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Features of time-independent Wigner functions
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The Wigner phase-space distribution function provides the basis for Moyal’s deformation quantization
alternative to the more conventional Hilbert space and path integral quantizations. The general features of
time-independent Wigner functions are explored here, including the functional~‘‘star’’ ! eigenvalue equations
they satisfy; their projective orthogonality spectral properties; their Darboux~‘‘supersymmetric’’! isospectral
potential recursions; and their canonical transformations. These features are illustrated explicitly through
simple solvable potentials: the harmonic oscillator, the linear potential, the Po¨schl-Teller potential, and the
Liouville potential.@S0556-2821~98!00714-0#

PACS number~s!: 11.15.Tk, 03.65.Db, 04.20.Fy, 05.30.2d
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I. INTRODUCTION

Wigner functions have been receiving increasing atten
in quantum optics, dynamical systems, and the algeb
structures of M theory@1#. They were invented by Wigne
and Szilard@2#, and serve as a phase-space distribution al
native to the density matrix, to whose matrix elements th
are related by Fourier transformation. The diagonal, hen
real, time-independent pure-state Wigner functionf (x,p)
corresponding to the eigenfunctionc of Hc5Ec, is

f ~x,p!5
1

2p E dyc* S x2
\

2
yDe2 iypcS x1

\

2
yD . ~1!

These functions are not quite probability distribution fun
tions, as they are not necessarily positive—this is illustra
below. However, upon integration overp or x, they yield
bona fide positive probability distributions, inx or p, respec-
tively.

Wigner functions underlie Moyal’s formulation of quan
tum mechanics@3#, through the unique@4,5# one-parameter
~\! associative deformation of the Poisson-brackets struc
of classical mechanics. Expectation values can be comp
on the basis of phase-spacec-number functions: given an
operator A~x,p!, the corresponding phase-space funct
A(x,p) obtained byp°p, x°x yields that operator’s ex
pectation value through

^A&5E dxdp f~x,p!A~x,p!, ~2!
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assuming the usual normalization*dxdp f(x,p)51 and fur-
ther assuming Weyl ordering, as addressed by Moyal, w
took matrix elements of all such operators:

A~x,p!5
1

~2p!2 E dtdsdxdpA~x,p!

3exp@ i t~p2p!1 is~x2x!#. ~3!

Wigner functions arec numbers, but they compose wit
each other nonlocally. The properties of these compositi
were explored in, e.g.,@6,7#, and were codified in an elegan
system in@5#: to parallel operator multiplication, the Wigne
functions compose with each other through theassociative
star product

![e~ i\/2!~]Qx]W p2]Q p]Wx!. ~4!

Recalling the action of a translation operator exp(a]x)h(x)
5h(x1a), it is evident that the! product induces simple
‘‘Bopp’’ shifts:

f ~x,p!!g~x,p!5 f S x,p2
i\

2
]W xDgS x,p1

i\

2
]Q xD

5 f S x1
i\

2
]W p ,p2

i\

2
]W xDg~x,p!, ~5!

etc., where]Q and ]W here act on the arguments off and g,
respectively. This intricate convolution samples the Wign
function over the entire phase space, and thus provide
alternative to operator multiplication in Hilbert space.

Antisymmetrizing and symmetrizing the star produ
yields the Moyal~sine! brackets@3#

$$ f ,g%%[
f !g2g! f

2i
~6!
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and Baker’s@6# cosine brackets

~~ f ,g!![
f !g1g! f

2
, ~7!

respectively. Note@7,8# that

E dpdx f!g5E dpdx f g. ~8!

Further note the Wigner distribution has a!-factorizable in-
tegrand:

f ~x,22p!5
1

2p E dy@c* ~x!eiyp#!@c~x!eiyp#. ~9!

In general, a systematic specification of time-depend
Wigner functions is predicated on the eigenvalue spect
of the time-independent problem. For pure-state static dis
butions, Wigner and, more explicitly, Moyal showed that

$$H~x,p!, f ~x,p!%%50; ~10!

i.e., H and f ! commute. However, there is a more power
functional equation, the ‘‘star-genvalue’’ equation, whi
e

c
o
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holds for the time-independent pure-state Wigner functio
~lemma 1!, and amounts to a complete characterization
them ~lemma 2!.

We will explore the features of this!-genvalue equation
and illustrate its utility on a number of solvable potentia
including both the harmonic oscillator and the linear on
The ! multiplications of Wigner functions will be seen t
parallel Hilbert-space operations in marked detail. T
Pöschl-Teller potential will reveal how the hierarchy of fa
torizable Hamiltonians familiar from supersymmetric qua
tum mechanics finds its full analogue in! space. We deter-
mine the Wigner function’s transformation properties und
~phase-space volume-preserving! canonical transformations
which we finally elaborate in the context of the Liouvill
potential.

II. !-GENVALUE EQUATION

Lemma 1. Static, pure-state Wigner functions obey
!-genvalue equation

H~x,p!! f ~x,p!5E f~x,p!. ~11!

Without essential loss of generality, considerH(x,p)
5p2/2m1V(x),
H~x,p!! f ~x,p!5
1

2p F S p2 i
\

2
]W xD 2Y 2m1V~x!G E dye2 iy@p1 i ~\/2!]Qx#c* S x2

\

2
yDcS x1

\

2
yD

5
1

2p E dyF S p2 i
\

2
]W xD 2Y 2m1VS x1

\

2
yD Ge2 iypc* S x2

\

2
yDcS x1

\

2
yD

5
1

2p E dye2 iypF S i ]W y1 i
\

2
]W xD 2Y 2m1VS x1

\

2
yD Gc* S x2

\

2
yDcS x1

\

2
yD

5
1

2p E dye2 iypc* S x2
\

2
yDEcS x1

\

2
yD5E f~x,p!, ~12!

since the action of the effective differential operators onc* turns out to be null, and, likewise,

f !H5
1

2p E dye2 iypF2S ]W y2
\

2
]W xD 2Y 2m1VS x2

\

2
yD Gc* S x2

\

2
yDcS x1

\

2
yD

5E f~x,p!. ~13!
re-
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tic
e

-

Thus, both of the above relations~10! and lemma 1 obtain.j
This time-independent equation was introduced in R

@7#, such that the expectation of the energyH(x,p) in a pure
state time-independent Wigner functionf (x,p) is given by

E H~x,p! f ~x,p!dxdp5EE f ~x,p!dxdp. ~14!

