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Light propagation in nontrivial QED vacua

Walter Dittrich and Holger Gies*
Institut für theoretische Physik, Universita¨t Tübingen, Auf der Morgenstelle 14, 72076 Tu¨bingen, Germany

~Received 13 January 1998; published 10 June 1998!

Within the framework of effective action QED, we derive the light cone condition for homogeneous non-
trivial QED vacua in the geometric optics approximation. Our result generalizes the ‘‘unified formula’’ sug-
gested by Latorre, Pascual and Tarrach and allows for the calculation of velocity shifts and refractive indices
for soft photons travelling through these vacua. Furthermore, we clarify the connection between the light
velocity shift and the scale anomaly. This study motivates the introduction of a so-called effective action
charge that characterizes the velocity modifying properties of the vacuum. Several applications are given
concerning vacuum modifications caused by, e.g., strong fields, Casimir systems and high temperature.
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PACS number~s!: 12.20.Ds, 11.10.Wx, 41.20.Jb
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I. INTRODUCTION

The vacuum considered as a medium has become a p
lar picture in quantum field theory. With reservations due
the lack of understanding of non-perturbative vacuum p
nomena, it is astonishing that analogies between the quan
vacuum and classical media are frequently useful.

One particular example is represented by the propaga
of light in a vacuum which is modified by various extern
environments, e.g., electromagnetic~EM! fields, tempera-
ture, geometric boundary configurations, gravitational ba
ground and non-trivial topologies. The concept of drawi
the analogy is common to all of these cases: vacuum po
ization allows the photon to exist as a virtuale1e2-pair on
which the various vacuum modifications can act. Under c
tain assumptions, this influence on the loop process can
fectively be described by an immediate influence of a~gen-
erally non-linear! medium on the photon itself, e.g., b
refractive indices. This program was carried out among o
ers by Adler@1#, Brezin and Itzykson@2# for magnetic fields,
by Drummond and Hathrell@3# for gravitation, and by
Scharnhorst@4# and Barton@5# for a Casimir configuration.
Further important examples are found in Refs.@6–9#.

A new physical insight into the phenomenon of phot
propagation in non-trivial vacua has been given by Lato
Pascual and Tarrach@8#. Comparing the known velocity
shifts arising from different vacuum modifications, they we
able to identify an intriguing general, so-called ‘‘unified
formula covering all these cases.1 They concluded that the
polarization and direction averaged velocity shift is related
the~renormalized! background energy densityu with a ‘‘uni-
versal’’ numerical coefficient

d v̄52
44

135

a2

m4
u ~1!

*Email address: holger.gies@uni-tuebingen.de
1In fact, the results of@9# cannot be embedded in the ‘‘unifie

formula.’’ The solution to this problem is an aim of the prese
work.
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where m denotes the electron mass anda.1/137. @In the
case of gravitation, onea has to be replaced by the comb
nation (GNm2) involving Newton’s constant.# However, a
complete derivation of the ‘‘unified formula’’ has not bee
given up to now.

In the case of gravitation, light was shed on the probl
by Shore@10# who proved a polarization sum rule that re
resents a generalization of Eq.~1!. Furthermore, he pointed
out that the ‘‘universal’’ coefficient in Eq.~1! can be related
to the trace anomaly of the energy-momentum tensor in
case of weak EM background fields.

One of the most remarkable features concerning vacu

induced velocity shifts certainly is the fact thatd v̄.0 is not
intrinsically forbidden in quantum field theories. This seem
to offer the possibility of superluminal propagation, e.g.,
curved spaces and Casimir vacua. Both examples share
property of a possible negative energy densityu in Eq. ~1!.

The two questions, whether the signal~5wave front! ve-
locity indeed exceedsc and whether superluminal propag
tion is observable in principle, could be resolved by calc
lating the velocity shift in the infinite frequency limit. Bu
this is presently out of reach, because a resummation of
derivative expansion has to be achieved. However, with
being able to answer these questions, let us just say tha
find no grounds for violation of~micro-!causality in accor-
dance with@3,8,10,11#. For a causality violation, a space-lik
signal and Lorentz invariance~in the gravitational case
strong principle of equivalence! are necessary conditions
The latter is explicitly violated in the above-mentioned e
amples. For an excellent discussion, the reader is referre
the work of Shore@10#.

In the present work, we confine ourselves to the case
non-trivial vacua modified by QED phenomena. Within t
effective action approach@12#, we derive a covariant light
cone condition in Sec. II which turns out to be a generali
tion of the ‘‘unified formula.’’ The necessary assumptio
are analyzed in detail.

In this framework, we are able to clarify the relation b
tween the velocity shift and the trace anomaly in Sec.
Our findings do not unveil a natural and physically meanin
ful connection. An alternative physical picture of the ‘‘un

t
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versal’’ pre-factor is given instead which is called the effe
tive action charge. Several applications of our light co
condition concerning EM fields, Casimir configurations a
temperature are elaborated on in Sec. IV. In the low-ene
domain, we can easily recover all of the well-known resu
described by the ‘‘unified formula.’’ However, the ‘‘univer
sal constant’’ turns out to be neither constant nor unive
when we drop the low-energy restriction. Instead, the c
cept of an effective action charge provides for an intuit
understanding of the velocity shifts at arbitrary energies.

Conclusions are drawn in Sec. V.

II. LIGHT CONE CONDITION

Consider light propagation in a non-trivial QED vacuu
~we will specify this terminology soon! characterized by a
certain energy scale. Suppose that there exists an effe
action which takes into account any QED quantum pheno
ena on higher scales and hence provides for an exact des
tion of the propagation. In principle, this effective action w
depend on any gauge and Lorentz invariant scalar which
can construct. Throughout the paper, we will stick to t
following essential assumptions:

~1! The propagating photons characterized byf mn are con-
sidered to be soft. This is equivalent to calculating the pr
erties of the vacuum in the limitv/m!1 where the scale is
set by the Compton wavelength.

~2! The vacuum modification is homogeneous in spa
and time~but not necessarily isotropic!.

