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SU„2… calorons and magnetic monopoles
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We investigate the self-dual Yang-Mills gauge configurations onR33S1 when the gauge symmetry SU~2!
is broken to U~1! by the Wilson loop. We construct the explicit field configuration for a single instanton by the
Nahm method and show that an instanton is composed of two self-dual monopoles of opposite magnetic
charge. We normalize the moduli space metric of an instanton and study various limits of the field configu-
ration and its moduli space metric.@S0556-2821~98!07014-3#

PACS number~s!: 11.27.1d, 11.10.Wx, 11.25.Mj
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I. INTRODUCTION

Recently there has been some interest in understan
the relation between calorons, or periodic instantons,
magnetic monopoles onR33S1, where the gauge symmetr
is broken maximally by the Wilson loop. Especially it ha
been argued that instantons are composite objects mad
magnetic monopoles@1–3#. Among self-dual configurations
of a theory with a simple gauge groupG of rank r , the
configurations independent of theS1 coordinate satisfy the
ordinary Bogomol’nyi-Prasad-Sommerfield~BPS! equations
for magnetic monopoles. OnR3 there existr types of funda-
mental BPS magnetic monopoles associated with e
simple root@4#. OnR33S1, it was shown that there exists a
additional type of fundamental monopole associated with
lowest negative root@1,2#. It was argued that a single instan
ton is made of a unique combination ofr 11 different fun-
damental monopoles such that the net magnetic charg
zero @2,1#. Also the explicit moduli space metric of a sing
instanton in SU(n) theory has been obtained up to norm
ization @1#.

In this paper we construct the explicit field configurati
for a single SU~2! caloron onR33S1 with a nontrivial Wil-
son loop by using the Nahm construction and show tha
single caloron is made of two distinct fundamental magne
monopoles. We also examine various limits of the config
ration, especially the trivial Wilson loop limit and the ze
temperature limit. We also investigate the moduli space
its metric.

For convenience, we imagine a five dimensional the
with an additional time directionx0. Thus our instantons an
monopoles will appear as solitons in this theory. Howev
they may also play an important role in finite temperatu
Yang-Mills theory wherex4 is the Euclidean time. The cal
oron, or periodic instanton, solutions were found in the l
1970s@5–7#. The difference between those works and o
lies on the Wilson loopW(x)5P exp (*dx4A4). In all those
cases@5# the Wilson loop is trivial and so magnetic mon
pole solutions appear only when the scale of the instanto
taken to be infinity@6#. In our case, the Wilson loop is non
trivial. In a chosen gauge the value ofA4 at spatial infinity
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plays the role of the Higgs expectation value.
In the Feynman path integral, we can require that only

field configurations periodic inx4P@0,b# contribute. The al-
lowed local gauge transformations are the ones which le
the gauge field single-valued. For the gauge group SU~2!,
there is a group of topologically nontrivial~large! gauge
transformations, for example,

UL~x4!5 exp S 2 i
px4

b
s3D . ~2!

Even though it is not single-valued asUL(x41b)5
2UL(x4), it is acceptable since the gauge fields rem
single-valued. Using this large gauge transformation and
Weyl reflection ei (p/4)s2, which sendsu→2u, we can
choose the range ofu to be

0<u<
2p

b
. ~3!

WhenuÞ0,2p/b, one can see easily that the gauge symm
try is spontaneously broken from SU~2! to U~1!. There is
also an additional global U~1! symmetry corresponding to
the translational symmetry onS1 @1#. @Of course, one can
gauge away the background field~1! once we impose the
condition Am(x41b)5ei (u/2)s3Am(x4)e2 i (u/2)s3 for accept-
able gauge configurations.#

In the normalization where the coupling constante251,
the action, or four dimensional energy, is bounded from
low, S>8p2uku, by the topological index

k5
1

64p2E d4x emnrsFmn
a Frs

a

5
1

16p2E d3Si e i jk~F jk
a A4

a2Aj
a]4Ak

a!. ~4!

The boundary contributions can be nonzero near gauge
gularities and spatial infinity. Whenk.0, the bound is satu-
rated by the field configurations satisfying self-dual equ
tions
© 1998 The American Physical Society11-1
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Fi j 5e i jk~DkA42]4Ak!. ~5!

