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Equivalence of renormalized covariant and light-front perturbation theory. II. Transverse
divergences in the Yukawa model
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Light-front dynamics can only become a viable alternative to the covariant approach if doubts about its
covariance can be taken away. As a minimal requirement we take that the physical quantities calculated with
light-front perturbation theory are the same as those obtained using covariant perturbation theory. If this
situation occurs, we use the word equivalent to characterize it. For quantities that involve the calculation of
superficially convergent diagrams, proofs of equivalence exist. For some types of divergent diagrams the proof
of equivalence is complicated. Here we deal with diagrams with transverse divergences. Our method is based
on minus regularization, which is inspired on BPHZ regularization. In a calculation using numerical methods
we show how to obtain a rotationally invariant amplitude for two triangle diagrams contributing to the decay
of a scalar boson in the Yukawa model. It concludes our proof of equivalence of covariant and light-front
perturbation theory.@S0556-2821~98!02014-1#

PACS number~s!: 11.10.Gh, 11.10.Hi, 11.15.Bt, 11.30.Cp
e-
le

e
k,
n
e
re
on
-

a
m
a

o
on
e
ca
n

at
r
en

th
in
s

u
s

m

t an
ina-
nt
t

an-
of
y

ct
ing.

is
he
ares
op
-

e

ct.
I. INTRODUCTION

Covariant field theory is the formalism of choice to d
scribe situations where creation and annihilation of partic
are important and where typical velocities are comparabl
the velocity of light. If the interactions are sufficiently wea
perturbation theory is usually applied and gives in ma
cases extremely accurate answers. However, in the cas
strong interactions, or when bound states are conside
nonperturbative methods must be developed. Light-fr
quantization@1# is a Hamiltonian method in which the light
like variablex15(x01x3)/A2 plays the role of time, and is
therefore referred to as light-front time. This method h
found many applications since it was conceived. Still, so
problems of a fundamental nature remained. One that we
particularly interested in is the question of whether full c
variance can be maintained in the Hamiltonian formulati
which is of course not manifestly covariant. A partial answ
can be obtained in perturbation theory. Then the problem
be reformulated as follows: can one prove that light-fro
perturbation theory produces the same values of the S-m
elements as covariant perturbation theory? If the answe
this question is affirmative, then we use the word equival
to describe the situation.

The present paper is concerned with one aspect of
problem, viz. the treatment of transverse divergences
simple model: the Yukawa model with spin-1/2 fermion
spin-0 bosons and a scalar coupling.

A. k2-integration and equivalence

In the work we did before, we used the method of Kog
and Soper@2# to define light-front perturbation theory. Thi
method defines light-front time-ordered (x1-ordered! ampli-
tudes by integration of the integrand of a covariant diagra
say

F~q!5E d4kI~q;k!, ~1!
0556-2821/98/58~2!/025013~12!/$15.00 58 0250
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over the light-front energy variablek25(k02k3)/A2. In this
paper,q always denotes the external momenta andk the loop
momentum. We can also write Eq.~1! using light-front co-
ordinates:

F~q!5E dk1d2k'E dk2I ~q2,q1,q';k2,k1,k'!. ~2!

Next, one expresses the integral overk2, using Cauchy’s
formula, as a sum of residues. One arrives in this way a
expression that can be interpreted, possibly after recomb
tion of the terms in this sum, as the splitting of the covaria
amplitudeF(q) into a sum of noncovariant but light-fron
time-ordered amplitudes.

This procedure, sometimes called naive light-cone qu
tization, has been in principle known since the early work
Kogut and Soper@2#. For convergent diagrams, it is nicel
pictured in Fig. 1.

The covariant diagram in Fig. 1 is an ill-defined obje
and needs some prescription to give it a definite mean
For example, the measure of the Minkowskian integration
not positive definite. The covariant prescription involves t
introduction of Feynman parameters to complete the squ
in the denominator, the removal of terms odd in the lo
momentumk and Wick rotation to obtain a Euclidian inte
gral.

FIG. 1. The ‘‘ideal’’ case: Outline of our proof of equivalenc
of light-front ~LF! and covariant perturbation theory~PT! for con-
vergent diagrams. The dashed box indicates an ill-defined obje
© 1998 The American Physical Society13-1
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It has been the work of Ligterink and Bakker@3# that
proves in detail that the rules for constructing light-fro
time-ordered diagrams, explained in many articles@2,4#, are
correct upon using thek2-integration prescription. They
were the first authors to give a systematic derivation of
the different time-ordered diagrams corresponding to a gi
covariant amplitude, for any number of particles involved
the k2-integral is convergent and the corresponding cov
ant diagram is also superficially convergent, then what
mains can be written in terms of well-defined, converg
Euclidian integrals.

When the k2-integration is divergent, the prescriptio
must be altered. Naive light-front quantization fails in th
case and one must first find a way to regulate
k2-integrals. We proposed in a previous paper@5# a regular-
ization that maintains covariance. There we showed that
longitudinal divergences give rise to so-called forced inst
taneous loops~FILs! and we showed how to deal with the
such that covariance is maintained. This method was
applied to the Yukawa model containing spin-1/2 and spin
particles. We were able to regularize thek2-integrals for the
diagrams with one loop. However, in order to show f
equivalence to the covariant calculation one needs to c
pute the full integral including the integrations overk1 and
k'.

