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We investigate the self-dual Yang-Mills gauge configurationdRdm St when the gauge symmetry $2J
is broken to W1) by the Wilson loop. We construct the explicit field configuration for a single instanton by the
Nahm method and show that an instanton is composed of two self-dual monopoles of opposite magnetic
charge. We normalize the moduli space metric of an instanton and study various limits of the field configu-
ration and its moduli space metriS0556-282(198)07014-3

PACS numbdrs): 11.27+d, 11.10.Wx, 11.25.Mj

I. INTRODUCTION u
(Ag)=—i503 (€N
Recently there has been some interest in understanding

the relation between calorons, or periodic instantons, andjays the role of the Higgs expectation value.

magnetic monopoles oR®x S, where the gauge symmetry | the Feynman path integral, we can require that only the
is broken maximally by the Wilson loop. Especially it has field configurations periodic in, [0,8] contribute. The al-
been argued that instantons are composite objects made g{yed local gauge transformations are the ones which leave
magnetic monopolefl-3]. Among self-dual configurations the gauge field single-valued. For the gauge groug25U

of a theory with a simple gauge group of rankr, the  there is a group of topologically nontrividlarge gauge
configurations independent of tt& coordinate satisfy the transformations, for example,
ordinary Bogomol'nyi-Prasad-SommerfielBPS equations
for magnetic monopoles. OR® there exist types of funda- )
mental BPS magnetic monopoles associated with each UL (Xq)= exp( —I 7‘73>- @
simple root{4]. OnR3x S, it was shown that there exists an
additional type of fundamental monopole associated with thgeyven though it is not single-valued ab,(x,+3)=
lowest negative rodtl,2]. It was argued that a single instan- —uy, (x,), it is acceptable since the gauge fields remain
ton is made of a unique combination of- 1 different fun-  single-valued. Using this large gauge transformation and the
damental monopoles such that the net magnetic charge \&eyl| reflection €'("*72, which sendsu— —u, we can
zero[2,1]. Also the explicit moduli space metric of a single choose the range of to be
instanton in SUR) theory has been obtained up to normal-
ization[1]. 27

In this paper we construct the explicit field configuration Osus 7 ©)
for a single SW2) caloron onR®x St with a nontrivial Wil-
son IOOp by USing the Nahm construction and show that a/\/henugﬁolzﬂ-/ﬁ, one can see eaSny that the gauge symme-
single caloron is made of two distinct fundamental magnetigry js spontaneously broken from € to U(1). There is
m0n0p0|eS. We also examine various limits of the Conﬁgu-a|so an additional g|oba| u) Symmetry Corresponding to
ration, especially the trivial Wilson loop limit and the zero the translational symmetry o8! [1]. [Of course, one can
temperature limit. We also investigate the moduli space angauge away the background field) once we impose the

its metric. o o _ condition A ,(x,+ B8) =€'(273A (x,)e” (W25 for accept-
For convenience, we imagine a five dimensional theoryaple gauge configuratiors.
with an additional time directiory. Thus our instantons and In the normalization where the coupling constaft=1,

monopoles will appear as solitons in this theory. Howeverine action, or four dimensional energy, is bounded from be-
they may also play an important role in finite temperaturey,, S=8m2|k|, by the topological index
Yang-Mills theory wherex, is the Euclidean time. The cal-

oron, or periodic instanton, solutions were found in the late 1
1970s[5-7]. The difference between those works and ours k= Zf d*X €,,p0F 5, F oy
lies on the Wilson loopN(x) =P exp (fdx,A,). In all those 64

cased 5] the Wilson loop is trivial and so magnetic mono-
pole solutions appear only when the scale of the instanton is _ 1
taken to be infinity6]. In our case, the Wilson loop is non- 1642
trivial. In a chosen gauge the value Af at spatial infinity