Referring to these assumptions, we can neglect any t
in the effective action that involves derivatives of the fie
since a derivative either acting on the background field v
ishes@assumption~2!# or acting on the photon fieldf mn con-
tributes terms of the orderO(v2/m2) to the equation of mo-
tion. In the latter case, it is negligible because of assump
~1!.

We furthermore assume the following:
~3! Vacuum modifications caused by the propagating li

itself are negligible.
Assumption~3! justifies a linearization of the equations

motion with respect tof mn but does not stand on the sam
footing as the former assumptions, since it is not essentia
the formalism. Note that we donot demand that the deviatio
from the Maxwell Lagrangian should be small, correspon
ing to small vacuum modifications.2

Since it is unwieldy to establish a general formalism
arbitrary numbers of Lorentz vectors and tensors charac
izing the vacuum, we first consider a vacuum only modifi
by EM fields. Hence, the dynamical building blocks of t
effective action which respect Lorentz and gauge invaria
are given by the field strength tensor and its dual

2In principle, the LagrangianL can contain imaginary parts indi
cating the instability of the modified vacuum. In the following, it
understood that we take into account only the real part ofL which
is solely responsible for the field equations.
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Fmn5]mAn2]nAm ~2a!

!Fmn5 1
2 emnabFab . ~2b!

The lowest-order linearly independent scalars are

x:5 1
4 FmnFmn5 1

2 ~B22E2! ~3a!

y:5 1
4 Fmn

!Fmn5E•B. ~3b!

The normalization is chosen in such a way that the Maxw
Lagrangian can be writtenLM52x.3 By taking advantage of
the antisymmetry ofFmn and by virtue of the relations@13#

FmaF a
n 2!Fma!Fn

a52xgmn, ~4a!

Fma!F a
n 5!FmaFn

a5y gmn, ~4b!

using the metricg5diag(2,1,1,1), it is easy to verify~i!
the vanishing of odd-order invariants and~ii ! that invariants
of arbitrary order can be reduced to expressions only invo
ing xnym wheren,m50,1,2 . . . . Besides, note that parit
invariance demands form to be even.

Consequently, the complete effective action becomes
tremely simplified, turning out to be a function ofx and y
only. The corresponding Lagrangian reads

L5L~x,y!. ~5!

We obtain the equations of motion fromL by variation:

05]m

]L
]~]mAn!

2
]L
]An

5]m~]xLFmn1]yL!Fmn! ~6!

where]x ,]y denote the partial derivatives with respect to t
field strength invariants~3! ~and should not be confused wit
space-time derivatives]m).

If we take advantage of the Bianchi identity while movin
]m to the right, we arrive at

05~]xL!]mFmn1~ 1
2 Mab

mn !]mFab, ~7!

whereMab
mn is given by

Mab
mn :5FmnFab~]x

2L!1!Fmn!Fab~]y
2L!

1]xyL~Fmn!Fab1!FmnFab!. ~8!

Note thatM is antisymmetric in the upper as well as th
lower indices:Mab

mn52Mab
nm5Mba

nm .
In general,Fmn contains background fieldsFB

mn and the
propagating photon fieldf mn. According to assumption~2!,
the derivative acting onFB

mn vanishes:

]mFlk5]m f lk. ~9!

Inserting Eq.~9!, Eq. ~7! yields, in Fourier space,

3x andy are usually calledF andG. We do not follow this con-
vention for reasons of simplicity.
4-2
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05~]xL!km f mn1~ 1
2 Mab

mn !km f ab. ~10!

Introducing a gauge potentialam for the propagating field
f mn, we may write

f mn5kman2knam5a~kmen2knem!, ~11!

wherea:5Aamam andem5am/a. Here, the polarization vec
tors em are normalized to 1.

Establishing the Lorentz gaugekmem50, we get

05~]xL!k2en1Mab
mnkmkaeb, ~12!

where we used the antisymmetry ofMab
mn .

The next important step is to multiply Eq.~12! by en and
average over polarization states according to the well-kno
rule

(
pol

eben→gbn, ~13!

where the additional terms on the right-hand side of Eq.~13!
vanish with the aid of the antisymmetry ofMab

mn . We find,
for Eq. ~12!,

052~]xL!k21Man
mnkmka. ~14!

Equation~14! already represents a light cone condition a
actually indicates that the familiark250 will in general not
hold for arbitrary Lagrangians. Our final task is to putMan

mn

in a convenient shape. Using the powerful relations~4!, we
obtain

Man
mn52@ 1

2 FmnFan~]x
21]y

2!L1da
m~y]xyL2x]y

2L!#.
~15!

Introducing the Maxwell energy-momentum tensor

T a
m 5FmnFan2xda

m , ~16!
ry
tio

n

02500
n

this leads to

Man
mn52@ 1

2 Tm
a~]x

21]y
2!L1da

m
„

1
2 x~]x

22]y
2!L1y]xyL…#.

~17!

However, the Maxwell energy-momentum tensor in gene
is devoid of any physical meaning, since we are simply
dealing with the Maxwell Lagrangian. The right quantity
deal with is therefore the vacuum expectation value~VEV!
of the energy-momentum tensor defined by4

^Tmn&:5
2

A2g

dG

dgmn
, G:5E d4x A2gL, ~18!

whereG denotes the effective action. Performing the calc
lation, we arrive at

^Tmn&xy52Tmn~]xL!1gmn~L2x]xL2y]yL!. ~19!

Solving Eq.~19! for Tmn and inserting it into Eq.~17!, we
can presentMan

mn in its final form

Man
mn52F2

1

2

~]x
21]y

2!L
]xL

^Tm
a&xy1da

mS 1
2 x~]x

22]y
2!L

1y]xyL1

1
2 ~]x

21]y
2!L

]xL
~L2x]xL2y]yL!D G .

~20!

