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The Wigner phase-space distribution function provides the basis for Moyal's deformation quantization
alternative to the more conventional Hilbert space and path integral quantizations. The general features of
time-independent Wigner functions are explored here, including the functitstal” ) eigenvalue equations
they satisfy; their projective orthogonality spectral properties; their Darl§tapersymmetric’) isospectral
potential recursions; and their canonical transformations. These features are illustrated explicitly through
simple solvable potentials: the harmonic oscillator, the linear potential, tsehR®eller potential, and the
Liouville potential.[S0556-282(98)00714-Q

PACS numbgs): 11.15.Tk, 03.65.Db, 04.20.Fy, 05.3&

I. INTRODUCTION assuming the usual normalizatigdxdpf(x,p) =1 and fur-
ther assuming Weyl ordering, as addressed by Moyal, who
Wigner functions have been receiving increasing attentiortook matrix elements of all such operators:
in quantum optics, dynamical systems, and the algebraic
structures of M theory1]. They were invented by Wigner
and Szilard 2], and serve as a phase-space distribution alter-
native to the density matrix, to whose matrix elements they ) )
are related by Fourier transformation. The diagonal, hence, xexdir(p—p)+io(X—x)]. (€
real, time-independent pure-state Wigner functi(x,p)
corresponding to the eigenfunctignof Hy=E, is

1
A(x,p):(zT)2 f drdodxdpA(Xx,p)

Wigner functions are numbers, but they compose with
each other nonlocally. The properties of these compositions
were explored in, e.g[6,7], and were codified in an elegant

1 fi : fi system in[5]: to parallel operator multiplication, the Wigner
= — —vy]|eiyp — !
f(x.p) 2 j dyt//*(x zy)e P x+ 2V (1) functions compose with each other through #esociative
star product
These functions are not quite probability distribution func- x= el (3xdp=dpdy). )

tions, as they are not necessarily positive—this is illustrated

below. However, upon integration overor x, they yield  pecalling the action of a translation operator edh(x)
bona fide positive probability distributions, ¥nor p, respec- =h(x+a), it is evident that thex product induces simple

tively. _ _ _ “Bopp” shifts:
Wigner functions underlie Moyal’s formulation of quan-

tum mechanic$3], through the uniqué4,5] one-parameter it it
() associative deformation of the Poisson-brackets structure  f(x,p)*g(x,p)= f( X,p— > ax> al x,p+ > ax)
of classical mechanics. Expectation values can be computed

on the basis of phase-spacenumber functions: given an it . i%

operator A(x,p), the corresponding phase-space function =f
A(Xx,p) obtained byp—p, x—X yields that operator's ex-
pectation value through

g(x,p), (9

X+ o dp.p= — dx

etc., whered and 4 here act on the arguments bfand g,
respectively. This intricate convolution samples the Wigner
function over the entire phase space, and thus provides an
<A>:f dxdpf(x,p)A(X,p), (2 alternative to operator multiplication in Hilbert space.
Antisymmetrizing and symmetrizing the star product,
yields the Moyal(sine bracketq 3]
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and Baker'd 6] cosine brackets holds for the time-independent pure-state Wigner functions
(lemma 1, and amounts to a complete characterization of
them(lemma 3.

We will explore the features of this-genvalue equation,
and illustrate its utility on a number of solvable potentials,
respectively. Not¢7,8] that including both the harmonic oscillator and the linear one.

The = multiplications of Wigner functions will be seen to
j dpdxf*g=j dpdxfg (8)  parallel Hilbert-space operations in marked detail. The
Paoschl-Teller potential will reveal how the hierarchy of fac-
torizable Hamiltonians familiar from supersymmetric quan-
tum mechanics finds its full analogue #nspace. We deter-
mine the Wigner function’s transformation properties under
1 . _ (phase-space volume-preservirganonical transformations,
f(x,—2p)=5— J dy[¢* (x)eYPIx[#(x)e¥P].  (9)  which we finally elaborate in the context of the Liouville
potential.