B. Ultraviolet and transverse divergences

Even after the usual procedure has been followed,
covariant integral can still be ultraviolet divergent. Ligterin
and Bakker did not only discuss diagrams that are sup
cially convergent, but also what to do in cases where
covariant diagram is divergent. Their method of regulariz
divergent diagrams, minus regularization@6#, is also used in
the present paper. A scheme for the equivalence of ultra
let divergent diagrams is given in Fig. 2.

Several techniques are available to remove the ultravi
divergences, not involving thek2- integration. They remain
in the light-front time-ordered diagrams as divergences
the integrals over the transverse momenta. Therefore t
diagrams are also ill-defined, as indicated by the dashed
in Fig. 2. A problem is that many of the techniques which a
used to regularize covariant diagrams have limited use
light-front time-ordered diagrams. For example, one can
use dimensional regularization for the longitudinal dive
gences. Still, it is common to apply it to the transverse
vergences. The strength of the regularization scheme we

FIG. 2. Outline of our proof of equivalence for diagrams wi
ultraviolet divergences. Dashed boxes indicate ambiguously defi
objects.
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minus regularization, is that it does not discriminate betwe
transverse and longitudinal divergences. Minus regular
tion is based on the Bogoliubov-Parasiuk-Hepp-Zimmerm
~BPHZ! method of regularization@7–11#. In their paper, Lig-
terink and Bakker applied minus regularization to three s
energy diagrams. Our contribution is to extend their meth
to more complicated diagrams and prove that there is a o
to-one relation between minus and BPHZ regularizati
such that the physical observables found using light-fr
perturbation theory exactly match those found in covari
perturbation theory.

In the Yukawa model there are five covariant diagra
with ultraviolet divergences. The boson and the fermion s
energy were discussed in our previous article on longitud
divergences. Minus regularization was applied and simu
neously removed the longitudinal and the transverse div
gences. Equivalence was established.

In two cases we were not able to either find an answe
the literature or produce ourselves full analytic results for
integrals involved; so we had to resort to numerical integ
tion. In this paper we discuss these two diagrams: the o
boson exchange correction to the boson-fermion-ferm
vertex and the fermion loop with three external boson lin
The first one was considered by Burkardt and Langnau@12#,
who stated that naive light-cone quantization leads to a v
lation of rotational invariance of the corresponding S-mat
elements and found that invariant results can be obtai
using noncovariant counterterms. Here we show that no
lation of rotational invariance occurs if our method of reg
larization is applied. Furthermore, our results for the lig
front time-ordered diagrams sum up to the covaria
amplitude, calculated using conventional methods.

C. Light-front structure functions

The two triangle diagrams can be written in the form o
sum of tensors in the external momenta, multiplied by sca
functions, which we call~covariant! structure functions. Af-
ter splitting a covariant diagram in light-front time-ordere
ones, these can be written again in terms of tensors m
plied by functions of the external momenta. The latter a
called light-front structure functions. They are not invaria
as they are not defined by four-dimensional invariant in
grals, but rather by three-dimensional integrals. The differ
structure functions have different divergences and they m
be treated according to their types of divergence, which
enumerate.

~1! Light-front structure functions without transverse d
vergences. Neither the covariant nor the light-front formula
tion contains any divergences. Integration overk2 suffices to
prove equivalence. Minus regularization is not allowed.

~2! Light-front structure functions with cancelling trans
verse divergences.The individual light-front time-ordered
diagrams contain divergences not present in the covar
amplitude. Application of minus regularization to the tim
ordered diagrams is not allowed. We show that the div
gences cancel if all the time-ordered diagrams are added,
that their sum equals the corresponding covariant amplitu

ed
3-2
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EQUIVALENCE OF RENORMALIZED . . . . II. . . . PHYSICAL REVIEW D 58 025013
~3! Light-front structure functions with overall transvers
divergences. Divergences appear in the covariant amplitu
as well as in the light-front time-ordered diagrams. We ap
BPHZ regularization to the covariant amplitude and min
regularization to the time-ordered diagrams.

For the first two cases one can prove equivalence u
analytic methods alone. The proof of equivalence can
found in Refs.@3,5#. For the structure functions with overa
transverse divergences we have to use numerical techniq
We show that for the decay of a boson at rest, for b
triangle diagrams, one obtains a rotational invariant am
tude, identical to the covariant calculation using BPHZ reg
larization. The fifth diagram with transverse divergences,
fermion box, will not be discussed.

D. Outline

The setup for this article is as follows. In Sec. II we i
troduce minus regularization. In Sec. III and Sec. IV w
discuss the equivalence of covariant and light-front pertur
tion theory for the fermion triangle and the one-boson
change correction. In both cases we start with the covar
calculation and do the BPHZ regularization if necessa
Then we calculate the light-front time-ordered diagrams a
apply the method mentioned above. In both cases, we
clude by giving a numerical example of rotational inva
ance.

II. MINUS REGULARIZATION

Minus regularization is inspired by the BPHZ method
regularization, which gives finite and covariant results.
construction, we ensure that minus regularization does
same. First we sketch the method in the case of one-l
diagrams with one independent external momentum~self-
energies!, and next when two independent external mome
~triangle diagrams! are present. We conclude by generalizi
this to a one-loop diagram withn external momenta. Fo
convenience, we shall assume in the latter case that
logarithmic and linear divergences are present, such that
the first term of the Taylor expansion around the renorm
ization point needs to be subtracted.