SubstitutingMan
mn into Eq. ~14!, we end up with the desired

light cone condition for EM field modified vacua fulfilling
the above-mentioned assumptions:

k25Q^Tmn&xykmkn, ~21!

where
Q5

1

2
~]x

21]y
2!L

F ~]xL!21~]xL!S x

2
~]x

22]y
2!1y]xyDL1

1

2
~]x

21]y
2!L~12x]x2y]y!LG . ~22!
a
r
-

t a
ith
ods.
To extend the validity of the light cone condition to arbitra
non-trivial vacua, we have to take the vacuum expecta
value of Eq. ~21! with respect to the additional vacuum
modifications parametrized by the~collective! label z:

k25z^0uQ^Tmn&xyu0&zkmkn . ~23!

Inserting a complete set of intermediate states, we obtai

k25(
i

z^0uQu i &z ẑ i u^Tmn&xyu0&zkmkn . ~24!
n
In the following, we consider the vacuum to behave as
passivemedium in which the EM fields and the furthe
vacuum modificationsz remain in a state of static equilib
rium. SinceQ solely depends onx andy @via L(x,y)#, this
assumption of passivityleads to

4Note that the variation with respect to the metric tensor is jus
trick to calculate the symmetric energy-momentum tensor. W
some care, the same result can be obtained by canonical meth
4-3
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WALTER DITTRICH AND HOLGER GIES PHYSICAL REVIEW D58 025004
z^0uQu i &z5^Q&zd0i . ~25!

Equation ~25! states that the vacuum exhibits no bac
reaction caused by the EM fields while switching onz.

Q depends functionally onL(x,y), which is, as usual,
defined via the functional integral over the fluctuating field
Taking the expectation value ofQ hence leads back to inte
grating over the field configurations which respect the mo
fied vacuum. E.g., if the modificationz imposes boundary
conditions on the fields, the functional integral has to
taken over the fields which fulfill these boundary condition
Therefore, taking the VEV ofQ defines the new effective
Lagrangian characterizing the complete non-trivial vacuu

^Q&z5^Q„L~x,y!…&z5Q„L~x,y;z!…. ~26!

We finally arrive at the light cone condition for arbitrar
homogeneous non-trivial vacua:

k25Q~x,y,z!^Tmn&xyzkmkn. ~27!

Remember that the validity of the light cone condition~27! is
not restricted to results of perturbation theory or only sm
modifications of the Maxwell Lagrangian. It is an exa
statement in the sense of effective theories.

Now, the terminology ‘‘modified QED vacuum’’ should
be clarified: from the derivation of the light cone condition,
is obvious that the implicit space-time dependence ofL
should only be contained in the field variables. Furthermo
the vacuum has to fulfill the demand for passivity. Otherw
the light cone condition~27! only represents a zeroth orde
approximation of the infinite sum over intermediate states
Eq. ~25!.

As a third remark, we want to point out that the sum ov
polarization states is not necessary for the derivation o
light cone condition. By summing, we even exclude t
study of birefringence from the formalism which is certain
the most important experimental application@14–16#. But
for a projection on the polarization eigenstates, theyn-terms
have to be rewritten in terms of the field strength ten
which is practically impossible for arbitraryL.

In the remainder of the section, we calculate further r
resentations of Eq.~27! by choosing a certain referenc
frame and introducing

k̄m5
km

uku
5S k0

uku
,k̂D5:~v,k̂!, ~28!

where we defined the phase velocity byv:5k0/uku. For Eq.
~27!, we obtain

v2512Q^Tmn&k̄mk̄n. ~29!

Equation~29! clearly demonstrates that the light cone con
tion is a generalization of the ‘‘unified formula’’ of Latorre
Pascual and Tarrach@8#.

In general, theQ-factor will depend on all the variable
and parameters ofL and hence will naturally be neither un
versal nor constant. Besides, the daunting structure of
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Q-factor will simplify in the case of small corrections toLM .
As will be shown in Sec. IV, the denominator then reduces
1.

Another representation of the light cone condition
found by averaging over propagation directions; i.e., in
grating overk̂PS2,

v25
12Q~ 1

3 ^T00&1 1
3 ^Ta

a&!

11Q ^T00&
. ~30!

For Q^T00&!1 and ^Ta
a& being even of lower order, this

reduces to

v2512
4

3
Q^T00&512

4

3
Qu, ~31!

where u denotes the~renormalized! energy density of the
modified vacuum.

III. VELOCITY SHIFT AND SCALE ANOMALY

In his paper, Shore@10# suggested a deeper connecti
between the velocity shift and the scale anomaly. For
Heisenberg-Euler Lagrangian, he showed that the coe
cients of thex2 and y2 terms in the scale anomaly are pr
cisely those appearing in the velocity shift for the differe
polarization states.

Within the framework developed so far, we will attem
to clarify the relation between the scale anomaly and
velocity shift. Therefore, we have to investigate whether
terms in theQ-factor can be expressed in terms of t
anomaly. For reasons of simplicity, we limit this conside
ation to the case of a purely EM field modified vacuu
From Eq.~19!, we can read off the scale anomaly

^Ta
a&54~L2x]xL2y]yL!. ~32!

By differentiation, we find

]x^T
a

a&524~x]x
2L1y]xyL!, ~33a!

]y^T
a

a&524~y]y
2L1x]xyL!. ~33b!

From Eqs.~33! immediately follows

~]x
21]y

2!L52S y

x
1

x

yD ]xyL2
1

4S 1

x
]x1

1

y
]yD ^Ta

a&.

~34!

This expression is proportional to the numerator of t
Q-factor, Eq. ~22!. Using similar techniques, we can als
rewrite the denominator, but the result is not very illumina
ing:
4-4
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denominator~Q!5~]xL!22~]xL!S x

2
~]x

21]y
2!L

1
1

4
]x^T

a
a& D1

1

8
@~]x

21]y
2!L#^Ta

a&.

~35!

Fortunately, approximating Eq.~35! by 1 will be appropriate
to the applications of Sec. IV.

It is already obvious from Eq.~34! that there is no imme-
diate connection between̂Ta

a& and the velocity shift, Eq.
~29!. The findings of Shore arise from the special structure
the Heisenberg-Euler Lagrangian where]xyL50. In general,
higher-order mixed terms are not forbidden by gauge, L
entz or parity invariance. Referring to Eq.~34!, the introduc-
tion of the scale anomaly appears to be artificial rather t
interpretable. Even Shore’s conjecture that the sign of
scale anomaly is linked to the sign of the velocity shift ca
not be maintained.

