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Light propagation in nontrivial QED vacua
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Within the framework of effective action QED, we derive the light cone condition for homogeneous non-
trivial QED vacua in the geometric optics approximation. Our result generalizes the “unified formula” sug-
gested by Latorre, Pascual and Tarrach and allows for the calculation of velocity shifts and refractive indices
for soft photons travelling through these vacua. Furthermore, we clarify the connection between the light
velocity shift and the scale anomaly. This study motivates the introduction of a so-called effective action
charge that characterizes the velocity modifying properties of the vacuum. Several applications are given
concerning vacuum modifications caused by, e.g., strong fields, Casimir systems and high temperature.
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PACS numbgs): 12.20.Ds, 11.10.Wx, 41.20.Jb

I. INTRODUCTION wherem denotes the electron mass aag=1/137.[In the
case of gravitation, one has to be replaced by the combi-
The vacuum considered as a medium has become a popuation (Gym?) involving Newton’s constant.However, a
lar picture in quantum field theory. With reservations due tocomplete derivation of the “unified formula” has not been
the lack of understanding of non-perturbative vacuum phegiven up to now.
nomena, it is astonishing that analogies between the quantum |n the case of gravitation, light was shed on the problem
vacuum and classical media are frequently useful. by Shore[10] who proved a polarization sum rule that rep-
One particular example is represented by the propagatioppsents a generalization of EG). Furthermore, he pointed
of light in a vacuum which is modified by various external 4  that the “universal” coefficient in Eq1) can be related

enwronmentsz €.9., eIectromqgne(EM) flelds', t(-?mpera— to the trace anomaly of the energy-momentum tensor in the
ture, geometric boundary configurations, gravitational baCk'case of weak EM background fields

ground and _non-tr|V|aI topologies. The COﬂC(.-:‘pt of drawing One of the most remarkable features concerning vacuum
the analogy is common to all of these cases: vacuum polar- ] i o ]

ization allows the photon to exist as a virteel e -pair on induced velocity shifts certainly is the fact thét >0 is not
which the various vacuum modifications can act. Under cerintrinsically forbidden in quantum field theories. This seems
tain assumptions, this influence on the loop process can efo offer the possibility of superluminal propagation, e.g., in
fectively be described by an immediate influence dfjan-  curved spaces and Casimir vacua. Both examples share the
erally non-lineay medium on the photon itself, e.g., by property of a possible negative energy densitin Eq. (1).
refractive indices. This program was carried out among oth- The two questions, whether the sigriadwave fron} ve-

ers by Adler{1], Brezin and ltzyksof2] for magnetic fields, locity indeed exceeds and whether superluminal propaga-
by Drummond and Hathrel[3] for gravitation, and by tion is observable in principle, could be resolved by calcu-
Scharnhorsf4] and Barton[5] for a Casimir configuration. lating the velocity shift in the infinite frequency limit. But
Further important examples are found in R¢&-9]. this is presently out of reach, because a resummation of the

A new physical insight into the phenomenon of photonderivative expansion has to be achieved. However, without
propagation in non-trivial vacua has been given by Latorrepeing able to answer these questions, let us just say that we
Pascual and Tarracf8]. Comparing the known velocity find no grounds for violation ofmicro-)causality in accor-
shifts arising from different vacuum modifications, they weredance with3,8,10,11. For a causality violation, a space-like
able to identify an intriguing general, so-called “unified” signal and Lorentz invariance(in the gravitational case,
formula covering all these casédhey concluded that the strong principle of equivalengeare necessary conditions.
polarization and direction averaged velocity shift is related taThe latter is explicitly violated in the above-mentioned ex-
the (renormalizedibackground energy densitywith a “uni-  amples. For an excellent discussion, the reader is referred to
versal” numerical coefficient the work of Shord 10].

In the present work, we confine ourselves to the case of
non-trivial vacua modified by QED phenomena. Within the
effective action approachl2], we derive a covariant light
cone condition in Sec. Il which turns out to be a generaliza-
tion of the “unified formula.” The necessary assumptions
are analyzed in detail.

*Email address: holger.gies@uni-tuebingen.de In this framework, we are able to clarify the relation be-

n fact, the results of9] cannot be embedded in the “unified tween the velocity shift and the trace anomaly in Sec. lIl.
formula.” The solution to this problem is an aim of the present Our findings do not unveil a natural and physically meaning-
work. ful connection. An alternative physical picture of the “uni-
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versal” pre-factor is given instead which is called the effec- EXY= grAY — 9V AM (2a)
tive action charge. Several applications of our light cone
condition concerning EM fields, Casimir configurations and *F“”z%e””“ﬁFaﬁ. (2b)

temperature are elaborated on in Sec. IV. In the Iow—energ){_

domain, we can easily recover all of the well-known results' N lowest-order linearly independent scalars are

described by the “unified formula.” However, the “univer- x:=L1F Frv=1(B2—E?) (33)
sal constant” turns out to be neither constant nor universal sy 2
when we drop the low-energy restriction. Instead, the con- y:=%F,,"F*"=E-B. (3b)

cept of an effective action charge provides for an intuitive
understanding of the velocity shifts at arbitrary energies. The normalization is chosen in such a way that the Maxwell
Conclusions are drawn in Sec. V. Lagrangian can be writtefi,,= — x.® By taking advantage of
the antisymmetry of“” and by virtue of the relationgl3]
MOV _*Eua*xpv V24
Il. LIGHT CONE CONDITION FHF,—"F Fra=2xg™, (4a)
Consider light propagation in a non-trivial QED vacuum FroOEY =*FreRY =y g7, (4b)
(we will specify this terminology sodncharacterized by a . _ _ o o
certain energy scale. Suppose that there exists an effecti#$ing the metrig=diag(—,+,+,+), itis easy to verifyi)
action which takes into account any QED quantum phenomt-he vqnlshlng of odd-order invariants afit) th.at invariants
ena on higher scales and hence provides for an exact descri] tart;'t[ﬁ“y order can be reduced to expressions only involv-
tion of the propagation. In principle, this effective action will Ing X"y wheren,m=0,1,2 ... . Besides, note that parity

depend on any gauge and Lorentz invariant scalar which wvanance demands fon to be even. : .
can construct. Throughout the paper, we will stick to the Consequently, the complete effective action becomes ex-

