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Pauli-Villars regulator as a nonperturbative ultraviolet regularization
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We propose a solution to the problem of renormalizing light-cone Hamiltonian theories while maintaining
Lorentz invariance and other symmetries. The method uses generalized Pauli-Villars regulators to render the
theory finite. We discuss the method in the context of Yukawa theory at one loop and for a soluble model in
3+ 1 dimensions. The model is studied nonperturbatively. Numerical results obtained with use of discretized
light-cone quantization, special integration weighting factors, and the complex symmetric Lanczos diagonal-
ization algorithm compare well with the analytic answers.
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[. INTRODUCTION more of the symmetries of the theory, but the objective is the
same. The idea is to add enough Pauli-Villars fig¢&l¢o the
Discretized light-cone quantizatio(DLCQ) [1-3] is a  theory to regulate perturbation theory. Having done that we
suggested computational procedure in which one specifidsope that, since the theory is basically finite, the periodicity
quantization conditions on the characteristic surfacde  conditions and momentum cutoff will be sufficiently benign
=(x%+x*)=0, introduces periodicity conditions to induce a to allow a consistent renormalization to be performed. In the
discrete basis, truncates the basis set by some procedure\élson language, we hope that the heavy fields will add the
produce a finite matrix, and then takes the spectrum andecessary counterterms automatically with no particular
eigenvectors of that matrix as an approximation to the physieleverness from us.
cal spectrum and wave functions. The difficulty is that, as In the next section we consider the one-loop fermion self-
always in quantum field theory, removing an infinite set ofmass in Yukawa theor}7]. This problem has been consid-
high (barg energy states induces a renormalization of theered previously in the literatuf@], but we shall discuss the
operators. A completely consistent procedure for performingsnalysis in the context of using the Pauli-Villars program to
the truncation and renormalization has not yet been demorsreserve the discrete chiral symmetry of the theory. The
strated, but the problem has received considerable study,mpytation requires three Pauli-Villars fields for proper
Some calculations have been publishéfiwhich simply use oq jarization, including the elimination of all terms—
the per!od|C|ty condmons combined with a momentum Cut'including spurious finite terms—not proportional to the bare
off. While the numerical results are accurate for superrenorg_ .
malizable theories such as {11)-dimensional gauge theo- fermion mass squared. ' -
We then present and solve a model field theory very simi-

ries, it IS clear that ;uch a proc_edure_ IS problematlcal_ fc’rlar to the scalar field model studied in the 1950s by Green-
renormalizable theories in-81 dimensions. A systematic rq and Schwebdig]. This model, which requires renor-
renormalization procedure has been proposed by Wilson an%e g an ' . ' N

malization, allows us to illustrate the procedure and to

co-workers and Perry and co-work¢E. These authors use X s o o
a cutoff chosen for computational convenience and then tr§xam|ne some important numerical issues, at least within the

to find the mixing of the operators under renormalizationcontext of the model. These issues include the number of

using ideas of the Wilson renormalization group. Since theStates which must be devoted to the heavy fields and the
procedure makes no attempt to preserve the symmetries &¢lated question of how heavy their masses must be. Section
the theory, one expects a great deal of mixing and manyv discusses the numerical solution of this same model and
counterterms; some skill in guessing the counterterms seeng@mpares these results with the analytic solution.
to be required. A final section contains our general conclusions. This is
In this paper we will suggest a procedure which liesfollowed by two appendixes that provide details of our light-
somewhat closer to traditional ideas in field theory than thecone conventions and of improved methods for accurate
Wilson plan in that we will make an attempt to preserveDLCQ calculations.
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BRODSKY, HILLER, AND McCARTOR

Il. REGULARIZATION OF THE FERMION SELF-
ENERGY IN LIGHT-CONE QUANTIZATION

A. Analysis
We consider Yukawa theory defined by the action

S= J d*x

1, , 0 — _
—ou O+ S LYy~ (0 Y 1Y

1
5(3,0)?

—Myy—gddp—Ng?|. (2.2)

For the problem of interest here, they* interaction will not
be needed. The operatBr~ which controls the dynamics is

P‘=; f dx d’xT" ", (2.2
where
T =(8.)°+ 2> —iyl (3" yo)
+24" =iy g +M+gd)y. +He. (2.3

The field s_ is nondynamical and can be eliminated via the

constraint relation

1 4
i5—¢—=§70[—i7'69i+'\/|+9¢]¢+- (2.4)
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where

1
T 2A2

L. =552l A%+ 2= M2 (AZF uT=M2)Z-4A77),

L=AX(1—x)— u?(1—x)— M?x. (2.9

The integration can be done in closed form, but the result for
arbitrary parameters is not very illuminating. If we také
> u?>M?, we get

o A2 1“‘4
I(M21M21A2)~E[(7_M2 In A2+,LL2 In ,LL2— W)

5u?

+M?3In A2-3In M2—9+
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(2.10

2
—In(M?/ u?)+
2 (M= %)

For the second order shift in the eigenvalue of the operatoPerhaps the most striking thing about this result is not so

P~ of the one-fermion state witp, =0, one easily calcu-
lates

ifl dx & qf+(2—x)2M2
2w Jo 1—x qiqf+x2M2+(1—x),u2'

(2.9
where

2
_9
a=g—. (2.6

much that it is quadratically divergent @s—«, but that it
does not go to zero witM. This is in contrast to the Feyn-
man result. In fact the vanishing of the self-mass with van-
ishing bare mass is formally protected by the discrete chiral
symmetry: y—ivysy, with ¢— —¢. Thatl is not propor-
tional to M? is due to the fact that the invariant mass regu-
lator does not preserve this symmetry.

