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For any relativistic quantum field theory in 211 dimensions, with no zero mass particles, and satisfying the
standard axioms, we establish a remarkable low-energy theorem. TheS-wave phase shift,d0(k), k being the
c.m. momentum, vanishes as eitherd0→ c/ ln(k/m)or d0→O(k2) ask→0. The constantc is universal andc
5p/2. This result follows only from the rigorously established analyticity and unitarity properties for 2-
particle scattering. This kind of universality was first noted in non-relativistic potential scattering, albeit with
an incomplete proof which missed, among other things, an exceptional class of potentials whered0(k) is
O(k2) neark50. We treat the potential scattering case with full generality and rigor, and explicitly define the
exceptional class. Finally, we look at perturbation theory inf3

4 and study its relation to our non-perturbative
result. The remarkable fact here is that inn-th order the perturbative amplitude diverges like (lnk)n ask→0,
while the full amplitude vanishes as (lnk)21. We show how these two facts can be reconciled.
@S0556-2821~98!02714-3#

PACS number~s!: 11.10.Jj, 11.10.Cd, 11.10.Kk, 11.80.2m
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I. INTRODUCTION

Quantum field theories in 211 dimensions provide us
with a useful field of investigation not only for theoretic
and mathematical issues, but also in some cases for a
physical problems. In this paper we shall derive a gene
universality property for the low-energy scattering amp
tudes in 211 massive field theories.

This universality property was first noted@1# in potential
scattering. In three space dimensions, and for a very la
class of spherically symmetrical potentials, the low-ene
behavior of theS-wave phase shift is given byd0(k);ak as
k→0, wherek is the momentum, anda is the scattering
length which depends on the potential.

In two space dimensions, the situation is radically diffe
ent. For a large class of rotationally symmetrical potentia
the behavior ofd0(k) is c/( ln k) ask→0. More significantly,
for a large class of such potentials,c5p/2, i.e.,

d0~k!;
p/2

ln k
~1.1!

ask→0. In Ref. @1#, the result~1.1! was shown to hold for
the class of exponentially decreasing potentials,V(r )
5O(e2mr) with m.0 as r→`. This dependence of th
phase shiftd0(k) on lnk is also of practical importance. Fo
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example, it is the underlying reason why wire antennas
very efficient and widely used@2#.

However, Eq.~1.1! clearly cannot be the entire story. I
the special caseV(r )50, d0(k)50 identically—a trivial re-
sult that contradicts Eq.~1.1!. From this case it is expecte
that there is a subspace of two-dimensional rotationally sy
metrical potentials where Eq.~1.1! does not hold.

In this paper we consider both non-relativistic potent
scattering in two space dimensions and relativistic quan
field theories in 211 dimensions. For potential scattering, w
give a proof of Eq.~1.1! with the most general condition o
the potential. We also identify the exceptional cases wh
d0(k)→0 faster than (lnk)21 ask→0. This is carried out in
Sec. II.

In Sec. III we consider the case of a relativistic quantu
field theory, more specifically one with the kinematics off3

4,
i.e., equal mass, spin zero, and neutral particles. Here
again show that analyticity, symmetry, and unitarity lead
the universal behaviord0(k)→p/(2ln k) as k→0, wherek
is the c.m. momentum. Again, there are exceptions withd0

5O(k2). In the specific case off3
4, it is shown that a

leading-log summation of perturbation theory does inde
give us d0(k)→(p/2)(ln k)21 as k→0. In other words, in
this case, each order in perturbation theory for then-th am-
plitude diverges like (lnk)n as k→0, but the sum, the full
amplitude, vanishes as (lnk)21.
© 1998 The American Physical Society14-1
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II. TWO-DIMENSIONAL POTENTIAL SCATTERING

In two dimensions the partial wave expansion of the sc
tering amplitudeT(k,u) is given by

T~k,u!5
1

Ak
(
n50

`

en~eidnsin dn!cosnu, ~2.1!

where e051, en52 for n>1. The phase shiftsdn(k) are
obtained in the standard way from the solutions of the Sch¨-
dinger equation. In this paper we are interested mainly in
term n50.

The n50 solutions,u(k,r ), satisfy

F d2

dr2 1
1

4r 2 1k22gV~r !Gu~k,r !50. ~2.2!

Without the loss of generality,g is taken to be non-negative
Equation~2.2!, under conditions onV(r ) to be specified be-
low, has two independent solutions: behaving likeAr and
Ar lnr as r→0. We take as a regular solution

u~k,0!50,u~k,r !;Ar , ~2.3!

corresponding to a finite wave function at the origin. Fo
discussion of this choice, see Appendix A.

The phase shift,d0(k), is defined by

u~k,r ! →
r→`

cAr @cosd0J0~kr !2sin d0Y0~kr !#. ~2.4!

The sign of the second term is chosen to correspond to
definition of d0 in the 3-dimensional case, i.e.,u
→cAp/2 cos(kr2p/41d0) as r→`. By rearranging terms
in Eq. ~2.4!, we get

u~k,r ! →
r→`

cAre2 id0@H0
~2!~kr !1e2id0H0

~1!~kr !#. ~2.5!