Wherever we use the word ‘‘amplitude’’ in this sectio
we refer to an invariant function of the external momenta
is understood that the integrals defining the invariant fu
tions are formally written down in terms of four-dimension
integrals, which are split into time-ordered pieces by integ
tion overk2.

A. One external momentum

First we discuss the simple case of one external mom
tum, which can be applied for self-energy diagrams.

1. BPHZ regularization

We start with the BPHZ regularization method, which c
be applied to covariant diagrams. The amplitude has the
lowing form:
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F~q2!5E d4kIcov~q2;k!

5F~0!1q2F8~0!1 . . . ~3!

whereI cov(q
2,k) is the covariant integrand generated by a

plying standard Feynman rules. BPHZ regularization rend
the amplitude finite by subtracting the infinite parts. W
choose the pointq250 as the renormalization point, aroun
which we expand the amplitude in a Taylor series. T
higher orders in the expansion~3! are denoted by the ellipsis
The regularized amplitude is then

FR~q2!5F~q2!2F~0!. ~4!

However, this is a purely formal operation, since we a
subtracting two infinite quantities. It is better to write

FR~q2!5E d4k@ I cov~q2;k!2I cov~0;k!#

5E
0

q2

dq82E d4k
]

]q82
I cov~q82;k!. ~5!

This guarantees that the amplitude becomes finite.

2. Minus regularization

Typical for minus regularization is that one writes th
amplitude, as well as the renormalization point, in light-fro
coordinates. The covariant choiceq250 corresponds toq2

5q'2/(2q1). A time-ordered amplitude corresponding
the covariant form~3! can be written in light-front coordi-
nates as follows:

F~q2,q1,q'!5E d3kI lfto~q2,q1,q';k!

5FS q'2

2q1
,q1,q'D

12q1S q22
q'2

2q1D F8S q'2

2q1
,q1,q'D 1•••

~6!

where I lfto is the integrand of the light-front time-ordere
diagram, which was generated by integrating the covar
integrandI cov overk2 as is explained in Ref.@3#. The prime
denotes differentiation with respect toq2. Similar to Eq.~5!
we can write the regularized amplitude as

FMR~q2,q1,q'!

5E
q'2/2q1

q2

dq82E d3k
]

]q82
I lfto~q82,q1,q';k!. ~7!

So far we have described the minus regularization met
introduced by Ligterink and Bakker@6#.
3-3
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B. Two external momenta

In Ref. @6# three self-energy diagrams were discussed.
the triangle diagram the minus regularization techniq
needs to be extended.1 We will tune the technique by com
paring it to BHPZ regularization.

1. BPHZ regularization

The amplitude has the following covariant form:

F~q1
2 ,q2

2 ,q1•q2!5E d4kIcov~q1
2 ,q2

2 ,q1•q2 ;k!

5F~ 0̃!1q1
2F18~ 0̃!1q2

2F28~ 0̃!

1q1•q2F38~ 0̃!1••• ~8!

where 0̃is the renormalization pointq1
25q2

25q1•q250 and
Fi8 is the derivative ofF with respect to thei th argument.

FR~q1
2 ,q2

2 ,q1•q2!5F~q1
2 ,q2

2 ,q1•q2!2F~ 0̃!. ~9!

Again, this is a purely formal operation, since we are s
tracting two infinite quantities. We write

FR~q1
2 ,q2

2 ,q1•q2!5E d4k@ I cov~q1
2 ,q2

2 ,q1•q2 ;k!

2I cov~ 0̃;k!#. ~10!

We cannot, as in the previous section, differentiate with
spect to all external momenta. We would then subtract fin
parts from the Taylor series, containing physical inform
tion. This can be circumvented by introducing a dumm
variablel, which parametrizes a straight line in the space
the invariants between the actual external mome
q1

2 ,q2
2 ,q1•q2 and the renormalization point:

FR~q1
2 ,q2

2 ,q1•q2!

5E
0

1

dlE d4k
]

]l
I cov~lq1

2 ,lq2
2 ,lq1•q2 ;k!. ~11!

We have verified that thel-method gives the correct resu
for the case where one independent external momentum
curs.

2. Minus regularization

Again, we write the amplitude in the light-front time
ordered case as a three-dimensional integral:
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F~qi
2 ,qi

1 ,qi
'!5E d3kI lfto~qi

2 ,qi
1 ,qi

' ;k!. ~12!

The regularized amplitude is

FR~qi
2 ,qi

1 ,qi
'!5F~qi

2 ,qi
1 ,qi

'!2F~r i
2 ,r i

1 ,r i
'!,

~13!

wherer defines the renormalization surface. It is a hypers
face determined by the following conditions:

r 1
252r 1

2r 1
12r 1

'250,

r 2
252r 2

2r 2
12r 2

'250, ~14!

r 1•r 25r 1
2r 2

11r 1
1r 2

22r 1
'
•r 2

'50.

This set of equations is equivalent to

r 1
250, r 25xr 1 . ~15!