It is well known that the four-dimensional Feynman inte-
gral for the fermion self-energy can be regulated by the ad-
dition of one Pauli-Villars boson field. If that is done, the
integral is then “finite” by power counting and vanishes

The integral is divergent in the ultraviolet and must bewith M. One might then think that if one first performs the
regulated. Let us first consider regulating the integral with a~ integration one would get a finite three-dimensional
momentum cutoff. While several possibilities might be con-light-cone integral. However, the Feynman integral is only
sidered, including a cutoff og, alone, the most commonly conditionally convergent, and therefore any value ascribed to
used cutoffs couplg™ andq, in some way. To retain boost it is a prescription. The standard integration procedure—
invariance we will consider the “invariant mass” cutoff in Symmetric integration in the spatial momenta with e
which the total invariant mass of the intermediate state igntegration done last—preserves the discrete chiral symmetry
limited [10]. For the present case this rule gives and thus leads to the vanishing of the resultvat0. The

X ) ) ) f[erms in Eq.(2.10 whi(_:h _do not v_anis_h gM—>O at_ largeA
g tu” QqitM 5 include terms quadratic i, logarithmic inA, and indepen-
+ =A% (2.7) dent of A. Therefore three Pauli-Villars bosonic fields are
necessary to render the light-cone integral consistent with
This cutoff also appears if we simply limit the change in discrete chiral symmetry. The entire light-cone integral
mass of the matrix elements of the interaction Hamiltonian(2.10 is then finite and vanishes &8 —0. Thus we need
For the integral we then get three Pauli-Villars conditions:

X 1-x
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3 3 one obtains discrete momenta
a+z a;=0, a,u2+2 ai,uiZZO,
i=1 i=1

+ Z 1 l (2 13)
3 p _>Ln' pJ__) LLnX’Llny, -
2 21,2y =
21 i (i) =0, 219 with n even for bosons and odd for fermions. Integrals are

’ , _ then replaced by discrete sums obtained as trapezoidal ap-
where theai’s and u;'s are the coupling constants and proximations on the grid of momentum values:
masses of the heavy fields. The logarithmic divergent term

3M?2 In A? in Eq. (2.10 returns if the masses of the heavy o .

fields go to infinity, but the nonzero value ldt=0 does not f dp f dp. f(p™,p.)

return. The fact that three Pauli-Villars fields are necessary to

regulate the self-energy graph in the light-cone representa- 2 [ m\? N,

tion is an old resul{11], and it has received considerable =T (L—) E E f(n@/L,n @/L)).
study in[12]. One might wonder whether there is some fea- L/ meny=-N,

ture of the theory from a purely equal-time perspective that (2.14
would allow one to predict the number of heavy fields nec-
essary to regulate the -calculation in the light-coneThe limit L—o can be exchanged for a limit in terms of the
representation. integerresolution[1] K= (L/a) P*. The longitudinal mo-
To perform a DLCQ calculation one must limit the range mentum fractiorx=p™/P" becomes\/K. H ¢ is indepen-
of the momentawhich the A cutoff does as well as make dent ofL.
the momenta discrete by introducing periodicity conditions Because the longitudinal integensare always positive,
for the fields on the surfac&™=0. We may takey. DLCQ automatically limits the number of particles to no
=A ¢ to be antiperiodic inx™ and periodic inx, . (See more than~K/2. The integersn, and n, range between
Appendix A) The scalar fields are taken to be periodic inlimits associated with some maximum intedér fixed by
bothx™ andx, . With the heavy fields and the momentum |, and a cutoff that limits transverse momentum.
cutoff in place, the only effect of the periodicity conditions ~ The momentum-space continuum limit is reached wkien
on the above perturbation calculation is that the finite inteang N, become infinite. The transverse length scaleis
gral is then evaluated as a d_lscrete sum. _The_ convergence @fihsen such thatl, /L, is the largest transverse momen-
the discrete sum to the continuum result is discussed belowy,m 4j10wed by the cutoff. The integrations for Pauli-Villars

The discussion in this section suggests a new general Prubtractions use the transverse sdajedetermined for the

ﬂzdn:iﬁfog?;nr?%?éuifgoff $ﬁelﬁ]\éad'veﬁrgﬁgcv?lﬁl Ofr(lgﬁé'ec?r?eephysical boson. This ensures use of a common grid that can
Y- vy P easily represent momentum conservation in interactions.

counterterms necessary to make a consistent renormalization We then compute the dimensionless integral
possible. What we propose is to test this procedure nonper-
turbatively, that is, include enough heavy fields in the La- 2

grangian to regulate perturbation theory, and then produce a T(u?M? A%)=—1(u?M? A?) (2.15
finite matrix with a momentum cutoff and discretization. The ar

periodicity conditions can also lead to constrained zeroyng the subtracted integral

modes, as discussed[ib4]. Another important advantage of

the Pauli-Villars fields is that the terms from the constrained  T_ . (M2/42 12/ u? A% u?)=T(u2, M2, A2)

zero modes which would affect the one loop mass gtk

most singular terms due to the constrained zero modes aj ~

- +> —T(u? M2 A?)
zero at the level o ™. In the present paper we shall not ~ Mi VAT
attempt a full Yukawa calculation. We shall illustrate the
method for a soluble model and provide some discussion of (2.19

numerical issues. . .
When the loop integrals are evaluated numerically, the pro-

B. Discrete evaluation of the light-cone integral portion of error increases with each subtraction. Once all
three Pauli-Villars subtractions are done, the error can domi-
1. DLCQ nate. This is the case for an ordinary DLCQ calculation. The
From the periodicity conditions in the light-cone box,  individual integrals are large and therefore must be com-
puted accurately for the differences to be accurate. It can be
—L<x"<L, —L,<xy<L,, (212 helpful to have well-separated Pauli-Villars masses, because
the coefficientse; are thenO(1) and do not amplify the
errors.

