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N =2 supersymmetry and dipole moments
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We derive sum rules for the magnetic and electric dipole moments of all particle statedNof 2rsuper-
multiplet. For short representations, we find agreement with previously determireld sum rules, while
there is added freedom for long representati@@sressed as certain scalar expectation validih mild
assumptions we find the simple result that the supersymmetry generated spin adds to the rfedgoieiic
dipole moment with a strength correspondingyte 2 (g.=0). This result is equally valid foN =1, this time
without any further assumptiongS0556-282(198)03714-X]

PACS numbds): 12.60.Jv, 13.40.Em

[. INTRODUCTION the gyromagnetic ratios may be expressed in terms of a
single free parameter, namely the transition moment between
One of the great successes of the Dirac theory was itthe spinj—1/2 andj+1/2 states of the multiplet. Further-
correct prediction of the gyromagnetic ratio of the electron.more, when this nondiagonal moment vanishes, the sum rule
This was particularly striking sincg=2 is twice as large as simply states thagj=2 for all members of the supermultip-
expected for the classical orbital motion of a charged pointet. In particular, this confirms the result pf] thatg=2 for
particle with angular momentuni/2. However, there is a chiral multiplet since there is no room for a transition mo-
nothing in Dirac’s theory that requiresgavalue of 2 for a  ment for superspin 0. Thus the anomalous magnetic moment
spin J=1/2 particle. Lorentz and gauge invariance do notof the electron(in a supersymmetric standard moxdielenti-
prohibit the inclusion of a Pauli term into the Dirac equation.cally vanishes, as long as supersymmetry remains unbroken.
This term would provide an additional contribution to the This is but one of the manifestations of how supersymmetry
magnetic moment of the electron and alter the valug.oA  alone provides powerful results independent of any particular
justification for its absence is that such a term would rendemodel.
the theory nonrenormalizable. Renormalizability is a matter More recently, dipole moment sum rules have been ap-
of asymptotic behavior at infinite momentum, so it was notplied in order to test the conjectured equivalence of string
surprising that Weinberfll] by demanding good asymptotic states and black holes. For this conjecture to be true, not only
behavior for the photon forward-scattering amplitudesdo masses, charges and representations have to agree, but so
showed thag=2 for arbitrary spin charged particles that do do other physical properties such as electric and magnetic
not participate in the strong interactions. More recently, Ferdipole moments. Furthermore, it was anticipateddhthat
rara, Porrati, and Telegdi2] implemented this particular examination of dipole moments would shed further light on
electromagnetic coupling prescription at the Lagrangiarthe bound state picture of black holes gmdranes. An ex-
level. This prescription is different than the minimal cou- tensive study of dipole moments for strings and black holes
pling prescription according to which all derivativég are  in an N=4 context found complete agreement between the
replaced by covariant oné3,, and which yieldsg=1/ for  gyromagnetic ratios of states in both short and intermediate
the gyromagnetic ratio of a particle of spin3]. multiplets[8]. However, in that work it was realized that the
The addition of supersymmetry leads to further consegyromagnetic ratios for short multiplets are completely de-
quences for the magnetic dipole moments. In R&fFerrara  termined based on supersymmetry alone. Thus, as long as
and Remiddi showed thaf=2 to all orders in perturbation N=4 supersymmetry is unbroken, tgefactors must neces-
theory for anN=1 chiral multiplet (superspin @ On the sarily agree between corresponding supersymmetric black
other hand, when spin-1 fieldsuperspin 1/Rare involved, holes and\Ng=1/2 heterotic string states, and hence do not
Bilchak, Gastmans, and Van Proeyj&} showed that super- provide a true test of the strings as black holes conjecture.
symmetry does not necessarily demayv 2, but neverthe- On the other hand, supersymmetry becomes a lot less restric-
less leads to a relation between théactors of the spin-1/2 tive for intermediate and long multiplets. While the corre-
and spin-1 particles of the superspin 1/2 multiplet. Subsespondence betweeNg>1/2 states and nonextremal black
quently, Ferrara and Porrd®], utilizing only the supersym- holes is not so clear, application Gfduality allowed a com-
metry algebra, found exact model independent sum rules reparison ofg-factors for intermediate black holes and corre-
lating the gyromagnetic ratios of all particles within a single sponding type-Il string states, where agreement was found
massiveN =1 supermultiplet. In particular, for a superspin [8].
multiplet (with particles of sping —1/2, j, j, andj+1/2), This issue of how much freedom is actually present in the
gyromagnetic ratios has motivated us to examine both elec-
tric and magnetic dipole moment sum rules in a more general
*Email: giannak@theory.rockefeller.edu extended supersymmetry context. Thus in the following we
TEmail: jtliu@theory.rockefeller.edu extend the results of6] and derive completely general
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=2 dipole sum rules for particles in either short or long The aboveN=2 algebra may be diagonalized by intro-
multiplets of N=2 supersymmetry. We find the interesting ducing the linear combinations
result that, contrary to expectations, tNhe=2 sum rules are
weaker than th&l=1 case in that they depend on additional
guantities(certain scalar expectation valydsyond just the
mass, electric charge and central charge of the representa-
tion. This additional freedom disappears under certain mild
assumptions, in which case tid=2 sum rules become a 1
simple generalization of thid=1 case. In particular, we find * T r4+inR _a—ieqlL
that the supersymmetry generated spin adds to the magnetic Q- V3 [F1Q% i & Q= uzil: ©
(electrig dipole moment with a factor o =2 (g.=0). _
In the next section we set our notations by discussing tha&here « is the phase of the central chargé=e'“|Z|. In
N=2 supersymmetry algebra and its representations, whileerms of these mixed chirality supercharges, the algébra
in Sec. Ill we briefly discuss the linear multiplet df=2 now takes the simple form
supersymmetry. Finally, in Sec. IV we derive model inde-
pendent sum rules for the gyromagnetic and gyroelectric ra- + + _
tios of the members of aN=2 supermultiplet. These sum {Qx 121, Qz a2t =2M +121,
rules are presented in both a completely general fashion, and
also in simplified form whenever the assumptions mentioned {Q= (121 Qz a2t =2M —Z], (6)
above are valid. Concluding remarks are presented in Sec. V.
indicating explicitly the N=2 Bogomol'nyi bound, 21
II. N=2 SUPERSYMMETRY ALGEBRA =|Z|. Massive representations thus split up into either long