On account of the integration property of the star produ
Eq. ~8!, the left-hand side of this amounts t
*dxdpH(x,p)! f (x,p). Implicitly, this equation could have
f.

t,

been inferred from the Bloch equation of the temperatu
and time-dependent Wigner function, in the early work
@9#. !-genvalue equations are discussed in some depth in
second reference of Ref.@5# and in @10#.

By virtue of this equation, Fairlie also derived the gene
!-orthogonality and spectral projection properties of sta
Wigner functions@7#. His results were later formalized in th
spectral theory of the second of Ref.@5# @e.g., Eq.~4.4!#.
Considerg corresponding to the~normalized! eigenfunction
cg corresponding to energyEg . By lemma 1 and the asso
ciativity of the ! product,
2-2
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f !H!g5Ef f !g5Egf !g. ~15!

Then, if EgÞEf , this is only satisfied by

f !g50. ~16!

N.B. The integrated version is familiar from Wigner’s pape

E dxdp f!g5E dxdp f g50, ~17!

and demonstrates that all overlapping Wigner functions c
not be everywhere positive. The unintegrated relation in
ow
s
h
b
es

rs

,

,

02500
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duced by Fairlie appears local, but is, of course, highly n
local, by virtue of the convolving action of the! product.

Precluding degeneracy, forf 5g,

f !H! f 5Ef f ! f 5H! f ! f , ~18!

which leads, by virtue of associativity, to the normalizati
relation @6#

f ! f } f . ~19!

Both relations~16! and ~19! can be checked directly:
f ~x,p!!g~x,p!5 f S x,p2
i\

2
]W xDgS x,p1

i\

2
]Q xD

5
1

~2p!2 E dyc f* S x2
\

2
yDc f S x1

\

2
yDe2 iy@p2~ i\/2!]Wx#E dYe2 iY@p1~ i\/2!]Qx#cg* S x2

\

2
YDcgS x1

\

2
YD

5
1

~2p!2 E dydYe2 i ~y1Y!pc f* S x2
\

2
y1

\

2
YDc f S x1

\

2
y1

\

2
YDcg* S x2

\

2
Y2

\

2
yDcgS x1

\

2
Y2

\

2
yD

5F 1

2p E d~Y1y!e2 i ~y1Y!pcg* S x2
\

2
~Y1y! Dc f S x1

\

2
~y1Y! D G

3F1

h E dS \~Y2y!

2 Dc f* S \

2
~Y2y! DcgS \

2
~Y2y! D G . ~20!
s

,
-

di-
ls,
The second integral factor is 0 or 1/h, depending onf Þg or
f 5g, respectively, specifying the normalizationf * f 5 f /h in
Eq. ~19!. In conclusion,

Corollary 1. fa! f b51/hda,bf a .
These spectral properties are summoned up by their

necessity; much of their meaning, nevertheless, reside
their margins: For nonnormalizable wave functions, t
above second integral factor may diverge, as illustrated
low for the linear potential, but the orthogonality properti
still hold.

Thus, e.g., for an arbitrary function~al! F(z),

F@ f !# f 5F~1/h! f , ~21!

and, for! genfunctions of lemma 1,

F@H!# f 5F~E! f . ~22!

Baker’s converse construction extends to a full conve
of lemma 1, namely, the following lemma.

Lemma 2. Real solutions of H(x,p)! f (x,p)5E f(x,p)
@5 f (x,p)!H(x,p)# must be of the Wigner form
f 5*dye2 iypc* @x2(\/2)y#c@x1(\/2)y#/2p, such that
Hc5Ec.

As seen above, the pair of!-eigenvalue equations dictate
for f (x,p)5*dye2 iyp f̃ (x,y),
n
in

e
e-

e

E dye2 iypF2
1

2m S ]W y6
\

2
]W xD 2

1VS x6
\

2
yD2EG f̃ ~x,y!50. ~23!

This constrains f̃ (x,y) to consist of bilinears c* @x
2(\/2)y#c@x1(\/2)y# of unnormalized eigenfunction
c(x) corresponding to the same eigenvalueE in the Schro¨-
dinger equation with potentialV. j

These two lemmata then amount to the statement thatfor
real functions f(x,p), the Wigner form is equivalent to com
pliance with the!-genvalue equation~real and imaginary
part!.

III. EXAMPLE: THE SIMPLE HARMONIC OSCILLATOR

The eigenvalue equation of lemma 1 may be solved
rectly to produce the Wigner functions for specific potentia
without first solving the corresponding Schro¨dinger problem
~as in, e.g.,@11#!. Following @7#, for the harmonic oscillator,
H5(p21x2)/2 ~with \51, m51!, the resulting equation is

F S x1
i

2
]pD 2

1S p2
i

2
]xD 2

22EG f ~x,p!50. ~24!
2-3
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By virtue of its imaginary part (x]p2p]x) f 50, f is seen to
depend on only one variable,z54H52(x21p2), and so the
equation reduces to a simple ordinary differential equatio

S z

4
2z]z

22]z2ED f ~z!50. ~25!

Moreover, settingf (z)5exp(2z/2)L(z), this yields

S z]z
21~12z!]z1E2

1

2DL~z!50, ~26!

which is the equation satisfied by Laguerre polynomialsLn
5ez]n(e2zzn), for n5E21/250,1,2,. . . , so that the un-
normalized Wigner eigenfunctions are

f n5e22HLn~4H !,

L051, L15124H, L2516H2216H12, . . . .