f d°S; €ijc(FAT—ATIAR). 4

The boundary contributions can be nonzero near gauge sin-

gularities and spatial infinity. Wheki>0, the bound is satu-
*Electronic address: klee@phya.snu.ac.kr rated by the field configurations satisfying self-dual equa-
TElectronic address: chlu@cuphy3.phys.columbia.edu tions
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Fij = €ijc(DAg— d1AL). (5 configuration outside the monopole core region. In Sec. V,
we show that our solution has a gauge singularity at center-
When the asymptotic value &, lies in the interval3), it  of-mass, which leads to the unit topological charge. In Sec.
was shown that there exist self-dual configurations for twoVI, we take the limit where one of the monopoles becomes
kinds of fundamental magnetic monopoles of four zeromassless and show that our solution becomes the well-
modeg 1,2]. One configuration is the ordinary BPS solution, known periodic instanton. In Sec. VII, we take the zero tem-
which is independent af,. It describes monopoles of posi- perature limit and obtain the instanton solutiorRh In Sec.
tive magnetic charge# and asymptotic Higgs value. An-  VIII, we find the moduli space and its metric. In Sec. IX, we
other solution is an ordinary monopole with asymptoticconclude with some remarks.
Higgs value 27/ 8—u. We need to apply a large gauge trans-
fprmatlon(Z) and a V_\/_eyl reflect|or_1 to this solution to get th_e Il. THE NAHM CONSTRUCTION
right boundary condition. It describes monopoles of negative
magnetic charge- 4. The topological charges of both type ~ The Nahm construction uses the Nahm data and the solu-
of monopoles are positive and are given, respectively, by tion of the Atiyah-Drinfeld-Hitchin-Manin-NahntADHMN )
equations to construct the self-dual magnetic monopole con-
Bu Bu figurations[10,11]. In addition, by studying the moduli space
kl:ﬂ’ kp=1— on" ®) of the Nahm data, one can construct the moduli space metric
of the corresponding magnetic monopole configurations. Es-
The masses of magnetic monopoles in a conventional sengecially in the SW2) gauge theory, there has been consider-
are the magnetic charge times the length scale, and so  able work in the Nahm construction of magnetic monopoles

[10].
B 3 2 For an SUW2) gauge theory orR®x S!, there are three
m=4mu, my=4m B Y () relevant time intervals for the Nahm equation:
As five dimensional solitons, the monopoles really carry T u u u u T
masspBm; and 8m,. Each type of monopole can carry elec- - E<t< —5 T y=tss, §<t<g- ®)

tric chargeq; , which is integer quantized as they arise from
W boson excitations.

The reason for the opposite charge of these two mono
poles can be seen easily in the unitary gauge. For the fir
monopole,A, increases from zero ta as one moves from
monopole core to spatial infinity. For the second monopole

:he value 0fA|4 decreiases tf_rolr_n ;2/'[: t(_)l_# as onet_m(;c)_vleds_ single instanton is made of two distinct monopoles, we need
rom monopole core to spatial Infinity. ' he magnetc NIl 1S i, niraquce the jumping condition at the boundary
proportional to the spatial derivative @&, and so the two +u/2

monopoles carry opposite charge. However, there is no static

force between them because the Higgs interaction is NOW, o rmitian matrix functionsT (), of dimensions (t) x1(t),

repulsive, as one can see from the mass formula_, anq It Callefined in every interval, together with triple matriagg of
cels the magnetic attraction exactly. That is why in p”nC'pledimensionl(tp)xI(tp) defined at each poirty, wherel (t)

two solutions can be superposed. The configurations_ for tW?joes not jump. The valu€t) in each interval is the number
superposed distinct fundamental monopoles will satisfy th%]c corresponding monopoles. These should satisfy the Nahm
self-dual equations and have zero total magnetic charge, unit_ ~~ . '
' . Fquatlons
topological charge, and eight zero modes. Those are exactly
the field configurations for a single instanton. dT
Another interesting question is to find the moduli space i _
. : . . . ———1[T,4,T;]= i€y T T+ io(t—tp). (9
metric. The moduli space of a single instantonRX St is gt 'TaTil Cijk Ti Tk Ep: (ap)id(t=tp). (9
found up to right coefficients. Especially, the relative moduli

space for a single instanton was argued to be Taub-NU{yhen|(t,—€)#I(tp+€), there is a usual boundary condi-
(Newman-Unti-Tamburinpwith Z, singularity[1]. We find  ion on Nahm data on both sides of. Since the time-
the exact moduli space metric and the moduli space by usingierval is periodic in 2/, T(—mlB)=T(wlB). Associ-

the constituent monopole pictuf8,9]. _ ated withap, there exists alZtp)-component row vectap
The plan of this paper is as follows. In Sec. I, we briefly satisfying

review the Nahm formalism and use it to construct the field

configuration for a single instanton &?x S* with the non- . .