In general, a systematic specification of time-dependent
Wigner functions is predicated on the eigenvalue spectrum ll. x-GENVALUE EQUATION

of the time-independent problem. For pure-state static distri- | emma 1. Static, pure-state Wigner functions obey the
butions, Wigner and, more explicitly, Moyal showed that  ,_genvalue equation

H{H(X,p),f(x,p)}}=0; (10) H(x,p)*f(x,p)=Ef(x,p). (11)

i.e.,H andf » commute. However, there is a more powerful Without essential loss of generality, considét(x,p)
functional equation, the ‘“star-genvalue” equation, which =p?/2m+V(x),

fxg+gxf
(fan=—"3"" G

Further note the Wigner distribution haskéeactorizable in-
tegrand:

h
X+ Ey

H(x,p)*f( xp)— [( —g ) /2m+V(x) fdye—iy[p+i(h/2)5x]¢*(x_gy)w

2
Zz—f [ /2m+V
—1fd P +h 2 2m+V
= o ye |a |2(9 m

1 _
- —1yp,/*
5 f dye YPy

N
X 2y

SRERY
x5

X+ gy) =Ef(x,p), (12

L
X 2y

f
X+ 5y

h
X+ Ey 2

)
X=3Y Ey

since the action of the effective differential operatorsyggnturns out to be null, and, likewise,

. h\? h h
ﬁy—Eo'?x 2m+V| x— Ey

X=3Y
=Ef(x,p). (13

f

* Pl X T35y

1 :
= —iyp| _
fxH 27deye

Thus, both of the above relatios0) and lemma 1 obtairlll been inferred from the Bloch equation of the temperature-
This time-independent equation was introduced in Refand time-dependent Wigner function, in the early work of
[7], such that the expectation of the enetigx,p) in a pure  [9]. x-genvalue equations are discussed in some depth in the
state time-independent Wigner functié(x,p) is given by second reference of Rdb] and in[10].
By virtue of this equation, Fairlie also derived the general
*-0orthogonality and spectral projection properties of static
f H(x,p)f(x,p)dxdp=Ef f(x,p)dxdp. (14  Wigner functiond7]. His results were later formalized in the
spectral theory of the second of R¢g] [e.g., Eq.(4.4)].
On account of the integration property of the star productConsiderg corresponding to thénormalized eigenfunction
Eq. (8), the left-hand side of this amounts to #gy corresponding to energy,. By lemma 1 and the asso-
JdxdpH(x,p)*f(x,p). Implicitly, this equation could have ciativity of the » product,
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fxHxg=E(fxg=Ef*g. (15  duced by Fairlie appears local, but is, of course, highly non-
local, by virtue of the convolving action of the product.
Then, ifE4#E;, this is only satisfied by Precluding degeneracy, fd=g,
fxg=0. (16) faH*f=Eifxf=Hxfxf, (18

N.B. The integrated version is familiar from Wigner's paper, | . . . L
9 9 pap which leads, by virtue of associativity, to the normalization

relation[6]
f dxdpf*g:f dxdpfg=0,
fafocf, (19
and demonstrates that all overlapping Wigner functions can-
not be everywhere positive. The unintegrated relation introBoth relations(16) and (19) can be checked directly:

if i
f(xap)*g(xyp):f X!p_?ax g X1p+?‘9x
:Lfdy(/,* X — f_‘y el x+ ﬁy e—iy[pfah/z)rix]f dY e YIPHIR25d x|y —y |y |yt EY
(21)? f 2771 2 9 9”2
=;fddee"(y*Y)p¢* X— iiy+ éY il x+ sy+ Y Y x— 5 Y= Sy | gl x+ EY— éy
(27)? SRR R R R T R A R R R R0 R T)
= in(Yer)e*‘(y*Y)pzp* X—E(Y+y) Wi| X+ ﬁ(y+Y)
2m 9 2 N7 2
1 mY-y)| (% %
X Hfd 5 Uil (Y=Y || 5 (Y=Y | |- (20
|
The second integral factor is 0 orhl/depending orf #g or . 1 /(. & .\2
f=g, respectively, specifying the normalizatiéonf=f/h in J dye P — 5m | TS 9
Eg. (19). In conclusion,
Corollary 1. fuxf=1/h3, pf,. h -
These spectral properties are summoned up by their own +V|xx5y | —E[f(xy)=0. (23)

necessity; much of their meaning, nevertheless, resides in

their margins: For nonnormalizable wave functions, the _

above second integral factor may diverge, as illustrated befhis constrains f(x,y) to consist of bilinears ¢*[x
low for the linear potential, but the orthogonality properties — (2/2)y]y[x+ (%/2)y] of unnormalized eigenfunctions

still hold. ¥(x) corresponding to the same eigenvakién the Schre
Thus, e.g., for an arbitrary functi¢al) F(z), dinger equation with potential. l
These two lemmata then amount to the statement fibrat,
F[fx]f=F(1/Mh)f, (21 real functions {x,p), the Wigner form is equivalent to com-
pliance with thex-genvalue equatiorireal and imaginary
and, forx genfunctions of lemma 1, parp.
F[Hx]f=F(E)f. (22) 1l EXAMPLE: THE SIMPLE HARMONIC OSCILLATOR