~27!

Note that the eigenfunctions are not positive definite, and
the only ones satisfying the boundary conditions,f (0) finite
and f (z)→0, asz→`.

In fact, Dirac’s Hamiltonian factorization method for a
gebraic solution carries through~cf. @5#! intact in ! space.
Indeed,

H5
1

2
~x2 ip !!~x1 ip !1

1

2
, ~28!

motivating the definition of

a[
1

&

~x1 ip !, a†[
1

&

~x2 ip !. ~29!

Thus, noting that

a!a†2a†!a51 ~30!

and also that, by the above,

a! f 05
1

&

~x1 ip !!e2~x21p2!50 ~31!

provides a!-Fock vacuum, it is evident that associativity
the ! product permits the entire ladder spectrum genera
to go through as usual. The! genstates of the Hamiltonian
such thatH! f 5 f !H, are thus

f n}~a†! !nf 0~!a!n. ~32!
02500
;

re

n

These states are real, like the Gaussian ground state, an
thus left-right symmetric! genstates. They are also transpa
ently ! orthogonal for different eigenvalues, and they proje
to themselves, as they should, since the Gaussian gro
state does,f 0! f 0} f 0 . It will be seen below that even th
generalization of this factorization method for isospectral p
tential pairs goes through without difficulty.

IV. FURTHER EXAMPLE: THE LINEAR POTENTIAL

For simplicity, takem51/2, \51. Recall @12# that the
problem readily reduces to a free particle:H(x,p)5p2

1x°H f ree5P is accomplished by canonically transformin
through the generating functionF(x,X)52 1

3 X32xX. The
energy eigenfunctions are Airy functions,

cE~x!5
1

2p E
2`

1`

dXeiF ~x,X!eiEX5Ai ~x2E!. ~33!

The !-genvalue equation in this case is

F S x1
i

2
]pD1S p2

i

2
]xD 2

2EG f ~x,p!50, ~34!

whose imaginary part (12 ]p2p]x) f (x,p)50 gives f (x,p)
5 f (x1p2)5 f (H). The real part of the equation is then a
ordinary second-order equation, just as in the above h
monic oscillator case. Moreover, here the real part of
!-genvalue equation is essentially the same as the usua
ergy eigenvalue equation:

S z2
1

4
]z

22ED f ~z!50, ~35!

where z5x1p2. Hence, the Wigner function is again a
Airy function, like the above wave functions, except that t
argument has a different scale and shift:1

f ~x,p!5
22/3

2p
Ai „22/3~z2E!…5

22/3

2p
Ai „22/3~x1p22E!…

5
1

~2p!2 E dyeiy~E2x2p22y2/12!. ~36!

The Airy functions are not square integrable, so that the c
ventional normalizationf ! f 5(1/2p) f does not strictly ap-
ply. On the other hand, the energy eigenfunctions are non
generate, and the general corollary 1 projection relati
f a! f b}da,bf a still hold for the continuous spectrum:

1This case is similar to the Gaussian wave function, i.e., the h
monic oscillator ground state encountered above, whose Wig
function is also a Gaussian, but of different width. S. Habib kind
informed us that this solution is also given in Ref.@13#, Eq. ~29!.
2-4
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f E1! f E25 f E1F S x1
i

2
]W pD1p2G f E2F S x2

i

2
]Q pD1p2G5

1

~2p!4 E dydYeiy@E12x2~p2Y/2!22y2/12#eiY@E22x2~p1y/2!22Y2/12#

5
1

~2p!4 E d~y1Y!ei ~y1Y!@~E11E2!/22x2p22~y1Y!2/12#E d
~y2Y!

2
ei @~y2Y!/2#~E12E2!

5
1

~2p!
d~E12E2! f ~E11E2!/2~x1p2!, ~37!
di

a-

ux
l’

.

er

se

-

rgy

n-
by virtue of the direct definition~36!.

V. DARBOUX CONSTRUCTION OF WIGNER FUNCTION
RECURSIONS

Analogous ladder operators for eigenstates correspon
to ‘‘essentially isospectral’’ pairs of partner potentials@14#
@familiar from supersymmetric quantum mechanics~SSQM!#
can also be definedmutatis mutandisfor Wigner functions
and! products. They faithfully parallel the differential equ
tion structures.

Consider a positive semidefinite Hamiltonian

H5p2/2m1V~x!. ~38!

This can be written as a! product of two operators,

H5Q* !Q5S p

A2m
1 iW~x!D !S p

A2m
2 iW~x!D ,

~39!

provided

W22
\

A2m
]xW5V~x!. ~40!

This Riccati equation, familiar from SSQM, can be Darbo
transformed by changing variable for the ‘‘superpotentia
W(x),

W52
\]xc0

A2mc0

, ~41!

which reduces the condition to the Schro¨dinger equation for
a zero eigenvalue:

2
\2

2m
]x

2c01V~x!c050. ~42!

Also noteQ! f 050 for the corresponding Wigner function
It is easy to generalize this by adding a constant toH to shift
the ground state eigenvalue from zero.

By virtue of associativity, it is evident that the partn
Hamiltonian

H85Q!Q* 5H1
2\

A2m
]xW, ~43!
02500
ng

’

i.e., the one with a partner potential

V85W21
\

A2m
]xW, ~44!

has Wigner function! genstates of the same energy as tho
of H. Specifically,

H! f 5Q* !Q! f 5 f !Q* !Q5E f ~45!

implies that the real functionsQ! f !Q* are! genfunctions
of H8 with the same eigenvalueE,

H8!~Q! f !Q* !5Q!Q* !Q! f !Q* 5E~Q! f !Q* !,
~46!

unless f is the Wigner function corresponding toc0 , since
Q! f 050.

In consequence,En85En11 for n>0. Conversely, forg !
genfunctions ofH8, Q* !g!Q are! genfunctions ofH with
the same eigenvalues.

