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Light-front dynamics can only become a viable alternative to the covariant approach if doubts about its
covariance can be taken away. As a minimal requirement we take that the physical quantities calculated with
light-front perturbation theory are the same as those obtained using covariant perturbation theory. If this
situation occurs, we use the word equivalent to characterize it. For quantities that involve the calculation of
superficially convergent diagrams, proofs of equivalence exist. For some types of divergent diagrams the proof
of equivalence is complicated. Here we deal with diagrams with transverse divergences. Our method is based
on minus regularization, which is inspired on BPHZ regularization. In a calculation using numerical methods
we show how to obtain a rotationally invariant amplitude for two triangle diagrams contributing to the decay
of a scalar boson in the Yukawa model. It concludes our proof of equivalence of covariant and light-front
perturbation theory{S0556-282(98)02014-]

PACS numbgs): 11.10.Gh, 11.10.Hi, 11.15.Bt, 11.30.Cp

. INTRODUCTION over the light-front energy variable” = (k°—k3)/4/2. In this
paperq always denotes the external momenta kirtlde loop
Covariant field theory is the formalism of choice to de- momentum. We can also write E€l) using light-front co-
scribe situations where creation and annihilation of particle®rdinates:
are important and where typical velocities are comparable to
the velocity of light. If the interactions are sufficiently weak,
perturbation theory is usually applied and gives in many F(Q)=f dk+d2klf dk~ (g9, k™ ,k",k"). (2
cases extremely accurate answers. However, in the case of
strong interactions, or when bound states are consideref\I

nonperturbative methods must be developed. Light-fron ormula, as a sum of residues. One arrives in this way at an

Iqlg antiza tl';rfl}'_s aOHan;n/ti)/glarl] metEod 'T W?'qh the “gh_t' expression that can be interpreted, possibly after recombina-
tke variablex™ = (x "+ x%) V2 plays the role of time, and IS 4 of the terms in this sum, as the splitting of the covariant
therefore referred to as light-front time. This method has

o ; . . : amplitudeF(q) into a sum of noncovariant but light-front
found many applications since it was conceived. Still, som

bl f 2 fund tal nat ined. One that ime-ordered amplitudes.
problems of a fundamental nature remained. Uné thal we are ;g procedure, sometimes called naive light-cone guan-
particularly interested in is the question of whether full co-

tization, has been in principle known since the early work of

variance can be mamtame_d in the Har_nlltonlan fo.rmUIat'On’Kogut and Sopef2]. For convergent diagrams, it is nicely
which is of course not manifestly covariant. A partial answerRiCtureol in Fig. 1

can be obtained in perturbation theory. Then the prpblem cal The covariant diagram in Fig. 1 is an ill-defined object
be reformulated as follows: can one prove that II(~:]ht'fr°mand needs some prescription to give it a definite meaning.
perturbation theory produces the same values of the S-matn‘>_<0r example, the measure of the Minkowskian integration is

eI_ements as covariant perturbanon theory? If the answer tg., positive definite. The covariant prescription involves the
this question is affirmative, then we use the word eq”'valenhtroduction of Feynman parameters to complete the squares

to describe the situation. in the denominator, the removal of terms odd in the loop

The present paper Is concerned with one aspect Of.th'ﬁwomentumk and Wick rotation to obtain a Euclidian inte-
problem, viz. the treatment of transverse divergences in aral

simple model: the Yukawa model with spin-1/2 fermions,
spin-0 bosons and a scalar coupling. S .

ext, one expresses the integral over, using Cauchy’s

' covariant - o LF time-ordered
i diagrams | Kk integrati diagrams
A. k™ -integration and equivalence toomeooos grame ' pre"sl,cer?[:t?oll?n g
In the work we did before, we used the method of Kogut l covariant l
and Sopef2] to define light-front perturbation theory. This prescription
method d'eflnes I!ght—front t!me-orderezi*(-ordergd ampll- observables — o observables
tudes by integration of the integrand of a covariant diagram,|of covariant PT equivalence of light-front PT

say
FIG. 1. The “ideal” case: Outline of our proof of equivalence
_ 4 . of light-front (LF) and covariant perturbation theo(iT) for con-
F(a) f dkl(g:k), @ vergent diagrams. The dashed box indicates an ill-defined object.
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minus regularization, is that it does not discriminate between

covariant - LF time-ordered - . . .
! diagrams | K integraon | diagrams i trangverse and Iong|tud|ngl dlvergenc.es. Minus .regularlza—
---------------- covariant  Prescription tion is based on the Bogoliubov-Parasiuk-Hepp-Zimmerman
prescription , (BPHZ) method of regularizatiofi7—11]. In their paper, Lig-
BPHZ regularization terink and Bakker applied minus regularization to three self-

regularization energy diagrams. Our contribution is to extend their method

observables | _______._ observables i i i -
of covariant PT <equiva|ence> of light-front PT to more compllcated dlagrams and prove that there is a one
to-one relation between minus and BPHZ regularization,

FIG. 2. Outline of our proof of equivalence for diagrams with such that the physical observables found using light-front

ultraviolet divergences. Dashed boxes indicate ambiguously deﬁnegerturbat?on theory exactly match those found in covariant
objects. perturbation theory.