. . . tremely simplified, turning out to be a function afandy
following essential assumptions:

(1) The propagating photons characterized by are con- only. The corresponding Lagrangian reads

sidered to be soft. This is equivalent to calculating the prop- L=L(X,Y). (5)

erties of the vacuum in the limib/m<1 where the scale is

set by the Compton wavelength. We obtain the equations of motion froth by variation:
(2) The vacuum modification is homogeneous in space

and time(but not necessarily isotropic 0=g 9L _ ﬁza (O .LE#"+a,LFRY)  (6)
Referring to these assumptions, we can neglect any term “a(a,A,) oA, T Y

in the effective action that involves derivatives of the field,
since a derivative either acting on the background field van
ishes[assumption(2)] or acting on the photon fiel&*” con-

tributes terms of the orde?(w?/m?) to the equation of mo- spafce-timﬁ derivative&M).f he Bianchi identity whil ,
tion. In the latter case, it is negligible because of assumption T We take advantage of the Bianchi identity while moving
(1. d, to the right, we arrive at

We furthermore assume the following:

(3) Vacuum modifications caused by the propagating light
itself are negligible.

Assumption(3) justifies a linearization of the equations of
motion with respect td#” but does not stand on the same
footing as the former assumptions, since it is not essential for

whered, ,d, denote the partial derivatives with respect to the
field strength invarianté3) (and should not be confused with

0=(xL)d,F*"+(zM4E)d,F P, (7)
whereM4; is given by

MEL: =FHYF g 05L) +*FH*F o g(95L)

the formalism. Note that we dwotdemand that the deviation + O L(FHP*F g+ *FRUF ). (8)
; y ap ap
from the Maxwell Lagrangian should be small, correspond-
ing to small vacuum modificatiorfs. Note thatM is antisymmetric in the upper as well as the

Since it is unwieldy to establish a general formalism forlower indices:M4;=—M’4=M .
arbitrary numbers of Lorentz vectors and tensors character- |n general,F*” contains background fieldss” and the
izing the vacuum, we first consider a vacuum only modifiedpropagating photon field“”. According to assumptiof2),
by EM fields. Hence, the dynamical building blocks of the the derivative acting off 4 vanishes:
effective action which respect Lorentz and gauge invariance
are given by the field strength tensor and its dual aMF“zaMf"". 9)

Inserting Eq.(9), Eq. (7) yields, in Fourier space,

2In principle, the Lagrangiarf can contain imaginary parts indi-
cating the instability of the modified vacuum. In the following, it is
understood that we take into account only the real pad efhich 3¢ andy are usually calledF andG. We do not follow this con-
is solely responsible for the field equations. vention for reasons of simplicity.
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O:(&Xc)kﬂfﬂv_’_(%Mgg)kﬂfaﬁ_ (10) this leads to
Introducing a gauge potentia” for the propagating field MAY=2[3TH (32+ a§)£+ 55(%x(a§—ﬁ§)£+ YdxyL)].
47, we may write (17)
f#r=k*a"—k"a*=a(k*e”"—k"e*), (11 However, the Maxwell energy-momentum tensor in general

o is devoid of any physical meaning, since we are simply not
wherea: = ya*a, ande”=a"/a. Here, the polarization vec- dealing with the Maxwell Lagrangian. The right quantity to

tors * are normalized to 1. deal with is therefore the vacuum expectation valM&V)
Establishing the Lorentz gauge, =0, we get of the energy-momentum tensor defined by
0=(dxL)k%e"+MA: K, kP, (12 2 o
THY)i= — , Ti=]dV-gc, (18
where we used the antisymmetry Mfﬁ;. (T e 69,0 f X 9t (18

The next important step is to multiply E@L2) by €, and
average over polarization states according to the well-knowwhereI" denotes the effective action. Performing the calcu-
rule lation, we arrive at

S eBe—gh, (13) (T ) y=—TH (L) + 9" " (L— X L=y L). (19
pol
Solving Eq.(19) for T#” and inserting it into Eq(17), we
where the additional terms on the right-hand side of &8  can presenM** in its final form
vanish with the aid of the antisymmetry ®%%. We find, o

for Eq. (12), 2., 22
1 (dx+ay) L
MY _ -2 Y /THM iy 2_ 92

0=2(3,L) K2+ M2k, k. wy  MomZ 73 gr  (Towtdfax(G gL
Equation(14) already represents a light cone condition and 1 a§+ f, L
actually indicates that the familid&’=0 will in general not Yo Lt —— (L= XdxL=ydyL) | |.
hold for arbitrary Lagrangians. Our final task is to pat,. )
in a convenient shape. Using the powerful relatiohs we (20
obtain

SubstitutingM“” into Eq. (14), we end up with the desired

M.U«sz[%':lw':av((f_’_ a2)£+ SM(ydy L_Xézzﬁ)]_ light cone condition for EM field modified vacua fulfilling
@ o Ty Y (15  the above-mentioned assumptions:

Introducing the Maxwell energy-momentum tensor k2=Q<T”V>kaMkV, (21
T=F"Fq,—Xdg, (16 where
|
1
2 2
E(ax+ )L
Q= . (22
2 X 2 2 1 2 2
(0,L)7+(0,L) 5((9)(— 3y)+Ydxy| L+ E(&X+ Fy) L(1=Xdx—Yydy) L