Moreover,c08[1/c0 will be an invalid zero mode eigen
function of H8, as seen from the sign flip in Eqs.~41! and
~44!. Consequently, an unnormalized, runaway zero-ene
solution of the Schro¨dinger equation withV8(x) will invert
to the legitimate ground state ofH and will permit construc-
tion of V given V8.

For example, starting from the trivial potential with a co
tinuous~unnormalizable! spectrum,

V851, ~47!

and the solution

c085coshSA2mx

\ D , ⇒W5tanhSA2mx

\ D , ~48!

results via Eq.~40! in the symmetric, reflectionless Po¨schl-
Teller potential @15#, V5122/cosh2@(A2mx/\)#. Con-
versely, starting from this potential,

V~x!512
2

cosh2S A2mx

\
D , ~49!

there is a single bound state~normalizable to*c0
252!,
2-5
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c05sechSA2mx

\ D , ⇒W5tanhSA2mx

\ D , ~50!

so that

V851. ~51!

Thus, the Wigner function ground state~for m51/2! is

f 0~x,p!5
1

2p E dy
e2 iyp

2 cosh~x/\2y/2!cosh~x/\1y/2!

5
1

p E
0

`

dy
cos~yp!

cosh~2x/\!1cosh~y!

5
sin~2xp/\!

sinh~2x/\!sinh~pp!
. ~52!

@N.B. It is not positive definite or a function of justH(x,p).#
It may be verified directly that

Q! f 05Fp2
i\

2
]x2 i tanhS x

\
1

i

2
]pD G f 0~x,p!50.

~53!

This appendage of bound states to a potential genera
@16# to the hierarchy associated with the Korteweg–de Vr
~KdV! equation. Specifically,

W~n!5n tanhSA2mx

\ D ~54!

connects the reflectionless Po¨schl-Teller potential

V8~x!5n22n~n21!/cosh2SA2mx

\ D
to its contiguous

V~x!5n22n~n11!/cosh2SA2mx

\ D , ~55!

which has one more bound state~shape invariance!. Recur-
sively, then, one may go inN steps, with the suitable shift
of the potential by 2n21 in each step, from the consta
potential to

V~N;x!5N22N~N11!/cosh2SA2mx

\ D . ~56!

Shifting this potential down byN2 assigns the energyE
52N2 to the corresponding ground statec0(N)5sechN(x)
~unnormalized!, which is the null state of (\/A2m)]x
1W(N). The corresponding~unnormalized! Wigner func-
tion is the!-null state ofQ(N),
02500
es
s

f 0~N;x,p!5
1

p E
0

`

dy
cos~yp!

@cosh~2x/\!1cosh~y!#N

5
1

~N21!! S 2\

2 sinh~2x/\!
]xD N21

f 0~1;x,p!,

~57!

where the integral only need be evaluated from the ab
f 0(1;x,p). Alternatively,

f 0~N;x,p!5@sech~x/\!!#N21f 0~1;x,p!@! sech~x/\!#N21.
~58!

The ~unnormalized! state above the ground state atE
52(N21)2 is @(\/A2m)]x2W(N)#c0(N21), and its
corresponding Wigner function~settingm51/2! is found re-
cursively from the ground state ofH(N21), through
Q* (N)! f 0(N21)!Q(N),

Fp! f 0~N21!1 iN tanhS x

\ D! f 0~N21!G!Q~N!

5S p! f 0~N21!1
N

N21
p! f 0~N21! D!Q~N!

5S 2N21

N21 D 2

p! f 0~N21!!p, ~59!

by virtue of

Q~N21!! f 0~N21!505 f 0~N21!!Q* ~N21!. ~60!

The state above that, atE52(N22)2, is found recur-
sively through

Q* ~N!!Q* ~N21!! f 0~N22!!Q~N21!!Q~N!,
~61!

and so forth. Thus, the entire Wigner!-genfunction spec-
trum of H(N) is obtained with hardly any reliance on Schr¨-
dinger eigenfunctions.

VI. CANONICAL TRANSFORMATION
OF THE WIGNER FUNCTION

For notational simplicity, take\51 in this section. The
area element in phase space is preserved by canonical t
formations

~x,p!°„X~x,p!,P~x,p!… ~62!

which yield trivial Jacobians (dXdP5dxdp$X,P%) by pre-
serving the Poisson brackets

$u,v%xp[
]u

]x

]v
]p

2
]u

]p

]v
]x

. ~63!

They thus preserve the ‘‘canonical invariants’’ of their fun
tions:

$X,P%xp51 and hence $x,p%XP51. ~64!
2-6
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Equivalently,

$x,p%5$X,P%, ~65!

in any basis. Motion being a canonical transformatio
Hamilton’s classical equations of motion are preserved,
H(X,P)[H(x,p), as well@17#. What happens upon quant
zation?

Since, in deformation quantization, the Hamiltonian is
c-number function, and so transforms ‘‘classically
H(X,P)[H(x,p), the effects of a canonical transformatio
on the quantum!-genvalue equation of lemma 1 will b
carried by a suitably transformed Wigner function. Predi
ably, the answer can be deduced from Dirac’s quantum tra
formation theory. Consider the canonical transformatio
generated byF(x,X):
02500
,
r

-
s-
s

p5
]F~x,X!

]x
, P52

]F~x,X!

]X
. ~66!

Following Dirac’s celebrated exponentiation@18# of such a
generator, in the implementation of@12,19#, the energy
eigenfunctions transform canonically through a generali
tion of the ‘‘representation-changing’’ Fourier transform:

cE~x!5NEE dXeiF ~x,X!CE~X!. ~67!

Thus,
f ~x,p!5
uNEu2

2p E dyE dX1e2 iF* ~x2y/2,X1!CE* ~X1!e2 iypE dX2eiF ~x1y/2,X2!CE~X2!. ~68!