we are not certain, but we speculate, that it may be the same 1he domain of integration, as defined by the invariant-
number necessary to regulate time-ordered perturbation theory ifass cutoff, is not commensurate with the DLCQ grid. This
the equal-time representation; perhaps the resultsl8f on the ~ causes errors of two types: one is a truncation error where
connection between the two representations could then be extendéde edge of the domain is not properly counted and the other
to higher order. is the loss of rotational symmetry in the transverse grid. In
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FIG. 1. One-loop fermion self-energy. The horizontal line is the  FIG. 2. Subtracted one-loop fermion self-energy. The Pauli-
exact result. The smoothly curved results come from use of transvillars masses are:2=10u?, u3=50u?, and u3=100u>. The
verse circular weighting and longitudinal Simpson weighting. Thesolid lines are from an analytic expansionNtf given in Eq.(2.10
scattered results are from ordinary DLCQ calculations. The DLCQof the text; additional terms are needed ff=0.2u?.
grid parameters take the ranges=10,12,...,24 andN,
=5,6,...,30. The lines connect points calculated with the s&kme where, unlike the case of the trapezoidal rule, the weights
value. w; ;... will not all be equal. Special formulas for intervals

near the edge can be derived, and one can even consider

one-dimensional cases, only the former type occurs. In thd{ariations in the higher-orde_r Simpson’s ru_Ie. The t.ransvers_e
context, it is easily handled as part of an extrapolatio jn mtegratlons can be treat”ed in polar coordinates with a b_aS|s
in the context of the three iterated integrals used for thre@f circles of irregular radii chosen to pass through the points
dimensions, the error becomes much less controlled. of the square grid. The;e methods provide res_ults_for inte-

If the trapezoidal rule is applied to each iterated integral9rals far better than ordinary DLCQ, as shown in Fig. 1. A
as is done in the standard DLCQ approach, the errors wilfliscussion of the details is given in Appendix B.
not follow a systematic dependence on the grid spacings for
a reasonable number of grid points. This lack of systematic
dependence oK andN, can be seen in Fig. 1. The results for the momentum-space continuum limit of

These errors could be overcome with a commensuratthe discrete sums are obtained by extrapolations which use
grid that uses polar coordinates in the transverse directiorvalues of 20, 22, and 24 f&¢ and 25—30 folN, . All results
This would not be easily extended to situations with moreare given in units of the boson magsThese are fit by least
than two particles. Also, it turns out that although a commensquares to eithercy+a;/K3+b;/N? or cy+a;/K®
surate grid controls the errors in a systematic way, the errors-a, /K*+ bl/Nf + blef . The latter is used for the, in-
are still large. Other methods that use the DLCQ grid haveegral. This means that at most 5 parameters are used in fits
been found superior. to 18 points.

Given the rectangular DLCQ grid, one can improve on the  Extrapolation to the continuum after subtraction is not as
simple application of the trapezoidal rule used in Ej14).  accurate as extrapolation of each integral separately. The
The alternative integration schemfgkb] are of the general  subtraction of the discrete sums induces a greater variation in
form errors that is harder to fit properly.

The range inN, was selected to avoid values where the

Mo integral was badly approximated. However, here

J d"rf (r)= E wij . f(ig ), 2.17 “badly” is tq bg intgrpreted relative to the desired final error
S T of 0.02, which is slightly more than 0.2% of the answer.

2. Results

TABLE . Values of the subtracted integra),{ M?/ u?, u?/ u?, A% 1?) in the limit of infinite cutoff. The
Pauli-Villars masses arg3=10u?, u5=50u? and u3=100u>.

M2 0 0.01u? 0.05u2 0.1u2 0.2u?
DLCQ, improved and extrapolated: —0.064 0.11 0.70 1.37 2.70
Exact, to ordeM* andM* In M% 0.0 0.1402 0.6661 1.2721 2.3778
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TABLE Il. Number of Fock states used in two typical cases.

Pauli-Villars
A2 K N, Physical w2=10u? w5="50u> wi=100u? Total
200u? 20 25 25975 22602 11142 3305 37049
200u? 24 30 44943 39162 19293 5695 64150

Values of the subtracted integral for different fermion plifies errors in the integrals. Also, with fewer states, the
massesM are plotted as functions of A? in Fig. 2. The integrals themselves are approximated less accurately.
extrapolation toA=% can be done by fits td. +a/AZ.
They yield the values in Table I. In obtaining these values,
the error in each individual integral has been reduced to
+0.02 as measured against the analytic restM %t 0. This We now turn to the consideration of a nonperturbative
implies an error of=0.04 in the subtracted result. Extrapo- problem.
lation in A2 induces additional uncertainty reflected in the
miss by 0.06 of zero foM2=0. The ratios of the tabulated
values are correct to within error estimates. The result for the

Ill. SOLUBLE MODEL

A. Effective Hamiltonian

subtracted integral is roughly proportional\t?, but for M? An effective Hamiltonian of the sort investigated by
near 0.2:2 or larger, terms even beyorid* appear impor- ~Greenberg and Schwebfd] and by Gtazek and PerfyiL6]
tant. can be obtained from the Yukawa Hamilton{dd] by modi-

The range ofA 2 values used in the fits was from 155to fying the momentum dependence in the fermion kinetic en-
200u2 in steps of &2 For A2<15042 there is some dis- ergy, (M?+p?)/p*—(M§+M¢p*)/P*, and by keeping
tortion. ForA?<120u? there is significant distortion, largely only the no-flip three-point vertex in a modified form where
due to theus integral, which is badly approximated by the the longitudinal momentum dependence is simplified. The
few points that satisfy the cutoff. fermion kinetic term in the Hamiltonian has a structure simi-

The number of Fock states required for Pauli-Villars par-lar to that of the self-induced inertia term shown in £Q.2)
ticles is approximately 1.5 times the number for physicalof Ref.[14]. This is a generalization of a static source. We
states. A listing of counts for two cases is given in Table Il.include one Pauli-Villars field, which will prove sufﬂment in
Making u, larger does decrease the number of Pauli-Villarsthis case. The resulting light-cone HamiltoniaH &7
states but this increases the coefficiemfsand thereby am- =P*P is given by

dqg*d®q,
16m3q™"

2 2 2 2
M + ql t M1 + qL 1
q+ agag+ q+ algalg

f 163+(M+M0p)EbTb +P*

dpy d®p,4 dp, d’p,, dg*d?g, py\” 2 \”