trivial Wilson loop. In Sec. IIl, we show that the field con- apap=ap: o= i(ap)ol2i(tp)x2itp)
figuration approaches the single monopole configuration at

the expected positions of monopoles. This shows that a The next step is to find I2t) X2 matrix functionsv (t)
single instanton solution is a complicated superposition ond 2-component row vector§, obeying the Atiyah-
two monopole configurations. In Sec. IV, we study the fieldDrinfeld-Hitchin-Manin-Nahm(ADHMN) equation

Because we are considering calorons, we should require the
Nahm data to be periodic in the time variablan the Nahm
%quations[?;]. The first and last intervals correspond to
monopoles of topological charde and the second interval
torresponds to monopoles of topological chakgeSince a

In general, the Nahm data consist of a family of triple

(10
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X

From Eq.(9) we get the jumping functionsa(;);=D ;3
and (a,);= —D &;3. Their corresponding two row vectors in
Eq. (10) are then

Y Y
a;=(1/2D,0), a,=(0,J/2D). (18)
. 3
X 0 xem X, The solutions of the ADHMN equatioflLl) at each interval

FIG. 1. The position vectors for two magnetic monopoles. can be expressed as

1 . T u
d —_ " Alixgtoylt+mlp) 4 =
_ . + vo(t) e C, for te , )
0—[—a+(T+x)-a+|x4 v—i—; apSpo(t—tp). \/N_z B 2
(11)
. . T — 1 [iXg+o-yq]t uu
The matrixv (t) is periodic,v(— m/8)=v(w/B). These ma- vi(t)= \/N_e C, for te| - 22
trices should satisfy the normalization condition !
| :f”/ﬁ dtofo+2, ShSp. (12) vz(t)=ie“x“‘"yﬂ(t’”’ﬁ) C, for te(g,z},
22~ | 2/ PP JN, 2'B
(19
Then, the corresponding self-dual gauge field configuration
is given by whereC; are 2x2 matrices and
B + + 1 .
A= /Bdtv (t)ﬁﬂv(t)ﬂL; Spd,Sp Ni=ysmhsi(|=l,2). (20
oy 1
_ = T _ t The periodic conditioo(—T/2)=v,(T/2) is automatically
ZJ_W/ﬁdt [0/ (09w (D (t)] satisfied. For this solution, the normalization conditid?®)
becomes
+12 [Shd,Sp—9,ShSp] (13
24 IPOWIR T OuseeRd l5x2=CJCy+CJC,+S[S1 + S, (2D

In this paper we will concern ourselves with the field con- To find C;,C, andS,,S,, we use the normalization con-
figuration for two distinct fundamental monopoles, so thatdition (21) and the discontinuity equations derived from Eq.
I(t)=1 for the entire interva] — «/3,7/B]. The solutions (11). In addition, we require the gauge figlt¥) to be single-
of the Nahm equations at each interval are trivial. We rotatevalued. ThenC; and S, are determined uniquely up to ac-
and translate the field configuration so that two massiveeptable gauge transformations. T8g and S, can be re-
monopoles lie on the axis. The corresponding Nahm data garded as the first and second row vectors ofx&22matrix

are S, which takes the explicit form
T0:T2:_X2:_(0,0,(X2)3), 1 )
S= _efl(u/2)x4u-3, (22)
T]_: —X1=—(0,0(X1)3), (14) \/N

wherex; ,X, are the positions of two massive monopoles. Inwhere
our choice, the distance between two monopoleb #s(x,
—X41)3>0. For a given coordinate poimx, we introduce its

2D n
4 I . =1+ —{N,(coshs,— sinhs
relative positions with respect to two monopoles, as shown N g (N 2~ (¥2)s 2

in Fig. 1, .
+Ny(coshs; +(y;)5 sinh sy)}. (23
Y1i=X—Xg,  Y2=X—Xp, (15
The two matrice<C; are more complicated. It is useful first
and weighted relative positions to introduce two 22 matrices,
2 Blzei(W/ﬁ)X4e—(0/2)'516.—(0/2)-52_e—i(ﬂT/B)X4e(o'/2)~sle(<7/2)-52'
S =Uuyi, sz=(7—U)yz- (16)
B, = ¢! (7h)Xug (71256~ (012):51 _ g=i(7/B)Xag(012)-Spg(012) 51
The center-of-mass position is (29
Xem= K1X1+KoXs. a7 and a scalar quantity
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M= 2{ coshs; costs,+Y; -y, sinhs,; sinhs,

oft]

where M=B,B]=B,B}.
C,’s are given as

[2DN, B

Cl— Nl [ 7((r/2) SZQ +e(r/2 SZQ ]e I(ﬂ'/B)X4(r3
2DN, BZ (a12)- —(al2)-

Co= V7 &7 7Q e 770 ]

with projection operators

(25

Then the desired expression for

(26)