In the Yukawa model there are five covariant diagrams
It has been the work of Ligterink and BakkgB] that  with ultraviolet divergences. The boson and the fermion self-
proves in detail that the rules for constructing light-front energy were discussed in our previous article on longitudinal
time-ordered diagrams, explained in many arti¢2gl], are  divergences. Minus regularization was applied and simulta-
correct upon using the&™ -integration prescription. They neously removed the longitudinal and the transverse diver-
were the first authors to give a systematic derivation of allgences. Equivalence was established.
the different time-ordered diagrams corresponding to a given |n two cases we were not able to either find an answer in
covariant amplitude, for any number of particles involved. If the literature or produce ourselves full analytic results for the
the k™ -integral is convergent and the corresponding covariintegrals involved; so we had to resort to numerical integra-
ant diagram is also superficially convergent, then what retion In this paper we discuss these two diagrams: the one-
mains can be written in terms of well-defined, convergeni,oson exchange correction to the boson-fermion-fermion
Euclidian integrals. L _ . vertex and the fermion loop with three external boson lines.
When thek™ -integration is divergent, the prescription tq first one was considered by Burkardt and Langia,
must be altered. Naive light-front quantization fails in this . o i1 that naive light-cone quantization leads to a vio-

case and one must f'rSt. find a way to regulate th(;‘iation of rotational invariance of the corresponding S-matrix
k™ -integrals. We proposed in a previous pafdgra regular- . . .
o e : elements and found that invariant results can be obtained
ization that maintains covariance. There we showed that thSSin noncovariant counterterms. Here we show that no vio-
longitudinal divergences give rise to so-called forced instani " 9 f rotational i : ' if thod of
taneous loop$FILs) and we showed how to deal with them ation of rota |on? (ljnvlz:';lrlarr]]ce oceurs 1t our Te fo r? rlgg#-
such that covariance is maintained. This method was aB@rlzatlc_)n IS applied. .urt ermore, our results for the '9 -
applied to the Yukawa model containing spin-1/2 and spin-gront time-ordered diagrams sum up to the covariant
particles. We were able to regularize the-integrals for the ~amPplitude, calculated using conventional methods.

diagrams with one loop. However, in order to show full

equivalence to the covariant calculation one needs to com- C. Light-front structure functions
pfte the full integral including the integrations over and The two triangle diagrams can be written in the form of a
k.

sum of tensors in the external momenta, multiplied by scalar
. . functions, which we cal({covarian} structure functions. Af-
B. Ultraviolet and transverse divergences ter splitting a covariant diagram in light-front time-ordered

Even after the usual procedure has been followed, th@nes, these can be written again in terms of tensors multi-
covariant integral can still be ultraviolet divergent. Ligterink plied by functions of the external momenta. The latter are
and Bakker did not only discuss diagrams that are superficalled light-front structure functions. They are not invariant
cially convergent, but also what to do in cases where thas they are not defined by four-dimensional invariant inte-
covariant diagram is divergent. Their method of regularizinggrals, but rather by three-dimensional integrals. The different
divergent diagrams, minus regularizatig], is also used in  structure functions have different divergences and they must
the present paper. A scheme for the equivalence of ultraviobe treated according to their types of divergence, which we
let divergent diagrams is given in Fig. 2. enumerate.

Several technigues are available to remove the ultraviolet (1) Light-front structure functions without transverse di-
divergences, not involving thie” - integration. They remain vergencesNeither the covariant nor the light-front formula-
in the light-front time-ordered diagrams as divergences otion contains any divergences. Integration okersuffices to
the integrals over the transverse momenta. Therefore theggove equivalence. Minus regularization is not allowed.
diagrams are also ill-defined, as indicated by the dashed box (2) Light-front structure functions with cancelling trans-
in Fig. 2. A problem is that many of the techniques which areverse divergencesThe individual light-front time-ordered
used to regularize covariant diagrams have limited use fodiagrams contain divergences not present in the covariant
light-front time-ordered diagrams. For example, one cannoamplitude. Application of minus regularization to the time-
use dimensional regularization for the longitudinal diver-ordered diagrams is not allowed. We show that the diver-
gences. Still, it is common to apply it to the transverse di-gences cancel if all the time-ordered diagrams are added, and
vergences. The strength of the regularization scheme we usthat their sum equals the corresponding covariant amplitude.
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(3) Light-front structure functions with overall transverse
divergencesDivergences appear in the covariant amplitude |:(q2):J d*kl o047 K)
as well as in the light-front time-ordered diagrams. We apply
BPHZ regularization to the covariant amplitude and minus =F(0)+q°F'(0)+ ... ©)

regularization to the time-ordered diagrams. o o

For the first two cases one can prove equivalence usin§n€relco(d”,k) is the covariant integrand generated by ap-
analytic methods alone. The proof of equivalence can b®Ying standard Feynman rules. BPHZ regularization renders
found in Refs[3,5]. For the structure functions with overall th€ amplitude finite by subtracting the infinite parts. We

- 2_ . . .
transverse divergences we have to use numerical techniquééb(_)ose the poing®=0 as the .renorr.nallzatlon point, .around
We show that for the decay of a boson at rest, for bot which we expand the amplitude in a Taylor series. The

triangle diagrams, one obtains a rotational invariant ampli- igher orders in the expansi¢8) are denoted by the ellipsis.

tude, identical to the covariant calculation using BPHZ regu-The regularized amplitude is then

larization. The fifth diagram with transverse divergences, the FR(a2)=F(aq?)—F 4
fermion box, will not be discussed. (@) =F(a)~F(0). @