The pair of Wigner functions in the respective canonical variables,f (x,p) and

F~X,P!5
1

2p E dYC* S X2
\

2
YDe2 iY PCS X1

\

2
YD , ~69!

are connected by a transformation functionalT(x,p;X,P),

f ~x,p!5E dXE dPT~x,p;X,P!~F~X,P!5E dXE dPT~x,p;X,P!F~X,P!, ~70!

where~ is with respect to the variablesX andP.
To find this functional, letX5 1

2 (X11X2) andY5X22X1 , so that*dX1*dX25*dX*dY. Noting that

C* S X2
\

2
YDCS X1

\

2
YD5E dPeiY PF~X,P!, ~71!

it follows that Eq.~68! reduces to

f ~x,p!5
uNu2

2p E dyE dX1e2 iF* ~x2y/2,X1!C* ~X1!e2 iypE dX2eiF ~x1y/2,X2!C~X2!

5
uNu2

2p E dXdYdye2 iype2 iF* ~x2y/2,X2Y/2!C* ~X2Y/2!C~X1Y/2!eiF ~x1y/2,X1Y/2!

5
uNu2

2p E dXdPdYdye2 iyp1 iPY2 iF* ~x2y/2,X2Y/2!1 iF ~x1y/2,X1Y/2!F~X,P!, ~72!
2-7
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which leads to the following lemma.
Lemma 3. T(x,p;X,P)5(uNu2/2p)*dYdy exp@2iyp

1iPY2iF* (x2y/2,X2Y/2)1 iF (x1y/2,X1Y/2)#. j
Corollary 2. This phase-space transformation function

obeys the ‘‘two-star’’ equation

H~x,p!!T~x,p;X,P!5T~x,p;X,P!~H~X,P!, ~73!

as follows from H(x,2 i ]x)exp@iF(x,X)#
5H(X,i ]X)exp@iF(x,X)#. If F satisfies a~-genvalue equa-
tion, then f satisfies a!-genvalue equation with the sam
eigenvalue, and vice versa.j

Note that, by virtue of the spectral projection feature~16!,
~19!, this equation is also solved by any representati
changing equal-energy bilinear in real Wigner! genfunc-
tions of H andH,

T~x,p;X,P!5(
E

g~E! f E~x,p!FE~X,P!, ~74!

for arbitrary realg(E). Such a bilinear transformation func
tional is nonsingular~invertible! if and only if g(E) has no
zeros on the spectrum of either Hamiltonian.2

As an example, consider the linear potential again, wh
transforms into a free particle (H5P) through

F52
1

3
X32xX⇒p52X, x5P2X2. ~75!

By direct computation,

T~x,p;X,P!522/3 Ai „22/3~x1X22P!…d~p1X!

2In general, if the transformation functional effects a map to a f
particle, theP integration is trivial in Eq.~70!, and the result for the
Wigner function of thex,p theory is just an average overX of the
transformation functional. That is, ifF(X,P)5d„P2k(E)…, where
k(E) is the momentum-energy relation for the free particle the
in question:

f~x,p!5EdXEdPT~x,p;X,P!F~X,P!5E dXT„x,p;X,k~E!….

One might then be tempted to wonder if justT(x,p;X,P)5cP* (x
2\X/2)e2 iXpcP(x1\X/2)/2p[G(x,p;X,P). However, what de-
termines the allowed range forP? It is always possible to embe
any real energy spectrum into the real line, but knowing this d
not help at all to determine what points are to be embedded. F
the point of view of this paper, even when the spectrum is obvio
such a choice for the transformation functional in general does
satisfy the two-! equation~73!. Rather, the equation fails by tota
derivatives that vary contingent on particularities of the case. E
for free-particle plane waves,cE(x)5exp(iEx), so that p!G

2G~P5]XG. This choice forT, then, does not yield useful in
formation on the Wigner functions.
02500
l

-

h

5~2p!2E dE fE~x,p!FE~X,P!d~p1X!.

~76!

Note NE51/A2p for the free-particle energy eigenfunctio
normalization choiceCE(X)5(2p)21/2 exp(iEX). Thus, in-
deed, the free-particle Wigner functionFE(X,P)5d(E
2P)/(2p) transforms into

f ~x,p!5
1

2p E dPdXTd~E2P!

5
22/3

2p
Ai „22/3~x1p22E!…, ~77!

as it should, and Eq.~73! is seen to be satisfied directly, b
virtue of the linearity of the respective Hamiltonians in th
variablesP,x, conjugate to those of the arguments ofd(p
1X).

The structure of the result in Eq.~76! underscores that the
linear potential is as ‘‘close to classical’’ as one can get,
simple quantum mechanics. It has been noted before@12#
that the transformation functional for linear potential wa
functions isexactlythe exponential of the classical genera
ing function for the canonical transformation to a free p
ticle, and that this is not the case for any other potential. T
present result for the transformation functional for Wign
functions is further evidence for this ‘‘close to classica
behavior. The delta functiond(p1X) in Eq. ~76! is half of
the classical story. Were the Airy function also a delta fun
tion of its argument, we would have an exact implementat
of the X,P°x,p classical correspondence. As it is, there
some typically quantum mechanical spread around the c
sical constraintx1X22P50, in the form of oscillations of
the Airy function, and, in consequence, the Wigner functio
of the free particle do not retain their delta-function for
under the canonical transformation to the linear poten
Wigner functions. Reinstating\ into Eq. ~36!,3 and taking
the limit \→0 converts the Airy function to a delta function
d(x1X22P), thereupon producing the complete classic
correspondence between the two sets of phase space
ables, in that limit.