To extend the validity of the light cone condition to arbitrary In the following, we consider the vacuum to behave as a
non-trivial vacua, we have to take the vacuum expectatioppassivemedium in which the EM fields and the further
value of Eq.(21) with respect to the additional vacuum vacuum modificationg remain in a state of static equilib-
modifications parametrized by theollective label z; rium. SinceQ solely depends or andy [via £(X,y)], this

assumption of passivitieads to
k2= (0] Q(T#"),4)0) K, K, . 23 ption of passivit

Inserting a complete set of intermediate states, we obtain

“Note that the variation with respect to the metric tensor is just a
- ) ) . ) ) Wi
k _2 Z<O|Q|I>ZZ<I|<T#V>xy|0>zkﬂky- (24) trick to calculate the symmetric energy momentum tgnsor With
i some care, the same result can be obtained by canonical methods.
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A0]Q[i),=(Q),b0; - (25  Q-factor will simplify in the case of small corrections &, .
As will be shown in Sec. IV, the denominator then reduces to
Equation (25) states that the vacuum exhibits no back-1.
reaction caused by the EM fields while switching on Another representation of the light cone condition is

Q depends functionally orC(x,y), which is, as usual, found by averaging over propagation directions; i.e., inte-
defined via the functional integral over the fluctuating ﬁelds'grating overk e S

Taking the expectation value @ hence leads back to inte-

grating over the field configurations which respect the modi-

fied vacuum. E.g., if the modification imposes boundary 5 1-Q(3(T%+3(T%))
conditions on the fields, the functional integral has to be v 1+Q (T
taken over the fields which fulfill these boundary conditions.

Therefore, taking the VEV of) defines the new effective ) )
Lagrangian characterizing the complete non-trivial vacuum:For Q(T%)<1 and(T¢,) being even of lower order, this

(30

reduces to
(Q)z=(Q(L(X,¥))),=Q(L(X,Y;2)). (26)
4 4
We finally arrive at the light cone condition for arbitrary v2=1— §Q<T°°>=1— §Qu, (31
homogeneous non-trivial vacua:
k2=Q(x,y,z)(T’”>XyzkﬂkV. (27 whereu denotes thgrenormalizedl energy density of the

modified vacuum.
Remember that the validity of the light cone conditi@7) is
not restricted to results of perturbation theory or only small
modifications of the Maxwell Lagrangian. It is an exact

statement in the sense of effective theories. § In his paper, Shor¢10] suggested a deeper connection
Now, the terminology “modified QED vacuum” should petween the velocity shift and the scale anomaly. For the

be clarified: from the derivation of the light cone condition, it Heisenberg-Euler Lagrangian, he showed that the coeffi-

is obvious that the implicit space-time dependencefof (jents of thex? andy? terms in the scale anomaly are pre-

should only be contamed in the field vanable_s._ Furthermqreeismy those appearing in the velocity shift for the different

the vacuum has to fulfill the demand for passivity. OtherW'Sepolarization states.

the light cone conditior{27) only represents a zeroth order = \yjithin the framework developed so far, we will attempt

approximation of the infinite sum over intermediate states ing clarify the relation between the scale anomaly and the

Eq. (29). . velocity shift. Therefore, we have to investigate whether the
As a third remark, we want to point out that the sum overiarms in the Q-factor can be expressed in terms of the

polarization states is not necessary for the derivation of @nomaly. For reasons of simplicity, we limit this consider-

light cone condition. By summing, we even exclude theation to the case of a purely EM field modified vacuum.
study of birefringence from the formalism which is certainly From Eq.(19), we can read off the scale anomaly
the most important experimental applicatiphf4—16. But

for a projection on the polarization eigenstates, fhe¢erms
have to be rewritten in terms of the field strength tensor
which is practically impossible for arbitrarg.

In the remainder of the section, we calculate further repBy differentiation, we find
resentations of Eq(27) by choosing a certain reference

frame and introducing I(T) = —4(X<9§£+y<9xy£), (333

IIl. VELOCITY SHIFT AND SCALE ANOMALY

(T*)=4(L—XI LYy L). (32

k”:m:(m'k> =:(v.k), (28) T2,y = — A(y 2Lt XonyL). (33b)

where we defined the phase velocity y=k%|k|. For Eq.  From Egs.(33) immediately follows
(27), we obtain

2_1_ Al Lo 2 20 A y X 1/1 1 N

07 =1-Q(T*)k kK. (29 (d+dy) L=~ Xy IxyL— Z(;aﬁy‘?y (T%).
Equation(29) clearly demonstrates that the light cone condi- (34)
tion is a generalization of the “unified formula” of Latorre,

Pascual and Tarradi8]. This expression is proportional to the numerator of the

In general, theQ-factor will depend on all the variables Q-factor, Eq.(22). Using similar techniques, we can also
and parameters of and hence will naturally be neither uni- rewrite the denominator, but the result is not very illuminat-
versal nor constant. Besides, the daunting structure of thmg:
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. ) X 5 where L, contains the correction terms.
denominator(Q) = (9xL) "~ (9xL)| 5 (dx+dy) L Regarding the denominator expression of the effective ac-
tion charge(35), the scale anomalyT®,) is of the same

1 order asl.. Hence, Eq(35) simply reduces to
+ gL+ B LUT). i

1 a
+Z‘9X<T a>
Eq.(35=1+0(L,), 38
(35 q.(35 (L) (38)
and the approximatio®=3V2L= 3 V2L, is justified.
Fortunately, approximating E@35) by 1 will be appropriate
to the applications of Sec. IV. .
It is already obvious from Eq34) that there is no imme- _ A. Weak EM fields
diate connection betweefT®,) and the velocity shift, Eq. According to the authors of Ref17], the two-loop cor-
(29). The findings of Shore arise from the special structure ofected Heisenberg-Euler Lagrangiemeak-field limit of the
the Heisenberg-Euler Lagrangian whegg£=0. In general, ~complete one-loop approximated effective QED Lagrangian
higher-order mixed terms are not forbidden by gauge, Lorfeads
entz or parity invariance. Referring to E@4), the introduc-