However, this is a purely formal operation, since we are

D. Outline subtracting two infinite quantities. It is better to write
The setup for this article is as follows. In Sec. Il we in-
troduce minus regularization. In Sec. Ill and Sec. IV we FR(qZ):j d4k[|cov(q2'k)—|cov(0'k)]
discuss the equivalence of covariant and light-front perturba-

tion theory for the fermion triangle and the one-boson ex- )
change correction. In both cases we start with the covariant a2 [ gl r2.

ge - art with =| " da'?| dk—rlel@'%k). (5
calculation and do the BPHZ regularization if necessary. 0 aq
Then we calculate the light-front time-ordered diagrams and _ o
apply the method mentioned above. In both cases, we cor-his guarantees that the amplitude becomes finite.
clude by giving a numerical example of rotational invari- _ o
ance. 2. Minus regularization

Typical for minus regularization is that one writes the

Il. MINUS REGULARIZATION amplitude, as well as the renormalization point, in light-front
. o coordinates. The covariant choig=0 corresponds tg~
Minus regularization is inspired by the BPHZ method of =q“2/(2q*). A time-ordered amplitude corresponding to

construction, we ensure that minus regularization does thgates as follows:

same. First we sketch the method in the case of one-loop
diagrams with one independent external momentseif- B 5 B
energiey and next when two independent external momentd™ (d -q+vql):J klo(a™,a7,0" k)
(triangle diagramsare present. We conclude by generalizing
this to a one-loop diagram with external momenta. For g
convenience, we shall assume in the latter case that only =F oqt
logarithmic and linear divergences are present, such that only q
the first term of the Taylor expansion around the renormal- q-2 q-2
ization point needs to be subtracted. +2q*| g - +) F’(—+,q+,ql
Wherever we use the word “amplitude” in this section, 2q
we refer to an invariant function of the external momenta. It (6)
is understood that the integrals defining the invariant func-
tions are formally written down in terms of four-dimensional yhere |, is the integrand of the light-front time-ordered
integrals, which are split into time-ordered pieces by integragiagram, which was generated by integrating the covariant
tion overk™. integrandl .o, overk™ as is explained in Ref3]. The prime
denotes differentiation with respectqo . Similar to Eq.(5)
we can write the regularized amplitude as

12

,q+,qL)

A. One external momentum

First we discuss the simple case of one external momerF"R(q~,q",q")
tum, which can be applied for self-energy diagrams. ;
q ! — r— .
1. BPHZ regularization - Lu/zq+dq f dskaqT' ro(d' a7, ak). (7)
We start with the BPHZ regularization method, which can
be applied to covariant diagrams. The amplitude has the folSo far we have described the minus regularization method
lowing form: introduced by Ligterink and Bakké#b].
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B. Two external momenta TABLE I. The light-front parametrization of the renormalization

3 . . oint r* for two equivalent choices of minus regularization, MRO
In Ref. [6] three self energy.dlagrams were Q|scussed: Fognd MRL.
the triangle diagram the minus regularization technique

needs to be extendéde will tune the technique by com-

paring it to BHPZ regularization. MRO MR1
o (ry.ri.ri) (00 ,0") (@"%/(2a;),a; ,a1)
1. BPHZ regularization (rz.r3.13) x(04;.0") x(@"3/(2a7),a7 ,a1)
The amplitude has the following covariant form:
F(qi,qﬁ,ql-q2)=f d*Kl o057, 05,01+ 023K) F(qi‘,qﬁ.qﬁ)=fd3klmo(qi‘,qi+,q%:k). (12)
=F(0)+q2F;(0)+q3sF 4(0) The regularized amplitude is
+ 0y GoF L)+ - - (®8) FR(ai a7 a0 =F(ar a7 .q) —F(ri 1),

(13
where Ois the renormalization poirj?=qg5=q;-q,=0 and

. . ) . wherer defines the renormalization surface. It is a hypersur-
F/ is the derivative of with respect to theéth argument. yp

face determined by the following conditions:

FR(af.05.01-92)=F(a}.05.9:-02)—F(©).  (9) r2=2r i —ri2=0,

Again, this is a purely formal operation, since we are sub-

2 -+ 12
. P " . r5=2r,r, —r;<=0, 14
tracting two infinite quantities. We write 2 72tz 2 (149

. . ) Fi-Tp=ryf,+r{ry,—ry-r;=0.
F (ql,qz,ql-qz)=fd K[l co07,02,01- d2;K) , o ,

This set of equations is equivalent to
- ICO\X’G; K] (10

We cannot, as in the previous section, differentiate with re-

+ ; ; ; -
spect to all external momenta. We would then subtract finit(;rhe ri enter in the integration boundaries; therefore we

parts from the Taylor series, containing physical informa—WOliId like them to remain unaffected by regularizatiog (
tion. This can be circumvented by introducing a dummy=0i ). This implies thaty can be found from
variable\, which parametrizes a straight line in the space of N
the invariants between the actual external momenta _ Y%

r2=0, ry=xry. (15)

=—. 16

07.,95,9;- g, and the renormalization point: X a5 (16
FR(a7,05,01-02) The only freedom that remains is the choice fqr. Two
1 P choices come easily to mind; =0 (method MRQ andry

=fo dhf dk = lood AT, AG3, A0 G2;K). (1) =gy (method MRY:
MRO) r;=0'=r;=0", 1

We have verified that th&-method gives the correct result ( ) N 2 (7
for the case where one independent external momentum oc- (MR1) ry=qg;=r;=x0z. (18)

curs.