The r i
1 enter in the integration boundaries; therefore

would like them to remain unaffected by regularization (r i
1

5qi
1). This implies thatx can be found from

x5
q2

1

q1
1

. ~16!

The only freedom that remains is the choice forr 1
' . Two

choices come easily to mind:r 1
'50 ~method MR0! and r 1

'

5q1
' ~method MR1!:

~MR0! r 1
'50'⇒r 2

'50', ~17!

~MR1! r 1
'5q1

'⇒r 2
'5xq1

' . ~18!

The details are worked out in Table I.
The light-front coordinates of the renormalization poi

are used in the following way to find the regularized ligh
front amplitude:

TABLE I. The light-front parametrization of the renormalizatio
point r m for two equivalent choices of minus regularization, MR
and MR1.

MR0 MR1

(r 1
2 ,r 1

1 ,r 1
') (0,q1

1,0') „q'
1
2/(2q1

1),q1
1 ,q1

'
…

(r 2
2 ,r 2

1 ,r 2
') x(0,q1

1,0') x„q'
1
2/(2q1

1),q1
1 ,q1

'
…

FMR~qi
2 ,qi

1 ,qi
'!5E

0

1

dlE d3k
]

]l
I lfto„l~qi

22r i
2!1r i

2 ,qi
1 ,l~qi

'2r i
'!1r i

' ;k…. ~19!

1We suggest the name MR1.
3-4



ca
he
n

s

-

ll

o
m
an
m
o

on
rn
nu
w
en
as
al
R
d

d
in
vi
tio

o
in
bu

o
o

e

er
an
rical

o-

,

ve

he
es
p
he

ly-

e
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In this formula we recognize our choicer i
15qi

1 .

C. Several external momenta

The method just described can be generalized to the
of a loop with an arbitrary number of external lines. T
procedure is almost the same as for two external mome
The renormalization surface is given by

r i
252r i

2r i
12r i

'250, ~20!

r i•r j5r i
2r j

11r i
1r j

22r i
'
•r j

'50 ~ i 5” j !. ~21!

These equations are equivalent to

r 1
250, r i5x i r 1 . ~22!

Again, we make the choice to leave the plus component
the momenta unaffected by regularization:r i

15qi
1 . This im-

plies that thex i are fractional longitudinal light-front mo
menta:

x i5
qi

1

q1
1

. ~23!

Two choices forr 1
' are listed below. This then determines a

other r i
' :

~MR0! r 1
'50'⇒r i

'50', ~24!

~MR1! r 1
'5q1

'⇒r i
'5x iq1

' . ~25!

D. Summary

The way we set up minus regularization does not rely
the structure of the covariant or the time-ordered diagra
but works on the level of the external momenta only. If
amplitude has a covariant structure before regularization,
nus regularization guarantees that it remains covariant. In
implementation of BPHZ regularization, the renormalizati
point corresponds to all invariants connected to the exte
momenta being equal to zero. These conditions allow mi
regularization to take on a number of forms. Of these,
shall apply MR0 and MR1. The main difference betwe
them is that MR0 does not choose one of the momenta
preferred direction, and therefore it explicitly maintains
symmetries of the external momenta. Furthermore, M
gives rise to shorter formulas for the regularized integran

In the next two sections both methods are being applie
the parts of two light-front time-ordered triangle diagrams
the Yukawa model containing transverse divergences,
the fermion triangle and the one-boson exchange correc

III. EQUIVALENCE FOR THE FERMION TRIANGLE

In the Yukawa model there is an effective three bos
interaction, because for a fermion loop with a scalar coupl
Furry’s theorem does not apply. The leading order contri
tion to this process is the fermion triangle. A scalar boson
massm and momentump comes in and decays into tw
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bosons of momentumq1 andq2 respectively. The fermions
in the triangle have massm. The covariant expression for th
amplitude is

~26!

The subscript ‘‘Min’’ denotes that the integration is ov
Minkowski space. The usual imaginary parts of the Feynm
propagators have been dropped. We have omitted nume
factors and have set the coupling constant to unity. The m
mentak1 andk2 indicated in the diagram are given by

k15k2q1 , k25k1q2 . ~27!

Of course, by momentum conservation we have

p5q11q2 . ~28!

We evaluate the integral~26! first in the usual covariant way
and subsequently carry outk2-integration to produce the
light-front time-ordered diagrams. Note that integral~26! is
an ill-defined formula. In both methods mentioned we ha
to define what we mean by this integral.

A. Covariant calculation

The following method is usually applied to calculate t
fermion triangle in a covariant way. First, one introduc
Feynman parametersx1 andx2, and then one shifts the loo
variablek to complete the squares in the denominator. T
result is

~29!

with

Q 25x1~12x1!q1
21x2~12x2!q2

212x1x2q1•q2 , ~30!

P 25x1~3x122!q1
21x2~3x222!q2

2

1„2~x11x2!26x1x221…q1•q2 . ~31!

As a last step, we remove the terms odd ink.

B. BPHZ regularization

The regularized fermion triangle can be found by app
ing the BPHZ regularization scheme~11! to the covariant
formula ~29!. The integral is now finite; so we can do th
3-5
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Wick rotation and perform thek integrations. The result is

~32!

The superscript R indicates an integral regularized accord
to the BPHZ method.