Instead, we favor the pure effective action formulatio
i.e., the left-hand side of Eq.~34!, since it offers a new in-
tuitive picture. Referring to Eq.~29!, the value and sign o
the velocity shift result from the competition between t
VEV of the energy-momentum tensor and theQ-factor. Both
area priori neither positive nor bounded by symmetry pri
ciples. Let us restrict the following investigation to the ca
of small corrections to the Maxwell Lagrangian, i.e.,

Q.
1

2
~]x

21]y
2!L ⇒ ¹2L52Q. ~36!

Because of the similarity to the~2D! Poisson equation, we
will call Q from now on theeffective action chargein field
space. The classical vacuumLM52x is unchargedand
hencev51. As we will soon demonstrate, the pure QE
vacuum has a small positive charge at the origin in fi
space (x5y50). For increasing the field strength,^Tmn&
certainly also increases without an upper bound, and so
expectQ to decrease in order to produce no unphysical
locity shift .1. It is therefore reasonable to presume loc
ized effective action charge distributions centered upon
origin in field space. The results of Sec. IV will confirm th
charge-like picture.

IV. APPLICATIONS OF THE LIGHT CONE CONDITION

Up to now, the light cone condition might be regarded
a nice frame without a picture enclosed, since it is mu
easier to talk about all-loop or non-perturbative effective
tions than to calculate one.

Indeed, the effective actions which we are going to ins
will not reach beyond two-loop order. Their general structu
can be characterized by

L5LM1Lc ,
Lc

LM
!1, ~37!
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whereLc contains the correction terms.
Regarding the denominator expression of the effective

tion charge~35!, the scale anomalŷTa
a& is of the same

order asLc . Hence, Eq.~35! simply reduces to

Eq.~35!511O~Lc!, ~38!

and the approximationQ5 1
2 ¹2L5 1

2 ¹2Lc is justified.

A. Weak EM fields

According to the authors of Ref.@17#, the two-loop cor-
rected Heisenberg-Euler Lagrangian~weak-field limit of the
complete one-loop approximated effective QED Lagrangi!
reads

L52x1c1x21c2y2, ~39!

where

c15
8a2

45m4S 11
40

9

a

p D , ~40a!

c25
14a2

45m4S 11
1315

252

a

p D . ~40b!

With the aid of the light cone condition~31!, we immediately
obtain, for the polarization and propagation direction av

aged velocity (v[Av̄2),

Q5c11c2 , ~41!

 v512
4a2

135m4S 111
1955

36

a

p D F1

2
~E21B2!G . ~42!

In the well-known one-loop part of Eq.~42!, we can identify
the factor of 44a2/135m4 as the ‘‘universal constant’’ of the
‘‘unified formula’’ ~1!. At this stage, it is already understan
able that all of the known QED induced velocity shifts sha
this universal factor in the low-energy limit, since they a
all based on the Heisenberg-Euler Lagrangian. Even the
sults in gravitation involve the samee1e2-loop calculation
~of course, in a curved space-time@3#!.5 It is furthermore
obvious that the two-loop correction1955

36 a/p is as universal
as the number 11.@Note that modifications from the denom
nator ofQ, Eq. ~35!, contribute to the orderO(a4).#

B. Strong magnetic fields

Since the Heisenberg-Euler Lagrangian~39! represents a
weak field limit, Eq.~41! denotes the value of the effectiv
action charge at the origin in field space (x,y50). In this

5In particular, there is nothing mysterious about the factor 11 a
is sometimes found in the literature.
4-5
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subsection, we analyze the form ofQ along the positive
x-axis ~pure magnetic fields!. As our starting point, we use
Schwinger’s famous formula for the one-loop effective QE
Lagrangian@13#:

Lc52
1

8p2E0

i`ds

s3
e2m2sS ~es!2uyucoth@es~Ax21y21x!1/2#

3cot@es~Ax21y22x!1/2#2
2

3
~es!2x21D . ~43!

It is understood that the convergence is implicitly ensured
the prescriptionm2→m22 ie. ~Note that we have not per
formed a proper time Wick rotation yet.!

It will be useful to reparametrize the field space with ne
coordinates

a:5~Ax21y21x!1/2, b:5~Ax21y22x!1/2, ~44a!

⇒uyu5ab, x5 1
2 ~a22b2!. ~44b!

The Laplacian in terms ofa andb reads

¹25
1

a21b2
~]a

21]b
2!. ~45!

For the term in the square brackets in Eq.~43!, we easily find

¹2@•••#5
~es!2

a21b2
~]a

21]b
2!@ab coth esacot esb#

5
2~es!2

a21b2Fesbcot esb

sinh2esa
~esacoth esa21!

1
esacoth esa

sinh2esb
~esbcot esb21!G . ~46!

Confining ourselves to purely magnetic fields (x5 1
2 B2, y

50⇒b50, a5uBu), we obtain

Eq. ~46!→
2~es!2

a2 Fesacoth esa21

sinh2esa
2

1

3
esacoth esaG .

~47!

The complete formula for the effective action charge mig
be written~substitution:z:5esa, h:5m2/2ea5Bcr/2B)

Q~h!52
1

2a2

a

pE0

i`dz

z
e22hzFzcothz21

sinh2z
2

1

3
zcothzG .

~48!

With some effort, the evaluation of the integral can be p
formed analytically by standard means of dimensional re
larization. Details are given in Appendix A. The result is
02500
y
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-

Q~h!5
1

2B2

a

pF S 2h22
1

3Dc~11h!2h23h224hlnG~h!

12hln2p1
1

3
14z8~21,h!1

1

6hG , ~49!

wherec denotes the logarithmic derivative of theG-function
and z8 is the first derivative of the Hurwitz zeta functio
with respect to the first argument@23#.

