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For any relativistic quantum field theory int2 dimensions, with no zero mass particles, and satisfying the
standard axioms, we establish a remarkable low-energy theorenS-Waee phase shiftéy(k), k being the
c.m. momentum, vanishes as eithiyr— c/In(k/m)or 5,— O(k?) ask—0. The constant is universal and
= /2. This result follows only from the rigorously established analyticity and unitarity properties for 2-
particle scattering. This kind of universality was first noted in non-relativistic potential scattering, albeit with
an incomplete proof which missed, among other things, an exceptional class of potentialsdg(i@rés
0O(k?) neark=0. We treat the potential scattering case with full generality and rigor, and explicitly define the
exceptional class. Finally, we look at perturbation theoryb@mnd study its relation to our non-perturbative
result. The remarkable fact here is thatitth order the perturbative amplitude diverges like Kihask—0,
while the full amplitude vanishes as Kn'. We show how these two facts can be reconciled.
[S0556-282198)02714-3

PACS numbgs): 11.10.Jj, 11.10.Cd, 11.10.Kk, 11.80m

I. INTRODUCTION example, it is the underlying reason why wire antennas are
very efficient and widely usef].

Quantum field theories in 21 dimensions provide us However, Eq.(1.1) clearly cannot be the entire story. In
with a useful field of investigation not only for theoretical the special cas¥(r)=0, 5y(k) =0 identically—a trivial re-
and mathematical issues, but also in some cases for actuglit that contradicts Eq1.1). From this case it is expected
physical problems. In this paper we shall derive a generajhat there is a subspace of two-dimensional rotationally sym-
universality property for the low-energy scattering ampli- metrical potentials where Eq1.1) does not hold.
tudes in 2-1 massive field theories. . . In this paper we consider both non-relativistic potential

This universality property was first not¢d] in potential  gcattering in two space dimensions and relativistic quantum

scattering. In three space dimensions, and for a very larggq|q theories in 21 dimensions. For potential scattering, we
class of spherically symmetrical potentials, the low-energy

. L give a proof of Eq(1.1) with the most general condition on
behavior of thes_rwave phase shift is given bgo(k) ~ak aS " the potential. We also identify the exceptional cases where
k—0, wherek is the momentum, and is the scattering

_l . . . .
length which depends on the potential, 6o(k)—0 faster than (Irk) "~ ask—0. This is carried out in

In two space dimensions, the situation is radically differ—SeC' . . L
ent. For a large class of rotationally symmetrical potentials, In Sec. Il we CO”S'O_'?r the case ,Of a relal1t|V|st|c.quantum
the behavior oBy(K) is c/(In k) ask— 0. More significantly, _1eld theory, more specifically one with the kinematics/d
for a large class of such potentiats= /2, i.e., i.e., equal mass, spin zero, and neutral particles. Here we
again show that analyticity, symmetry, and unitarity lead to

the universal behaviody(k) — 7/(2Ink) ask—0, wherek
So(K)~ w2 (1.1) Is the c.m. momentum. Again, there are exceptions ith
In k =0(k?). In the specific case otbé, it is shown that a
leading-log summation of perturbation theory does indeed
ask—0. In Ref.[1], the result(1.1) was shown to hold for give us 8y(k)— (m/2)(Ink)~* ask—0. In other words, in
the class of exponentially decreasing potential&(r)  this case, each order in perturbation theory for kgl am-
=0(e *") with u>0 asr—~. This dependence of the plitude diverges like (Ik)" ask—0, but the sum, the full
phase shiftsy(k) on Ink is also of practical importance. For amplitude, vanishes as (k.
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[l. TWO-DIMENSIONAL POTENTIAL SCATTERING It is convenient to follow a method of treating singular
t_potentials[3]. We shall see below how this simplifies the

In two dimensions the partial wave expansion of the sca task of taking the limik— 0. Following Ref[3], we define

tering amplitudeT (k, 8) is given by

g(k,r) as
_i S i Onei 1
T(K,0)= \/EHZO €q(€'%sin 8,)cosné, (2.1 g(k,r)zm[f+(k,r)+f,(k,r)]. 2.10

where eg=1, €,=2 for n=1. The phase shift$,(k) are i o . . .
obtained in the standard way from the solutions of the Schro! "€ Sign here is different from that in the 3-dimensional

dinger equation. In this paper we are interested mainly in th&2S€- From Eq(2.9) we now have
termn=0.