When the asymptotic value ofA4 lies in the interval~3!, it
was shown that there exist self-dual configurations for t
kinds of fundamental magnetic monopoles of four ze
modes@1,2#. One configuration is the ordinary BPS solutio
which is independent ofx4. It describes monopoles of pos
tive magnetic charge 4p and asymptotic Higgs valueu. An-
other solution is an ordinary monopole with asympto
Higgs value 2p/b2u. We need to apply a large gauge tran
formation~2! and a Weyl reflection to this solution to get th
right boundary condition. It describes monopoles of nega
magnetic charge24p. The topological charges of both typ
of monopoles are positive and are given, respectively, b

k15
bu

2p
, k2512

bu

2p
. ~6!

The masses of magnetic monopoles in a conventional s
are the magnetic charge times the length scale, and so

m154pu, m254pS 2p

b
2uD . ~7!

As five dimensional solitons, the monopoles really ca
massbm1 andbm2. Each type of monopole can carry ele
tric chargeqi , which is integer quantized as they arise fro
W boson excitations.

The reason for the opposite charge of these two mo
poles can be seen easily in the unitary gauge. For the
monopole,A4 increases from zero tou as one moves from
monopole core to spatial infinity. For the second monopo
the value ofA4 decreases from 2p/b to u as one moves
from monopole core to spatial infinity. The magnetic field
proportional to the spatial derivative ofA4 and so the two
monopoles carry opposite charge. However, there is no s
force between them because the Higgs interaction is n
repulsive, as one can see from the mass formula, and it
cels the magnetic attraction exactly. That is why in princip
two solutions can be superposed. The configurations for
superposed distinct fundamental monopoles will satisfy
self-dual equations and have zero total magnetic charge,
topological charge, and eight zero modes. Those are exa
the field configurations for a single instanton.

Another interesting question is to find the moduli spa
metric. The moduli space of a single instanton onR33S1 is
found up to right coefficients. Especially, the relative mod
space for a single instanton was argued to be Taub-N
~Newman-Unti-Tamburino! with Z2 singularity @1#. We find
the exact moduli space metric and the moduli space by u
the constituent monopole picture@8,9#.

The plan of this paper is as follows. In Sec. II, we brie
review the Nahm formalism and use it to construct the fi
configuration for a single instanton onR33S1 with the non-
trivial Wilson loop. In Sec. III, we show that the field con
figuration approaches the single monopole configuration
the expected positions of monopoles. This shows tha
single instanton solution is a complicated superposition
two monopole configurations. In Sec. IV, we study the fie
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configuration outside the monopole core region. In Sec.
we show that our solution has a gauge singularity at cen
of-mass, which leads to the unit topological charge. In S
VI, we take the limit where one of the monopoles becom
massless and show that our solution becomes the w
known periodic instanton. In Sec. VII, we take the zero te
perature limit and obtain the instanton solution inR4. In Sec.
VIII, we find the moduli space and its metric. In Sec. IX, w
conclude with some remarks.

II. THE NAHM CONSTRUCTION

The Nahm construction uses the Nahm data and the s
tion of the Atiyah-Drinfeld-Hitchin-Manin-Nahm~ADHMN !
equations to construct the self-dual magnetic monopole c
figurations@10,11#. In addition, by studying the moduli spac
of the Nahm data, one can construct the moduli space me
of the corresponding magnetic monopole configurations.
pecially in the SU~2! gauge theory, there has been consid
able work in the Nahm construction of magnetic monopo
@10#.

For an SU~2! gauge theory onR33S1, there are three
relevant time intervals for the Nahm equation:

2
p

b
,t,2

u

2
, 2

u

2
,t,

u

2
,

u

2
,t,

p

b
. ~8!

Because we are considering calorons, we should require
Nahm data to be periodic in the time variablet in the Nahm
equations@3#. The first and last intervals correspond
monopoles of topological chargek2 and the second interva
corresponds to monopoles of topological chargek1. Since a
single instanton is made of two distinct monopoles, we ne
to introduce the jumping condition at the boundaryt5
6u/2.