Baker’'s converse construction extends to a full converse The eigenvalue equ_atlon of Iemma 1 may_k_Je solve(_JI di-
of lemma 1, namely, the following lemma. rectly to produce the Wigner functions for specific potentials,

Lemma 2. Real solutions of (4, p)f(x,p)=Ef(x, with_out first solving the_corresponding Séti'rog_er prqblem
[=f(x,p)xH(x,p)] must be (of p)the( \?\l)igner( ngm (as in, e.g.[11]). Following[7], for the harmonic oscillator,

i —(p24+ %2 ; _ Z : T
f=fdye YPy*[x— (hI2)y]¥[x+ (12)y]l2m, such that H=(p“+x9)/2 (with =1, m= 1), the resulting equation is
Hy=Ey.

As seen above, the pair afeigenvalue equations dictate,
for f(x,p)=/dye YPT(x,y),

2

[ [
X+ 5dp +(p—§(9x) —2E

2

f(x,p)=0. (29
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By virtue of its imaginary partXd,—pdy)f=0, f is seen to
depend on only one variable=4H =2 (x?+ p?), and so the

PHYSICAL REVIEW D58 025002

These states are real, like the Gaussian ground state, and are
thus left-right symmetria- genstates. They are also transpar-

equation reduces to a simple ordinary differential equation;ently x orthogonal for different eigenvalues, and they project

Z 2
Z—zaz—az—E f(z)=0. (25
Moreover, setting (z) =exp(—z2)L(2), this yields
) 1
(zaz+(1—z)az+E— E)L(Z):O’ (26)

which is the equation satisfied by Laguerre polynomlals
=e?d"(e"%z"), for n=E—-1/2=0,1,2, .., sothat the un-
normalized Wigner eigenfunctions are

f,=e 2HL (4H),

Lo=1, L;=1—-4H, L,=16H?—16H+2,....

(27)

to themselves, as they should, since the Gaussian ground
state doesfyxfgacfy. It will be seen below that even the
generalization of this factorization method for isospectral po-
tential pairs goes through without difficulty.

IV. FURTHER EXAMPLE: THE LINEAR POTENTIAL

For simplicity, takem=1/2, A=1. Recall[12] that the
problem readily reduces to a free particlel(x,p)=p?
+x—H;...= P is accomplished by canonically transforming
through the generating functiof(x,X)=—$X3—xX. The
energy eigenfunctions are Airy functions,

1 (+= _
l//E(x):zf dXdFXeBX= Aj(x—E). (33

The x-genvalue equation in this case is

X+2

dp|+ f(x,p)=0, (34

i 2
- Lafe

Note that the eigenfunctions are not positive definite, and argN0se imaginary part A9 = Pa)T(x,p)=0 gives f(x,p)

the only ones satisfying the boundary conditiof(®) finite
andf(z)—0, asz—oe.

In fact, Dirac’s Hamiltonian factorization method for al-
gebraic solution carries througfef. [5]) intact in x space.
Indeed,

1 1
H=-(x—ip)x(x+ip)+ =, (28
2 2
motivating the definition of
1(+') Tl( ip) (29)
=—(x+ip), a'=—(x—ip).
> p v p
Thus, noting that
axa'—a'xa=1 (30)
and also that, by the above,
a*fo=i(x+ip)*e—<xz+r’2>:o (31)
V2

provides ax-Fock vacuum, it is evident that associativity of

=f(x+p?)=f(H). The real part of the equation is then an
ordinary second-order equation, just as in the above har-
monic oscillator case. Moreover, here the real part of the
*-genvalue equation is essentially the same as the usual en-
ergy eigenvalue equation:

1 2
(Z—ZaZ—E)f(z):O, (35

where z=x+p2. Hence, the Wigner function is again an
Airy function, like the above wave functions, except that the
argument has a different scale and shift:

2/3 2/3
f(x,p) = 5~ Ai(2*%(z~ E))= 5—Ai(2*(x+p*~E))

1

=G f dydy(E-x-p*=y?12)

(36)