) o or short multiplets, with the latter corresponding to saturation
Our starting point is theN=2 supersymmetry algebra, of the Bogomol'nyi bound, ®1=]Z|.

+ _ 1 L —: iR
Q(l/2)i_E[Q(1/2)i+|e Qiuails

which admits a single complex central chargeU+iV. For a long representation, we may rescale the super-
Using theN=2 Majorana conditiorQ'=i€'Q{(Cys), the  charges according tQZ (172 = (2M =[Z[) "12Qx 4 to re-
algebra may be expressed as cover the Clifford algebra for four fermionic degrees of free-
dom. From the form of this algebra it follows that one can
{Quai \ Qpjt = =21 (¥*¥5C) o p€ij P construct its irreducible representations by starting with a

superspinj Clifford vacuum, |j), annihilated byqZ /.
and acting on it with the creation operathﬁ(l,z)l. As a

wherei,j=1,2 are S(?) indices andC is the charge conju- regult, we see that the I_ong representation has dir_n(_ension
gation matrix obeyingCy*C = — y*T andC2?=—1. For a (2]_ fl)x 2% where _2] +1 is the degenera_cy of the orlgm.all
massive single particle state, we may work in the rest fram&Pin| state. The spins of the states are given by the addition
P#=(M,0,0,0). Defining chiralities of :_;mgular momentalj_><[(1)+_4(1/2).wL 5(0)]1, giving ge-
nerically states of sping—1 to j +1 with degeneracies 1, 4,
L L R ~R 5+1, 4, 1(providedj=1).
ysQr=—Qi, Qi =Qr, 2 When the Bogomol'nyi bound is saturatedy2=|Z|, the
supercharge®. ,,, are represented trivially and the alge-
bra becomes the algebra of two fermionic annihilation and
1 . creation operators. The short representations thus contain
04 2Q:(1/2)i: Q=2 ©) spins j X[ (1/2)+2(0)] (generically giving sping —1/2 to
j+1/2 with degeneracies 1,2,5and have dimension (2
+1)x22. These short multiplets oR=2 supersymmetry
_ correspond to the same particle content as massive supermul-
{QY (121 Q5 122t =FiZ, {QF 151.Q% 12} ==iZ, tiplets of N=1, and in fact satisfy identical dipole moment
sum rules, as will be demonstrated below.
R L 5 L R . Since the supercharg€¥;/, 1. Q=121 are operators of
Qw21 Q5 w22t = —2IM, {Qzu21 ’Qi(l’z)z}_ZIM("D spin 1/2, this leads to a :i(turgl shor(thr:md notation for label-
ing the states of a generic log=2 multiplet. We denote
indicating the expected splitting between mass and centrahe superspin Clifford vacuum by|00) where the firs{sec-
charge terms in a Weyl basis. ond entry corresponds to the action of thtM2-|Z| (2M
—|Z|) normalized creation or annihilation algebra of E§).
Acting on this state with the normalized superchar(‘;(*é@)1