In general, the Nahm data consist of a family of trip
Hermitian matrix functionsT(t), of dimensionsl (t)3 l (t),
defined in every interval, together with triple matricesap of
dimensionl (tp)3 l (tp), defined at each pointtp where l (t)
does not jump. The valuel (t) in each interval is the numbe
of corresponding monopoles. These should satisfy the Na
equations

dTi

dt
2 i @T4 ,Ti #52 i e i jkTjTk1(

p
~aP! id~ t2tP!. ~9!

When l (tP2e)Þ l (tP1e), there is a usual boundary cond
tion on Nahm data on both sides oftP . Since the time-
interval is periodic in 2p/b, T(2p/b)5T(p/b). Associ-
ated withaP , there exists a 2l (tP)-component row vectoraP
satisfying

aP
†aP5aP•s2 i ~aP!0I 2l ~ tP!32l ~ tP! . ~10!

The next step is to find 2l (t)32 matrix functionsv(t)
and 2-component row vectorsSp obeying the Atiyah-
Drinfeld-Hitchin-Manin-Nahm~ADHMN ! equation
1-2
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05F2
d

dt
1~T1x!•s1 ix4Gv1(

P
aP

†SPd~ t2tP!.

~11!

The matrixv(t) is periodic,v(2p/b)5v(p/b). These ma-
trices should satisfy the normalization condition

I 2325E
2p/b

p/b

dt v†v1(
P

SP
†SP . ~12!

Then, the corresponding self-dual gauge field configura
is given by

Am5E
2p/b

p/b

dt v†~ t !]mv~ t !1(
P

SP
†]mSP

5
1

2E2p/b

p/b

dt @v†~ t !]mv~ t !2]mv†~ t !v~ t !#

1
1

2(P
@SP

†]mSP2]mSP
†SP#. ~13!

In this paper we will concern ourselves with the field co
figuration for two distinct fundamental monopoles, so th
l (t)51 for the entire interval@2p/b,p/b#. The solutions
of the Nahm equations at each interval are trivial. We rot
and translate the field configuration so that two mass
monopoles lie on thez axis. The corresponding Nahm da
are

T05T252x252„0,0,~x2!3…,

T152x152„0,0,~x1!3…, ~14!

wherex1 ,x2 are the positions of two massive monopoles.
our choice, the distance between two monopoles isD5(x2
2x1)3.0. For a given coordinate pointx, we introduce its
relative positions with respect to two monopoles, as sho
in Fig. 1,

y15x2x1 , y25x2x2 , ~15!

and weighted relative positions

s15uy1 , s25S 2p

b
2uD y2 . ~16!

The center-of-mass position is

xcm5k1x11k2x2 . ~17!

FIG. 1. The position vectors for two magnetic monopoles
02501
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From Eq.~9! we get the jumping functions (a1) i5Dd i3
and (a2) i52Dd i3. Their corresponding two row vectors i
Eq. ~10! are then

a15~A2D,0!, a25~0,A2D !. ~18!

The solutions of the ADHMN equation~11! at each interval
can be expressed as

v0~ t !5
1

AN2

e[ ix41s•y2] ~ t1p/b! C2 for tPF2
p

b
,2

u

2D ,

v1~ t !5
1

AN1

e[ ix41s•y1] t C1 for tPS 2
u

2
,
u

2D ,

v2~ t !5
1

AN2

e[ ix41s•y2] ~ t2p/b! C2 for tPS u

2
,
p

b G ,
~19!

whereCi are 232 matrices and

Ni5
1

yi
sinh si~ i 51,2!. ~20!

The periodic conditionv0(2T/2)5v2(T/2) is automatically
satisfied. For this solution, the normalization condition~12!
becomes

I 2325C1
†C11C2

†C21S1
†S11S2

†S2 . ~21!

To find C1 ,C2 andS1 ,S2, we use the normalization con
dition ~21! and the discontinuity equations derived from E
~11!. In addition, we require the gauge field~14! to be single-
valued. Then,Ci and Si are determined uniquely up to ac
ceptable gauge transformations. TheS1 and S2 can be re-
garded as the first and second row vectors of a 232 matrix
S, which takes the explicit form

S5
1

AN
e2 i ~u/2!x4s3, ~22!

where

N511
2D

M $N1„coshs22~ ŷ2!3 sinh s2…

1N2„coshs11~ ŷ1!3 sinh s1…%. ~23!