The n=0 solutions,u(k,r), satisfy udkor)=—=lgtk,n+AMKT (k. (213
d2 1 whereA(K) is then=0 scattering amplitude
—+ — +k2—gV(r)|u(k,r)=0. (2.2
dr  4r 1 1
A(k)=——=[S(k)—1]=—=€'%sin §,. (2.1
Without the loss of generality is taken to be non-negative. ) 2ivk (59— Jk 0 (12

Equation(2.2), under conditions oW(r) to be specified be- N _
low, has two independent solutions: behaving lie and ~ The conditionu(k,r)—0 asr—0 gives us
Jrinr asr—0. We take as a regular solution

A(K)=—lim [g(k,r)/f_(k,r)]. (2.13
u(k,0)=0u(k,r)~Ar, 2.3 o
corresponding to a finite wave function at the origin. For aNotice that this limit is always finite. This is because,
discussion of this choice, see Appendix A. being a combination of Ré_ and Imf_, i.e., of two lin-
The phase shiftgy(k), is defined by early independent solutions of ER.2), has to behave as
f_~r Inr asr—0.
uk,r) — c\/F[cos Sodo(kr)—sin 8oYo(kr)]. (2.4 The asymptotic behavior af(k,r) can be written as
r—o

. . i cogkr—/4) —
The sign of the second term is chosen to correspond to the uk,r) » —————= —Ak)e® =" (2.14
definition of &y in the 3-dimensional case, i.eu r—o vk

—Cml2 coskr—ml4+ 5y) asr—oo. By rearranging terms

in Eq. (2.4), we get This follows from Eqs(2.8) and(2.9).

Following Ref. [3], we introduce a Green's function
u(k,r) — cyre o[ HP (kr)+eZ%HM (kr)]. (2.5 G(r,r") for r,r’'>0, defined by

r—o

G(r,r'")y=6(r—r’). (2.15

2
2
We can always choosg(k,r) such that [d?Jr WH(

u(kir) s — 1 ik 4 (ke itk mia This G is given explicitly by
k

e 2ivk -
(2.6 G(r,r’)zE\/rr_’[Jo(kr)Yo(kr’)

where we have used the asymptotic formulas for

Hgl),(Z)(Z) for Iarge|2|, and —Jo(kl")YO(kI’)]H(r'—l‘), (21@

S(k)=e? %k, 2.7) whereJg andY_O are the standard Bessel functions of the first
and second kind.
The Jost functions in this case are solutions of &), The next step is to introduceug(k,r) which is a solution

finite at r=0, which we denote as.(k,r) with the Of the free,V=0, Schrainger equation. We set
asymptotic behavior

uo(k,r)zu(k,r)—gf:dr’G(r,r’)V(r’)u(k,r’).

fi(k,l’) N eii(kr—w/4)_ (2.8)
We can thus write From Eq.(2.15 it is now obvious that
(k)= — —— [, (k) +SK_(kD)]. (29 C L
ulkK,r)=—— ,r _(k,r)]. . =
2|\/E + [d—rz‘l'm‘l‘k Uo(k,r) 0. (21&
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As r—o, up—u, and from Eq.(2.14) it is clear thatug is
given by

o(k,r)= @i Vrdg(kn) - \@A(k)MHé“(kr).

(2.19

The integral equation fou can now be written as

u(k,r)=u0(k,r)+gfwdr’é(k;r,r’)V(r’)u(k,r’),
(2.20
with

é(k;r,r’)z;\/rr_’[Jo(kr)Yo(kr’)—Jo(kr’)Yo(kr)].
2.2

Using Egs(2.11) and(2.19), we can get from Eq2.20 two
separate integral equations fgfk,r) and f_(k,r). These

are
g(k,r)=—1i \fgmkn
+9frwdr’<~3(k;r,r’)V(r’)g(k,r’) (2.22
and

f_(k,r)= \/g\/ﬁHgl)(kr)

+gfrwdr’é(k;r,r’)V(r’)f,(k,r’).

PHYSICAL REVIEW D68 025014

g(kr)——l\[\/—Jrgf dr’

+0(k?)

(In —)V(r yack,r’)

(2.27

and

_ 2
Fo(kr)=i \/;(m K+Inr—In 2+’y—i%)\/F

+gf dr’
(2.28

wherey is Euler's constant. Far>0, taking thek— 0 limit
under the integral sign is allowed if we assume

(In—) V(r'f_(k,r’)+0(k?),

Jr’dr’(1+|lnr’|2)|V(r’)|<oc, a>0. (2.29
a

We shall discuss this condition in more detail later.
At this stage, we introduce two function&(r) andB(r),
defined by the following integral equations:

!