J167%p; \/167T3p2+J Tora & PhePere | p7 | 0RO +|r] 2gd(pimpema)
p1|” pz|”
+i E a1q5(91—92+g)+i p—+) a1q5(|_31—|_32—g)}, (3.0
g ] q
with p=(p*,p,) and
[ag.a,,]1=16m°q" 5(d—q"),

{bp b} o} =167 S(p—p") 8,0 (3.2

The Fock-state expansion of an eigenvector is

dp*d?p, ¢ [ dgd? dr; dr . !
:\/WE p H J q| QLI ]—“5( E_E)_Ei 9i_; [j

n.ny 16773(Z1Jr i= 1 1671'?’err

X ¢™(q; 1) bl | ‘—“H al[j|0>. (3.3
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The normalization condition for this state is
o't b, =167PT 5P —P), (3.4

which vyields the following condition on the individual amplitudes:

n I"Il 2
= 11 f do’d’q 11 | drfd?r ¢““1(q -2 g2 zj) (35
Ny
B. Analytic solution
We seek a solution to
Hf D =M2D,, . (3.6
With y;=q;"/P* andz;=r;"/P*, the amplitudes must then satisfy
2442 2,2
MZ-M-Mip' =3 L B g, p)
i i ] j T
dq+d2q p+_q+ y
R = o K E U S
1 1 p* .
YR Tioaeprrar) O @G s G ety 04 G)
1
drtd?r —rt\
\/nl f = (p rt ) ¢(nnl+1)(q| r]! v _r)
i 1 p+ 7 (n,ny—1)
+JT; oo\ prrrr GG L P (3.7
1 i i

By construction, this coupled set of integral equations is identical in basic form to the equations considered by Greenberg and
Schwebeff9]. Their factorizedansatzfor a solution suggests that we try

(=9)"(—ig)™ 4 Z,
o=z 2 = 1‘[ I1 . (3.9
Jnin! \/167r3q*(,ﬂ+ qf) i V167 (uiHrd))
This is indeed a solution, provided thislt,=M and
2IPYIn wq !/
, 9 Mol 3.9

07 16m% y+1/2°

Although y can be assigned any of a range of values, 1/2 is the natural choice, and we will use this value for the remainder
of the paper. With this choice, the one-boson amplitude is proportiondy (@ —y).
The normalization conditio3.5 implies

o= > - (9/ )9l p1)?M
Z n,nq (2n+2n1+ 1)!n!n1! (16W2)n+nl

(3.10

Thus we can fix the bare mass and the wave function renormalization. However, there remains the barecoupling.

2In this model the bare coupling is finite.
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C. Coupling renormalization

To fix the coupling we usé: ¢2(0):>E<I>:r,:¢2(0):d>0. For the analytic solution this expectation value reduces to

2Zn (9/ 1) *™(9/ 1) *"

< ¢ (0) > E (2n+2n1)|n|n1 (16W2)n+n1 (311)
From a numerical solution it can be computed fairly efficiently in a sum similar to the normalization sum
n 2 2
o= S I [aa quL.H [ ar dzm( > qu) sl arie-3 -3 . @12

With the bare parameters determined, we “predict” a value for the slope of the fermion no-flip form factor. It is related to
the transverse size of the dressed fermion. Frbii we find a useful expression for the form factor,

1 dx;d?p
F(Q%)= 5w (P+p, 137 (O)IPT)=2, e,-f 167735(1—2 xi) 6(2 kn)lj T Wp (XD et (XL,
(3.13
where the matrix element has been evaluated in the frame with

M2

P= (P+ P = P+10L): py:(ovp;zzpy'P/PJr!pyL): QZEpZ—yL’ (314)
g; is the charge of the jth constituent, and

pLi_XipyL! Iij!
L= L 3.1
Pui [mﬁ(l—xi)pyb i=] (313

A sum over Fock states is understood.
When the fermion is assigned a charge of 1, and the bosons remain neutral, the analytic solution yields

(92/16773)”+”1f ( i ) n y;dy;d%q, ; il z;dzd%r |
F(Q)=z> ="' 1- : : : (3.1
(@=22 Sy D i Ty A R e M

with
q.=0q,—yp,, andr{=r,—zp, . (3.17

The slope is extracted as

F'(0)=—2, Z(n/p®+nalug)  (9lw)*(9my)*™
(0)= iR, (2n+2n;+3)!ning! (167%™

(3.18
Numerically, one can compute’(0) from
y2 72 *
|
F'(0)= pa H qu| dzqu fdr derJ{(z vai"'; z’Vf;)sb(”’”l)(gi,[j;E—zi gi—; [j”
1

<60 g1yi0-F 03 1. 319

with Vf represented by finite differences. It turns out that single derivatives of typical amplitudes can be better approximated
than the double derivatives in the Laplacian. Integration by parts ifEf9 then leads to a computationally better quantity

F'(0)= H qu| szmH fdl’ dzrij
nnl

2

Z: 2
+; ’%VLjd’(n’nl)(gi:[j;E_Ei gi—; [j)

}, (3.20
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which differs fromF’(0) by surface terms which vanish as— .

D. Distribution functions

To further explore the wave functiors™"), we compute distribution functions for the constituent bosons

(3.21

n nq n
y=2 11 quﬁdzqﬂfj[ dri"d’r; 2 8ly—-a;/P*) ¢<“v“1>(gi,zj;e—2i G2 zj)
N1 =

and the Pauli-Villars boson

2
feu(z)= nn J'dQ. dz(hu ferrdZUJZ o( _|'+/P )¢(n'n1)<9i,[j§|?_ : gi—E [j) . (3.22
1

Their integrals yield the average multiplicities
1 1
<nB>:f0fB(Y)dy, <nPV>:f0fPV(Z)dZ- (3.23

For the analytic solutiori3.8) we obtain

K1 Zny(1—y)@ 2D (gf 1) 2(gl pug)2M
fB(y):<7) fPV(y):nan (2n+t2n,—Dining (1672 (3.29
and
Zn (9/1)?"(gl pq)?™
<nB> ( <nPV> zl (2n+2n1+ 1)|n|n1| (16,77_2)n+n1 . (325)

For a numerical solution, the integrals can be approximated by sums.