The two matricesCi are more complicated. It is useful firs
to introduce two 232 matrices,

B15ei ~p/b!x4e2~s/2!•s1e2~s/2!•s22e2 i ~p/b!x4e~s/2!•s1e~s/2!•s2,

B25ei ~p/b!x4e2~s/2!•s2e2~s/2!•s12e2 i ~p/b!x4e~s/2!•s2e~s/2!•s1,
~24!

and a scalar quantity
1-3
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M52H coshs1 coshs 21 ŷ1• ŷ2 sinh s1 sinh s2

2cosS 2p

b
x4D J , ~25!

whereM5B1B1
†5B2B2

† . Then the desired expression fo
Ci ’s are given as

C15A2DN1

N
B1

†

M @e2~s/2!•s2Q11e~s/2!•s2Q2#e2 i ~p/b!x4s3,

C25A2DN2

N
B2

†

M @e~s/2!•s1Q11e2~s/2!•s1Q2# ~26!

with projection operators

Q65
16s3

2
. ~27!

The gauge field~14! becomes

Am~x,x4!5C1
†Vm~y1 ;u!C1

1C2
†VmS y2 ;

2p

b
2uDC21C1

†]mC11C2
†]mC2

1S†]mS, ~28!

whereVm(x;u) is the ordinary BPS monopole solution,

V4~x;u!5
sa

2i
x̂aF 1

uxu
2

u

coth~uuxu!G ,
Vi~x;u!5

sa

2i
eai j x̂ jF 1

uxu
2

u

sinh~uuxu!G .
~29!

The field configuration~28! is the desired expression for
single instanton. Under the gauge transformationAm
→UAmU†2]mUU†, we seeCi→CiU

† andS→SU†.
Notice thatM vanishes at only one point

xsingular5~xcm,x450!. ~30!

The gauge field~28! turns out to have a gauge singularity
this point as we will see later.

III. NEAR EACH MONOPOLE

To see the field configuration~28! describe two magnetic
monopoles of opposite charge, let us consider the limitD
@1/u,(2p/b2u)21 so that their cores do not overlap. W
expect the configuration to approach that of each monop
nearx1 or x2. If we are near the first monopole so thatuy1u
!D, we see easily that

C2 ,S1 ,S2;
1

AD
, ~31!
02501
le

and

C15

s3 cosh
s1

2
2s• ŷ1 sinh

s1

2

Acoshs12~ ŷ1!3 sinh s1

1OS 1

D
D , ~32!

which is a single-valued unitary matrix. Thus, the who
gauge configuration~28! becomes approximately a gaug
transformation of the single monopole configurati
Vm(y1 ;u).

Similarly, near the second monopole,uy2u!D, we see that

C1 ,S1 ,S2;
1

AD
, ~33!

and

C25

2s3 cosh
s2

2
2s• ŷ2 sinh

s2

2

Acoshs21~ ŷ2!3 sinh s2

e2 i ~px4 /b!s3, ~34!

which is a unitary matrix. Thus, the field configuration~28!
becomes a gauge transformation of the second mono
configuration, but the sign of magnetic charge is changed
the large gauge transformatione2 i (px4 /b)s3. The above dis-
cussion shows that one can identify individual magne
monopoles when their cores are not overlapping.

IV. OUTSIDE MONOPOLE CORE

Outside monopole cores1 ,s2@1, we can neglect expo
nentially small terms. Especially we see

M'
1

2
es11s2~11 ŷ1• ŷ2!,

N'11
D

y1y2

y11y21D

11 ŷ1• ŷ2

. ~35!

From this we get

C1'A D

y1N
2

11 ŷ1• ŷ2

~P12P22Q12P11P21Q2!,

~36!

C2'A D

y2N
2

11 ŷ1• ŷ2

~P22P12Q2

2P21P11Q1!e2 i ~p/b!x4s3, ~37!

where

Pi 65
16 ŷi•s

2
, ~ i 51,2! ~38!
1-4
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are projection operators. Using these approximations, we
obtain the field configuration outside the monopole core
gion. We expect this to be purely Abelian and so a sim
superposition of Abelian fields in a unitary gauge. Howev
seeing this explicitly does not seem to be simple.