A(r)=1+gfmr’dr’(ln rT)V(r’)A(r’) (2.30

and

!

» r
B(r)=In r+gf r’dr’(InT
r

V(rHB(r'). (2.3)

It is clear from inspecting Eq$2.27) and(2.28 that

2.2 A(r)=lim 9tk n) (2.32
2.23 kol \l2\r '
These last two equations are the same except for the inho-
mogeneous term. We are interested in studying them in th@nd
limit of small k. Before we can do that, it is convenient to -
remove ayk factor fromf _ and definef _(k,r) as —it (k) A(r)(ln K—In 2+ y—i— +B(r)}
\/2/77\/F 2
~ 1
fo(kr)=—f_(kr). 2.2 +0(K?). (2.33
(k,r) & (k,r) (2.24 (k%)
. . . Thus, for smalk we have
With this definition, Eq.(2.13 becomes
. . K, 12)A
e %0singy(k) = — lim[g(k,))F_ (k)] (2.29 —P( 2A (mi2)A(r) o(k?).
v
0 f-(kr) A(r)(ln k=In 2+ y—i | +B(r)
We now take th&k— 0 limit of Eq. (2.22 and the equa- (2.39

tion corresponding to Eq2.23 for f_ . Using
T r'
E[Jo(kr)Yo(kr’)—Jo(kr’)Yo(kr)]:In T+O(k2)

(2.2

for smallk, we get

Our task is now to study the existence of soluti@(s)
andB(r) of the two integral equation®.30 and(2.31), and
more specifically, to study the behaviorAfandB for small
r.

In Appendix B, we shall prove that for the general class of
potentials,V(r), satisfying
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(A) f r'dr’|V(r)|([Inr’[+1)<e (2.39 Ca(g)=J ‘rdrV(r)A(r) (2.39
0 0
and and
(B) L r'dr'[V(r)|(Inr')?<e, a>1, (2.39 Cb(g)=f rdrV(r)B(r). (2.40
0
the solutionsA(r) andB(r) exist for allr>0, and further- ot integrals foiC, andC, are absolutely convergent since
more, near =0 one has the behavior one can easily show that, as-«, A andB have the bounds
A(r)=[-gCy(g)+o(1)]Inr (2.37 |A(r)|<const, |B(r)|<consX|Inr|, (2.41)
and for r>ry>1. The convergence of Eq&.39 and(2.40 at
B(r)=[1-gCy(g)+0o(1)]inr. (2.39  r=0is guaranteed by Eq&2.39, (2.37), and(2.38.
Going back to Eq(2.34), we write, for the neighborhood
Here, of r=0,
|
k,r /2)gC Inr+0(1
g(k,r) (m12)9Ca(9) (1) 1O, (2.42

_?,(k,r) - gCy@)Inr(In k—In2+y—iw/2)+[gCp(g)—1]In r+O(1)

This result leads to

. C
e %Msin 5o(k) = — 9Ca(9)

2| gCa@n k-2t y—1 D [gCe 1) T O (243

There are now two cases to consid€,(g)#0 and in the same sense as Hg.45, where
Ca(9)=0. ForC,(g)#0, we have the universal result ks

—0: C In k=i /2
_ 9G4(9)( ) (2.48
9Ch(g)—1
So(K) =~ + 0| (2.44)
0 2Ink (In k)?|" '
Ill. THRESHOLD BEHAVIOR IN 2 +1 DIMENSIONS:
One should note that,(g) is finite. A somewhat stronger THE FIELD THEORETICAL CASE
form of Eq.(2.44 is that, ask—0, We take as our starting point the axiomatic local field
theory with a minimum non-zero mass. There is then very
i . ™ 1 little difference between 2 1and 3t+1 dimensions. In both
i 55(K) _
%0 sin 8o(K) = 51— T © (n k)23’ (249 (ases, the on-shell scattering amplitude depends on two vari-

ables. The analyticity domain of the scattering amplitude is
meaning that the real part of the first term is accurate to th@btained, in both cases, in two stefig:the analytic continu-
order (Ink) 2 while the imaginary part is accurate to 3. ation qf the off-shell am_plltud¢4], and (ii) the use of th'e'
The second caseC,(g)=0, is clearly exceptional. If POSitivity of the absorptlve part to enlf_;\rge_the analyticity
C.(9)=0 for any intervalg;<g<g,, thenVV=0. Fory  domain [5]. The partial wave expansion in th&+1)-
=0, C,(g) can only vanish for discrete values gf In this dimensional case is given in terms of Chebyshev polynomi-
case, because of Eq&.39 and (2.39, (1—gC,) cannot als and not Legendre polynomials. Indeed, for the
vanish. Hence, it follows from Eq2.42) that, ask—0, (2+1)-dimensional case, we have

o0

—AO(Lk2
%o(k) =00k (249 T(s,cos «9)=162O e fr(s)cosné. (3.2

Equation(2.43 also implies the uniform formula

Here,s is the square of the center-of-mass energy, sl
(2.47) the scattering angle. In the elastic regidp(s) is related to
the phase shifts by