+ H S ” T ”
ITo fix our phase conventions, we work in the Dirac representa®’ d-(1/2)1 then results in the spin “up” or “down” states

+ie€ij(75C) U — €jCapV, D

and helicities

the supersymmetry algebra can be recast as follows:

tion for the y-matrices and takeys=iy°y*y%y® and C=iy%y2. |T70> or |LOZ, respectively: On the other hand, the action of
The spinors then decompose as2Q)=Q[1010  Ggiz1 OF U- (121 results in the statef0T) or [0]). The
+QE(1,2)i[0 10 1]+Q(R1,2)i[71 01 0]+Q5(1,2)i[0 10-1]. action of severad]’s on the Clifford vacuum are then repre-
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sented in a similar manner. For example the action of all foudipole moment, respectively. Our notation follojg, where
supercharges is denoted Hy). Note that states in a short |j,m,5) corresponds to a single particle state of spin
multiplet will always hae a 0 in thesecond entry. Finally, it z-component of spimm and 3-momentunp. We emphasize
should be kept in mind that the physical states of the supetthat the expansion of the matrix elements of the current in
multiplet correspond to the addition of angular momenfum powers of the momenta is based solely on current conserva-
to the above spin states using the appropriate Clebschion. As a convenience, whenevieandm are not explicitly
Gordan coefficients. needed, we use the shorthand notatiom,p)=|«,p).

I1l. CONSERVED CURRENTS IN SUPERSYMMETRIC IV. DERIVATION OF THE N=2 SUM RULES

THEORIES . .
In [6], the N=1 magnetic moment sum rule was derived

For N=1 supersymmetry, any conserved current com-y noting that a generic double supersymmetry variation
muting with the supersymmetry generators must belong to gay be expressed as
real linear multiplet. In the present case this generalizes to a
N=2 linear multiplet[9] consisting of K*¢;,S,P,J,)

where K* is a SU?2) triplet scalar,& is a SU2) doublet 6,0.0=[7Q,[€Q,0]]

Majorana spinor an®,P are real scalars. We take the linear — 70e00—700e0— 0070+ DO
multiplet to transform without central charge, so that the cur- 7QeQ 7QOEQ—€eQU7Q+0eQ Q.
rent is conserved}”J ,=0. As a result the multiplet includes (10

8 bosonic and 8 fermionic degrees of freedom. The transfor- ) ) ) ) ) )
mation properties of the components under a Supersymmet,l;,valuatlng this expression between given single particle

variation are given by states(a| and|B), and noting that the superchar@egener-
ates superpartnerf(a)~|a)), we are then able to relate
SKA= — gt matrix elements 0® between different states of a supermul-
= € 0'”6] y

tiplet, providedénﬁef’) is known. The magnetic dipole sum
rules then follow by choosin@ to be the conserved current

5&=— (St ysP— Yy, +eafyha, K, J,,., and using Eq(9) to determine its matrix elements.
This general procedure is simplified in practice by choos-
5S=— €yt 3,8, SP="¢ ylye 3, ing the global supersymmetry transformation parametgrs

and e in such a way so that several terms on the right hand
. side of Eq.(10) act as annihilation operators on the initial or
8, =—€y,,0"¢;. (7)  final states and hence may be dropped. In particular, to low-

) est order in momentur@, and making use of the Lorentz
It follows that two successive supersymmetry transformay,gost operatofa, ) =L (p)| a,0), we find

tions on the conserved curredy give
(@,p|8,63,,8,0)=(,p|d,eQ7Q|B,0)

8,0:0,=1€7y,,0"(S+ysP—"J,) 4] “ B
—(a,0eQL™*(5)J,, 7Q|5,0)