IV. DLCQ APPLIED TO THE SOLUBLE MODEL
A. Discretization

The basic momentum discretization and approximation of integrals are discussed in Sec. Il B 1. From these we construct
discrete approximations to the eigenvectipy, the coupled equations.7) for the amplitudes, and the derived quantities

(:¢%(0):), F’ and distribution amplitudes. Creation operators for discrete momenta are defined by

/L, /L,

T o_ t T T
b,_w—\/mb,_w, am= e mag, 4.2
such that they satisfy simple commutation relations
{ ntT! } 5n’r_‘|50"0'! [ar_‘lia;]zar_‘l’r_‘l' (42)
These follow from Eqs(3.2) and the discrete delta-function representation
L(L)?
5(9—9 )=% ? 5,_1/[1. (43)
The discrete approximation of the eigenvectors is then
aT n ng
b= Po=BTKY 2, H > H 2 dcn-Sme 200 by b 1T an 1T 4 j0)
nny n i=1 m j=1 _J- - - -
where
~ 20 | 271(n+ny)/2
"= [T (L_) R (4.9
1
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are rescaled amplitudes, for which the normalization condit®5 becomes

=SS i3 oy koS eS|

The most convenient basis for a numerical calculation is the number(oasiscillator basig which eliminates summation
over states that differ by only rearrangement of bosons of the same type. We define collections of sums WltﬂﬁqquRe
as being restricted to one ordering of the momenta and introduce facﬂtlﬂﬁjgN_li N_ whereNm is the number of
times thatm, appears in the collectiofm;}. The amplitudes for this number basis are

[ nlng! -
¢(n,n1): W d’(n'nl), (4.6)
{mi 153

ﬁ; ﬁz nn12 4.7

nny i=1

(4.9

with normalization

-
I

In this basis the discretization of the coupled equati@3 ylelds

o, N 1+(m2+m?)/L? i+ (1541202
2= MG- Moy — 2 K _2 17K wmm L)
o/ u S 1 /N{r_“'r_ni} (n—m) yw(n+1n1)( | )
== T - ’ m':m:_"n_m
L,V873 | F Vm Nimy | N0 s
1 N{mi}l( n Y
+ — - (=10 (my, ... m My q,...my ], n+m
Ei m N{rpi n+m; Y (my Thi—1,0 41 Tln 1,1 m;)
1 Nty (n—l)“/
+iQ, — D m 1]
; \/I— N{*J} n U (m; L 1)
1 Ny [ n
D M= DMy L1 dna DL :
I; IJ N{_J} n+|J w (r_nl 111! 1|_] 11|_J+11 1|_n11D lj) ’ (4 8)

wheren=K—-3;m;—X;l;, {mj}’ is the set of boson mo- Ispecial case of the biorthogonal Lanczos algori{ti®,20.
menta withoutm;, and a tilde implies division by. except  Given an initial guessl; for an eigenvector of a complex
for L, =L, /7. This is a matrix eigenvalue problem, Symmetric matrixA, a sequence of vectofs,,} is generated
which for giveng, u, M, u, andA we solve forgyandM3. by the following steps:

The cutoff A2 is applied as a limit on the invariant mass of

individual particles, rather than on the total invariant mass of Un+1= Alp=Dplin—y (with b, =0)
a Fock state. Typical basis sizes are given in Table lll.
The bare coupling is fixed by setting a value for 8,=Un4+1-Upy
"2K
< ¢2(0) > E Il_[ ; H E E Fk|‘/"(n'nl)|2- vn+1 Unt+1—apUp
np 1= i _j
4.9

_ ’ ’
bn+1=VUni1-0h4g

The combination of the matrix equation and the imposed
constraint on(: ¢2(0):> is solved iteratively. The form factor

slopeF’(0), thedistribution functions, and average multi- Un+1=0ps1/Onss (4.10
plicities are all approximated by similar discrete sums over
the amplitudesy(™"v, The dot products do not involve conjugation, and the con-

stantsa,, andb,, are in general complex. The process will fail

if b, 1 is zero for nonzerw, , ,, which can happen in prin-
The matrix equation(4.8) is solved using the Lanczos ciple but does not seem to happen in prack®@. If v;, , is

algorithm[18] for complex symmetric matrices, which is a zero, the process terminates naturally. The vectgys;,

B. Numerical techniques
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TABLE Ill. Basis sizes for DLCQ calculations in the soluble model with paramets 2, u?=10u?, andA2=50u2. The numbers
of physical states are in parentheses.

K

N, 3 5 7 9 11 13 15 17

1 3 8 18 38 36 65 110 185

3] 4) (7 (12 (19 (30 (45 (67

2 19 70 218 265 590 1120 822 1410
(10) (32 (127 (119 (343 (754 (453 (626)

3 43 222 958 1408 4460 17031 22486 21635
(22) (102 (367) (736) (2671 (9230 (13213 (13531

4 75 872 3714 9259 49394 50966 110254 328966
(39) (330 (1399 (5913 (32363 (32124 (55319 (172247

5 99 2028 13702 54100 95176 386140 1553576
(50) (722 (5699 (28065 (66371 (232400 (1038070

6 139 3982 35666 126748 536758 2907158
(70) (1548 (12997 (69245 (391511 (2107688

7 195 7734 79794 519325 1317392
(99) (2780 (32891 (276299 (1008539

8 275 11736 172118 1165832

(139 (4268 (61947 (687394

Uns+1, V)41, andu,, ; can all be stored in the same array. At lar form for transverse sums is used for two-body amplitudes

any one time on|y two vectors, one of these and need to and the extended trapezoidal rule is used for all others, with

be kept. one exception. If the coefficient82) for the extended trap-
The vectorsu, are orthogonal to each other, and te ezoidal rule become negative, a rectangle approximation is

andb,, form the diagonal and co-diagonal of a complex sym-used. This is because restoration of symmetry for the

metric tridiagonal matrix which represenss in the basis Weighted matrix requires the square roots of the weights.