& T
&+12In k—i'n'—'—O (In k)23

So(k) =

025014-4
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f.(s)=/sé%sin &,. (3.2)
This and the factor of 16 in Eq3.1) are chosen to give
T(s,cosh)=—g+0(g?) in a ¢‘3‘ perturbative field theory with
a (g/4!) ¢* interaction.

The absorptive part of is

o]

Ag(s,co0s0)=162, €,XIm f,(s)cosngd, (3.3
n=0

with Im f,(s)=0, from the unitarity condition. From Eq.
(3.9, it is easy to obtain

d
d cosé

) A¢(s,cos 0)‘

. s=4m? (3.9

n
s(d cos 0) Aq(s,c0s0)

cosf=1

for all 6 such that—1=<cos#<+1. This last inequality is

PHYSICAL REVIEW D68 025014

1
Im f(s)=—=|f,(9)]% Vs>4m?. (3.9
Vs
In the elastic region, A’<s<16m?,
Im f(s) 1|f()|2 (3.10
m f,(s)=—=|f.(s)|?. :
n \/g n

This slightly changed form of the unitarity condition
given in Eq.(3.9) gives a different Froissart bourfl] in the
2+1 case. The number of partial waves effectively contrib-
uting to the scattering amplitude is still bounded by

(3.11

for large s. However, the Froissart bound in+2l dimen-
sions is

L=CyslIns,

|F(s,cos0)|<Csins, —1l<cosf<+1.

(3.12

This is instead of the In%sin the 3+ 1 case. The number of

precisely what made the enlargement of the analyticity dosubtractions in the dispersion relations, ftk4m?, is still

main in the 3+1 case possiblgs]. Therefore, one gets the
same enlargement in21 dimensions.

at most 2, as in the 81 cas€9].
The general properties outlined so far are sufficient to

For simplicity, we consider a case with the kinematics anddetermine the singularity df,(s) atk=0. For simplicity, we
symmetry of pion-pion scatterings although our results areestrict ourselves to th&wave case, although our method

much more general. We use the Mandelstam variables
s=4(k?>+m?),
t=2k?(cos6—1),
u=4m?—s—t.

(3.9

For any fixedt, |t|<4m?, T(s,t) is analytic in the doubly
cut s-plane with cuts along

s=4m?+\X,

u=4m?+x; A>0. (3.6)
For fixed s, the absorptive parii(s,cosé), is analytic in-
side an ellipse in the c@sglane, which is an enlargement of
the Lehmann ellips§6]. The foci are at cog==*1 and the
right extremity is at cog=1+4m?/2k?.

The partial wave amplitude$,,(s), are defined as

d(cos#h)

1 [+1
fa(s)= EJ’,l T(s,cosf)cosn 0W (3.7

The f,'s are analytic in a region that contains
|[s—4m?|<4m?, (3.9

excluding a cut along #?<s<8m?. A major difference

applies to the higher waves. It is convenient to change vari-
ables and define

fo(S)=Fo(K). (3.13

We also set the mass=1. In the variablek, the analyticity
domain ofFy(k) contains the half circlé:
r:{|k|<1, (3.19

A very important property off(s,t) is the reality prop-
erty: T is real fors<4, t<4, u<4. From this property, it
follows that fy(s) is real for 0<s<<4, and hencéd-y(k) is
real fork=i«x, 0<«x<1. By Schwarz’s reflection principle,
for keI, we have

and Imk>0}.

Fo(k)=F5(—k*). (3.19

The unitarity condition, Eq(3.10, can be written in a
form suitable for analytic continuation. With initiallk
=k*, we write

N
“LEOFS(K).  (3.16

Vs

Fo(k)—F§(k*)=
This gives

Fo (k")

Fold) = T D Fs ()

(3.1

with the (3+1)-dimensional case is the kinematical factorand defines a function analytic in the second sheet. This

J/s which comes from the unitarity as explicitly shown in Eq.