The details are worked out in Table I.
The light-front coordinates of the renormalization point
Again, we write the amplitude in the light-front time- are used in the following way to find the regularized light-
ordered case as a three-dimensional integral: front amplitude:

2. Minus regularization

- ! J -
A ,qr.qﬁ):fodxfd3k5|mo(x<qi SUBRC RNl rO R fY) (19

We suggest the name MR

025013-4
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In this formula we recognize our choic¢ =q;" . bosons of momenturg; andq, respectively. The fermions
in the triangle have masa. The covariant expression for the
C. Several external momenta amplitude is

The method just described can be generalized to the case o
of a loop with an arbitrary number of external lines. The / 4
procedure is almost the same as for two external momenta.” \}* = / d*k ;[‘r [(17512 + ’;")(]74(22"‘ T’;)(lif +2m)].
The renormalization surface is given by k%, /Min (kf — m?)(k — m?)(k? — m?)

r2=2r " —ri?=0, (20) (26)

The subscript “Min” denotes that the integration is over
Minkowski space. The usual imaginary parts of the Feynman
propagators have been dropped. We have omitted numerical
factors and have set the coupling constant to unity. The mo-

Ferp=ror 4 —rery=0  (i#j). (22)

These equations are equivalent to

r2=0, ri=xi. (22)  Mmentak; andk, indicated in the diagram are given by
Again, we make the choice to leave the plus components of ki=k—q;, k,=k+a0s. (27

the momenta unaffected by regularization=gq;" . This im-
plies that they; are fractional longitudinal light-front mo- Of course, by momentum conservation we have
menta:

P=0d1+d2- (28
Xi :E' 23 We evaluate the integr&26) first in the usual covariant way,
and subsequently carry okt -integration to produce the
Two choices forr; are listed below. This then determines all light-front time-ordered diagrams. Note that integ26) is
otherri : an ill-defined formula. In both methods mentioned we have
to define what we mean by this integral.
(MRO) ri=0'=r{=0", (29
A. Covariant calculation

L_ bl ol
(MRD) ry=dr=ri =xids - (25 The following method is usually applied to calculate the

fermion triangle in a covariant way. First, one introduces
D. Summary Feynman parameterg andx,, and then one shifts the loop

the structure of the covariant or the time-ordered diagramd€sult is

but works on the level of the external momenta only. If an )

amplitude has a covariant structure before regularization, mi- 1 -2,

nus regularization guarantees that it remains covariant. Inour - Q = 8/ dx1/ dzy | d‘k

implementation of BPHZ regularization, the renormalization . 0 ° Min

point corresponds to all invariants connected to the external m3 + m (3k? + P?) + terms odd in &

momenta being equal to zero. These conditions allow minus X (k2 —m? + Q2)3 )

regularization to take on a number of forms. Of these, we

shall apply MRO and MR1. The main difference between

them is that MRO does not choose one of the momenta as A

preferred direction, and therefore it explicitly maintains all

symmetries of the external momenta. Furthermore, MRO 5 2 2

gives rise to shorter formulas for the regularized integrands. ~ €° =X1(1=X1) A1+ Xa(1—-X2)A2+ 2X1X20; - G2, (30)
In the next two sections both methods are being applied to

the parts of two light-front time-ordered triangle diagrams in P2=x1(3x1—2)q§+x2(3x2—2)q§

the Yukawa model containing transverse divergences, viz.

the fermion triangle and the one-boson exchange correction. +(2(x1+X%2) —6X1X,— 1)0;- Q5. (31)

(29

IIl. EQUIVALENCE FOR THE FERMION TRIANGLE As a last step, we remove the terms oddin

In the Yukawa model there is an effective three boson
interaction, because for a fermion loop with a scalar coupling
Furry’s theorem does not apply. The leading order contribu- The regularized fermion triangle can be found by apply-
tion to this process is the fermion triangle. A scalar boson oing the BPHZ regularization schem@l) to the covariant
massu and momentunp comes in and decays into two formula (29). The integral is now finite; so we can do the

B. BPHZ regularization
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Wick rotation and perform th& integrations. The result is  neous fermions, indicated by a horizontal tag. Explicitly,

‘R + +
1 pl-z g1 o [gept [ G
Q = —an% [dor [ ey [ ) < =wifen [P omes
. 0 0 0 N 12

% TI‘ [(l){lon + m)(]f2on + m)(]}éon + m)]

m (m*(5Q% — P?) — 6AQ%) e (39
X . 32 H—HyYH—H~-
e ro @2 (H;—H;) (H; — ")
’ ey [ dEY
. . . . . .- = 27T'Z/d :IC SIFLF LT
The superscript R indicates an integral regularized accordin o 8kTkJkT
to the BPHZ method. y Tr [(Kron + )y (Kon + m)] (40)
H;—H- ’

C. Light-front calculation

Using the method given in Ref3] we proceed as follows.
The k™ dependence of a spin projection in the numerator is ’ o a  dkt
removed by separating it into an on-shell spin projection anr'ﬁ = 27”/ o Skikikt

an instantaneous part:

% Tr [(lflon + m)(]?/(ZOn + m)7+] (42
Ki+m=(k; on+m)+(k__ki_on)'y+v (33 Hl_—Hg_ ’
where the vectok!,, is given by ) o At
-- = —QWZ/deL/ YRR
12 2 -—q; 8,161 k2 k+
N . L :
R = Y T [Ghron + 70)(Faen + ) (Fen + 1)) 42)