tion of the scale anomaly appears to be artificial rather than L=—x+cx*+coy, (39)
interpretable. Even Shore’s conjecture that the sign of the
scale anomaly is linked to the sign of the velocity shift can-where
not be maintained.
Instead, we favor the pure effective action formulation, 8a? 40 o
i.e., the left-hand side of Eq34), since it offers a new in- C1= 45m4( *t3 ;), (409
tuitive picture. Referring to Eq(29), the value and sign of
the velocity shift result from the competition between the
VEV of the energy-momentum tensor and tQeactor. Both 140 1315«
area priori neither positive nor bounded by symmetry prin- C2= 4_5m4 1+ 252 7/° (40b)

ciples. Let us restrict the following investigation to the case

of small corrections to the Maxwell Lagrangian, i.e., With the aid of the light cone conditiof81), we immediately

obtain, for the polarization and propagation direction aver-

Q: %(&)2(4_ 6,32/)5 = VZEZZQ (36) aged Ve|0C|ty (}E \/7),
Q=cy+cy, (41)
Because of the similarity to the2D) Poisson equation, we
will call Q from now on theeffective action charge field 4o 1955\ [ 1
space. The classical vacuuy,=—x is unchargedand ~sv=1— 11+ — [—(E2+ BZ)} (42
hencev=1. As we will soon demonstrate, the pure QED 135m?*| 36 m/|2

vacuum has a small positive charge at the origin in field
space x=y=0). For increasing the field strengttT*") In the well-known one-loop part of E¢42), we can identify
certainly also increases without an upper bound, and so wihe factor of 44/135m* as the “universal constant” of the
expectQ to decrease in order to produce no unphysical ve-‘unified formula” (1). At this stage, it is already understand-
locity shift >1. It is therefore reasonable to presume local-able that all of the known QED induced velocity shifts share
ized effective action charge distributions centered upon théhis universal factor in the low-energy limit, since they are
origin in field space. The results of Sec. IV will confirm this all based on the Heisenberg-Euler Lagrangian. Even the re-
charge-like picture. sults in gravitation involve the sane" e -loop calculation
(of course, in a curved space-tinid]).® It is furthermore
obvious that the two-loop correctiof22 o/ is as universal
IV. APPLICATIONS OF THE LIGHT CONE CONDITION as the number 1INote that modifications from the denomi-

: 4
Up to now, the light cone condition might be regarded ag"ator ofQ, Eq. (35), contribute to the ordeO(a”).]
a nice frame without a picture enclosed, since it is much
easier to talk about all-loop or non-perturbative effective ac- B. Strong magnetic fields

tions than to calculate one. . . .
Indeed, the effective actions which we are going to insert Since the Heisenberg-Euler Lagrangid) represents a

. . weak field limit, Eq.(41) denotes the value of the effective
will not reach beyond two-loop order. Their general structure_ . T i .

. action charge at the origin in field space,{=0). In this
can be characterized by

L=Ly+ L, &<l, (37 SIn particular, there is nothing mysterious about the factor 11 as it
Ly is sometimes found in the literature.
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3e-05

subsection, we analyze the form & along the positive
x-axis (pure magnetic fields As our starting point, we use
Schwinger’s famous formula for the one-loop effective QED
Lagrangian 13]:

2e-05
1

irds
Lo=- FJ 0 56‘”‘23( (e9)?y|cott{es(\x2+y2+x)12]
r

Q®B)

X cofes(Vx*+y?—x)1?]— (es x—1 (43) le05

It is understood that the convergence is implicitly ensured by

the prescriptionm®>—m?—ie. (Note that we have not per-

formeql a proper time Wick rotation yét._ _ %5 55 m n n 00
It will be useful to reparametrize the field space with new B

coordinates

ar=(\+y?+x)"2

FIG. 1. Effective action charg®(B)= in units of 1m* versus
magnetic fieldB in units of the critical field strengtB.,=m?/e.

b:=(Yx2+y2—x)¥2 (443

— _1(42_p2 1 1
=lyl=ab, x=3(a®-b%). (44D o(h)= p— W[(th— —) (1+h)—h—3h?—4hInl'(h)
The Laplacian in terms od andb reads 1 1
+2hin2m+ 2 +4¢' (~Lh)+ |, (49
2:2—b2(0’)§+ (?g) (45)

whereys denotes the logarithmic derivative of thiefunction
and /' is the first derivative of the Hurwitz zeta function
with respect to the first argumef23].

For strong fields, the last term of E(49), «1/6hx|B|,

For the term in the square brackets in &), we easily find

(es)? dominates the expression in the s brackets. H th
2 _ 2, 2 p quare brackets. Hence, the
V1= al+ b2(3a+ dp)lab cothesacotesh) effective action charge decreases with
2(es)2[esbcotesb( " 0 1o 11
= esacothesa— -2 - - -
a’+b? sintPesa QB)=75 B.B for B—o (50)

esacothesa

(esbcotesb— 1)]_ (46)  which supports the charge pictuggig. 1).

The contraction of the energy-momentum tensor VEV
may be cast into the form

sintfesb

Confining ourselves to purely magnetic fields=(B?, y

=0=b=0, a=|BJ), we obtain

2(es)2[esacoth esa—1 1
5 - — sesacothesal.
a? | sinifesa 3
(47)

(TFYk .k, =B2—(B-k)?+ O(a)=B?2sirt§+ O(a),
(51)

where 6 measures the angle between fdield and the
propagation direction.
Finally, the light cone conditioiti29) yields, for arbitrary

The complete formula for the effective action charge mightbackground fields consistent with the one-loop approxima-

be written(substitution:z: =esa h: =m?/2ea=B°/2B)

1 «a(i~dz
Q=-——| —e2"

2a2mlo Z

zcote—1 1
—— — —zcothz|.

sinffz 3

(48)