1i0’3
2

Q.= (27

The gauge field14) becomes
Au(XXa)=CIV,,(y1;u)Cy

u|C,+Clg,Ci+Cla,C,

t 2
+CV, Y2; e
+S'9,S, (28

whereV ,(x;u) is the ordinary BPS monopole solution,

v 1 u
S5 = 5% ]~ Cotiul)
v, 11 u
(06U = 57 X 5 Sinkul)

(29

The field configuration(28) is the desired expression for a
single instanton. Under the gauge transformatidn,
—UA,U"-9,UU", we seeC;—C;U" andS—SU".

Notice that/\/l vanishes at only one point

Xsingular (Xcm 1Xq= 0) (30)

The gauge field28) turns out to have a gauge singularity at

this point as we will see later.

IIl. NEAR EACH MONOPOLE

To see the field configuratiof28) describe two magnetic
monopoles of opposite charge, let us consider the Ibnit
>1/u,(27/B—u) ! so that their cores do not overlap. We

expect the configuration to approach that of each monopole

nearx; or X,. If we are near the first monopole so thgt|
<D, we see easily that

CZvSZI.!SZN (31)

1
\/—5.
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and
Sy S,
o3 cosh—— oy, smhz 1
C,= = +0| —|, (32
\/coshsl— (y1)3 Sinhs; D

which is a single-valued unitary matrix. Thus, the whole
gauge configuratior(28) becomes approximately a gauge
transformation of the single monopole configuration
Vu(y1:u).

Similarly, near the second monopolg;| <D, we see that

1
C1,S,S~ —, (33
1,1 SZ \/5
and
S, S,
—03 coshz—a y, sinh—
C2: e*i(WX4/,3)G'3, (34)

\/coshsz+ (Y»)3 sinh's,

which is a unitary matrix. Thus, the field configurati2s)
becomes a gauge transformation of the second monopole
configuration, but the sign of magnetic charge is changed by
the large gauge transformatien'(™+/£)?s_ The above dis-
cussion shows that one can identify individual magnetic
monopoles when their cores are not overlapping.

IV. OUTSIDE MONOPOLE CORE

Outside monopole cors;,s,>1, we can neglect expo-
nentially small terms. Especially we see

1 A A
M*Eesﬁsz(l"‘)’l')’z)a

D +y,+D
N1y — 1Y2T 2 (35
Yi¥2 1+y;-Y,
From this we get
C \/ P 2 (P,_P,_Q,—P;.P,.Q_)
1 Nl"f‘g/l 92 1-F2-~+ 1+ 2+~ -/
(36)
Co~1\/ b 2 (P,_P;_Q
2 YoaN1+4y,.y, 2
_P2+P1+Q+)e_l(7/ﬁ)x4g3, (37)
where
1+y,
Pi.= 5 (i=1,2 (38
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are projection operators. Using these approximations, we can —

obtain the field configuration outside the monopole core re- AMZEUW% In N (43

gion. We expect this to be purely Abelian and so a simple

superposition of Abelian fields in a unitary gauge. However . — — o .

seeing this explicitly does not seem to be simple. with oy = €0 ande,= — o7 In this limit the normaliza-
There is still immediate information following the above tion coefficient(23) is

expressions. Fors;,s,>D, N~1 and C,;~C,~D/|x]|,

; 2
making b sinl—(%lxl)
A#:—i§0'35’u4+0 W) (39 COS.{F|X| —cogTxy)

This implies that when the distance between two monopolegis is exactly the periodic instanton solutifhl, once we
goes to zero, the field configuration becomes trivial, which ig€auire a relation

exactly what we hope for the zero size instanton. Also the )

gauge field approaches the vacuum trivially at spatial infin- D= - (45)
ity, implying no boundary contribution from spatial infinity B

to the topological chargét). We will see in a moment that

the only nontrivial contribution comes from the singularity between the intermonopole distanBe and the instanton