As already seen, there is substantial nonuniqueness in
choice of transformation functional. For example, for the l
ear potential again, Eq.~73!,

~x1p2!!S~x,p;X,P!5S~x,p;X,P!~P ~78!

is also satisfied by a different~and somewhat simpler!
choice:

S~x,p;X,P!5exp$2 i @ 2
3 X312~x1p22P!X#%. ~79!

e

y

s
m
s,
ot

.,

3The exponent of the integrand turns intoiy(E2x2p2

2\2y2/12).
2-8
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This transformation functional also converts the free-part
Wigner functionFE(X,P)5d(E2P)/2p into an Airy func-
tion ~as above! after integrating over the free-particle pha
space,*dXdP.
h
cle

y
t

A
s
n

e
ro

02500
e Actually, it is not necessary to integrate over the pha
space. In general,! multiplying a delta function spreads
out, and yields a Fourier transform with respect to the c
jugate variable. Thus, for the example considered,
ei @~22/3!X322~x1p22P!X#!d~P2E!5e2iX~P2E!
1

p E dZe22iZ~P2E!ei @~22/3!Z322~x1p22P!Z#

5e2iX~P2E!
1

p E dZei @~22/3!Z322~x1p22E!Z#5e2iX~P2E!22/3 Ai „22/3~x1p22E!….

~80!

Hence,

E dXE dPei @~22/3!X322~x1p22P!X#!d~P2E!522/3p Ai „22/3~x1p22E!…. ~81!

Compare this to the action of the aboveT(x,p;X,P),

@Ai „22/3~x1X22P!…d~p1X!#!d~P2E!5e2iX~P2E!
1

p E dZe22iZ~P2E! Ai „22/3~x1Z22P!…d~p1Z!

5e2i ~p1X!~P2E!
1

p
Ai „22/3~x1p22P!…. ~82!
n

Aside from innocuous normalizations, the difference in t
two transformation functionals acting on the free-parti
Wigner function is just the phase factore2ip(P2E) and the
argument of the Airy function, whereE has been replaced b
P. Indeed, the phase factor precisely compensates for
different energy eigenvalue occurring in the argument of
when acted upon by (x1p2)!. Such simple phase factor
may be used to shift a! genvalue whenever the Hamiltonia
is linear in any variable.

VII. ILLUSTRATIONS USING LIOUVILLE QUANTUM
MECHANICS

A summary illustration of all the above, in particular th
canonical transformation effects on Wigner functions, is p
vided by the Liouville model@20#. Our conventions for the
model @which are essentially those of@21#, with their m
[1/(4p) and theirg[1# are given by

HLiouv i l le5p21e2x. ~83!

The energy eigenfunctions are then solutions of

S 2
d2

dx2 1e2xDcE~x!5EcE~x!. ~84!

The solutions are Kelvin~modified Bessel! K functions, for
0,E,`,
e

he
i,

-

cE~x!5
1

p
Asinh~pAE!KiAE~ex!, ~85!

which are normalized such that*2`
1`dxcE1

* (x)cE2
(x)

5d(E12E2). There is no solution@20# for E50.
For completeness, consider the Fourier transform~includ-

ing a convergence factor, necessary forx→2` to control
plane wave behavior, but not forx→`!

FE~p1 i e!5E
2`

1`

dxe2 ix~p1 i e!cE~x!

5
1

4p
Asinh~pAE!22 i ~p1 i e!

3GS 2 i ~p1 i e!1 iAE

2 DGS 2 i ~p1 i e!2 iAE

2 D .

~86!

This follows, e.g., from a result in@22#, Vol. II, p 51, Eq.
~27!:

E
0

1`

dzzmKn~z!52m21GS 11m1n

2 DGS 11m2n

2 D ,

~87!

valid for R(11m6n).0 ~i.e., the previous transform is
valid for e.0!. The right-hand side of this last relatio
clearly displays the symmetryn→2n, which just amounts
2-9
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to the physical statement that the energy eigenfunctions
nondegenerate for the transmissionless exponential pote
of the Liouville model.

Further note the effect onFE(p1 i e) of shifting p→p
12i , usingG(11z)5zG(z),

FE~p12i 1 i e!54S 2 i ~p1 i e!1 iAE

2 D
3S 2 i ~p1 i e!2 iAE

2 DFE~p1 i e!

5@E2~p1 i e!2#FE~p1 i e!. ~88!

So, ase→0, FE(p12i )5(E2p2)FE(p). But this simple
difference equation is just the Liouville energy eigenva
equation in the momentum basis,

~p22E!FE~p!1e2i ]pFE~p!50. ~89!

Such first-order difference equations invariably lead
gamma functions@23#. Below, it turns out that the Wigne
functions also satisfy momentum difference equations, bu
second order.
02500
re
tial

of

Many, if not all, properties of the Liouville wave func
tions may be understood from the following integral rep
sentation@@24#, Chap. VI, Sec. 6.22, Eq.~10!#. Explicitly
emphasizing the abovementioned nondegeneracy,

Kik~ex!5K2 ik~ex!5
1

2
epk/2E

2`

1`

dXeiex sinh XeikX.

~90!

~Also see@25#, Eq. 9.6.22.! This integral representation ma
be effectively regarded as the canonical transformation o
free-particle energy eigenfunctioneikX through use of the
generating function F(x,X)5ex sinhX. Classically, p
5]F/]x5ex sinhX andP52]F/]X52ex coshX, and so
P22p25e2x. That is,HLiouv i l le5Hf ree[P2 under the clas-
sical effects of the canonical transformation. The quant
effects are detailed below, by! acting with the Liouville and
free Hamiltonians on the suitable transformation function

The Liouville Wigner function may be obtained from th
definition ~1! in terms of known higher transcendental fun
tions:
of type

e

f ~x,p!5
1

2p E
2`

1`

dy
1

p2 sinh~pAE!KiAE~ex2y/2!e2 iypKiAE~ex1y/2!

5
1

4p3 sinh~pAE!22ipe~2122ip !xG04
40S e4x

16 U 112iAE

4
,

122iAE

4
,
112iAE14ip

4
,

122iAE14ip

4 D . ~91!

The following K transform was utilized to express this result in closed form:

E
0

`

dw~wz!1/2ws21Km~a/w!Kn~wz!522s25/2asG04
40S a2z2

16 U m2s

2
,
2m2s

2
,
1

4
1

n

2
,
1

4
2

n

2D . ~92!