C. Light-front calculation

Using the method given in Ref.@3# we proceed as follows
The k2 dependence of a spin projection in the numerato
removed by separating it into an on-shell spin projection a
an instantaneous part:

k” i1m5~k” i on1m!1~k22kion
2 !g1, ~33!

where the vectorki on
m is given by

~ki
2 ,ki

1 ,ki
'!on5S ki

'21m2

2ki
1

,ki
1 ,ki

'D . ~34!

Factors like (k22ki on
2 ) can be divided out against propag

tors and this cancellation gives rise to instantaneous fe
ons. The integration overk2 is performed by contour inte
gration. The poles of the propagators are given by

H25
k'21m2

2k1
, ~35!

H1
25q1

22
k1

'21m2

2k1
1

, ~36!

H2
252q2

21
k2

'21m2

2k2
1

. ~37!

This integration gives rise to the different time-ordered d
grams, as explained in more detail in@3,5#. The result is

~38!

The diagrams on the right-hand side are light-front tim
ordered diagrams. Time goes from left to right. The pictu
can be recognized as time-ordered diagrams because o
time-ordering of the vertices and the occurrence of insta
02501
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neous fermions, indicated by a horizontal tag. Explicitly,

~39!

~40!

~41!

~42!

~43!

~44!

Note that the diagrams~41! and ~44! with the instantaneous
exchanged fermions have the same integrand. However
longitudinal momentumk1 has a different sign.

Although we could have expected diagrams with two
stantaneous fermions, we see that they are not present.
is so because we use a scalar coupling and therefore twog1

matrices becoming neighbors give 0. No so-called forc
instantaneous loops are present. These FILs obscure
equivalence of light-front and covariant perturbation theo
and have been analyzed in Ref.@5#. They will not be dis-
cussed in this paper, since they are related to longitud
divergences.

The traces can be calculated. We obtain

Tr@~k” 1on1m!~k” 2on1m!~k” on1m!#

54m~m21k1on•kon1k2on•kon1k1on•k2on!, ~45!
3-6
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Tr@~k” 1on1m!~k” 2on1m!g1#54m~2k12q1
11q2

1!,
~46!

Tr@~k” 1on1m!g1~k” on1m!#54m~2k12q1
1!,

~47!

Tr@g1~k” 2on1m!~k” on1m!#54m~2k11q2
1!.

~48!

We see that the high orders ink' have disappeared in th
traces. However, logarithmic divergences remain in all lig
front time-ordered diagrams~39!–~44!. We tackle them with
minus regularization, as introduced in the previous subs
tion.

D. Equivalence

As the fermion triangle is a scalar amplitude, there is o
one structure function present. It belongs to the first categ
we mentioned in the Introduction: it is logarithmically dive
gent, but has no longitudinal divergences.

We applied minus regularization to the integrands of
six light-front time-ordered diagrams, using both the MR
and MR1 methods. We usedMATHEMATICA to do the substi-
tution and the differentiation with respect tol, given by Eq.
~19!. However,MATHEMATICA was not able to do the inte
gration, neither analytically nor numerically. Therefore t

FIG. 3. A boson is at rest and decays into two particles fly
off in opposite directions. The angleu is the angle between th
momentum of one of the fermions and thez-axis.

FIG. 4. The thick line at a value of 125 represents the sum of
six light-front time-ordered amplitudes. It is independent of t
angleu, defined in the previous figure. The four largest contrib
tions come from the diagrams without instantaneous parts~solid
lines! and the diagrams with an instantaneous exchanged ferm
~dashed lines!, as indicated by the diagrams.
02501
-

c-

y
ry

e

integrand was implemented inFORTRAN which was well ca-
pable of doing the four-dimensional integration usingIMSL

routines based on Gaussian integration.
Because the integrations cannot be done exactly, we

no possibility of giving a rigorous proof of the equivalenc
of light-front and covariant perturbation theory. Instead w
make a choice for the parameters, such as the masses an
external momenta, and show that our method gives the s
result as the covariant calculation with BPHZ regularizatio
We calculated the decay amplitude of a scalar boson at
as is pictured in Fig. 3.

From a physical point of view, there is no preferred d
rection, and therefore we demand that our choice of the
ordinates of the light-front have no influence on the outco
of the calculation. The decay amplitude, which is a sca
quantity, should give the same result for each possible di
tion in which the bosons can fly off.

There are six minus-regularized light-front time-order
fermion triangle diagrams contributing to the boson dec
Each individual light-front time-ordered diagram has a ma
fest rotational invariance in thex-y-plane, and therefore we
expect the same for the sum. However, since light-front p
turbation theory discriminates between thez-direction and
the other space-like directions, the light-front time-order
diagrams can~and should! differ as a function of the angle
u, between the momentum of one of the particles flying
and thez-axis. The absolute value of the momentum w
fixed. It is not immediately clear that the sum should
invariant. This investigation becomes more interesting si
it is believed@12# that rotational invariance is broken in na
ive light-cone quantization of the Yukawa model. Howev
the results shown in Figs. 4–6 demonstrate that rotatio
invariance is not broken. Note that we have dropped
factor 2 i common to all diagrams.