We can always chooseu(k,r ) such that

u~k,r ! →
r→`

2
1

2iAk
@e2 i ~kr2p/4!1S~k!e1 i ~kr2p/4!#,

~2.6!

where we have used the asymptotic formulas
H0

(1),(2)(z) for large uzu, and

S~k![e2id0~k!. ~2.7!

The Jost functions in this case are solutions of Eq.~2.2!,
finite at r 50, which we denote asf 6(k,r ) with the
asymptotic behavior

f 6~k,r ! →
r→`

e7 i ~kr2p/4!. ~2.8!

We can thus write

u~k,r !52
1

2iAk
@ f 1~k,r !1S~k! f 2~k,r !#. ~2.9!
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It is convenient to follow a method of treating singul
potentials@3#. We shall see below how this simplifies th
task of taking the limitk→0. Following Ref.@3#, we define
g(k,r ) as

g~k,r ![
1

2iAk
@ f 1~k,r !1 f 2~k,r !#. ~2.10!

The sign here is different from that in the 3-dimension
case. From Eq.~2.9! we now have

u~k,r !52@g~k,r !1A~k! f 2~k,r !#, ~2.11!

whereA(k) is then50 scattering amplitude

A~k![
1

2iAk
@S~k!21#[

1

Ak
eid0sin d0 . ~2.12!

The conditionu(k,r )→0 asr→0 gives us

A~k!52 lim
r→0

@g~k,r !/ f 2~k,r !#. ~2.13!

Notice that this limit is always finite. This is becausef 2 ,
being a combination of Ref 2 and Im f 2 , i.e., of two lin-
early independent solutions of Eq.~2.2!, has to behave as
f 2;Ar lnr as r→0.

The asymptotic behavior ofu(k,r ) can be written as

u~k,r ! →
r→`

i cos~kr2p/4!

Ak
2A~k!ei ~kr2p/4!. ~2.14!

This follows from Eqs.~2.8! and ~2.9!.
Following Ref. @3#, we introduce a Green’s function

G(r ,r 8) for r ,r 8.0, defined by

F d2

dr2 1
1

4r 2 1k2GG~r ,r 8![d~r 2r 8!. ~2.15!

This G is given explicitly by

G~r ,r 8!5
p

2
Arr 8@J0~kr !Y0~kr8!

2J0~kr8!Y0~kr !#u~r 82r !, ~2.16!

whereJ0 andY0 are the standard Bessel functions of the fi
and second kind.

The next step is to introduce au0(k,r ) which is a solution
of the free,V50, Schrödinger equation. We set

u0~k,r ![u~k,r !2gE
0

`

dr8G~r ,r 8!V~r 8!u~k,r 8!.

~2.17!

From Eq.~2.15! it is now obvious that

F d2

dr2 1
1

4r 2 1k2Gu0~k,r !50. ~2.18!
4-2
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As r→`, u0→u, and from Eq.~2.14! it is clear thatu0 is
given by

u0~k,r !5Ap

2
iArJ0~kr !2Ap

2
A~k!AkrH0

~1!~kr !.

~2.19!

The integral equation foru can now be written as

u~k,r !5u0~k,r !1gE
r

`

dr8G̃~k;r ,r 8!V~r 8!u~k,r 8!,

~2.20!

with

G̃~k;r ,r 8!5
p

2
Arr 8@J0~kr !Y0~kr8!2J0~kr8!Y0~kr !#.

~2.21!

Using Eqs.~2.11! and~2.19!, we can get from Eq.~2.20! two
separate integral equations forg(k,r ) and f 2(k,r ). These
are

g~k,r !52 iAp

2
ArJ0~kr !

1gE
r

`

dr8G̃~k;r ,r 8!V~r 8!g~k,r 8! ~2.22!

and

f 2~k,r !5Ap

2
AkrH0

~1!~kr !

1gE
r

`

dr8G̃~k;r ,r 8!V~r 8! f 2~k,r 8!.

~2.23!

These last two equations are the same except for the i
mogeneous term. We are interested in studying them in
limit of small k. Before we can do that, it is convenient
remove aAk factor from f 2 and definef̃ 2(k,r ) as

f̃ 2~k,r ![
1

Ak
f 2~k,r !. ~2.24!

With this definition, Eq.~2.13! becomes

eid0~k!sind0~k!52 lim
r→0

@g~k,r !/ f̃ 2~k,r !#. ~2.25!

We now take thek→0 limit of Eq. ~2.22! and the equa-
tion corresponding to Eq.~2.23! for f̃ 2 . Using

p

2
@J0~kr !Y0~kr8!2J0~kr8!Y0~kr !#5 ln

r 8

r
1O~k2!

~2.26!

for small k, we get
02501
o-
e

g~k,r !52 iAp

2
Ar 1gE

r

`

dr8Arr 8 S ln
r 8

r DV~r 8!g~k,r 8!