(Hi—Hy)(H~—Hy) ’

Factors like k™ —k; ,») can be divided out against propaga-
tors and this cancellation gives rise to instantaneous fermi- . di+

0
ons. The integration ovet™ is performed by contour inte- _- = _zm‘]d%l/ —
gration. The poles of the propagators are given by -¢f 8k{kz Kkt

K24 m? % Tr [y* (Fzon + m)(Fon + m)]’ (43
o= P (35) H-—Hy
ky2+m? ’ / 2 L/0 dk*
R S S - = -2m [ d°k —
Hy=a, 2k (36) Q —af 8Kk K+
o s Tt [(Fron + 1) (Fzon + )] (a4
kz°+m H—H- .
Ha ==y + =~ (37) L
2

Note that the diagram@1) and(44) with the instantaneous
This integration gives rise to the different time-ordered dia-exchanged fermions have the same integrand. However, the
grams, as explained in more detail[,5]. The result is longitudinal momentunk® has a different sign.
Although we could have expected diagrams with two in-
’ stantaneous fermions, we see that they are not present. This
Q = J is so because we use a scalar coupling and therefore/two
. 4 matrices becoming neighbors give 0. No so-called forced
+ % +

+--<l
Q’ (39) instantaneous loops are present. These FILs obscure the

+

+ equivalence of light-front and covariant perturbation theory

and have been analyzed in RES]. They will not be dis-
cussed in this paper, since they are related to longitudinal
divergences.

The diagrams on the right-hand side are light-front time- 1he traces can be calculated. We obtain

ordered diagrams. Time goes from left to right. The pictures TH Ky ot M) (Koot M) (Kont M) ]
can be recognized as time-ordered diagrams because of the ton o o
time-ordering of the vertices and the occurrence of instanta- =4m(m?+Kyon Kont Kaon' Kont Kion Kaon)s  (45)
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€Iror
0 —— e —
/’\/\\\
s’ AR
s AN
-0.5 . // \\
%// N R
FIG. 3. A boson is at rest and decays into two particles flying ) / \\
off in opposite directions. The anglé is the angle between the /’ \\

momentum of one of the fermions and thaxis. -1t // \
L~ ~_
Tr(Kyont M) (Kaont m)7+]=4m(2k+—ql++q;). 0 /4 /2 /4 66— «

(46)
FIG. 5. The amplitudes of the two small contributidit®uble-
dashed lingsand the difference between the sum of the six light-
(47) front time-ordered diagrams and the covariant amplit@theck
Ty " (Kzont m) (Kopt m)]=4m(2k ™ + q;) solid line).
(48)
We see that the high orders ki have disappeared in the Ntégrand was implemented RORTRAN which was well ca-
traces. However, logarithmic divergences remain in all light-Pable of doing the four-dimensional integration usimgL

front time-ordered diagram@9)—(44). We tackle them with ~ routines basehd on Gaussian integragond |
minus regularization, as introduced in the previous subsec- Because the integrations cannot be done exactly, we saw
tion. no possibility of giving a rigorous proof of the equivalence

of light-front and covariant perturbation theory. Instead we
make a choice for the parameters, such as the masses and the
external momenta, and show that our method gives the same
As the fermion triangle is a scalar amplitude, there is onlyresult as the covariant calculation with BPHZ regularization.
one structure function present. It belongs to the first categoryWe calculated the decay amplitude of a scalar boson at rest,
we mentioned in the Introduction: it is logarithmically diver- as is pictured in Fig. 3.
gent, but has no longitudinal divergences. From a physical point of view, there is no preferred di-
We applied minus regularization to the integrands of therection, and therefore we demand that our choice of the co-
six light-front time-ordered diagrams, using both the MROordinates of the light-front have no influence on the outcome
and MR1 methods. We usethTHEMATICA to do the substi- of the calculation. The decay amplitude, which is a scalar
tution and the differentiation with respectXq given by Eq.  quantity, should give the same result for each possible direc-
(19). However,MATHEMATICA was not able to do the inte- tion in which the bosons can fly off.
gration, neither analytically nor numerically. Therefore the There are six minus-regularized light-front time-ordered
fermion triangle diagrams contributing to the boson decay.
d’ & Each individual light-front time-ordered diagram has a mani-
o fest rotational invariance in the-y-plane, and therefore we
expect the same for the sum. However, since light-front per-

Tr{(K1ontm) 7+(kon+ m)] :4m(2k+ - q1+),

D. Equivalence

’ ’ turbation theory discriminates between thelirection and
<3/ -~ S \<l the other space-like directions, the light-front time-ordered
125 = — diagrams carfand should differ as a function of the angle,
I total 7 6, between the momentum of one of the particles flying off
/ and thez-axis. The absolute value of the momentum was

fixed. It is not immediately clear that the sum should be
invariant. This investigation becomes more interesting since
it is believed[12] that rotational invariance is broken in na-
ive light-cone quantization of the Yukawa model. However,
the results shown in Figs. 4—-6 demonstrate that rotational
195 T . invariance is not broken. Note that we have dropped the
0 /4 /2 /e 6 factor—i. common to all diagrams. .