Two light-front time-ordered diagrams~40!,~43! contrib-
uting to the boson decay and indicated by double-das
lines are so small they can hardly be identified in Fig. 4.
Fig. 5 we depict these two on a scale that is a factor of 1
larger. In the same figure we show the difference of the s
of the six light-front time-ordered diagrams~using MR1 and

e

-

on

FIG. 5. The amplitudes of the two small contributions~double-
dashed lines! and the difference between the sum of the six lig
front time-ordered diagrams and the covariant amplitude~thick
solid line!.
3-7
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128 points in every integration variable! and the covariant
result. It has a maximum of 0.03%.

FIG. 6. Commutative diagram of the boson decay amplitu
The boson is at rest in the origin and decays. The outgoing bo
fly off in opposite directions. Points on the surfaces have po
coordinates (A,u,f), whereA is the magnitude of the amplitud
and u and f are the polar angles of the momentum of one of
outgoing particles, as defined in Fig. 3. Because the diagrams o
second line are very small, the scale has been enlarged by a f
of 100. For the light-front time-ordered diagrams on the first th
lines minus regularization~both MR0 and MR1! is used, for the
covariant diagram on the last line we used BPHZ regularization
02501
In Figs. 4 and 5 we see that interchanging the outgo
bosons is the same as replacingu by p2u.

We verified that the individual diagrams are rotation
invariant around thez-axis. We illustrate this in Fig 6.

Summing up, we find that the sum of the minus regul
ized light-front time-ordered diagrams is rotational invaria
The deviation from the covariant result is smaller th
0.03%. It is illustrated in Fig. 5. We checked, by varying t
number of integration points, that the deviations are due
numerical inaccuracies only. We conclude that, for the f
mion triangle, the covariant calculation in combination wi
the BPHZ regularization scheme gives the same result as
light-front calculation in combination with minus regulariza
tion.

IV. EQUIVALENCE FOR THE ONE-BOSON EXCHANGE
CORRECTION

The second process under investigation was studied
fore by Burkardt and Langnau@12#. A scalar boson of mass
m and momentump decays into two fermions of massm and
momentumq1 andq2 respectively. The lowest order correc
tion to this process is the one-boson exchange correct
The amplitude is given by the integral

~49!

Again, this equation is undefined as it stands. First we h
to make it a well-defined object. In Sec. IV A we apply th
covariant method and in Sec. IV C we use light-front coo
dinates.

A. Covariant calculation

Using Feynman parametrization the one-boson excha
correction can be rewritten as

.
ns
r

he
tor
e

k” 21@~12x1!q” 11x2!q” 21m] @2x1q” 12~12x2!q” 21m#1odd

~k22M21Q2!3 ~50!
,
re-
with

M 25~x11x2!m21~12x12x2!m2, ~51!

Q 25x1~12x1!q1
21x2~12x2!q2

212x1x2q1•q2 , ~52!
and where terms odd ink in the numerator are not specified
since they will be removed according to the covariant p
scription. We also define

P 25Q 21~12x12x2!q1•q2 . ~53!
3-8
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From Eq.~50! we can infer that the Dirac structure of th
diagram is

~54!

where the vector part contains a symmetric and an a
symmetric part,

F2m5F2s~q1
m1q2

m!1F2a~q1
m2q2

m!, ~55!

and the tensor part has the form

F3mn5~q1
mq2

n2q1
nq2

m!F3. ~56!

The functionsFi depend on the masses and the external m
mentaq1

2, q2
2 andq1•q2. If we define the integral operator

I @ f #52E
0

1

dx1E
0

12x1
dx2E

Min
d4k~k22M 21Q 2!23f ,

~57!

then we have, usingq” 1
25q1

2, etc.,

F15I @k21m22P 2#, ~58!

F2a52mI@12x12x2#, ~59!

F2s52mI@2x11x2#, ~60!

F35I @12x12x2#. ~61!

We see that the only function which needs to be regulari
is F1. The functionsF2 and F3 are convergent and do no
require regularization in a covariant calculation.

B. BPHZ regularization

The regularized structure functionF1R can be found by
applying the BPHZ regularization scheme~11! to the struc-
ture function~58!. The integral is now finite; so we can d
the Wick rotation and perform thek integrations:
02501
ti-

-

d

F1R~q1
2 ,q2

2 ,q1•q2!522p2i E
0

1

dx1E
0

12x1
dx2E

0

1

dl

3S Q 2~lP 22m2!

2~M 22lQ 2!2
1

Q 21
1

2
P 2

M 22lQ 2
D .

~62!

We have not been able to do all three integrations exac
The l integration and one of thex integrations can be don
analytically, and the remaining integration numerically. A
F2m andF3 do not need to be regularized, this concludes
covariant calculation of the one-boson exchange correcti

C. Light-front calculation

In our previous paper@5# it was shown how to derive the
light-front time-ordered diagrams corresponding tothe co
riant diagram~49! using k2-integration. One can write the
time-ordered diagrams individually, or one can combi
propagating and instantaneous parts into so-called blin
Blinks, introduced by Ligterink and Bakker@3#, have the
advantage that the 1/k1-singularities cancel and the numb
of diagrams is reduced.

In the two triangle diagrams studied here it makes
difference whether blinks are used or not. In the case of
fermion triangle we calculated light-front time-ordered di
grams. Here we use blinks, to demonstrate that our techn
also works in this case. The one-boson exchange correc
has two blinks:

. ~63!