1O~k2! ~2.27!

and

f̃ 2~k,r !5 iA2

pS ln k1 ln r 2 ln 21g2 i
p

2 DAr

1gE
r

`

dr8Arr 8S ln
r 8

r DV~r 8! f̃ 2~k,r 8!1O~k2!,

~2.28!

whereg is Euler’s constant. Forr .0, taking thek→0 limit
under the integral sign is allowed if we assume

E
a

`

r 8dr8~11u ln r 8u2!uV~r 8!u,`, a.0. ~2.29!

We shall discuss this condition in more detail later.
At this stage, we introduce two functions,A(r ) andB(r ),

defined by the following integral equations:

A~r !511gE
r

`

r 8dr8S ln
r 8

r DV~r 8!A~r 8! ~2.30!

and

B~r !5 ln r 1gE
r

`

r 8dr8S ln
r 8

r DV~r 8!B~r 8!. ~2.31!

It is clear from inspecting Eqs.~2.27! and ~2.28! that

A~r ![ lim
k→0

F ig~k,r !

Ap/2Ar
G ~2.32!

and

F2 i f̃ 2~k,r !

A2/pAr
G[FA~r !S ln k2 ln 21g2 i

p

2 D1B~r !G
1O~k2!. ~2.33!

Thus, for smallk we have

2F g~k,r !

f̃ 2~k,r !
G5

~p/2!A~r !

A~r !S ln k2 ln 21g2 i
p

2 D1B~r !

1O~k2!.

~2.34!

Our task is now to study the existence of solutionsA(r )
andB(r ) of the two integral equations~2.30! and~2.31!, and
more specifically, to study the behavior ofA andB for small
r .

In Appendix B, we shall prove that for the general class
potentials,V(r ), satisfying
4-3
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~A! E
0

`

r 8dr8uV~r 8!u~ u ln r 8u11!,` ~2.35!

and

~B! E
a

`

r 8dr8uV~r 8!u~ ln r 8!2,`, a.1, ~2.36!

the solutionsA(r ) andB(r ) exist for all r .0, and further-
more, nearr 50 one has the behavior

A~r !5@2gCa~g!1o~1!# ln r ~2.37!

and

B~r !5@12gCb~g!1o~1!# ln r . ~2.38!

Here,
r

th

[0, Ca(g) can only vanish for discrete values ofg. In this
case, because of Eqs.~2.38! and ~2.39!, (12gCb) cannot
vanish. Hence, it follows from Eq.~2.42! that, ask→0,

d0~k!5O~k2!. ~2.46!

Equation~2.43! also implies the uniform formula

d0~k!5
j

j11

p

2 ln k2 ip
1OF 1

~ ln k!2,3G ~2.47!

02501
Ca~g!5E
0

`

rdrV~r !A~r ! ~2.39!

and

Cb~g!5E
0

`

rdrV~r !B~r !. ~2.40!

Both integrals forCa andCb are absolutely convergent sinc
one can easily show that, asr→`, A andB have the bounds

uA~r !u,const, uB~r !u,const3u ln r u, ~2.41!

for r .r 0.1. The convergence of Eqs.~2.39! and ~2.40! at
r 50 is guaranteed by Eqs.~2.35!, ~2.37!, and~2.38!.

Going back to Eq.~2.34!, we write, for the neighborhood
of r'0,
2
g~k,r !

f̃ 2~k,r !
5

~p/2!gCa~g!ln r 1O~1!

gCa~g!ln r ~ ln k2 ln 21g2 i p/2!1@gCb~g!21# ln r 1O~1!
1O~k2!. ~2.42!

This result leads to

eid0~k!sin d0~k!5
p

2 F gCa~g!

gCa~g!~ ln k2 ln 21g2 i p/2!1@gCb~g!21#G1O~k2!. ~2.43!
ld
ery

vari-
is

ity

mi-
There are now two cases to consider,Ca(g)Þ0 and
Ca(g)50. For Ca(g)Þ0, we have the universal result ask
→0:

d0~k!5
p

2 ln k
1OF 1

~ ln k!2G . ~2.44!

One should note thatCb(g) is finite. A somewhat stronge
form of Eq. ~2.44! is that, ask→0,

eid0~k!sin d0~k!5
p

2 ln k2 ip
1OF 1

~ ln k!2,3G , ~2.45!

meaning that the real part of the first term is accurate to
order (lnk)22 while the imaginary part is accurate to (lnk)23.

The second case,Ca(g)50, is clearly exceptional. If
Ca(g)50 for any intervalg1,g,g2, then V[0. For V
he
e

in the same sense as Eq.~2.45!, where

j5
gCa~g!~ ln k2 i p/2!

gCb~g!21
. ~2.48!