{u,}. If the process has terminated witlva, ;=0 for some ~ Schematically the symmetrization process is

n, the tridiagonal representation is an exact representation

for some subspace, and diagonalization yields some of the g A o .

eigenvalues of\. If the process is terminated at some arbi- 2 AW fu,e; Wi A WU = €

trary early point, the eigenvalues of the tridiagonal matrix (4.11

will approximate those oA. The approximation is particu-

larly good for the extreme eigenvalues after only a few iterawherex/wiijij is the new symmetric matrix.
tions. Depending on the initial guess, the number of itera- The complete specification of the weighting factors re-
tions may need to be only 20, independent of the sizA.of quires selection of integration order, because the limits of
To reconstruct the eigenvectors of the original matrix, all ofintegration are interrelated by the cutoff. The simplest reduc-
the u, need to be kept. Because only two are needed in théon of these interrelationships is made if all summations in
Lanczos algorithm, the others can be written temporarily taone transverse direction are done before those in the orthogo-
disk and be retrieved later. nal transverse direction, and all of these before the longitu-
We use the analytic solutiof8.8) as the initial guess. Its dinal summations. Within each of these three groupings the
components are either real or imaginary, and the process gummations are done for one particle at a time in the ordered
matrix multiplication and division or multiplication by,  momentum list. One consequence of this choice is that the
preserves this structure in a controlled way. The diagonafransverse directions are treated asymmetric@kcept for
elementsa,, can be shown to be real and the off-diagonalthe two-body sectoysThis induces a small transverse asym-
elementsb, are either real or imaginary. This reduces themetry in the amplitudes of the solution, including the two-
storage needed and eliminates the need for explicit complelzody amplitudes. The asymmetry disappears in the numeri-
arithmetic. cal limit N, —oo,
To further reduce storage requirements, we take full ad-
vantage of the transposition symmetry and sparsity of the C. R
: L . Results
matrix. Only nonzero elements and their indices are stored.
The couplingg is factored out so that the matrix can be ~We have solved the discrete eigenvalue prob{ér8) for
reused without change in the iterations that solvegfor various cases. The physical parameter values chosen were
; ; L _ 2_ 2 2_ 2 C 2000\ —
To improve convergence, we include weighting factors ofy=1/2, M“=u*, u7=10u°, and(:¢<(0):)=1 or 2. The
the sort discussed in Sec. Il B 1 and Appendix B. The circuparameters that control the numerical approximation, namely
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TABLE IV. Numerical parameter values and results from solving the model eigenvalue problem. The
physical parameter values weké?= u? for the fermion mass/,L§=10,u,2 for the Pauli-Villars mass, and
(:¢*(0):)=1 to fix the couplingg.

(Mp? K N aldm (Molw)? ol (ne) 1004%F'(0)
50 11 4 0.8165 0.8547 13.293 0.177 —0.751
50 13 4 0.8165 0.8518 13.230 0.172 —1.015
50 15 4 0.8165 0.8408 13.556 0.178 —0.715
50 17 4 0.8165 0.8289 13.392 0.180 —0.565
50 9 5 1.2062 0.8601 14.023 0.179 —0.547
50 9 6 1.2247 0.8377 14.323 0.179 —0.582
50 9 7 1.4289 0.8302 14.386 0.179 —0.658
50 9 5 1.2062 0.8601 14.023 0.179 —0.547
100 9 5 0.7143 1.0520 12.565 0.174 -0.239
200 9 5 0.5025 1.1980 10.191 0.172 -0.139

o analytic 1.0000 13.148 0.160 —0.786

A? K, andN, (orL,), were varied to study convergence is mirrored in the distribution functions shown in Figs. 3—6.
with basis sizes up te-520 000. The ranges of these nu- Again, variations inK and N, make little difference; how-
merical parameters are shown in Tables IV and V. The transgver, one can see that the cutoff has an important effect.
verse scalé., was chosen such that, radial points satisfy Smaller cutoffs produce an enhancement in the interval
the invariant-mass cutoff for one-boson states at the value df0.4, 0.8)*

the longitudinal momentum that yields maximum transverse The amplitude for the one-boson state is shown in Fig. 7.
width. The bare fermion madd, was allowed to vary from The analytic result is shown for comparison. As can be seen,
its analytic, infinite-cutoff value oM in order thatM could  the two shapes are nearly identical.

be held fixed. The tables list the values Mf, along with

those of the bare coupling, as set by Eq(4.9), the average V. CONCLUSION

O S 22000 ) —
Eeson multlpI|C|ty(.nB>, and, for (:¢"(0):)=1, t.he -sl(-)pe In this paper we present a new method for the renormal-
F'(0) of the fermion form factor. The analytic, infinite- j,ation of Hamiltonian light-cone-quantized field theories
cutoff values are also included. _that maintains Lorentz invariance and other symmetries. The
The values of the form factor slope are very poor approxiynain difficulty which is confronted by such methods is the
mations. This is due to the sensitivity 8, of the finite  .,nqrction of the counterterms. We employ the traditional
difference representation of the derivatives in E%20. A generalized Pauli-Villars methd@]. With a sufficient num-
good approximation requires at ledst =8, which implies  per of pauli-villars fields, perturbation theory is regulated
very large basis sizes even for small o while Lorentz symmetries and discrete symmetries are pre-
The results fog and(ng) are surprisingly insensitive 10 seryed with a minimal number of counterterms. These coun-
variation inK andN, . Only the cutoffA® is important. This  terterms are generated automatically. We hypothesize that
these counterterms are sufficient to regulate the nonperturba-
TABLE V. Same as Table IV exceft ¢2(0):)=2. tive problem.

