, only the cocyclesv I(g,C) and their lift appear
in the BRST cohomologyH(sud). In particular, the only
non-trivial local observables are the winding numbers.

XII. PERTURBATION THEORY

The De Rham cohomology detects the global proper
of the group manifoldG. It is customary, in the context o
perturbation theory, to restrict the fieldsg to a neighborhood
02501
r
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of the identity ofG homeomorphic toRk ~denoted byG̃ in
the sequel!. Then, HDR

k (G̃)50 for kÞ0 andHDR
0 (G̃)5R.

This greatly simplifies the analysis.
First, one finds that the ghostsCa drop out from the co-

homology. Indeed, one may redefine inG̃ the ghosts asCa

→Da5Vb
a(h)Cb. These new variables form contractib

pairs with theha,

gha5Da, gDa50 ~12.1!

and also

sha5Da, sDa50. ~12.2!

Thus, H(g) is given by the functions of thex̃ and their
derivatives as observed in@42#. This implies thatHk(g) van-
ishes unlessk,1. The De Rham cocyclesv I(g,C) are
trivial in G̃.

Second, because the ghosts drop out fromH(g), only the
cocycles of one type survive inH(gud), namely those that
lead to trivial descents and that can be redefined so as t
strictly annihilated byg. The topological cocycles disappea
At ghost number zero, the terms that are gauge invariant o
up to a total derivative can thus be replaced by strictly ga
invariant terms involving only thex̃-variables and their de
rivatives.

Finally, only the cohomological groupsH (0,n)(sud) and
H (21,n)(sud) are different from zero. This is again becau
the ghosts drop out from the cohomology. Hence, in
expansion of the BRST cocyclesa (sa1db50) according
to the antighost number, one may assume that there is
one term,a5ak , with gh(a)52k52antigh(a), gak50,
dak1dbk2150. Non-trivial solutions are obtained only fo
k50,1. The solutions withk51 correspond to the gaug
invariant conserved currents considered above. The solut
with k50 are the observables and can be assumed to
strictly gauge invariant, i.e. to involve only the@ x̃# ~note
again that the conditiondak1dbk2150 is empty fork50
sincea contains then no antifield, but that the cobounda
condition is non-trivial and eliminates the on-shell vanishi
observables!.

In particular, there is no perturbative anomaly. This p
vides a cohomological interpretation of the Wess-Zum
anomaly cancellation mechanism@11,12,43#. By enlarging
the original field space with the group elementsg ~if the
complete gauge group is broken!, the anomaly become
trivial, i.e. eliminable through a local counterterm. In th
antifield language, this means that there exists a local co
terterm M1 which trivializes the anomalyDS, gM1
5(M1 ,S)5 iDS @44–46#.

XIII. GLOBAL GHOSTS

Finally, the situation of a non-gauged sigma model sh
be considered. The theory contains only the group elem
gPG and is invariant under the global transformationdeg
5gTaea, whereea are constant parameters. The main int
est of this setting lies in the construction of effective actio
7-11
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where it is crucial to have an exhaustive list of all operat
that are compatible with the rigid symmetries~see e.g.@2#!.

The incorporation of rigid symmetries in the antifield fo
malism has been analyzed in@47,48# in the context of the
sigma model. Further developments may be found in@49#.
The symmetry parametersea are promoted to anticommutin
constant ghostsCa and the relevant transformation laws re

ĝg5gTaCa, ~13.1!

ĝCa52
1

2
f a

bcC
bCc. ~13.2!

The aim is now to compute the cohomology ofĝ in the set of
fields

$Ca,g,]mg,]m]ng,...%. ~13.3!

Derivatives of the global ghosts obviously cannot occ
since they are zero. As before, all the derivatives ofg may be
reexpressed through the variablesQ5g21dg and their sub-
sequent derivatives, yielding as new coordinates of the
space the set

$Ca,g,Qm ,]mQn ,...%, ~13.4!

or equivalently, using the invariant tilde variablesQ̃a

5U(g)b
aQb,

$Ca,g,Q̃m ,]mQ̃n ,...%. ~13.5!

In these variables, the action ofĝ takes the simple form

ĝg5gTaCa, ~13.6!

ĝCa52
1

2
f a

bcC
bCc, ~13.7!

ĝ@Q̃a#50. ~13.8!

The first two equations can again be identified with the
Rham complex while the last equation states that the@Q̃# are
invariant. The representatives of theĝ-cohomology have
thus the form found above,

m5PI~@Q̃#!v I~C,g!, ~13.9!

where thePI are arbitrary polynomials and thev I form a
basis of the De Rham cohomology ofG.