7

+i 7)‘(9)\K“a'fj“] ;. (8) i
The matrix elements of this equation between states which ~ 00 oM (,00€¥"QJy7Q|B,0)
belong to the samB =2 multiplet give rise to sum rules for
the gyromagnetic and gyroelectric ratios of the particle +0(p?), (11

states.
In order to derive both electric and magnetic dipole sumprovided(a,p|7Q=0. Note that we have used the fact that
rules, we need the following expansions for the matrix eleQ transforms as a spinor so thafL ™ *(p),7Q]

ments ofJ , : =(1/2M)p'7y°'Q+O(p?). This expansion of the Lorentz
boost gives rise to the last term above, which only contrib-
Sl =1 _ Si ) utes toJy matrix elementgand hence is only important in
(i",m",p|3olj,m,0)=2M; 3} um . deriving the electric dipole moment sum rules
+2Mp;(j’,m’,0/d'|j,m,0)+ O(p?), Turning to the left hand side of Eq11), and using the

double supersymmetry variatias), we find
(i"m’",p|3ilj,m,0)=—&p; ;s Sy — 2iM € P;
X(j',m’ .0}, m,0)+O(p?).
€)

WhenJ,, is the electromagnetic currerg,d, i are the elec-  8,8d0=—piel Yo~ ¥ %S~ 17'70¥° P17+ O(p?).
tric charge, the electric dipole moment, and the magnetic

o 55‘]i: —i Eijkpj?

n
X[ 77 do+ ve¥*¥*S+iv, ¥ PIn+0O(p?),
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TABLE |. Matrix elements ofu® on the integer spin states of a long multiplet.
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(00|
(1l
(14
(1l
(|
(10
]
a1l

Mo
uotat+a”
Ho—at—a”
—iw
—iw
iw iw Mo

—iw
—iw

Mo

Mo

Note that, while the auxiliary fiel&k® is unimportant at this
order, matrix elements o and P remain and cannot be
ignored. Since the conserved current multiplet commutes
with supersymmetry, these matrix elements, like the electric
charge, are identical for all states in a given representation.
Thus we may defin& and P expectations as

(a,00€QL™*(P)J;7QlB.0)=(a,plIi[€Q, »Q]| 5,0)
—(a,p|8,5.3i18,0)+ O(p?).
(15

Note that[ eQ, Q] corresponds to the supersymmetry alge-
bra, and hence givesN2=|Z| for appropriate parameters.
Thus, when generating properly normalized superpartners,
the above expression simply states that the dipole moment of
the superpartnefon the lef} is the same as the dipole mo-
ment of the original statéon the righj with the addition of a

Since a generic long multiplet dil=2 contains many SUPersymmetry generated correction givendgy.J; .
more states than that df=1, we find it convenient to take a Ve recall that a basic long multiplet contains 16 states,
systematic approach to examining the matrix elements of Edlivided into 8+8 based on integer or half-integer spins.
(11) on various states. In particular, the magnetic dipole mo=ince the magnetic dipole operatteeing a vectordoes not
ment sum rules may be derived in two partgi) a set of CONNect integer anql half.-lnteger spins, its matrix elements on
“vanishing sum rules” concerning elements of the dipole these 16 states split up into two block diagonal pieces.
moment operator between different states of the multipletAPPIlying both vanishing and diagonal sum rules, the matrix
and (ii) “diagonal sum rules” relating diagonal elements of €lements of the-component ofu, (a,0|,_“3|3'0>’ are given
different states. in Tables I(integer spins and Il (half-integer spins We

Derivation of the vanishing sum rules follows by choos- have taken, by definitiony.,=(00/.°|00). The real num-
ing the parameters of transformation to sati¢ly,p|7Q  Perse™ andW are given bya” =(e+v)/(2M+(Z|), a~
=(a,p[eQ=0, in which case Eq(11) becomes =(e—v)/(2M—|Z|) andw=w/\4M“—|Z|*, wherev and

w are the rotated scalar expectation values
(v) ( cosa  Sina )(5)

of the supermultiplet, this allows us to compute the off- w —sina cosa/\P/’

diagonal matrix elements gi in terms of the charges, S

andP that show up in the double variation on the right handThis is the main result of our paper. We note that the matrix

side. elements of the dipole moment operator between the differ-

The diagonal sum rules are derived instead by takingent states of a longdN=2 supermultiplet are expressed in
states satisfyind «,p| 7Q=€Q|B8,0)=0. For this case, we terms of the masM, the central chargfZ| and the charges
find e,S,P.