FIG. 4. The thick line at a value of 125 represents the sum of the WO light-front time-ordered diagram@0),(43) contrib-
six light-front time-ordered amplitudes. It is independent of theUting to the boson decay and indicated by double-dashed
angle 9, defined in the previous figure. The four largest contribu-lineés are so small they can hardly be identified in Fig. 4. In
tions come from the diagrams without instantaneous padtid  Fig. 5 we depict these two on a scale that is a factor of 100
lines) and the diagrams with an instantaneous exchanged fermiot@rger. In the same figure we show the difference of the sum
(dashed lines as indicated by the diagrams. of the six light-front time-ordered diagranfgsing MR1 and
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z In Figs. 4 and 5 we see that interchanging the outgoing
bosons is the same as replacifigpy 7— 6.

We verified that the individual diagrams are rotational
invariant around the-axis. We illustrate this in Fig 6.

Summing up, we find that the sum of the minus regular-
ized light-front time-ordered diagrams is rotational invariant.
The deviation from the covariant result is smaller than
0.03%. It is illustrated in Fig. 5. We checked, by varying the
number of integration points, that the deviations are due to
numerical inaccuracies only. We conclude that, for the fer-
mion triangle, the covariant calculation in combination with
the BPHZ regularization scheme gives the same result as the
light-front calculation in combination with minus regulariza-
tion.

IV. EQUIVALENCE FOR THE ONE-BOSON EXCHANGE
CORRECTION

The second process under investigation was studied be-
fore by Burkardt and Langnad2]. A scalar boson of mass
p and momentunp decays into two fermions of massand
momentumg, andq, respectively. The lowest order correc-
tion to this process is the one-boson exchange correction.
The amplitude is given by the integral

Q By : bl et
LN, IMin (k§ — m?)(k3 — m?)(k* — u?)

FIG. 6. Commutative diagram of the boson decay amplitude.
The boson is at rest in the origin and decays. The outgoing bosons
fly off in opposite directions. Points on the surfaces have polar

coordinates &, 6,¢), whereA is the magnitude of the amplitude  Again, this equation is undefined as it stands. First we have
and 6 and ¢ are the polar angles of the momentum of one of thet0 make it a well-defined object. In Sec. IV A we apply the

outgoing particles, as defined in Fig. 3. Because the diagrams on trteovariant method and in Sec. IV C we use light-front coor-
second line are very small, the scale has been enlarged by a facta nates

of 100. For the light-front time-ordered diagrams on the first three
lines minus regularizatioitboth MRO and MR] is used, for the
covariant diagram on the last line we used BPHZ regularization.

(49

A. Covariant calculation

128 points in every integration variabland the covariant Using Feynman parametrization the one-boson exchange
result. It has a maximum of 0.03%. correction can be rewritten as

. 1 1~z . K24 [(1—X1) @1+ X2) G+ M][ — X161 — (1 —X,)do+m] +odd
o= e [ den [ dth — (50)

; 0 0 Min (ke= M+ Q%)

with and where terms odd ik in the numerator are not specified,
5 5 ) since they will be removed according to the covariant pre-
M= (X +X2) M+ (1= X1 = X2) %, (51)  scription. We also define
Q2=x1(1=X) U5+ Xo( 1= Xp) G5+ 2% X0 - Az, (52) P2=Q2%+(1-X,—Xp)0;1-Q5. (53
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From Eq.(50) we can infer that the Dirac structure of the FlR(qZ q% Qy- Q) = — 27 fldxlfli)(ldxzjld)\
diagram is ! 0 0 0

Q2+ EPZ
" Q?(\P?—m?) . 2
(54) Z(MZ_)\QZ)Z Mz_)\QZ
(62)

. 1
< =F' 4 Foy, + FSWE [Vas o]

where the vector part contains a symmetric and an anti\—Ne have not been able to do all three integrations exactly.
X The \ integration and one of the integrations can be done
symmetric part, analytically, and the remaining integration numerically. As
F2* andF* do not need to be regularized, this concludes the
covariant calculation of the one-boson exchange correction.
F24=F2Yaf+a5) +F*Xat—aj), (55
C. Light-front calculation

In our previous pap€i5] it was shown how to derive the
and the tensor part has the form light-front time-ordered diagrams corresponding tothe cova-
riant diagram(49) using k™ -integration. One can write the
time-ordered diagrams individually, or one can combine
F3v=(gtqs—q;q5)F°. (56) propagating and instantaneous parts into so-called blinks.
Blinks, introduced by Ligterink and Bakkdi3], have the
advantage that the K -singularities cancel and the number

The functions=' depend on the masses and the external moof diagrams is reduced.

mentaqf, q% andd;-gs. If we define the integral operator In the two triangle_ diagrams studied here it makes no
difference whether blinks are used or not. In the case of the

fermion triangle we calculated light-front time-ordered dia-
1 1-x, grams. Herg we use blinks, to demonstrate that our techniq_ue
|[f]:2f Xmf dX2J d*k(k2— M2+ Q?)~3f, also works in this case. The one-boson exchange correction
0 0 Min has two blinks:
(57)

(63

then we have, using?=q3, etc., <

L s o s The poles of the two fermion propagators in the triangle
Fr=I[k*+m"=P7], (58)  are given by Eqg(36) and(37). The pole of the boson propa-
gator is given by