For strong fields, the last term of Eq.~49!, }1/6h}uBu,
dominates the expression in the square brackets. Hence
effective action charge decreases with

Q~B!.
1

6

a

p

1

Bcr

1

B
for B→` ~50!

which supports the charge picture~Fig. 1!.
The contraction of the energy-momentum tensor VE

may be cast into the form

^Tmn&k̄mk̄n5B22~B• k̂!21O~a!5B2sin2u1O~a!,
~51!

where u measures the angle between theB-field and the
propagation direction.

Finally, the light cone condition~29! yields, for arbitrary
background fields consistent with the one-loop approxim
tion (h5Bcr/2B),

v2512
a

p

sin2u

2 F S Bcr
2

2B2
2

1

3D cS 11
Bcr

2BD2
2Bcr

B
lnGS Bcr

2BD
2

3Bcr
2

4B2
2

Bcr

2B
1

Bcr

B
ln2p1

1

3
14z8S 21,

Bcr

2BD1
B

3Bcr
G .

~52!

FIG. 1. Effective action chargeQ(B)5 in units of 1/m4 versus
magnetic fieldB in units of the critical field strengthBcr5m2/e.
4-6
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The first derivative of the Hurwitz zeta function at21 can
be related to the generalizedG-function of first orderG1
@18#,

z8~21,h!52hln h1 lnG1~11h!2L11
1

12
, ~53!

where L150.248 754 477 . . . is apure number and can b
obtained from the Raabe integral@19#.

Using Eq.~53!, one can show that Eq.~52! is identical to
the findings of Tsai and Erber@9#. Equation~52! is plotted in
Fig. 2. Although the velocity shift increases proportional
the magnetic field for largeB, the total amount of the veloc
ity shift remains comparably small,

dv.9.58 . . .31025 at B5Bcr5
m2

e
, ~54!

for strongB-fields, consistent with the one-loop approxim
tion, i.e.,B/Bcr,p/a.430. Taking higher-order loop calcu
lations into account, we expect a stronger decrease ofQ(B)
for largeB in order to letQ^Tmn&k̄mk̄n be bounded.

C. Casimir vacua „Scharnhorst effect…

One curious result regarding vacuum induced veloc
shifts is the possibility of superluminal phase and group
locities. As mentioned above, e.g., Casimir vacua can cr
positive velocity shifts, since a negative shift of the ze
point energy is permitted. For the configuration of perfec
conducting parallel plates of distancea, ^Tmn& is found to be
@20#

^Tmn&5
p2

720a4S 21

1

1

23

D , ~55!

FIG. 2. Square velocityv2 versus magnetic fieldB in units of
the critical field strengthBcr5m2/e. The dashed curve indicates th
region where two-loop corrections become important.
02500
y
-
te

where the symmetry axis points along the 3-direction. T
effective action charge has to be evaluated in the zero-fi
limit. In concordance with experimental facilities, the pla
separationa is treated as a macroscopic parametera
}mm); otherwise, we would violate the soft-photon appro
mation, since the photon wavelengthl has to obeyl!a to
validate the concept of treating the Casimir region as a~mac-
roscopic! medium.

The magnitude ofa implies that we can neglect th
a-dependence ofQ which is exponentially suppressed b
ma@1 ~this point will become clearer in the following sec
tion!. Here, Q is simply given by Eq.~41!,

Q5c11c25
2a2

45m4S 111
1955

36

a

p D , ~56!

from which directly follows, using Eqs.~55! and ~29!,

v511
1

~90!2

a2

m4S 111
1955

36

a

p Dp2

a4
, ~57!

for a propagation perpendicular to the plates~a parallel
propagation will, of course, not be modified!.

Equation~57! represents the two-loop corrected versi
of Scharnhorst’s formula@4,5#. Note that the two-loop cor-
rection enhances the velocity shift. As was recently found
Kong and Ravndal@21#, the radiative correction to the Ca
simir energy is of ordera2/m4a8:

^T00&[u52
p2

720a4
2

11

~90!2330316

p4a2

m4a8
. ~58!

At the two-loop level of Eq.~57!, this correction can obvi-
ously be neglected. Even three-loop contributions inQ
would be more important. But it is interesting to note th
this correction also contributes positively tov.

D. Finite temperature

In the remaining sections, we reveal the manifold featu
of temperature induced velocity shifts. Unlike the Scha
horst effect, we do not recognize a principal obstacle aga
measurability here, and the results allow for an immedi
physical interpretation. The following calculations are r
stricted to the one-loop level.

We begin with the one-loop correction to the effecti
QED Lagrangian at finite temperature which can be deco
posed according to

Lc~x,y,T!5Lc~x,y,T50!1DL~x,y,T!, ~59!

wherebyLc(x,y,T50) denotes the usual zero-temperatu
Lagrangian, Eq.~43!.

For purely magnetic fields,DL(x,y,T) was calculated by
Dittrich @22#:
4-7



y

ur

of
In
th
-

a-

q
tiv

ing
fec-

on-

an-

by

rm

-

m-

tion

WALTER DITTRICH AND HOLGER GIES PHYSICAL REVIEW D58 025004
DL~B,T!52
Ap

4p2E0

i` ds

s5/2
e2m2sesBcot esB

3TFQ2~0,4p isT2!2
1

2TAps
G . ~60!

The JacobiQ-function is defined by@23#

Q2~0,2q!5 (
n52`

`

exp@2 iq~n1 1
2 !2#. ~61!

The effective action charge can be decomposed similarl
Eq. ~59! into

Q~x,y,T!5Q~x,y,T50!1DQ~x,y,T!

5 1
2 ¹2Lc~x,y,T50!1 1

2 ¹2DL~x,y,T!. ~62!

Q(x,y,T50) clearly corresponds to the zero-temperat
case as treated above.