With some effort, the evaluation of the integral can be per-
formed analytically by standard means of dimensional regu-

larization. Details are given in Appendix A. The result is

tion (h=B/2B),

. 2
, . asifgl B 1 Bel 2Bg Ber
=1 — — +— - — P
vi=l- 5 oee 3/t ae) B M ZE
3B% B. By 1 o« B
_E_ E+E|HZW+§+4§ - ’E + 3B, .
(52
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104 [ ' ' ] where the symmetry axis points along the 3-direction. The
102 | ] effective action charge has to be evaluated in the zero-field
1,00 1 limit. In concordance with experimental facilities, the plate
‘ TN separationa is treated as a macroscopic parametar (
0.98 1 N 1 o« um); otherwise, we would violate the soft-photon approxi-
0.96 | AN ] mation, since the photon wavelengthhas to obey\ <a to
L 094 \ . validate the concept of treating the Casimir region asac-
< ool \ ] roscopi¢ medium.
0.90 | i The magnitude ofa implies that we can neglect the
088 | ] a-dependence of) which is exponentially suppressed by
ma>1 (this point will become clearer in the following sec-
0'23 K | tion). Here, Q is simply given by Eq41),
0.84 .
0.82 - . ’
0.80 Lo ! : — _ 2 1955«
0.1 1.0 10.0 100.0 1000.0 Q=citc, 45m* 36 7/’ (56)
B
FIG. 2. Square velocity? versus magnetic fiel in units of from which directly follows, using Eqg55) and (29)
the critical field strengttB,=m?/e. The dashed curve indicates the ' '
region where two-loop corrections become important.
a? 1955 | 72
The first derivative of the Hurwitz zeta function atl can v=1+ (90)2 ﬁ( 36 7 e (57)
be related to the generalizdd-function of first orderl’;
[18],

for a propagation perpendicular to the plat@s parallel
1 propagation will, of course, not be modified
¢'(=1h)==hinh+In[y(1+h)—L,+ 5, (53 Equation (57) represents the two-loop corrected version
of Scharnhorst’'s formulé4,5]. Note that the two-loop cor-
rection enhances the velocity shift. As was recently found by
Kong and RavndaJ21], the radiative correction to the Ca-
simir energy is of order?/m*a®:

whereL,;=0.248 754 47 ... is apure number and can be
obtained from the Raabe integfdl9].

Using Eq.(53), one can show that E@52) is identical to
the findings of Tsai and Erb®]. Equation(52) is plotted in
Fig. 2. Although the velocity shift increases proportional to (90 2 11 wta? 58
the magnetic field for largB, the total amount of the veloc- =u=-— - .
ity shift remains comparably small, 720a*  (90)?x30x 16 m*a’

2 At the two-loop level of Eq(57), this correction can obvi-

m
~ -5 —B.=— B
6v=9.58 ...X10 at B=Bg= e’ (54) ously be neglected. Even three-loop contributionsQn
would be more important. But it is interesting to note that
for strongB-fields, consistent with the one-loop approxima- this correction also contributes positively o

tion, i.e.,B/B,< 7/ a=430. Taking higher-order loop calcu-
lations into account, we expect a stronger decrease(&) D. Finite temperature

for largeB in order to letQ(T,,,)k,k, be bounded. In the remaining sections, we reveal the manifold features

o of temperature induced velocity shifts. Unlike the Scharn-
C. Casimir vacua (Scharnhorst effec) horst effect, we do not recognize a principal obstacle against

One curious result regarding vacuum induced velocityneasurability here, and the results allow for an immediate
shifts is the possibility of superluminal phase and group Vephysmal interpretation. The following calculations are re-
locities. As mentioned above, e.g., Casimir vacua can creatdricted to t_he 9”9400{3 level. . .
positive velocity shifts, since a negative shift of the zero We begin with the one-loop correction to the effective
point energy is permitted. For the configuration of perfectlyQED Lagrangian at finite temperature which can be decom-
conducting parallel plates of distanag(T#") is found to be posed according to

[20] LAXY,T)=L(X,y, T=0)+AL(X,Y,T), (59
-1
2 1 whereby £(x,y,T=0) denotes the usual zero-temperature
(TH"y= Z , (55  Lagrangian, Eq(43).
720 1 For purely magnetic fields\ £(x,y,T) was calculated by
-3 Dittrich [22]:
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oo

\/; ieds 2 1 : 2,02
AL(B,T)=———| —e ™SesBcotesB 0,(0,47isT?) = 142 g imgn%4T?s |
BD="1 7zl &7 2 ) Jrs2T n§=:1
(65
1
XT| O5(0,4misT?) — 1 (60)  Our task is to evaluate E464) in the various limits. First,
2T \ms we consider pure temperature phenomena with vanishing
] o ] field strength. The temperature dependent part of the effec-
The Jacobi®-function is defined by23] tive action charge reduces to
- . 22 2 I —m?s S —imh o n2/4T2s
0,0-q)= 3 ex~iqn+3?.  (6) AQB=0T)=2zza’| ds= "3 e e
2 2
The effective action charge can be decomposed similarly to — 2_2‘“_2 (_1)n(Tn> Kz(mn> (66)
Eg. (59) into 45 m*i=1 T T )
Q(x,y,T)=Q(x,y,T=0)+AQ(X,y,T) whereby we have taken advantage of the representation
—_1g2 — 12 v o 2
VL)Y T=0)+ 2 VALY, T). (62) 2(%) KV(M)=f du u”‘lexp(—u—Z—u (67)
0

Q(x,y,T=0) clearly corresponds to the zero-temperature
case as treated above. for the modified Bessel function and have rotated the con-
Since we have to differentiate with respecktand y; itis  tour. _
not sufficient for the calculation afQ to consider magnetic ~ For low temperature, we may use the asymptotic expan-
fields only in Eq.(60). Not until we have carried out the Sion of Kx(x) for x>1:
! 68
it (69

take this limit E—0 in the end, because the principle of

equilibrium thermodynamics would otherwise be violated. In

addition, the above-mentioned assumption of passivity of the ]
vacuum is only fulfilled forE=0. The appropriate expres- N this limit, we find

sion is simply obtained by replacing 29 o2
o o
V3

Laplacian are we allowed to s&=0. Indeed, we have to
Kz(x): \}2—87)( 1+0

3/2
T) e—m/T_>0—

AQ(B=0,T—0)=—— T

esBcotesB (633 45
(69)

by the gauge and Lorentz invariant terms . . . .
y gaug Hence, the effective action charge is perfectly described by

Q(B=0,T=0)=c;+¢y, EQq. (42), in this limit, while the
influence of temperature o vanishes as it shouldNote
that in the case of Scharnhorst’'s effect a similar term
AQ(B=0ma>1) also vanishes by drawing the analogy
«l/a.]