(@,019/8,00=2MS5,4, 13

(@,0P|B,0)=2M P35

(@,pl3i€Q7Q|B,0)=(a,p|5,6.38,0)+0(p?). (14

By choosing both «,p| and|,0) to denote different states (16)

TABLE II. Matrix elements ofu® on the half-integer spin states of a long multiplet.

(10| mota” —iw

o1 iw Mot a”

(10| Bo—a” iw
(0{] —iw
(a1l
Tl
(U1l po—a”
ol iw
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TABLE lIl. Matrix elements ofd® on the integer spin states of a long multiplet.

(00|
(1l
1l
(t
(111
(10
o]
(11l

do
do+iwt —iw™
do—iw™ +iw”

do+iwt +iw~

KT
| =

do—iw* —iw~
-
—u do

SRS
a
)

do

Short multiplets, on the other hand, are expected to beudnits of dipole moment for every 1/2 unit of spin generated

have as massivél=1 multiplets. The relation ®I=|Z|

by the supersymmetry algebra. The electric dipole matrix

which holds for short multiplets implies that the super-elements of Tables Ill and IV are even simpler; they only
chargesQZ ,, are represented trivially and as a result all contain the original electric dipole momedg, with no ad-
the states with up or down arrows in the second entry disapdition from supersymmetry.

pear. Then, by pickings and # in Eq. (15 to select the
Q-2 Supercharges, we are left wittw,p|s,5.3|8,0)
=0+0(p?). Combined with the explicit supersymmetry
variation, Eq.(12), this gives rise to relations between S,

P, M, andZ. More specifically we find thae=v andw
=0. These two relations can then be written as one:

) eZ
S+iP=— (17)

2M-

The matrix elements of.® on the states of a short multiplet
simplify as follows

<OO| -,U«o
e
(10| Mot 50
: (18
(10] o %
(10| L Mo |

in agreement with the results 8]

Finally, we present thg-factor sum rules for the physical
states of the superspinmultiplet by adding the supersym-
metry generated spin to the original spiising appropriate
Clebsch-Gordan combinatioAsRecalling that the states of
the N=2 long multiplet are generated Gy<[(1)+4(1/2)
+5(0)], we need the Clebsch-Gordan coefficients jfarl
andj x1/2. For example, for the latter, we use

1
i+3.m+3)=——[Vi+m+1]j,m; 5, 3
|l 2 2> 2j+1[ J |J 243

+Vj=mlj,m+1; 3,— 3)],
H 1 1 1 . H 1 1
li—3.m+3)= [—Vi—mj.m; 3, 3)

Pj+1
+Vj+m+1lj,m+1; 5,— 3)]. (19

The g-factors may then be defined in terms of the matrix
elements of the magnetic dipole moment opergatdretween
states of definite angular momentum using the Wigner-
Eckart theorem as follows:

In a similar manner we can derive sum rules for the elec-

tric dipole moments. The results are summarized in Tables

Il and 1V, where dq=(00/d3/00) and w==w/(2M =|Z|)
and U=[(e|Z|/2M)—v]/\JAM?—|Z|?. Curiously enough,

. . €
(J:mlpslj,my= 57 mg;, (20)

we see that in general the electric dipole moments are NoRyherej andm label any state of angular momentijmand

vanishing, even withdy=0. Demanding thaN=2 super-

z-componentm. Combining Egs(19) and (20), and using

symmetry does not generate an electric dipole moment whefhe matrix elements of Table II, then gives for the fqur

none was initially present then requires " =w~ =1, so
that in factv =e|Z|/2M andw= 0, corresponding to the con-
dition (17) that was found for short multiplets.

While in general we have been unable to ascertain

whether or not Eq(17) must continue to hold for long mul-

+1/2 and fourj —1/2 states

Os—G;j 9s—9j

Oj+12=0;+ 241 Oj-12=9j— 241 (21

tiplets, it appears that this condition is true in practice for

many explicitN=2 realizations. In fact, both magnetic and

electric dipole moment sum rules greatly simplify whenever 2pijje the addition of angular momentum was an integral part of
Eq. (17) is valid. To see this, note that in this cas€  the derivation of the\=1 sum rule[6], we find it more convenient
=a" =e/2M, so that the magnetic dipole matrix elements ofto keep the superpartner generation and the Clebsch-Gordan ma-
Tables | and Il become diagonal, with the additionet®M nipulation separate, especially for large multiplets.
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TABLE IV. Matrix elements ofd® on the half-integer spin states of a long multiplet.