12 2

Fo ami[1- %, x,], (59 oo (64
2k*

F25 2mi = x+ %], (60) The amplitudes including blinks are

0 dk+
) \“ — —271'2 deJ_ v
F3=1[1—X;—X,]. (62) < / /-q; SkitkFkt

. (l¢20n - F‘ + m)(lff‘Zon + m) (65)
(Hi—Hg )(H—Hz) ~

We see that the only function which needs to be regularized
is F1. The functionsF? and F® are convergent and do not

require regularization in a covariant calculation. L= 27ri/d2kL of  dkt
o Skfkikt
B. BPHZ regularization % (Kron + m)(Fron + ¢ + m) (66)
The regularized structure functidi'R can be found by (Hy—Hy)(H[-H~)

applying the BPHZ regularization scherfiel) to the struc-
ture function(58). The integral is now finite; so we can do We will now focus on the blink in Eq(66). It simplifies
the Wick rotation and perform thie integrations: because we can use
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_ o, — , , .
K1 oik1on=K1on Kion= M- (67) 2. Light-front structure fqnctlons with cancelling transverse
divergences

Therefore we obtain In the last two structure functions we see something odd
happening. BottF2* and F3#” are divergent foru being
C o [ a2kt o dkt —. However, these divergences are not present in the cova-
N T 7”/ o SkTkfk* riant structure function§2* andF3#”. It would be illegal to

2 apply minus regularization, since the covariant amplitude

Qm_ + k_““(]é _+ 2m) . (68)  does not need to be regularized. We found that the diver-

(Hr—Hz )(Hi—H") gences corresponding to the first blink cancel exactly against
those of the second blink. To simplify the calculation we use

. i , i ; _
In the same way as we did for the covariant amplitude Wénfernal variables” andk™ and external variableg, g; and

can identify the different Dirac structures gi . These are intrpduced in th? Appen_dix. .
We have to verify the following relation of equivalence:

: 1
[ o= R A+ RS el (69 F2 =F7 +F3 . (73

According to the reasons mentioned above we have to de-
énand that the divergent parts in the right-hand side cancel.
We find that only the highest order contributionkh con-
ibutes to a divergent integral, because we can write

Although at first sight it looks as if the diagram in Eq.
(68) has a covariant structure, covariance is spoiled by th
integration boundaries fdt*. Therefore these functions are
not covariant objects. We have to investigate equivalence fof
the structure functions separately.

The light-front structure functioﬁ} can be found by tak- f2-
ing the trace of Eq(68), since all the other structures are Fi2_=f dzki(ﬁJrgiz_(ki)), (79
traceless. Carrying out the traces one finds k

wheregiz_(ki) is the part of the integrand without ultravio-

+ dk*t 2m?+Kq oy
FisziI dszfql — 1on P —. let divergences, and the term witi~ gives rise to a loga-
0 8kyky k™ (Hy —Hy)(H; —H )(70) rithmically divergent integral. We have to check if we have
f2-+f2-=0. (75

The other structures of the blink diagra8) are

.kt 2m(Kyg)* In the Appendix the full formulas for the functiorf§_ are
F2r=2r7i f d2K+ fql — 1o - ' given, from which it follows that conditioki75) holds. Foru
0 8Ky kyk* (Hy —Hy)(H;y —H™) being — in the structure functiorF3*” one can apply the
(71)  same method.

3. Light-front structure functions with transverse divergences

F3m
The structure functiof* in the covariant calculation con-
=27-rif dzkiqu dk* (K1on)"pP” tains_an uIltravioIet divergence._ In the IighF—front structure
0 8kjkik® (H{—Hy)(H{—H") fqnctlpns F; these appear as Q|vergenges in the transverse
72 direction. The equation under investigation is the following:

- . : Fi"R+F3MR=FIR 7
In a similar way we can derive the structure functions 1 2 (76

corresponding to the other blink diagram.
For the same reason as for the fermion triangle, an analytic

proof of this equation is not possible. We investigated rota-
. . ) . tional invariance of the left-hand side of this equation, and
We can identify the different types of divergences, as eXyrthermore we checked if it gives the same result as the
plained in the Introduction. covariant calculation on the right-hand side. A boson is at
rest and decays into two fermions as indicated in Fig. 3. The
fermion mass is taken to be the same as the boson mass.
The parts of the blinks without any ultraviolet divergencesTherefore there can be no on-shell singularities of interme-
areF2* andF?*”, except foru being —. No cancellations diate states. Also, we dropped the common factér The
need to be found and no regularization is necessary. contributions of the two blink diagrams are given in the com-

D. Equivalence

1. Light-front structure functions without transverse divergences
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z terink and Bakke[3] upon using th&™ -integration prescrip-
tion. For the two single-loop diagrams with longitudinal
divergences this integration is ill-defined. This problem was

SESEs dealt with in a previous pap¢b].

z! Of the three remaining diagrams two are thoroughly ana-

F! ﬂ Y lyzed in this paper. For the parts of these diagrams without

transverse divergences the-integration recipe of Ligterink
and Bakker applies. For the parts with transverse divergences
a proof of equivalence is complicated by the fact that the
amplitudes depend on three independent scalar products of
the external momenta. We applied an extended version of the
method of minus regularization invented by Ligterink and
Bakker. It is on a friendly footing with the light-front, be-
cause it can be applied to both longitudinal and transverse

El ﬂ z divergences. Moreover, it has strong similarities to BPHZ

2 regularization, which is suitable for covariant perturbation
theory. We were able to tune the regularization in such a way
that minus regularization is analogous to BPHZ regulariza-

+ + tion. Therefore, we expect an exact equality between the co-

variant and the light-front amplitudes. We showed that rota-
tional invariance is maintained and we expect that other
nonmanifest symmetries on the light-front, such as boosts in
the x-y-plane, are also conserved.
1 BPHZ = The final formulas obtained did not yield to analytic inte-

F — gration. Therefore we had to resort to multidimensional nu-

: merical integration. As rotational invariance was shown pre-
viously to be violated in naive light-cone quantizatid®],

we investigated rotational invariance, which is one of the

nonmanifest symmetries on the light-front. Our results dem-

onstrate, within the errors due to the numerical methods
used, that covariant and light-front time-ordered perturbation
theories give the same physical matrix elements.