In Yukawa theory, Pauli-Villars regularization preserves

(AMw)? K N, plolm (Molp)®  glpw  (ng) chiral symmetry{11,12, unlike the invariant-mass regulator.
50 11 4 0.8165 05068 21541 0368 A' similar outcpme arises in QED wherel one needs Pauli-
% ;4 omes osss zimr ose VIS iesulaielon ol he i porzalen oop o o
50 15 4 0.8165 0.4496  22.323 0.366 a covariant method is necesséry in the nonperturbative con-
50 17 4 0.8165 0.4439 21.930 0.364 text to find all counterterms.

50 9 5 1.2062 0.5340 22.396 0.367 Given that the theory is finite by suitable Pauli-Villars

50 9 6 1.2247 0.5109 22.507 0.369 regularization, we can impose a regulator to limit the Fock

50 9 7 1.4289 0.5204 22.287 0.366 Space so as to produce a tractable numerical problem. A
finite matrix approximation can then be obtained with use of

50 9 5 1.2062 0.5340 22.396 0.367

100 9 5 0.7143 0.9353 20.962 0.359

200 9 5 0.5025 1.3080 18.034 0.347

SRecall that the distribution function does not have a fixed nor-
0 analytic 1.0000 19.420 0.308 malization but instead determines the average multiplicity, which is
then also enhanced at finite cutoff.
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0.00 & 0.0 @ . : — 3
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y y
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FIG. 3. The boson distribution functidiy at various numerical FIG. 5. Same as Fig. 3 but fgr¢=(0):)=2.
resolutions, with(: ¢2(0):)=1 andA?=50u?. The solid line is the
analytic result. and cutoff values, increased the model basis by only 100%

and the loop-calculation basis by 150%. Given the sparsity

the DLCQ procedurd1]. In the finite matrix problem we of the matrix, increases of these magnitudes are quite accept-
face the numerical difficulties of non-Hermitian matrices andable. However, smooth convergence and extrapolation from
large basis sizes. These difficulties are successfully adtases of minimal size require the introduction of special in-
dressed in a (3 1)-dimensional model9] constructed to tegral weighting methods to DLCQ. The dramatic improve-
have an analytic solution. This model requires one Pauliment which can occur is illustrated in Fig. 1.
Villars boson as a regulator. We also study the DLCQ ap- With these methods we have obtained agreement between
proximation to the one-loop fermion self-energy in Yukawathe numerical and analytlc solutlons of our m_odel. The con-
theory, where three Pauli-Villars bosons are neddddl vergence of the numerical result in longitudinal and trans-
The non-Hermitian matrices are handled by the compleyerse resolution is remarkably rapid. The result is sensitive
symmetric Lanczos diagonalization algoritjd8—20. This only to the cutoff used to limit the Fock space, but even there
technique is ideal for the extraction of extreme eigenvalueéhe convergence to the analytic result is clear. The methods
and their eigenvectors. It takes full advantage of the sparsit§eem well suited to situations where low-mass states have a
of the Hamiltonian matrix. For a given basis size, storagesMall mean number of constituefi#2].
requirements are minimized. The natural next Step is to extend the model toward a
The basis sizes required in the calculation are reasonablglore realistic theory, namely Yukawa theory. The fermion

The presence of Pauli-Villars particles, at the chosen mas%an be given proper dynamics, and Yukawa-type interactions
can be reintroduced. Once Yukawa theory itself can be stud-

ied with our nonperturbative method, there may be useful

0.30 -
] .
4 [ -
0.25 7 . . 0.6 1
] [ ] ] ®
0.20 0.5 4 ! ]
i ] A
= 0.15 0.4
] C
0.10 1 0.3
] ®  A2=50p2 ]
1 B A2_100 u.2 0.2 ] [ ]
0.05 & ]
: A A2=200 “2 4
] 1 ®  A2=50p2
0.00 #¥————— 0.1 1 " AZ=100p2
00 02 04 06 08 10 ] 4 AZ=200
y OO T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
FIG. 4. The boson distribution functiofy for different cutoff y
values, with{:¢$2(0):)=1 and numerical resolution set Kt=9
andN, =5. The solid line is the analytic result. FIG. 6. Same as Fig. 4 but fgr¢2(0):)=2.
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1
X-Y=0u XY =5 (XY XY ) =Xy (A3)

We also make use of an underscore notation: for position-
space variables we write

X=(X",X.), (Ad)
while for momentum-space variables

k=(k",kyp). (AS)
Then

N| =

k-x==k*x"—k, -x, . (AB)

Spatial derivatives are defined by

FIG. 7. The one-boson amplitudg®? as a function of longi- d d d
tudinal momentum fractioy and one transverse momentum com- 9= axT! J-= X! 9= ax (A7)
ponentdy in theg, =0 plane. The analytic result is shown(@® and
the numerical result ib) for A2=50u?, K=17, andN, =4. Both The gamma matrices™ = y°=+ y*=(y*)" satisfy the fa-
correspond td: $%(0):)=1. miliar relation
applications to the Higgs sector of the standard model. We {y*.y"}=29"" (A8)

are sufficiently encouraged by the success of the Pauli-
Villars program for the examples discussed here to believ
that it will have general applicability to QCD in-31 dimen-
sions.

ith g#” the light-cone metric. It is simple to verify that the
Hermitian matrices

1 +
Ae=359"y" (A9)
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APPENDIX A: LIGHT-CONE COORDINATES 0 -1 0 1

We define light-cone coordinat¢23] by which has two eigenvectors, both with eigenvalué:

x =x+x3, (A1) 1 0
1 0 1 1

with the transverse coordinates= (x*,x?) unchanged. Co- Xvwzm s\ 1| X-12705) 0 |- (A12)
variant four-vectors are written as e.g*=(x",x",x,), 0 -1

with the spacetime metric
These serve as a convenient spinor basis for the expansion of

0 2 0 0 the field s, = A, « on the light cone.
2 0 O :
ghr= (A2) APPENDIX B: WEIGHTING METHODS
0 0 -1 O o
New weighting schemes have now been developed for use
00 0 -1 with the DLCQ grid. They are based on extensions of the
trapezoidal rule and Simpson'’s rule to the situation where the
Explicitly, integration domain does not end on a grid point; they are also
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FIG. 8. Spacing of grid points for an arbitrary function.