III. THRESHOLD BEHAVIOR IN 2 11 DIMENSIONS:
THE FIELD THEORETICAL CASE

We take as our starting point the axiomatic local fie
theory with a minimum non-zero mass. There is then v
little difference between 211and 311 dimensions. In both
cases, the on-shell scattering amplitude depends on two
ables. The analyticity domain of the scattering amplitude
obtained, in both cases, in two steps:~i! the analytic continu-
ation of the off-shell amplitude@4#, and ~ii ! the use of the
positivity of the absorptive part to enlarge the analytic
domain @5#. The partial wave expansion in the~211!-
dimensional case is given in terms of Chebyshev polyno
als and not Legendre polynomials. Indeed, for t
(211)-dimensional case, we have

T~s,cosu!516(
n50

`

enf n~s!cosnu. ~3.1!

Here,s is the square of the center-of-mass energy, andu is
the scattering angle. In the elastic region,f n(s) is related to
the phase shifts by
4-4
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f n~s!5Aseidnsin dn . ~3.2!

This and the factor of 16 in Eq.~3.1! are chosen to give
T(s,cosu)52g1O(g2) in a f3

4 perturbative field theory with
a (g/4!)f4 interaction.

The absorptive part ofT is

As~s,cosu!516(
n50

`

en3Im f n~s!cosnu, ~3.3!

with Im f n(s)>0, from the unitarity condition. From Eq
~3.3!, it is easy to obtain

US d

d cosu D n

As~s,cosu!U
<S d

d cosu D n

As~s,cosu!U
cosu51

; s>4m2 ~3.4!

for all u such that21<cosu<11. This last inequality is
precisely what made the enlargement of the analyticity
main in the 311 case possible@5#. Therefore, one gets th
same enlargement in 211 dimensions.

For simplicity, we consider a case with the kinematics a
symmetry of pion-pion scatterings although our results
much more general. We use the Mandelstam variables

s54~k21m2!,

t52k2~cosu21!,

u54m22s2t. ~3.5!

For any fixedt, utu,4m2, T(s,t) is analytic in the doubly
cut s-plane with cuts along

s54m21l,

u54m21l; l.0. ~3.6!

For fixed s, the absorptive part,As(s,cosu), is analytic in-
side an ellipse in the cosu-plane, which is an enlargement o
the Lehmann ellipse@6#. The foci are at cosu561 and the
right extremity is at cosu5114m2/2k2.

The partial wave amplitudes,f n(s), are defined as

f n~s!5
1

16pE21

11

T~s,cosu!cosnu
d~cosu!

sinu
. ~3.7!

The f n’s are analytic in a region that contains

us24m2u,4m2, ~3.8!

excluding a cut along 4m2<s<8m2. A major difference
with the (311)-dimensional case is the kinematical fact
As which comes from the unitarity as explicitly shown in E
~3.2!, a point clarified with the help of Stora@7#.

Thus, the unitarity condition in 211 dimensions is
02501
-
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Im f n~s!>
1

As
u f n~s!u2, ;s.4m2. ~3.9!

In the elastic region, 4m2<s,16m2,

Im f n~s!5
1

As
u f n~s!u2. ~3.10!

This slightly changed form of the unitarity conditio
given in Eq.~3.9! gives a different Froissart bound@8# in the
211 case. The number of partial waves effectively contr
uting to the scattering amplitude is still bounded by

L5CAs ln s, ~3.11!

for large s. However, the Froissart bound in 211 dimen-
sions is

uF~s,cosu!u,Cs ln s, 21<cosu<11. ~3.12!

This is instead of thes ln2s in the 311 case. The number of
subtractions in the dispersion relations, forutu,4m2, is still
at most 2, as in the 311 case@9#.

The general properties outlined so far are sufficient
determine the singularity off n(s) at k50. For simplicity, we
restrict ourselves to theS-wave case, although our metho
applies to the higher waves. It is convenient to change v
ables and define

f 0~s!5F0~k!. ~3.13!

We also set the massm51. In the variablek, the analyticity
domain ofF0(k) contains the half circleG:

G:$uku,1, and Imk.0%. ~3.14!

A very important property ofT(s,t) is the reality prop-
erty: T is real for s,4, t,4, u,4. From this property, it
follows that f 0(s) is real for 0,s,4, and henceF0(k) is
real for k5 ik, 0,k,1. By Schwarz’s reflection principle
for kPG, we have

F0~k!5F0* ~2k* !. ~3.15!

The unitarity condition, Eq.~3.10!, can be written in a
form suitable for analytic continuation. With initiallyk
5k* , we write

F0~k!2F0* ~k* !5
2i

As
F0~k!F0* ~k* !. ~3.16!

This gives

F0~k!5
F0* ~k* !

12 ~2i /As! F0* ~k* !
, ~3.17!

and defines a function analytic in the second sheet. T
function will be the continuation to the semicircle,uku,1,
Im k,0, through the line 0,k,1. The only thing to pre-
vent that would be an accumulation of zeros of@1
4-5
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2(2i/As)F0* (k* )# along this line, giving a natural boundar
There is nothing in the general axioms to prevent that@10#.
However, it is sufficient to assume thatF0(k) is continuous
on 0,k,1 in order to avoid this catastrophe. We thus g
the continuation ofF0(k) to the second sheet@11#, which,
using the reality condition~3.15!, can be written as

F0~k!5
F0~2k!