The right-hand side involves a special case of Meijer’sG function,

Gpq
mnS zUai , i 51,...,p

bj , j 51,...,qD ~93!

~cf. @22#, Sec. 5.3!, which is fully symmetric in the parameter subsets$a1 ,...,an%, $an11 ,...,ap%, $b1 ,...,bm%, and
$bm11 ,...,bq%. It is possible to reexpress the result as a linear combination of generalized hypergeometric functions
0F3 , but there is little reason to do so here. This transform is valid forRa.0, and is taken from@26#, p. 711, Eq.~55!.4 The
transform is complementary to@27#, Sec. 10.3, Eq.~49!, in an obvious way, aK transform which appears in perturbativ
computations of certain Liouville correlation functions@21#.

The result~91! may be written in slightly different alternate forms

f ~x,p!5
sinh~pAE!e2x

4p3 G04
40S e4x

16 U 112iAE22ip

4
,

122iAE22ip

4
,
112iAE12ip

4
,

122iAE12ip

4 D
5

sinh~pAE!

8p3 G04
40S e4x

16 U iAE2 ip

2
,
2 iAE2 ip

2
,
iAE1 ip

2
,
2 iAE1 ip

2 D , ~94!

4There is an error in this result as it appears in@27#, Vol. II, Sec. 10.3, Eq.~58!, where the formula hasa2z2/4 instead ofa2z2/16 as the
argument of theG function. The latter argument is correct, and appears in Meijer’s original paper cited here.
2-10
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by making use of the parameter translation identity for theG function @@22#, Sec. 5.3.1, Eq.~9!#:

zlGpq
mnS zUar

bs
D5Gpq

mnS zUar1l
bs1l D . ~95!

Yet another way to express the result utilizes the Fourier transform of the wave function, Eq.~86!, in terms of which the
Wigner function reads, in general,

f ~x,p!5S 1

2p D 2E
2`

1`

dkFE* S p2
1

2
kDeixkFES p1

1

2
kD . ~96!

The specific result~86! then gives, ase→0,

f ~x,p!5S 1

8p2D 2

sinh~pAE!E
2`

1`

dkeixk42 i ~k/21 i e!GS i ~p2k/22 i e!2 iAE

2 D
3GS i ~p2k/22 i e!1 iAE

2 DGS 2 i ~p1k/21 i e!1 iAE

2 DGS 2 i ~p1k/21 i e!2 iAE

2 D . ~97!

However, this is a contour integral representation of the particularG function given above. Because of thee prescription, the
contour in the variablez5k/21 i e runs parallel to the real axis, but slightly above the poles of theG functions located on the
real axis atz5p2AE, z5p1AE, z52p1AE, andz52p2AE. Changing variables tos5 1

2 iz yields

f ~x,p!5
1

8p3 sinh~pAE!
1

2p i EC
dsS e4x

16D s

GS ip2 iAE

2
2sDGS ip1 iAE

2
2sDGS 2 ip1 iAE

2
2sDGS 2 ip2 iAE

2
2sD ,

~98!
te

f
n,

e
e

he

a-

ted
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er
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where the contourC in the s plane runs from2 i` to 1 i`,
just to the left of the four poles on the imaginarys axis at
i (p1AE)/2, i (p2AE)/2, i (2p1AE)/2, and i (2p
2AE)/2. This is recognized as the Mellin-Barnes-type in
gral definition of theG04

40 function @cf. @22#, Sec. 5.3, Eq.~1!#
in agreement with the second result above, Eq.~94!.

The translation identity~95! is seen to hold by virtue o
Eq. ~98!, through simply shifting the variable of integratio
s. Moreover, deforming the contour in Eq.~98! to enclose
the four sequences of polessn5n1 i (6p6AE)/2 reveals
the equivalence of this particularG function to a linear com-
bination of four0F3 functions, one for each of the sequenc
of poles. Evaluating the integral by the method of residu
for all these poles produces the standard0F3 hypergeometric
series.

It should now be straightforward to directly check that t
explicit result forf (x,p) is indeed a solution to the Liouville
!-genvalue equation,

HLiouv i l le! f ~x,p!

5F S p2
i

2
]xD 2

1e2@x1~ i /2!]p#G f ~x,p!5E f~x,p!. ~99!

For real E and real f (x,p), the imaginary part of this!-
genvalue equation is

~2p]x1e2x sin ]p! f ~x,p!50, ~100!

while the real part is
02500
-

s
s

S p22E2
1

4
]x

21e2x cos]pD f ~x,p!50. ~101!

The first of these is a first-order differential-difference equ
tion relating thex andp dependence:

e22x]xf ~x,p!5
1

2ip
@ f ~x,p1 i !2 f ~x,p2 i !#. ~102!

Similarly, the real part of the!-genvalue equation is a
second-order differential-difference equation:

e22xS p22E2
1

4
]x

2D f ~x,p!1
1

2
@ f ~x,p1 i !1 f ~x,p2 i !#50.

~103!

The previous first-order equation may now be substitu
~twice! into this last second-order equation, to convert
from a differential-difference equation into a second-ord
difference-only equation in the momentum variable, w
nonconstant coefficients:

05~p22E! f ~x,p!1S e2x

4p D 2

@ f ~x,p12i !22 f ~x,p!

1 f ~x,p22i !#1 i
e2x

4p
@ f ~x,p1 i !2 f ~x,p2 i !#

1
e2x

2
@ f ~x,p1 i !1 f ~x,p2 i !#. ~104!
2-11
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We leave it as an exercise for the reader to exploit the recursive properties of the MeijerG function and show that this
difference equation is indeed obeyed by the result~91!. Rather than pursue this in detail, we turn our attention to
transformation functional which connects the above result forf to a free-particle Wigner function.