T2, 0, 1002
@
o
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related to open Newton-Cotes formulas. The basic approach
is to derive formulas for one-dimensional integrals and then
iterate them for higher-dimensional integrls]. ]

The extended trapezoidal rule is obtained from consider- 130 1
ation of an integral from, say, to x5. The relevant graph is ]
shown in Fig. 8. The grid points are &t andx,, which are
separated by a standard spadingrhe other points are at the
integration Qquln bounda}nes at d|stanceshgf and hg 0.00 0.05 0.10 015 0.20
from the grid points. The integral of a functidhis then
approximated by

1N,

FIG. 9. Same as Fig. 1 except that the numerical values oscil-

B lating about the analytic answer are computed without transverse
JXO fdx=af(xy) +azf(x2), (BD) circular weighting and with only trapezoidal weighting in the lon-
gitudinal and transverse directions. The lack of circular weighting
with destroys the smoothness of the results shown in Fig. 1.
a;=(h+h_ +hg)(h+h_ —hg)/2h, efficients found in Simpson’s rule, and because of the greater
symmetry, the rule becomes exact for cubic functions as
a,=(h+h_ +hg)(h+hg—h,)/2h. (B2) well.

The four-point rule is also exact for cubic functions. It is
The coefficientsa; are chosen to provide exact results for
linear functions. The standard trapezoidal rule is recovered X5
whenh_=hg=0. If h,=hg=h, a standard open Newton- o Fdx=af(xy) +apf (x2) a5t (Xg) Ta4T (Xa),
Cotes formula results. When the extended rule is combined 0 (B5)
with the standard rule for interior intervals, a general com-
posite rule is obtained. The extended rule is then used twic§ynere
once at each end, withg or h; set to zero.

The extended Simpson’s rule follows from similar steps. a,=(9h*+ 24h3h_+22h%h?+8hh?+h!—4h%h2
Two forms are needed, one for three grid points and another
for four. Any situation with more grid points can be handled —4h h%— hé)/24h3,

with a composite rule obtained by combining these rules
with the standard Simpson’s rule. For the three-point case,  a,=(27h*—36h2h2— 20hh?— 3h!+ 18h2hZ+ 16 h3
consider an integral fromg to x4, with grid points atx,,

X,, andxs. The regular grid spacing Is; the extra points at +3h})/24n3,
the beginning and end are separatedhbyand hg, respec-
tively. The approximation to the integral is then ag=(27h*—36nh3—20hh3— 3h{+ 18hh?Z + 16hh?
x +3h{)/24n3,
f “fdx=a,f(x,)+af(x,) +asf(xs), (B3 ¥
Xo

a,=(9h*+ 24h3hz+ 22h?h3+ 8hh3+ h— 4h2h?

where
—4hh3—hl)/24n®, (B6)

a;=(4h%+12hh, +9hh?+2h3+ 3hh3+2h3)/12h?,
These integration formulas greatly reduce the size of the

a2:(4h3—3hhf—hf—shhﬁ—hg)IShz, errors, as shown for the extended trapezoidal (@g) in
Fig. 9, but they do not result in systematic behavior. The lack
az=(4h3+ 12h%hg+9hh3+ 2h3+ 3hh?+2h?)/12n2, of systematic dependence is primarily due to the use of a

(B4) square grid to approximate a circular domain in the trans-
verse direction. One way of putting this is that the iterated
These coefficients are constructed to provide exact results f@artesian integrals try to approximate(a key factor in the
quadratic functions. Wheh, =hg=0 they reduce to the co- area of the circlpas well as approximate the integral itself.
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8.7 ®  oxtended trapezoidal rule

86 ] ©  extended Simpson's rule

8-5 T T T 1
0.00 0.05 0.10 0.15 0.20

/N,

10. S ¢ id with point ircl f . FIG. 11. One-loop fermion self-energy. Results for the extended
- Square fransverse grid with points on circles o Vary'ngtrapezoidal and Simpson’s rules are compared. The horizontal line
is the exact result. The DLCQ grid parameters take the raKges

. . . . =20,21,...,25anti, =5, 6,...,30. Points calculated with the same
To overcome this square-circle problem, the integral iS,;),e ofk are connected by lines.

written in polar coordinates

FIG.
radii.

f dxdyfix,y)= 1 fzwdqb de(rzﬁ(rz #). (B7) ezoidal rule. For the self-energy integtalhowever, the in-
0 0

2 tegrand is independent of angle and one can simply use one
point or average the values at all points. The contribution to
The points of the square grid lie on circles of varying ragii  the weighting of a grid point is then the same for all trans-
shown in Fig. 10. The; are easily computed from the coor- verse points on the same circle.
dinates of the square grid. The squares of these radii are used The circular weighting in the transverse direction can be
as the grid points for a trapezoidal approximation to the racombined with either the extended trapezoidal rule or the
dial (r?) integral. Because the limR? does not fall on one extended Simpson’s rule in the longitudinal direction. A
of these points, the extended trapezoidal riB&) must be  comparison of the two is shown in Fig. 11. The relatively
used for the last interval. Clearly, the intervals are not oflarge excursions for smal, are due to the small number of
equal length; however, they are on average of ordef, 3 grid points involved for this case of a large boson mass. For
whereh is the spacing in the square grid. For the first 10larger N, the extended Simpson’s rule is seen to result in
circles, the average spacingiif is actually closer to B2. less excursion between different values Kof and is pre-
The number of points on the square grid that fall on anyferred for the self-energy integral. Results for the extended
one circle come in multiples of 4, because of reflection sym-Simpson’s rule are compared with those of the ordinary
metries. These points can be used to approximate the angulBLCQ sum in Fig. 1; in this case the results for the extended
integral on each circle via another application of the trap-trapezoidal rule would not be visibly worse.
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