12 ~2i /As! F0~2k!
. ~3.18!

Hence,F0(k) is meromorphic foruku,1, outside the origin.
Let us introduceG0(k) as

G0~k!5
1

F0~k!
. ~3.19!

We get

G0~k!5G0~2k!2
2i

As
. ~3.20!

Next, we defineH0(k) as

H0~k![G0~k!2
2

pAs
S ln k2 i

p

2 D . ~3.21!

H0(k) is again real fork5 ik, 0,k,1. Using Eq.~3.21!,
we get

H0~k!5H0~2k!. ~3.22!

H0 is therefore an even function ofk, i.e.,

H0~k![K0~k2!. ~3.23!

K0(k2) is a meromorphic function ofk2, and theS-wave
amplitude can be written as

F0~k!5
1

K0~k2!1 ~2/pAs!~ ln k2 i p/2!
. ~3.24!

If K0(k2) has no pole at the origin, the lnk dominates the
denominator ask→0, and we get

F0~k!.
p

2
AsS 1

ln kD . ~3.25!

The phase shift then behaves as

d0~k!.
p

2 ln k
, ~3.26!

which is precisely the behavior obtained in the poten
case. As in the potential case, the existence of a pole
K0(k2) at k250 cannot be excluded.

The derivation we presented above also applies to hig
waves, but it can be proved that what is hopefully an exc
tion for n50 turns out to be the rule forn>1. Kn(k2) has a
pole, and we shall show in a future publication thatdn
;k2n for n>1.
02501
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For the restricted class of potentials such that

E
0

`

rdr u11u ln r uu uV~r !uexp mr ,`,

the derivation of the dispersion relations forutu,m2 obtained
first by one of us@12# in the 311 case also holds in 211
dimensions. It implies that the partial wave amplitude is a
lytic in uku,m/2, Im k.0, and therefore the derivation pre
sented in this section applies also to this potential case.

Equation~3.17! was also obtained by Bros and Iaglonitz
in Ref. @13#, Eq. ~5!, and in Ref.@14#, Eq. ~19!, in a more
general but less elementary approach based on a postu
analyticity of theS-matrix. These authors emphasize the R
mann sheet structure at the threshold rather than the a
behavior of the physical scattering amplitude.

IV. PERTURBATION THEORY FOR f3
4

It is of importance to compare our result with the pertu
bation theory. We are fortunate that in 211 dimensions we
have a rigorously defined super-renormalizable theory@15#
with a mass gap, namely,f3

4.
Taking

Lint~f!5
2g

4!
:f4~x!:

we obtain up to the orderg2 for T(p1 ,p2 ;2p3 ,2p4)

T~s,t !52g1g2@ f ~s!1 f ~ t !1 f ~u!#1O~g3!, ~4.1!

wheref (s), s5(p11p2)2, is given by the Feynman diagram
shown in Fig. 1,

f ~s!5S 2 i

2 D E d3k

~2p!3

3
1

~k22m21 i e!@~p11p22k!22m21 i e#
.

~4.2!

The factor (12 ) is for identical outgoing particles, and the
(2 i ) follows from S511 iT, S being theS-matrix.

This last integral can be easily evaluated in the Euclide
region, s,4m2, by carrying out a Wick rotation, and th
result is

f ~s!52
1

16pAs
lnS 2m2As

2m1As
D , 0,s,4m2. ~4.3!

FIG. 1. A second-order diagram.
4-6



ic

ed

ia

gf
tr

n-

aps

of
x-

ty
to

ior

re-

e
re-
on,
is a

UNIVERSALITY OF LOW-ENERGY SCATTERING IN . . . PHYSICAL REVIEW D58 025014
The normalization ofT is chosen such that the elast
unitarity is given by

1

2i
~T2T* !5

1

16As
E

0

2p du

2p
uT~s,u!u2, 4m2<s,16m2.

~4.4!

The partial wave expansion is then

T~s,u!516As(
n

encosnueidnsin dn . ~4.5!

As s→4m2, k→0, then for the physicalu, t→0, u→0,
and the leading log term comes from Eq.~4.3!, sincef (0) is
finite.

We get fork→0

T52g2
g2

32pm
ln

k2

m2 1O~1!g21O~g3!. ~4.6!

The first thing to notice is that at the orderg2, T diverges as
k→0. This is just the opposite of the full result we obtain
in the previous section whereT→0 ask→0.

In the third order, the leading lnk behavior comes from
the two-bubble diagram shown in Fig. 2. The triangle d
gram in Fig. 3 is only of the order (lnk). We conjecture that
this continues in higher orders, and the leading (lnk) ap-
proximation is given by

T.2g(
n50

` S g ln~k/m!

16pm D n

, k→0. ~4.7!