Given Eq.~90!, it follows that

cE~x!5
1

p
Asinh~pAE!KiAE~ex!5

1

2p
Asinh~pAE!epAE/2E

2`

1`

dXeiex sinh XeiAEX, ~105!

and henceNE5@4pAEepAE sinh(pAE)#1/2/2p, if we choose ad(E12E2) normalization for the free-particle plane waves
well as for the Liouville eigenfunctions. Therefore, lemma 3 yields

T~x,p;X,P!5
uNu2

2p E dYdy exp@2 iyp1 iPY2 iF * ~x2y/2,X2Y/2!1 iF ~x1y/2,X1Y/2!#

5
1

~2p!3 @4pAEepAE sinh~pAE!#E dYdy expF2 iyp1 iPY2 iex2y/2 sinhS X2
Y

2 D1 iex1y/2 sinhS X1
Y

2 D G
5

1

4p3 @4pAEepAE sinh~pAE!#E dS y1Y

2 DexpF i ~P2p!
y1Y

2
1 iex1X sinhS y1Y

2 D G
3E dS Y2y

2 DexpF i ~P1p!
Y2y

2
1 iex2X sinhS Y2y

2 D G . ~106!

We thus conclude that

T~x,p;X,P!5
4

p2 AEepAE sinh~pAE!e2pPKi ~P2p!~ex1X!Ki ~P1p!~ex2X!. ~107!

We now check that this result obeys Eq.~73! and, in so doing, carry out the nontrivial steps needed to show the Liou
Wigner functions satisfy the Liouville!-genvalue equation~99!. That is to say, we shall show

S S p2
i

2
]W xD 2

1e2@x1~ i /2!]W p#DT~x,p;X,P!5T~x,p;X,P!F S P1
i

2
]QXD 2G ~108!

or, equivalently,

F S p2
i

2
]W xD 2

1e2@x1~ i /2!]W p#2S P1
i

2
]WXD 2GKi ~P2p!~ex1X!Ki ~P1p!~ex2X!50. ~109!

Specifically,

21

4
~]W x

22]WX
2 !Ki ~P2p!~ex1X!Ki ~P1p!~ex2X!52e2xKi ~P2p!8 ~ex1X!Ki ~P1p!8 ~ex2X!, ~110!

~2 ip]W x2 iP]WX!Ki ~P2p!~ex1X!Ki ~P1p!~ex2X!52 i ~p1P!ex1XKi ~P2p!8 ~ex1X!Ki ~P1p!~ex2X!2 i ~p2P!ex2XKi ~P2p!

3~ex1X!Ki ~P1p!8 ~ex2X! ~111!

and

e2@x1~ i /2!]W p#Ki ~P2p!~ex1X!Ki ~P1p!~ex2X!5e2xK11 i ~P2p!~ex1X!K211 i ~P1p!~ex2X!. ~112!

Now, recall the recurrence relations~@25#, Eq. 9.6.26!

K11 i ~P2p!~ex1X!52Ki ~P2p!8 ~ex1X!1 i ~P2p!e2x2XKi ~P2p!~ex1X!, ~113!

K211 i ~P1p!~ex2X!52Ki ~P1p!8 ~ex2X!2 i ~P1p!e2x1XKi ~P1p!~ex2X!. ~114!

So the previous relation~112! becomes
025002-12
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e2~x1 i /2 ]W p!Ki ~P2p!~ex1X!Ki ~P1p!~ex2X!5e2xKi ~P2p!8 ~ex1X!Ki ~P1p!8 ~ex2X!1 i ~P1p!ex1XKi ~P2p!8 ~ex1X!Ki ~P1p!~ex2X!

2 i ~P2p!ex2XKi ~P2p!~ex1X!Ki ~P1p!8 ~ex2X!1~P22p2!Ki ~P2p!~ex1X!

3Ki ~P1p!~ex2X!. ~115!
by
e
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The sum of Eqs.~110!, ~111!, and~115! shows that Eq.~109!
is, indeed, satisfied.

Integrating overX andP the product ofT(x,p;X,P) and
the free-particle Wigner function, as given here
(4pAE)21d(P2AE), yields another expression for th
Liouville Wigner function which checks against the previo
result, Eq.~91!. Using Eq.~92! and the parameter translatio
identity for theG function, this other expression is just E
~94!.

Supersymmetric Liouville quantum mechanics is obtain
by carrying through the Darboux construction detailed ab
~with \5152m!, for the choice

W~x!5ex. ~116!

The conventions used essentially follow@28#.
The first Hamiltonian of the essentially isospectral pair

then

H5p21e2x2ex, ~117!

and the allowed spectrum is 0<E,`, including zero en-
ergy, for which there is a bounded wave function normaliz
as part of the continuum,

c0~x!5
1

Ap
e2ex

. ~118!

The other,E.0, eigenfunctions are

cE~x!5F 1

4p2AE
ex cosh~pAE!G 1/2

3@K1/22 iAE~ex!1K1/21 iAE~ex!#, ~119!

again normalized so that*2`
1`dxcE1

* (x)cE2
(x)5d(E1

2E2).
.

tt.
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The second Hamiltonian of the pair is

H85p21e2x1ex, ~120!

and the allowed spectrum is 0,E,`, excluding zero
energy.5 The E.0 eigenfunctions are then

cE8 ~x!5F 1

4p2AE
ex cosh~pAE!G 1/2

3@ iK 1/22 iAE~ex!2 iK 1/21 iAE~ex!#, ~121!

and may be obtained from the previousE.0 eigenfunctions,
ascE8 (x)5(1/AE)(]x1W)cE(x).

For both Hamiltonians, the Wigner functions are straig
forward to construct directly, once again leading to theK
transform~92! and particular MeijerG functions. We find it
sufficient here to consider only the ground state forH,

f 0~x,p!5
1

2p2 E
2`

1`

dye22ex cosh~y/2!2 iyp5
2

p2 K2ip~2ex!,

~122!

a single modified Bessel function. It smoothly@29# satisfies
@p2 iW(x)#! f 050 and, hence, the!-genvalue equation
H! f 050.
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