Since we have to differentiate with respect tox and y, it is
not sufficient for the calculation ofDQ to consider magnetic
fields only in Eq.~60!. Not until we have carried out the
Laplacian are we allowed to setE50. Indeed, we have to
take this limit E→0 in the end, because the principle
equilibrium thermodynamics would otherwise be violated.
addition, the above-mentioned assumption of passivity of
vacuum is only fulfilled forE50. The appropriate expres
sion is simply obtained by replacing

esBcot esB ~63a!

by the gauge and Lorentz invariant terms

~esa!~esb!coth~esa!cot~esb! ~63b!

in analogy to Eq.~43!. Again, we make use of the advant
geous coordinatesa,b in field space defined in Eqs.~44!.
The result of the differentiation was already found in E
~46!; hence we obtain, for the temperature induced effec
action charge for purely magnetic fields (a5B,b50),

DQ~B,T!52
Ap

a2

a

pE0

i` ds

As
e2m2sFesacoth esa21

sinh2esa

2
esa

3
coth esaGTS Q2~0,4p isT2!2

1

Aps2T
D

52
a

p

1

a2E0

i`ds

s
e2m2sFesacoth esa21

sinh2esa

2
esa

3
coth esaG (

n51

`

e2 ipne2n2/4T2s. ~64!

In the last line, we made use of the identity@22#
02500
to

e

e

.
e

Q2~0,4p isT2!5
1

Aps2T
S 112(

n51

`

e2 ipne2n2/4T2sD .

~65!

Our task is to evaluate Eq.~64! in the various limits. First,
we consider pure temperature phenomena with vanish
field strength. The temperature dependent part of the ef
tive action charge reduces to

DQ~B50,T!52
22

45
a2E

0

i`

ds se2m2s(
n51

`

e2 ipne2n2/4T2s

5
22

45

a2

m4(n51

`

~21!nS m

T
nD 2

K2S m

T
nD , ~66!

whereby we have taken advantage of the representation

2S m

2 D n

Kn~m!5E
0

`

du un21expS 2u2
m2

4uD ~67!

for the modified Bessel function and have rotated the c
tour.

For low temperature, we may use the asymptotic exp
sion of K2(x) for x@1:

K2~x!5Ap

2x
e2xS 11OS 1

xD G . ~68!

In this limit, we find

DQ~B50,T→0!.2
22

45

a2

m4
Ap

2 S m

T D 3/2

e2m/T→02.

~69!

Hence, the effective action charge is perfectly described
Q(B50,T50)5c11c2, Eq. ~41!, in this limit, while the
influence of temperature onQ vanishes as it should.@Note
that in the case of Scharnhorst’s effect a similar te
DQ(B50,ma@1) also vanishes by drawing the analogyT
}1/a.#

Next, we investigate the high-temperature limitT/m@1
of Eq. ~66!. The calculation is, however, much more in
volved, and so we simply state the result:

DQ~T@m!52
22

45

a2

m4F12
k1

4

m4

T4
1OS m6

T6 D G , ~70!

where k150.123 749 077 470 . . .5const. The interested
reader is referred to Appendix B.

Therefore, we arrive at the remarkable result that the co
plete effective action charge

Q~T@m!5Q~T50!1DQ~T@m!5
11

90
k1

a2

T4
1OS m2

T6 D
~71!

decreases rapidly,}1/T4. Q(B50,T) is plotted in Fig. 3.
The influence of temperature causes the effective ac
4-8
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charge to evaporate. Numerical results astonishingly indic
that Eq. ~71! is already a reasonable approximation f
m/T.1.4 ~error<5%) where reale1e2-pair creation is en-
ergetically impossible and the vacuum is essentially modi
by a photon gas. This excludes the interpretation that
~71! is a pure threshold effect of pair production.

To complete the high temperature or zero field analysis
the light cone condition we need the VEV of the energ
momentum tensor which is given by~see, e.g.,@24#!

^Tmn&T5
p2

90S NB1
7

8
NFDT4 diag~3,1,1,1!. ~72!

The integer variablesNB and NF denote the number o
bosonic and fermionic degrees of freedom at a given te
perature. For QED, we obtain

NB52, NF50 for T!m ~photon gas! ~73a!

NB52, NF54 for T@m ~photon

1 ultrarelativistice1and e2 fermion gas!.

~73b!

It is appropriate to employ Eq.~31! for the light cone condi-
tion. Using our findings in Eqs.~69!, ~41!, ~72!, ~73a!, we
recover the well-known result@8# for low temperature,

v512
44p2

2025
a2

T4

m4
, ~74!

which according to Fig. 3 is valid forT/m,0.16 ~error
<5%) (T,109 K!. Substituting Eq.~71! into Eq. ~31! and
using Eqs.~72!, ~73b! for T@m, we finally arrive at the
velocity of soft photons moving in a photon and ultrarelat
istic e1e2 gas:

FIG. 3. Effective action chargeQ(T)5Q(B50,T50)
1DQ(T) in units of 22

45a2/m4; for high temperature,Q(T) de-
creases proportional to 1/T4.
02500
te

d
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v512
121

8100
k1p2a21OS m2

T2 D
5129.72 . . .310271OS m2

T2 D 5const1OS m2

T2 D .

~75!

In Eqs.~74!, ~75!, we found that the velocity shift increase
proportional toT4 for low temperature but approaches a co
stant value in the high-temperature limit. This can be und
stood in terms of the effective action charge which eva
rates sufficiently fast compared to the increase of the ene
momentum tensor VEV. Obviously, the shift described
Eq. ~75! remains small; therefore the deviation from th
vacuum velocity does not become seriously important~e.g.,
for the construction of cosmological models!. However, one
should keep in mind that, if the temperature exceeds
masses of further charged particles, each particle will c
tribute additively toQ and will increase the respective num
ber of degrees of freedomNB or NF .

E. Casimir vacua at finite temperature

The combination of thermal and Casimir phenomena is
itself worthwhile studying, because both effects enter the f
malism via boundary conditions but lead to opposite resu
In the following, we want to investigate where and why t
respective effect dominates the velocity shift. The determ
ing order parameter is the dimensionless combinationTa.
Nevertheless, the plate separationa has to be considered as
macroscopic quantity (a.mm).