The poles of the two fermion propagators in the triang
are given by Eqs.~36! and~37!. The pole of the boson propa
gator is given by

H25
k'21m2

2k1
. ~64!

The amplitudes including blinks are

~65!

~66!

We will now focus on the blink in Eq.~66!. It simplifies
because we can use
3-9



w

q.
th
e
f

re

ns

ex

s

es

dd

ova-

de
er-
inst
se

:

de-
cel.

-

e

-
re
rse
g:

lytic
ta-
nd
the
at
he
ass.
e-

m-

N. C. J. SCHOONDERWOERD AND B. L. G. BAKKER PHYSICAL REVIEW D58 025013
k” 1onk” 1on5k1on•k1on5m2. ~67!

Therefore we obtain

~68!

In the same way as we did for the covariant amplitude
can identify the different Dirac structures

~69!

Although at first sight it looks as if the diagram in E
~68! has a covariant structure, covariance is spoiled by
integration boundaries fork1. Therefore these functions ar
not covariant objects. We have to investigate equivalence
the structure functions separately.

The light-front structure functionF1
1 can be found by tak-

ing the trace of Eq.~68!, since all the other structures a
traceless. Carrying out the traces one finds

F1
152p i E d2k'E

0

q1
1 dk1

8k1
1k2

1k1

2m21k1on•p

~H1
22H2

2!~H1
22H2!

.

~70!

The other structures of the blink diagram~68! are

F1
2m52p i E d2k'E

0

q1
1 dk1

8k1
1k2

1k1

2m~k1on!
m

~H1
22H2

2!~H1
22H2!

,

~71!

F1
3mn

52p i E d2k'E
0

q1
1 dk1

8k1
1k2

1k1

~k1on!
mpn

~H1
22H2

2!~H1
22H2!

.

~72!

In a similar way we can derive the structure functio
corresponding to the other blink diagram.

D. Equivalence

We can identify the different types of divergences, as
plained in the Introduction.

1. Light-front structure functions without transverse divergence

The parts of the blinks without any ultraviolet divergenc
areFi

2m andFi
3mn , except form being2. No cancellations

need to be found and no regularization is necessary.
02501
e

e

or

-

2. Light-front structure functions with cancelling transverse
divergences

In the last two structure functions we see something o
happening. BothFi

2m and Fi
3mn are divergent form being

2. However, these divergences are not present in the c
riant structure functionsF2m andF3mn. It would be illegal to
apply minus regularization, since the covariant amplitu
does not need to be regularized. We found that the div
gences corresponding to the first blink cancel exactly aga
those of the second blink. To simplify the calculation we u
internal variablesx8 andk' and external variablesx, qi

2 and
qi

' . These are introduced in the Appendix.
We have to verify the following relation of equivalence

F225F1
221F2

22 . ~73!

According to the reasons mentioned above we have to
mand that the divergent parts in the right-hand side can
We find that only the highest order contribution ink' con-
tributes to a divergent integral, because we can write

Fi
225E d2k'S f i

22

k'2
1gi

22~k'!D , ~74!

wheregi
22(k') is the part of the integrand without ultravio

let divergences, and the term withf i
22 gives rise to a loga-

rithmically divergent integral. We have to check if we hav

f 1
221 f 2

2250. ~75!

In the Appendix the full formulas for the functionsf i
22 are

given, from which it follows that condition~75! holds. Form
being 2 in the structure functionF1

3mn one can apply the
same method.

3. Light-front structure functions with transverse divergences

The structure functionF1 in the covariant calculation con
tains an ultraviolet divergence. In the light-front structu
functions Fi

1 these appear as divergences in the transve
direction. The equation under investigation is the followin

F1
1MR1F2

1MR5F1R. ~76!

For the same reason as for the fermion triangle, an ana
proof of this equation is not possible. We investigated ro
tional invariance of the left-hand side of this equation, a
furthermore we checked if it gives the same result as
covariant calculation on the right-hand side. A boson is
rest and decays into two fermions as indicated in Fig. 3. T
fermion mass is taken to be the same as the boson m
Therefore there can be no on-shell singularities of interm
diate states. Also, we dropped the common factor2 i . The
contributions of the two blink diagrams are given in the co
3-10
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mutative diagram of Fig. 7. We made the arbitrary choice
applying minus regularization MR1, and used 128 points
integration variable.

The error, i.e., the difference between the covariant c
culation with BPHZ regularization and the sum of min
regularized blinks, has a maximum of 0.02%. This deviat
results from numerical inaccuracies, as was checked by v
ing the number of integration points.

We conclude that no significant deviation from a ro
tional invariant amplitude is found. Moreover, we found th
the sum of the light-front time-ordered diagrams is the sa
as the covariant amplitude for the one-boson exchange
rection. Again, the procedure ofk2-integration and minus
regularization proved to be a valid method.