(3.2), a point clarified with the help of Stof&].
Thus, the unitarity condition in 21 dimensions is

function will be the continuation to the semicirclgs|<1,
Im k<0, through the line 8.k<<1. The only thing to pre-
vent that would be an accumulation of zeros pf

025014-5
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—(2i/\/§)F3(k*)] along this line, giving a natural boundary.

on 0<k<1 in order to avoid this catastrophe. We thus get P, :

There is nothing in the general axioms to prevent {i&j.
However, it is sufficient to assume thiag(k) is continuous

the continuation ofFy(k) to the second she¢fil], which,
using the reality conditiori3.15), can be written as

Fo(—k)
1— (2il 5 Fo(—K)°

Hence,Fy(k) is meromorphic fofk| <1, outside the origin.
Let us introduceGy(k) as

Fo(k)= (3.18

1
We get
2i
Go(k)=Go(—k)— & (3.20
Next, we defineHy(k) as
et~ ki3]
HO(k)=G0(k)_ 77_\/5 |nk—|E . (32])

Ho(k) is again real fork=ix, 0<xk<1. Using Eq.(3.20),
we get

Ho(k)=Ho(—k). (3.22
Hy is therefore an even function &f i.e.,
Ho(K)=Kq(K?). (3.23

Ko(k?) is a meromorphic function ok?, and theS-wave
amplitude can be written as

1

Fo(k)=

= . (3.24
Ko(k2)+ (2/ms)(In k—i m/2)

If Ko(k?) has no pole at the origin, the kndominates the
denominator ak— 0, and we get

T 1
Fo(k)=-s m) (329
The phase shift then behaves as
So(k 7 3.2
O( )— my ( . 6)

which is precisely the behavior obtained in the potential
case. As in the potential case, the existence of a pole

Ko(k?) atk?=0 cannot be excluded.

The derivation we presented above also applies to high

(0)

PHYSICAL REVIEW D 58 025014

P
Ppo+p,-k 4

FIG. 1. A second-order diagram.

For the restricted class of potentials such that

f rdr|1+|Inr|| |[V(r)|exp ur <o,
0

the derivation of the dispersion relations ft< .2 obtained
first by one of u§12] in the 3+1 case also holds in21
dimensions. It implies that the partial wave amplitude is ana-
lytic in |k|<u/2, Imk>0, and therefore the derivation pre-
sented in this section applies also to this potential case.
Equation(3.17) was also obtained by Bros and laglonitzer
in Ref.[13], Eq. (5), and in Ref.[14], Eq. (19), in a more
general but less elementary approach based on a postulated
analyticity of theS-matrix. These authors emphasize the Rie-
mann sheet structure at the threshold rather than the actual
behavior of the physical scattering amplitude.

IV. PERTURBATION THEORY FOR ¢3

It is of importance to compare our result with the pertur-
bation theory. We are fortunate that ir-2 dimensions we
have a rigorously defined super-renormalizable thddsj
with a mass gap, namely}s.

Taking

Lol )= 711600

we obtain up to the ordey? for T(py,P2;— P3,— Pa)

T(s)=—g+g’[f(s)+f()+f(W]+0O(g%), 4.1

wheref(s), s=(p;+p,)?, is given by the Feynman diagram
shown in Fig. 1,

ol
1

M=o (pr+ p—K2— 2 +iel’
(4.2

d3k
(2m)°

The factor §) is for identical outgoing particles, and the
(f— i) follows from S=1+iT, S being theS-matrix.

This last integral can be easily evaluated in the Euclidean
region, s<4u?, by carrying out a Wick rotation, and the

Hesult is

waves, but it can be proved that what is hopefully an excep-

tion for n=0 turns out to be the rule far=1. K,(k?) has a
pole, and we shall show in a future publication th#t
~k?" for n=1.

2u—+s

2/.L+\/§

1

f(s)=— |
(s) 167TJ§n

,  0<s<4u?

4.3

025014-6
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Py Ps

Pl

F’2 p4
FIG. 2. A third-order diagram behaving as {)f ask—0.

The normalization ofT is chosen such that the elastic
unitarity is given by

1TT* 1f2ﬂd0T 0)2, 4u’<s<16u?
—(T—- = — < .
(4.9
The partial wave expansion is then
T(s,0)=16\s >, €,cosnfe'’sin §,. (4.5
n

As s—4u?, k—0, then for the physicab, t—0, u—0,
and the leading log term comes from E4.3), sincef(0) is
finite.

We get fork—0

2 k2
In ?+O(1)g2+0(g3).