There is still immediate information following the abov
expressions. Fors1 ,s2@D, N'1 and C1;C2;AD/uxu,
making

Am52 i
u

2
s3dm41OS D

uxu2
D . ~39!

This implies that when the distance between two monopo
goes to zero, the field configuration becomes trivial, which
exactly what we hope for the zero size instanton. Also
gauge field approaches the vacuum trivially at spatial in
ity, implying no boundary contribution from spatial infinit
to the topological charge~4!. We will see in a moment tha
the only nontrivial contribution comes from the singulari
~30!.

V. NEAR SINGULARITY

To consider the singularity at Eq.~30!, we put the center-
of-mass at the origin, so that (x1)352k2D and (x2)3
5k1D. Then, by expanding the matrices aroundxm50, we
get

C1'C2'
i

A2
U~x!s , S'O~1!, ~40!

where

U~x!s
†5

x41 is3x31 i ~s1x11s2x2!q

Ax4
21x3

21~x1
21x2

2!q2
~41!

with q5sinh(2pk1k2D/b)/(2pk1k2D/b).
Thus the gauge field near the singularityxm50 becomes

Am5Us]mUs
†1O~1!, ~42!

showing that it is pure gauge singularity. The nontrivial co
tribution at this gauge singularity to the topological char
~4! is one, as expected for a single instanton.

VI. MASSLESS MONOPOLE LIMIT

We chooseu52p/b. In this case the Wilson loop be
comes trivial. The gauge symmetry is restored to the orig
SU~2! @5#. In this limit the isolated second monopole sol
tion disappears asVm(y2,2p/b2u)50. The size of the sec
ond monopole becomes infinite and its topological cha
vanishes. It loses its meaning as an isolated object.

We put the massive monopole at the origin so thaty1

5x and y25D ẑ. In this limit, N25C250. After a large
gauge transformation,e2 i (p/b)x4s3, one can see that the so
lution ~28! is
02501
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Am5
i

2
s̄mn]n ln N ~43!

with s̄ i j 5e i jksk ands̄ i452s i . In this limit the normaliza-
tion coefficient~23! is

N511
D

uxu

sinhS 2p

b
uxu D

coshS 2p

b
uxu D2cos~Tx4!

. ~44!

This is exactly the periodic instanton solution@5#, once we
require a relation

D5
pr2

b
~45!

between the intermonopole distanceD and the instanton
scale parameterr. In the zero temperature limit,b→`, one
can see that the finite size instanton solution can be obta
only if the distance between two magnetic monopoles
proaches zero.

The interpretation of this solution can be done cons
tently with the previous pictures about massless monop
@12,1#. First of all, when we remove the massless monopo
D→`, the configuration becomes pure magnetic monop
@6#. When the massless monopole is at finite distance,
field configuration near the massive monopole is purely m
netic and then the massless monopole or the non-Abe
cloud shields the magnetic charge of the massive mono
at distance scaleD and the field configuration at scal
r @D falls off quickly like a dipole field configuration@7#.

VII. ZERO TEMPERATURE LIMIT

Let us now investigate our solution at the zero tempe
ture limit b→`, which impliesu→0 by Eq.~3!. After put-
ting the center-of-mass position~17! at the origin, we see
that for finitex5(x,x4), N1'u, N2'2p/b2u, and

M'~2p/b2!2x2,

N'11
bD

px2
. ~46!

Thus the zero temperature limit ofS in Eq. ~22! is nontrivial
only if bD remains finite. This is consistent with the arg
ment after Eq.~45!. After removing the singularity at the
origin by a singular gauge transformation,U†5(x41 i s
•x)/Ax2, a 232 matrix S of Eq. ~22! becomes

S5
x41 i s•x

Ax21r2
~47!

with r25bD/p as shown in Eq.~45!. The two matrices
v1 ,v2 of Eq. ~19! are simply
1-5
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v1'v2'2
b

2p
A2D

x2
. ~48!

The gauge field~14! becomes

Am5
2 ismnxn

x21r2
, ~49!

wheres i j 5e i jksk ands i45s i . This is the standard regula
expression for a single instanton onR4 @13#.