V. CONCLUSIONS

In the Yukawa model with a scalar coupling there are fi
single-loop diagrams with transverse divergences, of wh
two also contain longitudinal divergences. For all other o
loop diagrams and all multiple-loop diagrams that do n
contain subdivergences, the proof of the equivalence of
variant and light-front perturbation theory was given by Li

FIG. 7. Commutative diagram of the one-boson exchange
rection. A boson decays at rest. The outgoing fermions fly off
opposite directions. The distance from the origin gives the am
tude of the regularized diagram for the fermion flying off in th
direction. For the light-front structure functions on the first tw
lines, minus regularization~MR1! is used; for the covariant struc
ture function on the last line, we used BPHZ regularization.
02501
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terink and Bakker@3# upon using thek2-integration prescrip-
tion. For the two single-loop diagrams with longitudin
divergences this integration is ill-defined. This problem w
dealt with in a previous paper@5#.

Of the three remaining diagrams two are thoroughly a
lyzed in this paper. For the parts of these diagrams with
transverse divergences thek2-integration recipe of Ligterink
and Bakker applies. For the parts with transverse divergen
a proof of equivalence is complicated by the fact that
amplitudes depend on three independent scalar produc
the external momenta. We applied an extended version o
method of minus regularization invented by Ligterink a
Bakker. It is on a friendly footing with the light-front, be
cause it can be applied to both longitudinal and transve
divergences. Moreover, it has strong similarities to BPH
regularization, which is suitable for covariant perturbati
theory. We were able to tune the regularization in such a w
that minus regularization is analogous to BPHZ regulari
tion. Therefore, we expect an exact equality between the
variant and the light-front amplitudes. We showed that ro
tional invariance is maintained and we expect that ot
nonmanifest symmetries on the light-front, such as boost
the x-y-plane, are also conserved.

The final formulas obtained did not yield to analytic int
gration. Therefore we had to resort to multidimensional n
merical integration. As rotational invariance was shown p
viously to be violated in naive light-cone quantization@12#,
we investigated rotational invariance, which is one of t
nonmanifest symmetries on the light-front. Our results de
onstrate, within the errors due to the numerical metho
used, that covariant and light-front time-ordered perturbat
theories give the same physical matrix elements.

One diagram with transverse divergences has not b
discussed in our two papers on equivalence, namely the
mion box with four external boson lines. It is a scalar obje
similar to the fermion triangle. The results obtained for t
latter convinced us that upon minus regularization we sh
find a covariant result. As there are more time-orderings,
because one cannot test for rotational invariance as easi
for the triangle diagrams, we did not investigate this mu
more complicated situation.

We trust that with our elaborate discussion of diverge
diagrams in the Yukawa model we have illustrated the pow
of minus regularization and taken away doubts about
covariance of light-front perturbation theory.
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APPENDIX: INTERNAL AND EXTERNAL VARIABLES

We get more insight into the properties of the structu
functions if we rewrite them in terms of internal and extern

r-

i-
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variables. This can be done by defining

x85
k1

q1
1

5~x21!x, ~A1!

x5
k11q2

1

q2
1

5
x81x

x
. ~A2!

Or, equivalently,

k15x8q1
15~x21!q2

1 ,

k1
15~x821!q1

1 ,

k2
15xq2

1 .

In the numerator of the integrals defining light-front structu
functions we encounter on-shell spin projections. They
be rewritten in terms of internal variables using

k1on
2 5

k1
'21m2

2~x821!q1
1

, ~A3!

k2on
2 5

k2
'21m2

2xq2
1

. ~A4!

The energy denominators can also be written in terms
internal and external variables. The poles are given by E
~36!, ~37!, and~64!:

2q1
1~H1

22H2
2!52q1

1S p21
k1

'21m2

2k1
1

2
k2

'21m2

2k2
1 D

5~p21p'2!
11x

x
2

k1
'21m2

12x8
2

k2
'21m2

xx
,

~A5!

2q1
1~H1

22H2!52q1
1S q1

22
k'21m2

2k1
1

k1
'21m2

2k1
1 D

5q1
21q1

'22
k'21m2

x8
2

k1
'21m2

12x8
,

~A6!
. D

02501
n

f
s.

2q2
1~H22H2

2!52q2
1S q2

21
k'21m2

2k1
2

k2
'21m2

2k2
1 D

5q2
21q2

'22
k'21m2

12x
2

k2
'21m2

x
. ~A7!

The integration measures can be rewritten as follows:

2p i E
0

q1
1dk14q1

1q2
1

8k1
1k2

1k1
52p i E

0

1 dx8

~12x8!xx8
, ~A8!

22p i E
2q2

1

0 dk14q1
1q2

1

8k1
1k2

1k1
52p i E

0

1 dx

~12x8!x~12x!
.

~A9!

We conclude that it is possible to write the structure fun
tions in terms of the external variablesq1

2 , q2
2 , q1

' , q2
' and

x and integrals over the internal variablesx or x8 and k'.
The divergent part of the structure functionsFi

2 can now be
written as

f 1
2252p i E

0

1 dx8

~12x8!xx8

m

~x821!q1
1

q1
1

q2
1

3S 1

12x8
1

1

xx D 21S 1

x8
1

1

12x8
D 21

, ~A10!

f 2
2252p i E

0

1 dx

~12x8!x~12x!

m

xq2
1

3S 1

12x8
1

1

xx D 21S 1

x
1

1

12xD 21

. ~A11!

Upon cancelling common factors, and using Eq.~A2!, we
can evaluate the integrals and obtain

f 1
2252 f 2

225p i
x

11x

m

q2
1

5p i
m

p1
. ~A12!

Therefore condition~75! is verified.
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