First, we consider the low-temperature region. Accord
to Brown and Maclay@20#, the VEV of Tmn depending ona
andT is given by

^T00&T
a52

p2

720

1

a4
1

z~3!

p2

T3

a
,

^T33&T
a52

p2

240

1

a4
, for Ta→0,

~76!

for the parallel plate configuration@z(3)51.202 056 . . . #.
The light cone condition~29! for a propagation perpendicu
lar to the plates@ k̄m5(v,0,0,1)# yields

v511
1

~90!2

a2

m4S 111
1955

36

a

p Dp2

a4S 12
180z~3!

p4
~Ta!3D .

~77!

In the low-T limit, the (Ta)3-term can be neglected and w
only rediscover Scharnhorst’s result. But we do not find
additional velocity shift proportional toT4 which could have
been expected from Eq.~74!. This clearly arises from the fac
that none of the~quantized! perpendicular modes can be e
cited at low temperature. The (Ta)3-term in Eq. ~77! will
become important forTa5O(1), i.e., T.2000 K for
4-9
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a.mm. This shows that the Scharnhorst effect is not se
tive to temperature perturbations.

For increasing temperature, we encounter an intermed
temperature region characterized by the condition 1!Ta
!ma which corresponds to 0.2 eV!T!0.5 MeV. This im-
plies thatQ5Q(T50) is a justified approximation and th
thermal contribution of ane1e2 gas does not have to b
taken into account.

Using further results of Brown and Maclay@20#,

^T00&T
a5

p2

15
T4 ~78!

^T33&T
a5

p2

45
T41

z~3!

4p

T

a3
, for Ta@1,

we find

v512
4p2

~45!2

a2

m4S 111
1955

36

a

p DT4S 12
45z~3!

16p3

1

~Ta!3D .

~79!

In this limit, only the modifications caused by the blackbo
radiation become important. A term proportional to 1/a4 as a
consequence of certain missing zero-point fluctuations d
not occur, since higher~perpendicular! modes have been
thermally excited.

For T@m, we will certainly recover Eq.~75! with negli-
gible 1/(Ta)3 Casimir corrections. Anyway, the concept
solid plates is~at least experimentally! meaningless in this
domain.

F. Finite temperature and magnetic fields

For low temperature as well as for weak fields, therm
phenomena decouple from magnetic vacuum modificatio
because the effective action charge is not sensitive to w
influences. The velocity shifts can simply be described by
addition of the respective above-calculated ones. The o
non-trivial interplay can be found in the domain of stro
fields in hot surroundings~e.g., hot neutron stars!. Our inten-
tion is to evaluate the thermal effective action charge con
bution given in Eq.~64! in this limit. Therefore, we substi
tute z5esa (h5m2/2ea5Bcr/2B),

DQ~h,T!52
a

p

1

a2E0

i`dz

z
e22hzFzcothz21

sinh2z
2

1

3
zcothzG

3 (
n51

`

~21!ne2
ea

4T2
n2

z . ~80!

In this representation, it is obvious that the integral is dom
nated by small values ofz for weak fields (h@1) and vice
versa, i.e., largez for strong fields. We are interested in th
latter, and so we expand the term in the square brackets
z@1: @•••#→2 1

3 z. Following the manipulations of Eqs
~66!, ~67!, we arrive at
02500
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DQ~T,B@Bcr!5
1

3

a

p

1

B2

B

Bcr
(
n51

`

~21!n
m

T
nK1S m

T
nD .

~81!

Note that it was not necessary to impose any conditions
the magnitude ofT to arrive at Eq.~81!. But, as mentioned
above, the field-temperature phenomena decouple forT!m
due to the asymptotic behavior ofK1@(m/T)n#}exp
(2m/T) in Eq. ~81!; hence,DQ(m/T@1,B@Bcr)→0. Us-
ing similar techniques as applied in Appendix B, the hig
temperature limit of Eq.~81! can be determined. The resu
for T@m andB@Bcr is

DQ~T,B!5
1

3

a

p

1

B2

B

Bcr
F2

1

2
1

1

2
k2

m2

T2
1OS m4

T4 D G
52

1

6

a

p

1

B2

B

Bcr
1

1

6

a

p
k2

e

BT2
1OS m2

BT4D ,

~82!

wherek250.213 139 199 408 . . .5const@see Eq.~B14!#. To
obtain the complete effective action chargeQ, we add the
strong-field contributionQ(T50) which was found in Eq.
~50!:

Q~T@m,B@Bcr!5
1

6

a

p
k2

e

BT2
1OS m2

BT4D
5

2

3
k2

a2

m4

1

B̃T̃2
1OS m2

BT4D , ~83!

where we have introduced the convenient dimension
variables B̃5B/Bcr5eB/m2 and T̃5T/m which satisfy
B̃,T̃@1. Equation~83! describes the same features of t
effective action charge which we have encountered in pre
ous examples:Q is centered upon the origin in field spac
decreases proportionally to 1/B̃ and evaporates with increas
ing temperature.

To calculate the velocity shift, we need the energy dens
which consists of three parts:

~84!

The last term of Eq.~84! is connected with the Lagrangia
via the free energy~density! according to

D^T00&T
B5F1TS5F2T

]F

]T
52L T

B1T
]L T

B

]T
. ~85!

The leading mixed contributionL T
B to L is found in Ref.

@22#:
4-10
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L T
B5

eB

12
T2 D^T00&T

B5
eB

12
T2. ~86!

We finally arrive at the polarization and propagation dire
tion averaged velocity shift for strong fields and high te
perature:

v512
11p2

135
k2a2

T̃2

B̃
2

k2

18p
a

B̃

T̃2
2

k2

27
a2

5129.13 . . .31026
T̃2

B̃
22.75 . . .31025

B̃

T̃2
24.21 . . .

31027. ~87!

At T̃2/B̃51.74 . . . , we find aminimal velocity shift:

udvu.3.2031025. ~88!

At the same time, this number approximately sets the s
of a typical velocity shift for strong fields consistent with th
one-loop approximation. This is also confirmed by the res
of Eq. ~54!.

V. CONCLUSIONS

In this work, we studied light propagation in non-trivia
QED vacua in the geometric optics approximation. For a
given QED effective action describing soft photons, we d
rived the light cone condition averaged over polarizat
states. This result generalizes the ‘‘unified formula’’ fou
by Latorre, Pascual and Tarrach@8# which turned out to be
the low-energy limit of our light cone condition.