Apart from the strictly invariant terms, which are exhau
tively classified by Eq.~13.9!, also the invariant terms tha
are invariant only up to a total divergence play an import
role in various physical models. These terms can be analy
via descent equations in almost the same way as in Sec
A non-trivial solution of the modd cocycle condition at form
degreen, ĝa(g,n)1da(g11,n21)50, necessarily descends a
the way down to zero-forms as in Eq.~6.2!. But now, in the
last step of the descent, the constants cannot be disca
any more. Indeed, one gets at the last step the cond
02501
s

r

t-

e

-

t
ed
I.

ed
n

dĝa(g1n,0)50. It follows from the algebraic Poincare´ lemma
that ĝa(g1n,0) has to be equal to a constant, which must be
ghost degreeg1n11. In the gauged case, there was no su
constant since the ghosts are fields. Here, however,
ghosts are constant and soĝa(g1n,0) may be a polynomial in
Ca:

ĝa~g1n,0!~g,C!5a~C!. ~13.10!

This phenomenon was previously observed in a similar c
text in @50#. By applying ĝ to Eq. ~13.10! it follows that
ĝa(C)50. If in addition a(C) is ĝ-trivial in the space of
constants,a(C)5ĝb(C)50, then it may be absorbed b
trivial redefinitions of the preceding descent equations.
that case, the bottoma(g1n,0) satisfiesĝa(g1n,0)(g,C)50
and thus, as we have seen in Sec. VI, is equivalent to a
Rham cocyclev I(Q,g)PHDR

g1n(G). For g50, these co-
cycles lift up to winding number terms in form degreen.

Upon restricting theg-field to a neighborhoodG̃ of the
identity, the De Rham cocycles become trivial and acco
ingly can be absorbed through redefinitions. Thus, ifa(C)
vanishes in Eq.~13.10!, or is ĝ-trivial in the space of con-
stants, the originala(g,n) differs from a term strictly annihi-
lated byg by a total divergence. The obstruction to replaci
a term invariant up to a total divergence in the Lagrangian
a term strictly invariant is thus an element of the Lie algeb
cohomology H(G): if one hits a non-trivial Lie cocycle
a(C) in the descent, there is no way to redefine the Lagra
ian so that it is strictly invariant.

Furthermore, any Lie algebra cocycle can be written,
the neighborhood of the identity, asĝa(g1n,0)(g,C) for some
a(g1n,0) that involves explicitly thes-field g. This is because
the De Rham cohomology ofG̃ is trivial. ReplacingC by
g21(d1ĝ)g in a(g1n,0)(g,C) and keeping the term of form
degreen yields the top of a descent generatinga(C) at the
bottom. Thus, any Lie algebra cocyclea(C) can be lifted all
the way up to form degreen. @On the full group manifoldG,
the terma(g1n,0)(g,C) will in general not be globally de-
fined. This leads to a multiply valued Lagrangian with
quantization condition on the corresponding coupling co
stant.# It follows that the localn-forms with vanishing ghost
degree that are invariant up to a divergence are classifie
the Lie algebra cohomology at ghost degreen11, Hn11(G).

For compact groups, the Lie algebra cohomology is i
morphic to the De Rham cohomology of the~complete!
group manifoldG, which establishes the link to the results
D’Hoker and Weinberg@13# ~see also@51#!.

XIV. CONCLUSIONS

In this paper, we have investigated the local cohomolo
of the gauged principal nonlinear sigma-model.

The analysis has been pursued by taking due accoun
the topology of the group manifold. We have shown that
most general local BRST cocyclea is, up to trivial contribu-
tions, the sum of terms of three different kinds:
7-12
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sa1db50⇔a5A11A21A31sm1dn. ~14.1!

The cocycleA1 has been called of ‘‘type I’’ and involves th
antifields linearly, as well as the conserved currents. T
cocyclesA2 andA3 do not involve the antifields and are o
‘‘type II.’’ A2 is strictly annihilated byg and involves there-
fore only the gauge invariant variablesx̃A and their deriva-
tives. The cocycleA3 depends ong and the ghosts. It is a
solution ofgA31db50 and is related to the De Rham c
homology of the group manifold.A1 is also related to
HDR

k (G), so that bothA1 andA3 may be regarded as ‘‘gen
eralized winding number terms.’’

At ghost number 0 and form degreen ~observables!, A3

exists if and only ifHDR
n (G)Þ0. Similarly, A1 exists if and

only if HDR
1 (G)Þ0 and if there are non-trivial conserve

currents.A3 defines a term which is gauge invariant up
total derivatives, andA1 defines a term which is gauge in
th

t,

K.

-

02501
e

variant up to field equations and total derivatives, whileA2
defines a term which is strictly gauge invariant.

In perturbation theory, it is customary to replaceG by a
topologically trivial neighborhoodG̃ of the identity. In doing
so, bothA1 andA3 disappear at ghost number 0, and only t
strictly gauge invariant terms are left. Furthermore, there
no cohomology at positive ghost number. In particular, th
is no non-trivial anomaly.

It would be interesting to extend the analysis to co
models built on a homogeneous spaceG/H. Work in this
direction is in progress.
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