(30). scale parametgs. In the zero temperature limiB— o, one
can see that the finite size instanton solution can be obtained
V. NEAR SINGULARITY only if the distance between two magnetic monopoles ap-
proaches zero.
To consider the singularity at E¢30), we put the center- The interpretation of this solution can be done consis-

of-mass at the origin, so thatx{);=—k,D and ,); tently with the previous pictures about massless monopole
=k;D. Then, by expanding the matrices arouqg=0, we  [12,1]. First of all, when we remove the massless monopole,
get D —oo, the configuration becomes pure magnetic monopole
[6]. When the massless monopole is at finite distance, the
i field configuration near the massive monopole is purely mag-
C1~C2~TU(X)Sa S~0(1), (40 netic and then the massless monopole or the non-Abelian
2 cloud shields the magnetic charge of the massive monopole

at distance scald and the field configuration at scale

where r>D falls off quickly like a dipole field configuratiofi7].

XqF+iozXg+i(oX+ ooX
U(x) =2 (11 + 02%p)9 (41) VIl. ZERO TEMPERATURE LIMIT

R NN ARV
VXG+HX5+ (X34 X3)q

Let us now investigate our solution at the zero tempera-
; i limit 83— o0, which impliesu—0 by Eq.(3). After put-
with = sinh(2mk;k,D/B)/(27k;k,D/B). ture S| - /
Thus the gaugl;ezfield nearl t2he singulanity=0 becomes ting the center-of-mass positiaii7) at the origin, we see
that for finitex=(x,x4), Ny~u, N,~2x/B—u, and
A,=Uy,Ul+0(1), 42
M sYu™'s O( ) ( ) M%(ZW/,BZ)ZXZ,
showing that it is pure gauge singularity. The nontrivial con-
tribution at this gauge singularity to the topological charge BD

(4) is one, as expected for a single instanton. N=1+ ﬁ (46)

VI. MASSLESS MONOPOLE LIMIT Thus the zero temperature limit &fin Eq. (22) is nontrivial
only if BD remains finite. This is consistent with the argu-

We chooseu=2/p. In this case the Wilson loop be- o1 g Eq.(45). After removing the singularity at the

comes trivial. The gauge symmetry is restored to the original .~ . : ot X
SU(2) [5]. In this limit the isolated second monopole solu- .;;%'Dgzbya zxsén?nu;?rri)(%aggz trég?fg;rgg::]oehsl, Outio
tion disappears a¢,(y,,2m/f—u)=0. The size of the sec- K a-

ond monopole becomes infinite and its topological charge

vanishes. It loses its meaning as an isolated object. S— X tio-x 47
We put the massive monopole at the origin so that N

=x and y,=Dz. In this limit, N,=C,=0. After a large
gauge transformatiore™'("£)*4?3 one can see that the so- with p?=pgD/x as shown in Eq(45). The two matrices
lution (28) is v1,05 Of EQ. (19) are simply
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B 2D tum [1]. This charge need not be quantizZgd and y lies
— (48) along the real lineR. Thus, we cannot identif\8x/(2)
with x,, unlessq;=q,. The overall coefficient 82 is the
mass of instanton.
The relative massn;m,/(m;+m,) between two mono-
, poles is 87%k;k,/B. We introduce the relative position be-
_lowX (49  ween two monopoles=x;—X, and note thatr|=D. The
X2+ p? ’ metric for the relative moduli spa¢ebtained after multiply-
ing B to Eq.(5.8 in Ref.[8] ] is
whereo;; = €0 andoj,=o; . This is the standard regular
expression for a single instanton &1 [13]. dsfe=8m2KiK[ (1+1o/r)dr?

+r2(1+ro/r)"Hdy+w(r)-dr)?], (52)

U]_’VUQ’V_Z XZ.