(0]
(1]
(0]
©l|
(1l
an

do+iW+
—u

u
do"iW_

do_iW+

u

—-u
d0+iW_

d0+iw+ _17
u do“iw_

ay
l

do_iW+
—u

u
d0+iw"

wheregs=2 is the supersymmetry generatgdactor, cor-
responding toa"=a~ =e/2M whenever Eq.(17) holds?
Following the same analysis we find for th& 1 combina-
tion

Js—G;j 9s—G;
gj+1=9;+ iT1 91—1:91—1-—.
o 9s—G;j
gj'_gj+j(j+1)' (22

Of the 5+ 1 states of spin, five have ag-factor ofg; , while
the last has g-factor ofg;.. This demonstrates in particular

is expected due to the correspondencéNef2 short repre-
sentations with massivid=1 representations.

V. CONCLUSIONS

In the above we have derived model independent sum
rules for the gyromagnetic and gyroelectric ratios of particles
which belong to a singl&=2 supermultiplet. As demon-
strated in Eqs(21), (22), and(24), the gyromagnetic ratio of
any state in a generic long multiplet may be expressed in
terms of the quantitieg; andgs, wheregs=2 whenever the
natural relation of Eq(17) holds. Although we have exam-
ined Eq.(17) carefully, we have as yet been unable to deter-
mine its validity in a model-independent manner. This leads

that in extended supersymmetry not all states of the samis to believe that there may indeed be models whgre

spin have to have the same gyromagnetic ratio.

Next we turn our attention to the transition magnetic di-

+iP are free, thus allowing in addition [d=2 supersym-
metry contribution to the electric dipole moment, as indi-

p0|e moments. This time’ using the Wigner-Eckart theorerﬁ:atEd in Tables Il and IV. This novel feature is somewhat

to write

(i—2.m+ zluslj+ 2.m+ 3)

surprising in that one would usually anticipate the addition of
more symmetry in going frol=1 to N=2 to lead to more

restrictions and thus stronger sum rules on the dipole mo-
ments. However, this is the opposite of what is actually
found above. Furthermore, there is no contradiction with the

= s h,-\/j(j +1)-m(m+1), (23 sum rule determined for thBl=1 subalgebra oN=2. In
2M particular, noting that
we find the transition elements
s | N1 210\ 1- 2oy
U | 1 9i—9s N 2M 2M ’
I72j+1 Y2 N2j+1 j+1 (25)
_ we find the expected resultf | u®|1)n=1= o+ €/2M inde-
h e/ J_+1 9i~9s (24)  Pendent ofS+iP.
-1z 2j+1 j Just as the short representatior\of 2 is connected with

whereh;..,, corresponds to the matrix elements of the di-

pole moment operator between the states with spiasd
+1.

Short representations dfl=2 have g-factors given by
gj+1/2in EQ.(21) and a transition moment given ty in Eq.
(24). Note that this agrees with the sum rule found 6 as

3In the more general cagg, may be determined in terms of the

the massiveN=1 representation, the short representation of
N=4 (preserving half of the supersymmetpiés connected
with the long representation di=2. Thus we expect the
sum rules derived herein to also apply to the shdrt4
case. Since the latter were studied &, we may contrast the
two approaches. While the present derivation is quite gen-
eral, and focuses on a conserved current commuting with
supersymmetry, the latter took an explitit=4 (on-shell
only) supergravity coupled Yang-Mills theory and studied
the dipole moments of BPS states through their asymptotic

eigenvalues of the magnetic dipole matrix, and would take on twdield behaviorgalthough black holes were studied[#], the

different values, with the fourj@1/2j—1/2) pairs splitting into
two plus two pairs.

sum rules were derived in a general fashion, and depend only
on having an appropriate supersymmetric field configura-
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tion). The resulting sum rule found {i8] corresponds to the ever, to see if model independent sum rules for graviphoton
presentN=2 long case, witlg;=0 andgs=2. In particular,  couplings could be determined by working with a supergrav-
this indicates that thg-factors for theN=4 short case are ity multiplet instead of a real linear multiplet.

completely fixed, hinting at the possibility that stronger sum

rules do arise ilN=4 andN=8 theories(where the latter

only has graviphotonsthat are not yet apparent in thé ACKNOWLEDGMENTS
=2 case.
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