T=—-g— (4.6)

32

The first thing to notice is that at the ordg#, T diverges as

k—0. This is just the opposite of the full result we obtained

in the previous section whefe—0 ask—0.
In the third order, the leading k behavior comes from

PHYSICAL REVIEW D68 025014

T .
—— =¢l%sin §,. 4.9
16V
We thus recover the potential scattering resulkas0,
. _ -9 1
i 89(K) -
e sin §y(k) 320\ — g In(Ki @) 1675 (4.10
and
T 1
50(k)~§m, k—0. (4.1

¢‘3‘ is a well-defined theory, both perturbatively and non-
perturbatively, and it is clear from our results thatkas 0
the perturbation theory gives the wrong answer. It is perhaps
interesting to note thabg is asymptotically free. If our con-
jecture on the higher-order (k) behavior is correct, then
this would be the first completely rigorous demonstration of
how the perturbation theory order by order could be ex-
tremely misleading.

V. REMARKS AND CONCLUSIONS

We close this paper with three significant remarks.

(i) The power of elastic unitarity together with analyticity
is clearly demonstrated by the following remark stressed to
us by Porrat{16]. Once we are given a phase-shift behavior
such that

the two-bubble diagram shown in Fig. 2. The triangle dia-

gram in Fig. 3 is only of the order (Ik). We conjecture that
this continues in higher orders, and the leadingkijlrap-
proximation is given by

~ In(k/
T=-g3 (et @

n
) , k—0.
n=0

This sum is divergent fok<<u exp(~16mu/g). Thus the

. c
— i do(K) g - -
ag(k)=€'"20"sin §y(k) P

O ! ) 0 (5.

(ln k)1+6 ! ! '
then the unitarity alone fixes to bec=n/2, since
(k)= k)= ¢ +0 !
3 (K)=a0( ~ k)= i 7772 (In—K)L+e)”
(5.2

present perturbation calculation does not give a meaningfulrhe factors {m/2) are necessary to keep(k) real fork,

result. If we ignore this divergence and sum the geometri

series formally, the result is

1
1—[g In(k/w)/16mu]

4.9

|

=

However, ak—0, s—4u?,

Py

Py

FIG. 3. A third-order diagram behaving askrask—0.

(f)urely imaginary, and Ik>0. Hence we get

Im ag(k)= o —° 2+o( ! ) 5.3
2 (Ink) (In k)?*e
From Imag=|ay|?, we obtain, wherc+0,
T
CZE. (5.4)

It should be pointed out, however, that this argument re-
quires analyticity irk in a semicircle in Imk>0, and hence
only applies to exponentially decreasing potentials.

(i) In one dimension, the simplest potential is the
o-function potential. In two or three dimensions, the corre-
sponding simplest potential is the so-called point interaction,
which is the same as the Fermi pseudopotential. There is a
vast literature on the Fermi pseudopotential.
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Recently, Jackiw17] obtained the phase shifiy(k) for d? 1
the point interaction in two dimensions. Although this poten- (d—rz toazt kz) u(k,r)=0, (A1)
tial does not belong to the class considered in Sec. Il, his
result fork— 0 agrees with that of Ref1] and ours; see Eq.
(3.26 in his paper. It should be stressed, however, that ou
relativistic result holds for any 21 field theory with the

standard analyticity and without zero-mass particles; we argelf-adjoint operator om.2(0). This has been thoroughly

not“r.estrlcted to¢§. i ) . studied in the literatur¢19,20. We quote the result here.
(iii) In a ¢*-type field theory, the renormalized coupling The two independent fundamental solutions of E&f) are
cqnstant is defined by the value of the-2 scat_tering am- Jrds(kr) and JFY(kr). Both vanish at the origin. Every
plitude, T(s,t,u), evaluated at some Euclidean point yiher solytion, being a linear combination of these two, also
(s,t,u)<4p”, often for convenience taken to be the Sym-\anishes ar =0. Therefore, we are in the limit-circle case

. . _ _ _ 2 . . .
metric points=t=u=4.%3. In 3+1 dimensions, given the ¢, the differential operator with a Dirichlet boundary condi-
well-established analyticity and unitarity propertiesTafit  tjon atr=0. There exist an infinite number of self-adjoint

has been shown in many pap¢is] that the coupling con-  eyensions of the symmetric differential operator, depending
stant Is b%“”d?d- Some of these bounds are surprisingly, one (real) parameter. Each self-adjoint extension is de-
strong. Ing3, Glimm and Jaffg 15] obtained bounds directly fineq by the amount of mixing of the two fundamental solu-
from the constructive field theory, but their results aretjgns. Among all these extensions, there exists a “distin-
weaker than what can be obtained from the analyticity angyished” one, which corresponds to taking the pure Bessel
unitarity. ) o solutionrJo(kr). These generalized eigenfunctions are less
The general methods used in the papers cited in[R8]. i, 1ar pehaving like/r at the origin, as compared to the