Next, we investigate the high-temperature limitm> 1

Eqg. (66). The calculation is, however, much more in-
volved, and so we simply state the result:

(esa(esbcothlesacot(esh (63b)

in analogy to Eq(43). Again, we make use of the advanta-
geous coordinatea,b in field space defined in Eq$44).

The result of the differentiation was already found in Eq.
(46); hence we obtain, for the temperature induced effectiv%f
action charge for purely magnetic fieldaB,b=0),

AQ(B.T) J7 a (i=ds g €sacothesa—1 AO(T 22 42 . k, m* o m® 0
N==—— =" ——— >m)=———l1-——+0| —||,
a2 mlo s sinffesa Q )= %5 m? 4 T4 T6 (70
esa I 1 where k;=0.123 749 077 40...=const. The interested
— 3 cothesaT| O,(0,4misT") — 2T reader is referred to Appendix B.
Therefore, we arrive at the remarkable result that the com-
a 1 (i»ds ,|esaothesa—1 plete effective action charge
- _ —e M
ma2lo S sinffesa (T )~ O(T—0)+ AQ(Tom 1lk o2 ’ m2
>m)= =0)+ >m)= —=k;—+0| —
esa c - 90"t 74 T®
- Tcoth esal D, e mMg NS, (64) (72)
n=1
decreases rapidlyx1/T*. Q(B=0,T) is plotted in Fig. 3.
In the last line, we made use of the identi32] The influence of temperature causes the effective action
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0.4 - R

0.2 - ]

8.0 10.0

0.0 : :
0.0 2.0 4.0 6.0

m/T

FIG. 3. Effective action chargeQ(T)=Q(B=0,T=0)
+AQ(T) in units of 45a2/m4 for high temperatureQ(T) de-
creases proportional to Ti.

charge to evaporate. Numerical results astonishingly indicate
that Eq. (71) is already a reasonable approximation for

m/T=1.4 (error<5%) where reak* e~ -pair creation is en-

PHYSICAL REVIEW D 58 025004

4 121k 2024 0 m?
U= —8100 1T + —2
2 m2
=1-9.72...X107+0 = =constr O —|.
T2

(79

In Egs.(74), (75), we found that the velocity shift increases
proportional taT* for low temperature but approaches a con-
stant value in the high-temperature limit. This can be under-
stood in terms of the effective action charge which evapo-
rates sufficiently fast compared to the increase of the energy-
momentum tensor VEV. Obviously, the shift described by
Eq. (75 remains small; therefore the deviation from the
vacuum velocity does not become seriously impor{ang.,

for the construction of cosmological modelslowever, one
should keep in mind that, if the temperature exceeds the
masses of further charged particles, each particle will con-
tribute additively toQ and will increase the respective num-
ber of degrees of freedoig or Nf.

E. Casimir vacua at finite temperature

ergetically impossible and the vacuum is essentially modified The combination of thermal and Casimir phenomena is in
by a photon gas. This excludes the interpretation that Edtself worthwhile studying, because both effects enter the for-

(71) is a pure threshold effect of pair production.

malism via boundary conditions but lead to opposite results.

To complete the high temperature or zero field analysis ofn the following, we want to investigate where and why the
the light cone condition we need the VEV of the energy-respective effect dominates the velocity shift. The determin-

momentum tensor which is given ligee, e.g.[24])

2

-
(T Ng+ = 5 =Ng| T diag 3,1,1,1. (72

an
,LLV)T 90

ing order parameter is the dimensionless combinafien
Nevertheless, the plate separatihas to be considered as a
macroscopic quantitya(=um).

First, we consider the low-temperature region. According
to Brown and Maclay20], the VEV of T** depending ora

The integer variablesNg and Ng denote the number of andT is given by

bosonic and fermionic degrees of freedom at a given tem- 21 (3T
perature. For QED, we obtain (TO93= 1S
T 7204 L2 a’
Ng=2, Ng=0 for T<m (photongas (7339
(T332 ™ 1 for Ta—0
=—-———, for Ta
Ng=2, Ng=4 for T>m (photon T 24044 -

+ ultrarelativistice*and e~ fermion gas.
(73b

It is appropriate to employ Eq31) for the light cone condi-
tion. Using our findings in Eqs69), (41), (72), (7338, we
recover the well-known resul8] for low temperature,

4472 2T4
v=1- ——a?—,
m4

2025 (74

which according to Fig. 3 is valid fof/m<0.16 (error
<5%) (T<10° K). Substituting Eq(71) into Eq. (31) and
using Eqgs.(72), (73b) for T>m, we finally arrive at the

(76)

for the parallel plate configuration/(3)=1.2020% .. .].
The light cone conditior{29) for a propagation perpendicu-

lar to the plate$k*= (v,0,0,1)] yields

1955 «

36 =

(Ta)®

v=1+
a*

o? w? 180(3)
(90)2 m* 1=

7T

(77

In the low-T limit, the (Ta)-term can be neglected and we
only rediscover Scharnhorst’s result. But we do not find an
additional velocity shift proportional t&* which could have
been expected from E{z4). This clearly arises from the fact
that none of thé€quantized perpendicular modes can be ex-

velocity of soft photons moving in a photon and ultrarelativ- cited at low temperature. TheT &)3-term in Eq.(77) will

istic e*e” gas:

become important forTa=0O(1), i.e., T>2000 K for
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a=um. This shows that the Scharnhorst effect is not sensi- 1a 1 B m

tive to temperature perturbations. AQ(T,B>B,)=5 — —a E (=D)"=n Kl( n)
For increasing temperature, we encounter an intermediate 3 7 B? Beri=1 T T

temperature region characterized by the conditicRTh (81)

<ma which corresponds to 0.2 e¥T<0.5 MeV. This im-
plies thatQ=Q(T=0) is a justified approximation and the
thermal contribution of are™e™ gas does not have to be
taken into account.