The gauge field14) becomes

Ay

VIIl. MODULI SPACE METRIC

The relative moduli space of two constituent monopolesVNerero=p3/(2mkikz) andw(r) is the Dirac potential such
for a single instanton is known to be the Taub-NUT spacdnatVxw=V(1/fr). This is the Taub-NUT space with length
with Z,, division [1]. Here we fix the normalization and pro- Paramtem /2. Since both monopoles can carry only integer
vide the global picture of the moduli space, which also shed§l€ctric charge, their relative chargg=q,=q, is integer
light on the zero temperature limit and the trivial Wilson duantized instead of half-integer quantized as in thé¢3pU
loop limit. case[9]j Thus their relative pha}sﬁ shoul_d _have the m_terval

To fix the normalization, we consider the additional reall 0:27] instead of{ 0,4 ]. This is the origin ofZ orbifold
time directionx®, which makes our theory five dimensional. Singularity of the relative moduli spacé,. The total
Instantons and magnetic monopoles appear as self-dual soffeduli space can be found by a similar discussion as for
tons. The number of zero modes of a single instanton is eigHfonopoleg8,9] and is given as
and is the sum of the zero modes for constituent monopoles. RIx M
Each monopole carries four zero modes for its position and M=R3x— 9
internal U1) phase. We can divide eight instanton zero Z
modes into four for the center of mass motion of monopoles . . .
and four for the relative motions of magnetic monopoles.Where the generator of the identity mapis (x.4)=(x
Defining the moduli space is quite similar to the monopole+277"/’+277k2)' o . .
case[14]. For the infinitesimal change of the moduli param- In the Z€10 temperature limg—, or in the limit V\_/here
etersz,, A=1,..8, the corresponding infinitesimal changeSYMMelry is restored, sak,—0, the relative metric be-
SxA, would satisfy the background gauge and the linearizefoMmes flat. This is similar to the massless limit of the relative

self-dual equations. Then the moduli space metric is giverﬂ’nOOIUIi space mef[ric in 56) [12]. Afte_r using the instanton
by scale parametes in Eq. (45), the metric(52) becomes

(53

ds?=16m2(dp?+ p2dQ3), (54)
Gag= J d*X SpA,88A,, . (50)
whered(3 is the metric of a unit three sphere. The overall
- : - coefficient can be checked directly by calculating
ggnee?;?zﬁ%sgeszfg?rigﬂsinsga&if hould be hyptieKay I d4x(5pAfL)_2, yvhich is straightforward becausy\ilap_ of
The detailed derivation of the moduli space of theseEd- (49 satisfies the background gaude, 5A,=0. Since
monopoles is given beforg8,9]. [Since their magnetic (e adjoint mattgrssbelong to $®), so the gauge orbit of a
charges belong to the same1ly group with opposite sign, _smgle ms_tanton i$°/Z,, implying theZ, orbifold singular-
the value of the parametarin Ref.[8] is two] Each mono- 'ty at origin.
pole is imagined to carry corresponding integer quantized
electric chargeg;,g,. The only modification for the case in IX. CONCLUDING REMARKS
hand is that we have to integrate over. This leads to an
overall multiplicative factor3 on the effective low energy .,
Lagrangian. The center-of-mass moduli space is Rt
x St. SinceB(m;+m,) =82, the metric for the center-of-
mass moduli space becomes

By using the Nahm construction, we have found the field
nfiguration for a single instanton in the &Y gauge

theory onR®x S. When the gauge group is spontaneously
broken by the Wilson loop, a single instanton is shown to be
composed of two fundamental monopoles of opposite mag-

2 netic charge. By taking various limits, our solution is shown
ds§m=87-rz dR2+ 'B—dxz) , (51) to _be_con3|stent with the previously known ideas about peri-
o 472 odic instantons, massless monopoles and zero temperature
instantons.
whereR is the center-of-mass position agds the conjugate There are several interesting implications from our work

variable for the total electric charge. The total electric chargeas mentioned in Ref§1,2]. Here we also see that the zero
is g, =k10; 1+ kzq, [8], which turns out to be the, momen-  temperature limit may be interesting. At the zero temperature
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limit of a single caloron, the positions of two monopoles tion [16], and leads to new insight on understanding the chi-
should come together to the center in order to get a finite sizeal symmetry and confinement in zero temperature QCD.
instanton, which makes the monopole picture somewhat Note addedWhile writing this paper, we became aware
trivial. However the story cannot be all there is for the two of Ref.[17] which has a considerable overlap with our work.
caloron case. Even at the zero temperature limit of two

close-by calorons, there are no identifiable instanton posi-

tions [15]. Thus, it is not clear where the four constituent ACKNOWLEDGMENTS

monopoles for two calorons will end up at the zero tempera-

ture limit. Thus, we hope that the picture of composite in- We like to thank Erick Weinberg and Piljin Yi for useful
stantons and their constituent monopoles still survives evediscussions on the Nahm construction. This work was sup-
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