VIII. MODULI SPACE METRIC

The relative moduli space of two constituent monopo
for a single instanton is known to be the Taub-NUT spa
with Z2 division @1#. Here we fix the normalization and pro
vide the global picture of the moduli space, which also sh
light on the zero temperature limit and the trivial Wilso
loop limit.

To fix the normalization, we consider the additional re
time directionx0, which makes our theory five dimensiona
Instantons and magnetic monopoles appear as self-dual
tons. The number of zero modes of a single instanton is e
and is the sum of the zero modes for constituent monopo
Each monopole carries four zero modes for its position
internal U~1! phase. We can divide eight instanton ze
modes into four for the center of mass motion of monopo
and four for the relative motions of magnetic monopol
Defining the moduli space is quite similar to the monop
case@14#. For the infinitesimal change of the moduli param
eterszA , A51,..,8, the corresponding infinitesimal chan
dAAm would satisfy the background gauge and the lineari
self-dual equations. Then the moduli space metric is gi
by

GAB5E d4x dAAmdBAm . ~50!

One can easily see that this space should be hyper-Ka¨hler by
generalizing the argument in Ref.@14#.

The detailed derivation of the moduli space of the
monopoles is given before@8,9#. @Since their magnetic
charges belong to the same U~1! group with opposite sign
the value of the parameterl in Ref. @8# is two.# Each mono-
pole is imagined to carry corresponding integer quanti
electric charge,q1 ,q2. The only modification for the case i
hand is that we have to integrate overx4. This leads to an
overall multiplicative factorb on the effective low energy
Lagrangian. The center-of-mass moduli space is justR3

3S1. Sinceb(m11m2)58p2, the metric for the center-of
mass moduli space becomes

dsc.m.
2 58p2S dR21

b2

4p2
dx2D , ~51!

whereR is the center-of-mass position andx is the conjugate
variable for the total electric charge. The total electric cha
is qx5k1q11k2q2 @8#, which turns out to be thex4 momen-
02501
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tum @1#. This charge need not be quantized@1# and x lies
along the real lineR. Thus, we cannot identifybx/(2p)
with x4, unlessq15q2. The overall coefficient 8p2 is the
mass of instanton.

The relative massm1m2 /(m11m2) between two mono-
poles is 8p2k1k2 /b. We introduce the relative position be
tween two monopolesr5x12x2 and note thatur u5D. The
metric for the relative moduli space@obtained after multiply-
ing b to Eq. ~5.8! in Ref. @8# # is

dsrel
2 58p2k1k2@~11r 0 /r !dr2

1r 0
2~11r 0 /r !21

„dc1w~r !•dr …2#, ~52!

wherer 05b/(2pk1k2) andw(r ) is the Dirac potential such
that¹3w5¹(1/r ). This is the Taub-NUT space with lengt
paramterr 0/2. Since both monopoles can carry only integ
electric charge, their relative chargeqc5q15q2 is integer
quantized instead of half-integer quantized as in the SU~3!
case@9#. Thus their relative phasec should have the interva
@0,2p# instead of@0,4p#. This is the origin ofZ2 orbifold
singularity of the relative moduli spaceM0. The total
moduli space can be found by a similar discussion as
monopoles@8,9# and is given as

M5R33
R13M0

Z
, ~53!

where the generator of the identity mapZ is (x,c)5(x
12p,c12pk2).

In the zero temperature limitb→`, or in the limit where
symmetry is restored, say,k2→0, the relative metric be-
comes flat. This is similar to the massless limit of the relat
moduli space metric in SO~5! @12#. After using the instanton
scale parameterr in Eq. ~45!, the metric~52! becomes

ds2516p2~dr21r2dV3
2!, ~54!

wheredV3
2 is the metric of a unit three sphere. The over

coefficient can be checked directly by calculatin
*d4x(drAm

a )2, which is straightforward because]Am
a /]r of

Eq. ~49! satisfies the background gauge,DmdAm50. Since
the adjoint matters belong to SO~3!, so the gauge orbit of a
single instanton isS3/Z2, implying theZ2 orbifold singular-
ity at origin.