Using further results of Brown and Maclag0],

Note that it was not necessary to impose any conditions on
the magnitude off to arrive at Eq.(81). But, as mentioned
above, the field-temperature phenomena decoupld fom

due to the asymptotic behavior oK,[(m/T)n]e«exp
(=m/T) in Eqg. (81); hence, AQ(m/T>1B>B,)—0. Us-

2 ing similar techniques as applied in Appendix B, the high-
(T°°>$= —T4 (78) temperature limit of Eq(81) can be determined. The result
15 for T>m andB>B,, is
w_, (3T la1 B[ 1 1 m [(m
TR T4+~ — for Ta>1, = |- - —
(M= AQTBI=3 - S5 5t sk 0
we find lal1 B la e m?
=—————+-—k—+0| —|,
6 mB2B; 67 “BT? BT

412 a2(11+ 1955a)T4 L 457(3) 1 -
(452 m* 36 7 167% (Ta)®/ ®2
(79 wherek,=0.213 139 199 48. . .= const[see Eq(B14)]. To

L L obtain the complete effective action charQe we add the
In this limit, only the modifications caused by the blaCkbOdystrong-field contributiorQ(T=0) which was found in Eq.
radiation become important. A term proportional ta*las a 50):

consequence of certain missing zero-point fluctuations does

not occur, since highefperpendiculgr modes have been 1a e m2
thermally excited. Q(T>m,B>Bg)= = —k,——+0| ——;
For T>m, we will certainly recover Eq(75) with negli- 67 “BT BT

gible 1/(Ta)® Casimir corrections. Anyway, the concept of
solid plates is(at least experimentallymeaningless in this

20 ol ™) e
domain. _3 2m == ) ( )

BT

F. Finite temperature and magnetic fields where we have introduced the convenient dimensionless

. ~ _ _ 2 = _ . .
For low temperature as well as for weak fields, thermaﬁ"’l,['ableS B=B/By=eB/m" and T=T/m which satisfy

phenomena decouple from magnetic vacuum modificationd3. T>1. Equation(83) describes the same features of the
because the effective action charge is not sensitive to weakffective action charge which we have encountered in previ-
influences. The velocity shifts can simply be described by a®us examplesQ is centered upon the origin in field space,
addition of the respective above-calculated ones. The onlgecreases proportionally toBland evaporates with increas-
non-trivial interplay can be found in the domain of stronging temperature.

fields in hot surroundingé&e.g., hot neutron staxsOur inten- To calculate the velocity shift, we need the energy density
tion is to evaluate the thermal effective action charge contriwhich consists of three parts:

bution given in Eq.(64) in this limit. Therefore, we substi-

tute z=esa(h=m?/2ea=B/2B), (TOO) — (T00)$=0+ <T00>£_n +A(T00)$

)=\ L) 7= )1

AQ(h,T) al J'iwdz _ong ZOOtE—1 1 e eq.(75) 1po
T=——=| —e | ————=zc0 2
Ta?lo Z sinffz 3
(84)
S h,can
anl (=D a2 7. 80 The last term of Eq(84) is connected with the Lagrangian

via the free energydensity according to

In this representation, it is obvious that the integral is domi- I ar®

nated by small values of for weak fields f>1) and vice ATOBF 4+ TS=F-T = — BT T 85

versa, i.e., large for strong fields. We are interested in the (T aT T aT -~ (85)
latter, and so we expand the term in the square brackets for

z>1:[---]——3%z. Following the manipulations of Egs. The leading mixed contributiom‘,-'? to £ is found in Ref.
(66), (67), we arrive at [22]:
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eB charge turns out to be the dominating effect in the high-
ETZ- (86)  temperature domain. It causes the velocity shift to approach
a constant value. Only when a strong magnetic field is in-
We finally arrive at the polarization and propagation direc-volved does the light cone condition fail to provide for a
tion averaged velocity shift for strong fields and high tem-bound of the velocity shift in our examples. But we expect
perature: higher-order loop corrections to stop an unbounded growth
of the velocity shift by inducing a faster decrease of the
1172 ;“I'2 k, B kp ) effective action charge far from the origin in field space.
v=1- EkZa B 187972 27¢ Referring to the light cone condition, the sign of the ve-
locity shift is in general determined by the sign of the effec-
T2 B tive action chargeandthe vacuum energy density. However,
=1-9.13...X10°=-275...X10°°;-4.21 ... up to now, we have not been able to construct an example
B T which exhibits a negative effective action charge in QED.
X107 7. (87)  This might be a general characteristic of the Abelian theory.
Indeed, the one-loop effective action of a covariant constant
At T2/B=1.74 . .., we find aminimal velocity shift: chromomagnetic background figl@5] (naively) possesses a
negative effective action charge.
|6v|=3.20x10"°. (88 We would like to conclude with the remarkable observa-

_ i _ tion that parity violating terms in the effective action propor-
At the same time, this number approximately sets the scalg,4 to y2*1n=012. .., will not contribute to the ef-

of a typical velocity shift for strong fields consistent with the fective action charge in the zero field limit, since the

one-loop approximation. This is also confirmed by the resu'%quation forQ is of Poisson type. Thus, e.g., the existence of

of Eq. (54). dyons[26] will not cause a velocity shift in the weak field
limit.