We furthermore clarified the connection between light v
locity shifts and the scale anomaly suggested by Shore@10#.
Unfortunately, our findings do not indicate an immedia
connection hinting at deeper physical grounds.

Instead, the structure of the light cone condition sugge
introducing the intuitive physical picture of an effective a
tion chargeQ showing a localized profile in field space ce
tered upon the origin. This charge directly characterizes
properties of the modified vacuum which are responsible
velocity shifts.

Within this conceptual framework, we analyzed seve
modified QED vacua and calculated the respective modi
velocities. The inverse velocities are equal to the refrac
indices of the modified vacua in the low-frequency lim
Hence, these velocities are phase as well as gr
velocities—the latter due to their independence of frequen
In the low-energy limit, we recovered all known resu
which were already perfectly described by the ‘‘unified fo
mula.’’

For arbitrary magnetic fields, we reproduced the findin
of Tsai and Erber@9# using our comparably simple forma
ism.

In the sequel, we calculated the next-to-leading order c
rections to the Scharnhorst effect.

Finally, we investigated the influence of temperature
the velocity shifts. The evaporation of the effective acti
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charge turns out to be the dominating effect in the hig
temperature domain. It causes the velocity shift to appro
a constant value. Only when a strong magnetic field is
volved does the light cone condition fail to provide for
bound of the velocity shift in our examples. But we expe
higher-order loop corrections to stop an unbounded gro
of the velocity shift by inducing a faster decrease of t
effective action charge far from the origin in field space.

Referring to the light cone condition, the sign of the v
locity shift is in general determined by the sign of the effe
tive action chargeand the vacuum energy density. Howeve
up to now, we have not been able to construct an exam
which exhibits a negative effective action charge in QE
This might be a general characteristic of the Abelian theo
Indeed, the one-loop effective action of a covariant const
chromomagnetic background field@25# ~naively! possesses a
negative effective action charge.

We would like to conclude with the remarkable observ
tion that parity violating terms in the effective action propo
tional to y2n11,n50,1,2. . . , will not contribute to the ef-
fective action charge in the zero field limit, since th
equation forQ is of Poisson type. Thus, e.g., the existence
dyons@26# will not cause a velocity shift in the weak fiel
limit.

APPENDIX A

Our aim is to evaluate the integral of Eq.~48!:

I ~h!5E
0

i`dz

z
e22hzFzcothz21

sinh2z
2

1

3
zcothzG . ~A1!

For this, we have to decompose it into simple parts wh
one can handle by standard methods of dimensional regu
ization. Note that the integral is convergent, since the p
scriptionh→h2 ie is implicitly understood.

We begin with an integration by parts of the first term
square brackets with respect to the sinh2 in the denominator.
This leads to

I ~h!5E
0

i`

dze22hzFh

z
cothz2hcoth2z1

1

2z2
cothz

2
1

2z

1

sinh2z
2

1

3
cothzG2

1

6
. ~A2!

The last three terms of the expression in square brackets
already in a convenient shape. In the following, we thus c
sider only the remaining first two terms. The strategy is sim
lar: we extract a term proportional to 1/sinh2z and integrate
by parts:
4-11
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I 1~h!:5hE
0

i`

dze22hzFcothaS 1

z
2cothzD G

5hE
0

i`

dze22hzFcoshzsinhz

z
2cosh2zG 1

sinh2z

5hE
0

i`

dze22hzF S 2h1
1

zD cothz1S h1
1

zD sinh2z

2S h

z
1

1

2z2
11D cosh2z2S h

z
1

1

2z2
11D G .

~A3!

Inserting I 1 into Eq. ~A2!, we obtain the wanted types o
integrals. Each of these can be integrated separately by
troducing an extra factor ofze and rotating the contour ont
the positive real axis. At the end, the 1/e-poles cancel and we
arrive at the result given in Eq.~53! in the limit e→0.

APPENDIX B

In this appendix, we want to expand the infinite sum
Eq. ~66! for small values ofl:5m/T which corresponds to a
high temperature limit:

S~l!:5 (
n51

`

~21!n~ln!2K2~ln!. ~B1!

Since the appearance of Bessel functions reflects theR3

3S1 topology which is the finite-temperature field theo
space, the techniques described in the following are certa
useful for further finite-temperature applications.

The first step is to choose a representation of the modi
Bessel function that shows a simple dependence on the s
mation index@23#:
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`

e2lncoshtcosh2t dt. ~B2!

Inserting Eq.~B2! into Eq. ~B1! leads us to
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n2 e2~ ip1lcosht !n. ~B3!

By differentiating the geometric series(n50
` qn51/(12q)

twice with respect toq, we find the result for the sum in Eq
~B3!:
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Inserting Eq.~B4! into Eq.~B3! and decomposing the cosht
into 2cosh2t21, we get
02500
in-

ly

d
m-

S(l)5l2E
l

` dp

Ap22l2
e2p

~12e2p!

~11e2p!3

22E
l

` p2 dp

Ap22l2
e2p

~12e2p!

~11e2p!3

522E
l

`

dpAp22l2 e2p
~12e2p!

~11e2p!3

2l2E
l

` dp

Ap22l2
e2p

~12e2p!

~11e2p!3
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where we have substitutedp:5lcosht. With some care, the
parameter integralsJ1 and J2 can now be expanded. W
have to pay special attention to the process of taking the l
l→0 for the J’s and their derivatives. We can circumve
possible convergence problems at the lower bound by a
peated integration by parts of the square root terms. Us
the short form
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the non-vanishing coefficients of the expansion up to or
O(l5) can be expressed as
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dp p2 ~%!51, ~B7!
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Finally, the Taylor expansion of Eq.~B1! reads
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where the constantk1 is defined by
-
As
C

02500
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50.123 749 077 479 . . . . ~B13!

The constantk2 that appears in the calculation of the effe
tive action charge for high temperature and strong fields
obtained by similar techniques. Its integral representatio
~accidentally! equal toJ2(0):
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