This sum is divergent fork,m exp(216pm/g). Thus the
present perturbation calculation does not give a meanin
result. If we ignore this divergence and sum the geome
series formally, the result is

T.2gH 1

12@g ln~k/m!/16pm#J . ~4.8!

However, ask→0, s→4m2,

FIG. 2. A third-order diagram behaving as (lnk)2 ask→0.

FIG. 3. A third-order diagram behaving as lnk ask→0.
02501
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T

16As
.eid0sin d0 . ~4.9!

We thus recover the potential scattering result ask→0,

eid0~k!sin d0~k!;
2g

32mS 1

2 g ln~k/m!/16pm D ~4.10!

and

d0~k!;
p

2

1

ln~k/m!
, k→0. ~4.11!

f3
4 is a well-defined theory, both perturbatively and no

perturbatively, and it is clear from our results that ask→0
the perturbation theory gives the wrong answer. It is perh
interesting to note thatf3

4 is asymptotically free. If our con-
jecture on the higher-order (lnk) behavior is correct, then
this would be the first completely rigorous demonstration
how the perturbation theory order by order could be e
tremely misleading.

V. REMARKS AND CONCLUSIONS

We close this paper with three significant remarks.
~i! The power of elastic unitarity together with analytici

is clearly demonstrated by the following remark stressed
us by Porrati@16#. Once we are given a phase-shift behav
such that

a0~k!5eid0~k!sin d0~k!5
c

ln k2 i p/2

1OS 1

~ ln k!11eD , k→0, ~5.1!

then the unitarity alone fixesc to bec5p/2, since

a0* ~k!5a0~2k!5
c

lnuku2 ip/2
1OS 1

~ ln2k!11eD .

~5.2!

The factors (ip/2) are necessary to keepa0(k) real for k,
purely imaginary, and Imk.0. Hence we get

Im a0~k!5
p

2

c

~ ln k!2 1OS 1

~ ln k!21eD . ~5.3!

From Im a05ua0u2, we obtain, whencÞ0,

c5
p

2
. ~5.4!

It should be pointed out, however, that this argument
quires analyticity ink in a semicircle in Imk.0, and hence
only applies to exponentially decreasing potentials.

~ii ! In one dimension, the simplest potential is th
d-function potential. In two or three dimensions, the cor
sponding simplest potential is the so-called point interacti
which is the same as the Fermi pseudopotential. There
vast literature on the Fermi pseudopotential.
4-7
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Recently, Jackiw@17# obtained the phase shiftd0(k) for
the point interaction in two dimensions. Although this pote
tial does not belong to the class considered in Sec. II,
result fork→0 agrees with that of Ref.@1# and ours; see Eq
~3.26! in his paper. It should be stressed, however, that
relativistic result holds for any 211 field theory with the
standard analyticity and without zero-mass particles; we
not restricted tof3

4.
~iii ! In a f4-type field theory, the renormalized couplin

constant is defined by the value of the 2→2 scattering am-
plitude, T(s,t,u), evaluated at some Euclidean poi
(s,t,u),4m2, often for convenience taken to be the sym
metric points5t5u54m2/3. In 311 dimensions, given the
well-established analyticity and unitarity properties ofT, it
has been shown in many papers@18# that the coupling con-
stant is bounded. Some of these bounds are surprisi
strong. Inf3

4, Glimm and Jaffe@15# obtained bounds directly
from the constructive field theory, but their results a
weaker than what can be obtained from the analyticity a
unitarity.

The general methods used in the papers cited in Ref.@18#
for the 311 case can be easily modified to apply to 211
dimensions. Only the kinematic factor outside the par
wave expansion is different. The results of this paper t
present us with a new and significant challenge. We h
now a new piece of information on the scattering amplitu
which is exact. Namely, we know that

T~s,t,u!ln
As24m2

2m
→16pm

as s→4m2, t→0, u→0,

i.e., at certain points on the Mandelstam triangle. Given
power of unitarity and analyticity, we are quite confident th
this new input will improve the bounds on the coupling co
stant. Only the magnitude of the improvement is in questi
Work on this problem is in progress.

Note Added in Proof. The work of Bros and Iaglonitze
@13,14# precedes the potential scattering results of Ref.@1#.
We only learned of the existence of Refs.@13,14# after a first
draft of this paper had been completed. The relevant sent
in our abstract was not amended when the main text wa
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APPENDIX A

In this appendix, we study briefly Eq.~2.2!, together with
the Dirichlet boundary condition~2.3!. We start with the free
equation
02501
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S d2

dr2 1
1

4r 2 1k2Du~k,r !50, ~A1!