IX. CONCLUDING REMARKS

By using the Nahm construction, we have found the fie
configuration for a single instanton in the SU~2! gauge
theory onR33S1. When the gauge group is spontaneou
broken by the Wilson loop, a single instanton is shown to
composed of two fundamental monopoles of opposite m
netic charge. By taking various limits, our solution is show
to be consistent with the previously known ideas about p
odic instantons, massless monopoles and zero temper
instantons.

There are several interesting implications from our wo
as mentioned in Refs.@1,2#. Here we also see that the ze
temperature limit may be interesting. At the zero temperat
1-6
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limit of a single caloron, the positions of two monopol
should come together to the center in order to get a finite
instanton, which makes the monopole picture somew
trivial. However the story cannot be all there is for the tw
caloron case. Even at the zero temperature limit of t
close-by calorons, there are no identifiable instanton p
tions @15#. Thus, it is not clear where the four constitue
monopoles for two calorons will end up at the zero tempe
ture limit. Thus, we hope that the picture of composite
stantons and their constituent monopoles still survives e
at zero temperature in some sense, say, after Abelian pro
d-

02501
e
at

o
i-

-
-
n
c-

tion @16#, and leads to new insight on understanding the c
ral symmetry and confinement in zero temperature QCD

Note added.While writing this paper, we became awa
of Ref. @17# which has a considerable overlap with our wor

ACKNOWLEDGMENTS

We like to thank Erick Weinberg and Piljin Yi for usefu
discussions on the Nahm construction. This work was s
ported in part by the U.S. Department of Energy.
,

,

-

@1# K. Lee and P. Yi, Phys. Rev. D56, 3711~1997!.
@2# K. Lee, Phys. Lett. B426, 323 ~1998!.
@3# W. Nahm, inGroup Theoretical Methods in Physics, Proceed-

ings of the International Colloquium, Trieste, Italy, 1983, e
ited by D. Denardoet al. ~Springer, Berlin, 1984!; H. Garland
and M. Murray, Commun. Math. Phys.120, 335 ~1988!.

@4# E.J. Weinberg, Nucl. Phys.B167, 500 ~1980!.
@5# B.J. Harrington and H.K. Shepard, Phys. Rev. D17, 2122

~1978!.
@6# P. Rossi, Nucl. Phys.B149, 170 ~1979!.
@7# D. Gross, R. Pisarski, and L.G. Yaffe, Rev. Mod. Phys.53, 43

~1981!.
@8# K. Lee, E.J. Weinberg, and P. Yi, Phys. Rev. D54, 1633

~1996!.
@9# K. Lee, E.J. Weinberg, and P. Yi, Phys. Lett. B376, 97 ~1996!;

J.P. Gauntlett and D.A. Lowe, Nucl. Phys.B472, 194 ~1996!;
S.A. Connell~unpublished!.
@10# W. Nahm, Phys. Lett.90B, 413 ~1980!; N.J. Hitchin, Com-
mun. Math. Phys.89, 145~1983!; E. Corrigan and P. Goddard
Ann. Phys.~N.Y.! 154, 253 ~1984!; H. Nakajima, inEinstein
Metrics and Yang-Mills Connections, edited by T. Mabuch
et al. ~Marcel Dekker, New York, 1993!.

@11# M.F. Atiyah, N.J. Hitchin, V.G. Drinfeld, and Tu.I. Mannin
Phys. Lett.65A, 185 ~1978!.

@12# K. Lee, E.J. Weinberg, and P. Yi, Phys. Rev. D54, 6351
~1996!.

@13# A.A. Belavin, A.M. Polyakov, A.S. Shvarts, and Yu.S. Tyup
kin, Phys. Lett.59B, 85 ~1975!.

@14# J.P. Gauntlett, Nucl. Phys.B411, 433 ~1994!.
@15# R. Jackiw, C. Nohl, and C. Rebbi, Phys. Rev. D15, 1642

~1977!; N.H. Christ, E.J. Weinberg, and N.K. Stanton,ibid. 18,
2013 ~1978!.

@16# G. ’t Hooft, Nucl. Phys.B190, 455 ~1981!.
@17# T.C. Kraan and P. van Baal, Phys. Lett. B428, 268 ~1998!.
1-7