One diagram with transverse divergences has not been
discussed in our two papers on equivalence, namely the fer-
mion box with four external boson lines. It is a scalar object,
similar to the fermion triangle. The results obtained for the

mutative diagram of Fig. 7. We made the arbitrary choice ofattér convinced us that upon minus regularization we shall
find a covariant result. As there are more time-orderings, and

applying minus regularization MR1, and used 128 points in : . X :
integration variable. because one cannot test for rotational invariance as easily as

The error, i.e., the difference between the covariant calf0r the triangle diagrams, we did not investigate this much
culation with BPHZ regularization and the sum of minus MOre complicated situation. . . .
regularized blinks, has a maximum of 0.02%. This deviation W€ trust that with our elaborate discussion of divergent
results from numerical inaccuracies, as was checked by vanfiagrams in the Yukawa model we have illustrated the power
ing the number of integration points. of minus regul_arlzanon and taken away doubts about the

We conclude that no significant deviation from a rota-covariance of light-front perturbation theory.
tional invariant amplitude is found. Moreover, we found that
the sum of the light-front time-ordered diagrams is the same ACKNOWLEDGMENTS
as the covariant amplitude for the one-boson exchange cor- The authors thank N. E. Ligterink for discussing this

rection. Again, the procedure & -integration and minus \ork P. J. G. Mulders for helpful suggestions, and A. J.

FIG. 7. Commutative diagram of the one-boson exchange cor.
rection. A boson decays at rest. The outgoing fermions fly off in
opposite directions. The distance from the origin gives the ampli
tude of the regularized diagram for the fermion flying off in this
direction. For the light-front structure functions on the first two
lines, minus regularizatiofMR1) is used; for the covariant struc-
ture function on the last line, we used BPHZ regularization.

regularization proved to be a valid method. Poldervaart for writing the first version of tf®RTRAN code
used. This work was supported by the Stichting voor Funda-
V. CONCLUSIONS menteel Onderzoek der MatefiEOM), which is financially

. . _supported by the Nederlandse Organisatie voor Wetenschap-
In the Yukawa model with a scalar coupling there are f'veﬁ)elijk onderzoekK NWO).

single-loop diagrams with transverse divergences, of whic
two also contain longitudinal divergences. For all other one-
loop diagrams and all multiple-loop diagrams that do not
contain subdivergences, the proof of the equivalence of co- We get more insight into the properties of the structure
variant and light-front perturbation theory was given by Lig- functions if we rewrite them in terms of internal and external

APPENDIX: INTERNAL AND EXTERNAL VARIABLES
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variables. This can be done by defining
+
X,:_+:(X_1)X1
1
kT+q, x'+x
X= —= .
dz X

(A1)

(A2)
Or, equivalently,

k*=x"gy =(x-1)az ,

ki =(x'—1)q; ,

Ky =Xdj .

In the numerator of the integrals defining light-front structure

PHYSICAL REVIEW B8 025013

K24+ p?  kb2+m?

2k* 2k,

29, (H"—H;)=2q;| g, +

K24 pu?  kp2+m?

=05+t <

(A7)

The integration measures can be rewritten as follows:

.Jq;dk+4qfq§ B 'fl dx’
m | t———=—gi | ———
0o 8kykyk* 0(1—x")xx’'

(0 dk'4q;q; (¢ dx
—27Tlf 72—77If S —
-q; 8kjkyk* 0(1—x")X(1—x)
(A9)

. (A8)

functions we encounter on-shell spin projections. They can

be rewritten in terms of internal variables using

L kg e
2 —1)q;

_k§2+m2 Ad)
2on 2Xq;

We conclude that it is possible to write the structure func-
tions in terms of the external variablg$ , g, , 97 , g5 and

x and integrals over the internal variablesor x’ and k*.
The divergent part of the structure functiofig can now be
written as

5 [t dx m q;
fl :_'77'|J< T _+
0 (1=x")xx" (x"=1)d; 0

The energy denominators can also be written in terms of

internal and external variables. The poles are given by Egs.

(36), (37), and(64):

20t (H- —H3)=2q" p7+kiz+m2_k§2+m2
e ! 2k 2k

12 2 12 2
:(p2+piz)1+x_kl +m _k2 +m
X 1-x' xx

(A5)

K24 u2  kiZ+m?
Jf_
2k* 2k;

2qI(HI—H‘>=2qI(q1‘—

K2+ u?  KE24+m?

x’' 1—x’

2, 12
=0Q1+d;"—

(AB)

1 1\ Y1 o1\t
X +— —+——| , (A10
1-x" XX x' 1-x
e (1 dx m
f2 = —17l - n
0(1—-x")x(1—x) xq,
1 1\7H1 o1\t
X +—| |=+—| . (A1)
1—x' Xx x 1-x

Upon cancelling common factors, and using E42), we
can evaluate the integrals and obtain

2 =—f=gi—t——=nx

(A12)

Therefore condition(75) is verified.
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