eB
L8=5 T A(T)E=

V. CONCLUSIONS

In this work, we studied light propagation in non-trivial
QED vacua in the geometric optics approximation. For any APPENDIX A
given QED effective action describing soft photons, we de-
rived the light cone condition averaged over polarization
states. This result generalizes the “unified formula” found
by Latorre, Pascual and TarrafB] which turned out to be
the low-energy limit of our light cone condition. _(=dz
We furthermore clarified the connection between light ve- H(h)= 0oz €
locity shifts and the scale anomaly suggested by Shbog
Unfortunately, our findings do not indicate an immediate
connection hinting at deeper physical grounds. For this, we have to decompose it into simple parts which
Instead, the structure of the light cone condition suggest(s)ne can, handle by standard methods of dimensional regular-
introducing the intuitive physical picture of an effective ac-._ . . ) :
tion chargeQ showing a localized profile in field space cen- ization. Note that the integral is convergent, since the pre-
tered upon the origin. This charge directly characterizes thgcr|pt|onh.—>h—_ le 1S |.mpI|C|tI3_/ understood. ! )
properties of the modified vacuum which are responsible for W& begin with an integration by parts of the first term in
velocity shifts. square brackets with respect to the Sihthe denominator.
Within this conceptual framework, we analyzed severall NiS leads to
modified QED vacua and calculated the respective modified
velocities. The inverse velocities are equal to the refractive

Our aim is to evaluate the integral of E@8):

zcothe—1 1 e (A1)
———— — zzcothz|.
sinffz 3

indices of the modified vacua in the low-frequency limit. e N 1
Hence, these velocities are phase as well as group |(h):f dze~*" —cothz—hcottfz+ ——cotre
) . 0 2z
velocities—the latter due to their independence of frequency.
In the low-energy limit, we recovered all known results 1 1 1 1
which were already perfectly described by the “unified for- —— ——— —cotlz|— =. (A2)
mula.” 2z sinhzz 3 6
For arbitrary magnetic fields, we reproduced the findings
of Tsai and Erbef9] using our comparably simple formal-
ism. The last three terms of the expression in square brackets are
In the sequel, we calculated the next-to-leading order coralready in a convenient shape. In the following, we thus con-
rections to the Scharnhorst effect. sider only the remaining first two terms. The strategy is simi-

Finally, we investigated the influence of temperature onlar: we extract a term proportional to 1/sfatand integrate
the velocity shifts. The evaporation of the effective actionby parts:
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i [ 1 © —e P
Il(h):=hJ dze 2M? cotha(——cothz” S()\):Azf dp e*p(l e’
0 L z MApP-AZ T (1+eP)3
costzsintz 1 _
—hf dze 2" A—— —cosffz|— = o[ p® dp o P (1-eP)
sinirz APP-AZ T (1+eP)?
=hJimdze‘2hZ- ZhﬁLE cothz+ h+E sinh2z v 1-e®
° A z :_ZJ dpVptAT e p(1+e )3
h 1 h 1 _
—|=+=—=+1|coshz—|-+—+1]]|. L7 dp (1-e™®)
z 272 z 272 -\ e —
MpP-A2 T (1+e P
(A3)
Insertingl; into Eq. (A2), we obtain the wanted types of =:31(N) +A2J5(N), (B5)

integrals. Each of these can be integrated separately by in-

troducing an extra _factor of and rotating the contour onto |\ hare we have substituterl =\ cosh. With some care, the
thg positive real axis. At the end, th_ezipiole_s c':ancel and we parameter integrald, and J, can now be expanded. We
arrive at the result given in E¢53) in the limit e—0. have to pay special attention to the process of taking the limit
N—0 for theJ’'s and their derivatives. We can circumvent
APPENDIX B possible convergence problems at the lower bound by a re-

peated integration by parts of the square root terms. Using
In this appendix, we want to expand the infinite sUm iNtha short form

Eq. (66) for small values oi:=m/T which corresponds to a

high temperature limit:
(%): 1 o P (1—eP) -
0).— — -
- P (1+e P)?3
so\)::nzl (—1)"(An)2K(An). (B1) (1+e75)

the non-vanishing coefficients of the expansion up to order

Since the appearance of Bessel functions reflectsRhe  O(\®) can be expressed as
X S topology which is the finite-temperature field theory
space, the techniques described in the following are certainly
useful f(_)r further_ finite-temperature applica_ltions. 3 J1(0)=2J'wdp P (%)=1, (B7)

The first step is to choose a representation of the modified
Bessel function that shows a simple dependence on the sum-
mation index{23]:

oo d o0
30=2 [ “ap pg-o0=-2] dp (),
_ — \ncosh 0 dp 0
Ky(An)= coshz dt. (B2) (B8)
0

Inserting Eq.(B2) into Eq. (B1) leads us to ., o d/1d
Ji’(0)=6J dp po—| — (%) |,
0 dp\ p dp

o0

S(N)=A2| dt coshz Y, n2? g (imtrcostin  (B3) (B9)

0 n=1

By differentiating the geometric series,_,q"=1/(1—-q) 2(0)—J dp (%)=—2J37(0),

twice with respect taj, we find the result for the sum in Eq. B10

(B3): (B10)

. q(1+q) = df1d

E n2 n— . (B4) " — f 0

Inserting Eq.(B4) into Eq.(B3) and decomposing the cogh2 __ E o

into 2coskt—1, we get 71 (0 (B1D)
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Finally, the Taylor expansion of E¢B1) reads

SO\)=31(0)+(%JZ(OHJz(O)))\z

1 ////O+1Jr/o 4 6
+ 2_4‘]1() 22())\‘*‘0(7\)

Ky

:14

A+ O\, (B12)

where the constark; is defined by

PHYSICAL REVIEW D 58 025004

n 1 ny . d 1 d
== 340)= £37'(0)= | “dp | = 5%

=0.12374907749... . (B13)

The constank, that appears in the calculation of the effec-
tive action charge for high temperature and strong fields is
obtained by similar techniques. Its integral representation is
(accidentally equal toJ,(0):

«dp (1—eP)
k2:=J2(0)=f —e P~ ~-021313919949... .
o P (1+e?)3

(B14)
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