with u(k,0)50. Because of the presence of the attract
singular potential21/(4r 2), one must be careful in the ex
tension of the differential operator2(d2/dr2)2(1/4r 2), to a
self-adjoint operator onL2(0,̀ ). This has been thoroughly
studied in the literature@19,20#. We quote the result here
The two independent fundamental solutions of Eq.~A1! are
ArJ0(kr) and ArY0(kr). Both vanish at the origin. Every
other solution, being a linear combination of these two, a
vanishes atr 50. Therefore, we are in the limit-circle cas
for the differential operator with a Dirichlet boundary cond
tion at r 50. There exist an infinite number of self-adjoin
extensions of the symmetric differential operator, depend
on one~real! parameter. Each self-adjoint extension is d
fined by the amount of mixing of the two fundamental so
tions. Among all these extensions, there exists a ‘‘dist
guished’’ one, which corresponds to taking the pure Bes
solutionArJ0(kr). These generalized eigenfunctions are le
singular, behaving likeAr at the origin, as compared to th
eigenfunctions of all other extensions, which behave l
Ar ln r asr→0. Moreover, it can be shown that the ‘‘distin
guished’’ extension corresponds to the Friedrichs extens
@20,21#. But, for the physicist, the more important fact
this: in all the other self-adjoint extensions, there exists,
sides the continuum, a negative energy eigenvalue. In o
words, there exists always a real bound state with nega
energy,E05k0

2,0 @19,20#.
The extensionHl is defined by taking the behavior, asr

→0,

u~r !→Ar 1lAr ln r ; l real. ~A2!

It is then easy to check that if we define a solution such t

Ar @J0~kr !1Y0~kr !#→
r→0

Ar 1lAr ln r , ~A3!

then an elementary calculation shows that, by settingk
51 ik0, we get

ln k05
12l~g2 ln 2!

l
, ~A4!

whereg is the Euler constant. Thus, for any reall, l.0, we
have a bound state atE52k0

2(l).
There is no such bound state in the ‘‘distinguished’’ e

tension. However, in this case we are just at the threshol
having a bound state. More precisely, in the ‘‘distinguishe
extension, if we add to the free Hamiltonian a purely attra
tive ~negative! potential, no matter how weak it happens
be, there appears a true bound state. This fact is well es
lished in the literature using a variational argument.

As an aside here we give the upper bound of Setoˆ @22# on
the numberN of bound states for dimension52, andl 50.
This is the 2-dimensional version of the old Bargmann
equality ford53. The Setoˆ bound is
4-8
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N2
0<11

1
2 E

0

`

drE
0

`

dr8U ln r

r 8
UV~r !V~r 8!

2E
0

`

rV~r !dr

, ~A5!

where, given our assumptions onV(r ), all the integrals are
finite. The fact that there is always a bound state, regard
of how weak an attractive potentialV may be, is somehow
reflected by the presence of 1 in the right-hand side of
~A5!. This cannot be improved.

In any case, this last property of the ‘‘distinguished’’ e
tension of the free differential operator to a self-adjoint o
eratorwithout a bound stateis the most important criterion
by which we must choose this extension, and discard
others. As physicists, we do not have the freedom to s
with a ‘‘free Hamiltonian’’ that binds a free particle. Math
ematicians have this luxury.

We finally come to Eq.~2.2! itself. Starting from the
‘‘distinguished’’ extension of the free Hamiltonian, and ad
ing to it a potentialV, does not alter the self-adjointnes
provided V is ‘‘weak’’ in the sense of Kato and other
@21,23#. The condition defining this ‘‘weak’’ class is ex
pressed precisely in the following integrability condition o
the potential:

E
0

`

rdr ~11u ln r u!uV~r !u,`. ~A6!

This ensures the semi-boundedness of the total Hamilton
and the finiteness of the number of bound states. Note
Eq. ~A6! is precisely the condition~2.35! which we had to
use in Sec. II. We shall need it in Appendix B to establish
existence and study the properties of the solutions of the
integral equations~2.30! and ~2.31!.

To conclude this appendix, let us point out that an ext
sion different from the ‘‘distinguished’’ one can be used
simulate a renormalized delta-function interaction, as w
done by Jackiw@17#.

APPENDIX B

In this appendix we study the integral equations~2.30!
and ~2.31!. For the class of potentials satisfying Eqs.~2.35!
and ~2.36!, we first prove that the solutionsA(r ) and B(r )
exist and are bounded, asr→`, as in Eq.~2.41!. Next, we
prove that the behavior ofA(r ) andB(r ) asr→0 is given by
Eqs. ~2.37! and ~2.38!, respectively. We will only give the
details for Eq.~2.31!. The procedure for Eq.~2.30! is easier
and very similar.

Our starting point is the integral equation

B~r !5 ln r 1gE
r

`

r 8dr8S ln
r 8

r DV~r 8!B~r 8!. ~B1!

We can first consider the caser 8>r>1, where we have the
inequality
02501
ss
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0< ln
r 8

r
< ln r 8. ~B2!

Therefore, an upper boundB̄ is obtained forB by replacing
the integral equation~B1! by

B̄~r !5 ln r 1gE
r

`

r 8dr8uV~r 8!u ln r 8B̄~r 8!, r .1.

~B3!