for the 3+1 case can be easily modified to apply 82  ojganfunctions of all other extensions, which behave like
dimensions. Only the kinematic factor outside the par'ual\/FInr asr—0. Moreover. it can be shown that the “distin-
wave expansion is different. The results of this paper thu‘E2 : '

with u(k,0)=0. Because of the presence of the attractive
Eingular potential- 1/(4r?), one must be careful in the ex-
tension of the differential operator (d?/dr?) — (1/4r?), to a

. Lo uished” extension corresponds to the Friedrichs extension
present us with a new and significant challenge. We hav P

now a new biece of information on the scattering amplitud 0,21. But, for the physicist, the more important fact is
W a new pl : : NG ampitud&y;is: in all the other self-adjoint extensions, there exists, be-
which is exact. Namely, we know that

sides the continuum, a negative energy eigenvalue. In other

Js—4u? words, there exists always a real bound state with negative
T(s,t,u)ln 2—M—>1€m,u energy,EO=k§<O [19,20.
M The extensiorH, is defined by taking the behavior, as
as S—>4,u2, t—0, u—0, -0,
i.e., at certain points on the Mandelstam triangle. Given the u(r)—r+xyrinr; X real (A2)

power of unitarity and analyticity, we are quite confident that

this new input will improve the bounds on the coupling con-It is then easy to check that if we define a solution such that

stant. Only the magnitude of the improvement is in question.

Work on this problem is in progress. ok +Yo(kr)]— Jr+xrInr, (A3)
Note Added in ProofThe work of Bros and laglonitzer r—0

[13,14] precedes the potential scattering results of REf.

We only learned of the existence of Rdf$3,14) after a first then an elementary calculation shows that, by setng

draft of this paper had been completed. The relevant sentence * i o, We get

in our abstract was not amended when the main text was.

1-Ny=In2)

— (A%)
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APPENDIX A
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V(r)v(r") 0<In Tslnr’. (B2

%f er dr’
0 0
,  (A5)

- fo rv(rydr Therefore, an upper bourfl is obtained forB by replacing
the integral equatioB1) by

r
Inr—,

NoO<1+

where, given our assumptions of{r), all the integrals are _ © _
finite. The fact that there is always a bound state, regardless B(r)=In r+gf r'dr’|V(r)|inr'B(r’), r>1.
of how weak an attractive potenti&! may be, is somehow '
reflected by the presence of 1 in the right-hand side of Eq.
(Ab). This cannot be improved.
In any case, this last property of the “distinguished” ex- d dis ai b
tension of the free differential operator to a self-adjoint op—O S and s given by
eratorwithout a bound statés the most important criterion dt .
by which we must choose this extension, and discard all B(r)= f - exp( _gf ulV(u)|In udu
others. As physicists, we do not have the freedom to start 1t t
with a “free Hamiltonian” that binds a free particle. Math- .
ematicians have this luxury. _ _ Xex;{gf t{V(t)|In tdt). (B4)
We finally come to Eq.(2.2) itself. Starting from the r
“distinguished” extension of the free Hamiltonian, and add-
ing to it a potentialV, does not alter the self-adjointness, The constanC is given by
provided V is “weak” in the sense of Kato and others
[21,23. The condition defining this “weak” class is ex- *]
pressed precisely in the following integrability condition on C= L T
the potential:

(B3)

The solution of Eq(B3) can be obtained by standard meth-

+C

1—ex;< —gfwt|V(t)|In tdt”dr, (B5)

which is finite given Eq(2.35. Using this result in Eq(B4),
f rdr(1+]In r)|V(r)| <=, (Ag) e find that
0
B(r)=[1+0(1)]Inr, asr—wo, (B6)
This ensures the semi-boundedness of the total Hamiltonian, _
and the finiteness of the number of bound states. Note thdthis establishes the bound &{r) for r=1,
Eq. (A6) is precisely the conditiori2.35 which we had to

use in Sec. Il. We shall need it in Appendix B to establish the |B(r)|<CyInr+Dy, (B7)
existence and study the properties of the solutions of the two
integral equation$2.30 and(2.31). whereC; andD; are positive constants depending @n

To conclude this appendix, let us point out that an exten- By the same technique, we arrive at similar conclusions
sion different from the “distinguished” one can be used tofor A(r). This time, the bounding condition fQK(r) is
simulate a renormalized delta-function interaction, as wai(oo)zl_ We obtain
done by Jackiw17].