The solution of Eq.~B3! can be obtained by standard met
ods and is given by

B̄~r !5F E
1

r dt

t
expS 2gE

t

`

uuV~u!u ln uduD 1CG
3expS gE

r

`

tuV~ t !u ln tdtD . ~B4!

The constantC is given by

C5E
1

`1

r F12expS 2gE
r

`

tuV~ t !u ln tdtD Gdr, ~B5!

which is finite given Eq.~2.35!. Using this result in Eq.~B4!,
we find that

B̄~r !5@11o~1!# ln r , as r→`. ~B6!

This establishes the bound onB(r ) for r>1,

uB~r !u<C1ln r 1D1 , ~B7!

whereC1 andD1 are positive constants depending ong.
By the same technique, we arrive at similar conclusio

for A(r ). This time, the bounding condition forĀ(r ) is
Ā(`)51. We obtain

Ā~r !511o~1!, as r→` ~B8!

and

uA~r !u<Ā~r !<D2 , r>1, ~B9!

whereD2 is a positive constant.
From these bounds one can easily get, asr→`,

A~r !511o~1!; B~r !5@11o~1!# ln r . ~B10!

It is important to note that for the first estimate we need o
the condition~2.35!, whereas for the second we need E
~2.36!.

Finally, we consider the regionr ,1 for both A(r ) and
B(r ). The case forB(r ) is more delicate~singular!, and we
treat it first.

We can write Eq.~B1! as
4-9
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B~r !5 ln r 1gE
r

1

r 8S ln
r 8

r DV~r 8!B~r 8!dr8

1gE
1

`

r 8S ln
r 8

r DV~r 8!B~r 8!dr8. ~B11!

In the second integral, sincer 8>1 andr ,1, we can use the
bound Eq.~B7! and get, using condition~2.29!,

U E
1

`

r ln
r 8

r
V~r 8!B~r 8!dr8U,C1DS ln

1

r D , ~B12!

whereC and D are positive constants. In the first integra
we have

U ln
r 8

r U<u ln r u, r ,r 8<1. ~B13!

An upper bound,B% (r ), for B(r ) in r<1 is now obtained
by substituting Eqs.~B12! and ~B13! in Eq. ~B11!. We ob-
tain the integral equation

B% ~r !5C21D2u ln r u1gu ln r uF E
r

1

r 8uV~r 8!uB% ~r 8!dr8G ,
~B14!

with some positive constantsC2 andD2.
The solution of Eq.~B14! can be obtained by elementa

methods. It is

B% ~r !5Z~r !gu ln r u H C31E
r

1

r 8uV~r 8!u@C21D2u ln r 8u#

3@Z21~r 8!#dr81C21D2u ln r uJ , ~B15!

where

Z~r !5expF E
r

1

dr8gr8u ln r 8uuV~r 8!uG . ~B16!

Noting thatZ(r ) is bounded for 0<r<1, from the condition
~2.35!, we get

uB~r !u<B% ~r !,l1mu ln r u. ~B17!

In the same way, we can analyze the integral equa
~2.30! for A(r ). We again find that, forr→0,

uA~r !u<l1u ln r u1m1 . ~B18!

Using these two bounds, we can now prove t
asymptotic estimates Eqs.~2.37! and~2.38!. From Eq.~2.30!,
we get, asr→0,

A~r !52gCaln r 1gE
r

`

r 8ln r 8V~r 8!A~r 8!dr811.

~B19!
02501
n

e

This can be written as

A~r !52gCaln r 1gE
r

1

r 8ln r 8V~r 8!A~r 8!dr81O~1!.

~B20!

The integral in Eq.~B20! could diverge asr→0. However,
setting

I ~r !5gE
r

1

r 8ln r 8V~r 8!A~r 8!dr8, ~B21!

and using Eq.~B18!, we get

uI ~r !u,gl1E
r

1

r 8u ln r 8u2uV~r 8!udr8

1gm1E
r

1

r 8u ln r 8uuV~r 8!udr8

,gl1E
r

1

r 8u ln r 8u2uV~r 8!udr81O~1!. ~B22!

Next we define

F~r ![r 2u ln r u2uV~r !u. ~B23!

From the condition~2.35!, we have

E
0

1

dr8r 8u ln r 8uV~r !5E
0

1 dr8

r 8u ln r 8u
3F~r 8!,const.

~B24!

This implies thatF(r )→0 as r→0. From Eqs.~B22! and
~B23!, we get

uI ~r !u<gl1E
r

1dr8

r 8
F~r 8!1O~1!, ~B25!

and, hence, sinceF(r 8) vanishes asr 8→0,

uI ~r !u5u ln r uo~1!. ~B26!

This establishes Eq.~2.37!. For Eq.~2.38!, the derivation is
similar.

It is important to notice that, ifA(r )/ ln r→0 as r→0,
then B(r )/ ln r cannot approach zero asr→0. This is be-
causeA and B are solutions of thesamedifferential equa-
tion,

d

drS r
dX

dr D52grV~r !X~r !,

and are thus linearly independent.
4-10
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