A(r)=1+0(1), asr—w (B8)
APPENDIX B

In this appendix we study the integral equatigq2s30 and

and (2.31). For the class of potentials satisfying E§8.35 —

and (2.36), we first prove that the solution&(r) and B(r) [A(N|<A(r)<Dz, r=1, (B9)
exist and are bounded, as-, as in Eq.(2.41). Next, we . N

prove that the behavior @(r) andB(r) asr—0 is given by ~ WhereD; is a positive constant.

Egs. (2.37 and (2.38, respectively. We will only give the ~ From these bounds one can easily getf as»,
details for Eq.(2.31). The procedure for Eq2.30 is easier
and very similar. A(r)=1+o(1); B(r)=[1+o(1)]inr. (B10O)

Our starting point is the integral equation
It is important to note that for the first estimate we need only
o r the condition(2.39, whereas for the second we need Eg.
B(r)=In r+gJ' r’dr’(ln —)V(r’)B(r’). (B1) (2.36.

r r Finally, we consider the region<1 for both A(r) and
B(r). The case foB(r) is more delicatdsingulay, and we
We can first consider the casé=r=1, where we have the treat it first.
inequality We can write Eq(B1) as

!
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!

1 r This can be written as
B(r)=In r+gf r’(ln T)V(r’)B(r’)dr’
r

1
A(r)=—gCgln r+gf r'inr’V(r )A(r")dr'+0(1).
r

oo r,
+ "'In —|V(r")B(r’ " B11l
gjlr(nr)(r)(r)dr (B11) (B20)
In the second integral, since=1 andr <1, we can use the The integral in Eq(B20) could diverge as—0. However,
bound Eq.(B7) and get, using conditiof2.29), setting
* r’ ! ! ! l 1
L rin—-V(r')B(r')dr'|<C+D|In~|, (B12) |(r)=gf Fn TV AR dr (B21)
;
whereC andD are positive constants. In the first integral, )
we have and using Eq(B18), we get
r' 1
InTslln rl, r<r'sL (B13) ||(r)|<g)\1f r’||nr’|2|V(r’)|dr’
r

An upper boundEi(r), for B(r) in r<1 is now obtained + o n eIV lde?
by substituting Eqs(B12) and (B13) in Eq. (B11). We ob- 9k ; Ffin e[V (rn)ldr
tain the integral equation

1
<g>\1f r'linr’|2V(r')|dr'+0O(1). (B22

- 1 -
B(r)=C,+Dy|Inr|+g]|In r| f r'|V(r")|B(r")dr’|,
r

Next we define

(B14)
with some positive constants, andD.. F(r)=r?[In r|?|V(r)]. (B23)
The solution of Eq(B14) can be obtained by elementary
methods. It is From the condition2.35, we have
3 ! 1 1 odr’
B(r):Z(r)g“n r|[C3+ fr r |V(r )|[C2+D2||n r |] J drrrl“n rr|V(r):J - - XF(r’)<C0nSt.
0 or’|Inr’|
(B24)
X[Z7Y(r")]dr'+Cy+Dy|In r|+, (B15)
This implies thatF(r)—0 asr—0. From Eqgs.(B22) and
where (B23), we get
1 idr’
Z(r)=ex f dr'gr'[Inr’||V(r")|]|. (B16) |I(r)|<g)\1f r—,F(r’)+O(1), (B25)
r r

Noting thatZ(r) is bounded for 8sr=<1, from the condition and, hence, sincE(r’) vanishes as’ —0,

(2.39, we get
IB(r)|<B(r)<\+u|Inr|. (B17) [H(r)[=[In rfo(1). (B26)
In the same way, we can analyze the integral equatiormhis establishes Edq2.37). For Eq.(2.38), the derivation is
(2.30 for A(r). We again find that, for—0, similar.
It is important to notice that, ifA(r)/Inr—0 asr—0,
|A()[<NfInr|+py. (B18)  then B(r)/Inr cannot approach zero as-0. This is be-

. causeA and B are solutions of thesamedifferential equa-
Using these two bounds, we can now prove the g

asymptotic estimates EqR.37) and(2.38. From Eq.(2.30, tion,

we get, ag —0,
g d

dr

dX
. r5)=—ng<r>X<r>,
A(r)=—gC,n r+gf r'Inr’V(r")A(r")dr’+1.
r

(B19 and are thus linearly independent.
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