The Airy functions are not square integrable, so that the con-
ventional normalizatiorf x f = (1/27)f does not strictly ap-
ply. On the other hand, the energy eigenfunctions are nonde-
generate, and the general corollary 1 projection relations
faxfpx 8, pf4 still hold for the continuous spectrum:

the » product permits the entire ladder spectrum generation

to go through as usual. Thegenstates of the Hamiltonian,
such thatHxf=fxH, are thus

fhoc(al*)"fo(xa)". (32

1This case is similar to the Gaussian wave function, i.e., the har-
monic oscillator ground state encountered above, whose Wigner
function is also a Gaussian, but of different width. S. Habib kindly
informed us that this solution is also given in REE3], Eq. (29).
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_ 1 f dydYéy[El—x—(p—Y/2)2—y2/12]eiY[E2—x—(p+y/2)2—Y2/12]

2| _
+p (277)4

feaxfeo="fg feo

i -
(X—Eé’p

1 ) 2 2 (y=v) .
_ i(y+Y)[(EL+E2)/2—x—p?—(y+Y)2/12] i[(y—Y)/2l(EL-E2)
@ )4Jd(y+Y)e fd—z e

P 2
X+§(9p +p

:(2_77)5(E1_E2)f(E1+E2)/2(X+ p?), (37
|
by virtue of the direct definitior{36). i.e., the one with a partner potential
V. DARBOUX CONSTRUCTION OF WIGNER FUNCTION y a2 h
RECURSIONS Vi=Wos ﬁé’xw' (44)

Analogous ladder operators for eigenstates correspondi
to “essentially isospectral” pairs of partner potentiqlst]
[familiar from supersymmetric quantum mechan(isSQM ]
can also be definethutatis mutandidor Wigner functions
andx products. They faithfully parallel the differential equa-
tion structures.

Consider a positive semidefinite Hamiltonian

n
I?as Wigner functiorr genstates of the same energy as those
of H. Specifically,

Hxf=Q*xQxf=fxQ*xQ=Ef (45

implies that the real function®xfxQ* are » genfunctions
of H’ with the same eigenvalug,

H'x(QxfxQ*)=QxQ* xQ f*Q* =E(QxfxQ*),

This can be written as & product of two operators, (46)

H=p?/2m+ V(x). (39

unless fis the Wigner function corresponding tf,, since

p . p
H=Q**Q=(—+|W(x)>*( —|W(x)>, Qxfo=0.
J2m vzZm In consequences,, =E,; for n=0. Conversely, fog »

(39  genfunctions oH’, Q* xg*Q are genfunctions oH with
the same eigenvalues.

provided Moreover, o= 1/y will be an invalid zero mode eigen-
2 function of H', as seen from the sign flip in Eg&tl) and
W2— —— 9, W=V(X). (40 (44). Consequently, an unnormalized, runaway zero-energy
V2m solution of the Schidinger equation withv/’ (x) will invert

to the legitimate ground state bf and will permit construc-
tion of V givenV’.
For example, starting from the trivial potential with a con-

This Riccati equation, familiar from SSQM, can be Darboux
transformed by changing variable for the “superpotential”

W(x), tinuous (unnormalizablg spectrum,
ho '
W= @ vi=1 @7
m
vo and the solution

which reduces the condition to the Sctiimger equation for
a zero eigenvalue: Ji—cos v2mx We—tan V2mx 49

) 0 o)’ ho)

_ - .
5 Ix ot V(X)¢ho=0. 42 results via Eq(40) in the symmetric, reflectionless’ &thl-

Teller potential [15], V=1-2/cosK[(yJ2mx/#)]. Con-
Also noteQ*fy=0 for the corresponding Wigner function. versely, starting from this potential,
It is easy to generalize this by adding a constart tto shift

the ground state eigenvalue from zero. 2
By virtue of associativity, it is evident that the partner V(x)=1- ————F«—, (49
Hamiltonian Vv2mx
cosit
H' =QxQ*=H+ 2 W (43
= * = _ ,
J2m there is a single bound stateormalizable tof z/;§=2),
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\V2mx \V2mx
Po=Sec ) , =W=tan , (50
h f
so that
V'=1. (52)

Thus, the Wigner function ground stafer m=1/2) is

1 e VP
foxp) =52 f Y 3 cosiixif —yi2)cosixih + y/2)
1 f“d cosyp)
T Jo ycosk(Zx/h)Jrcosi(y)
sin(2xpl/h)
"~ sinh(2x/A)sinh(7p) (52)

[N.B. It is not positive definite or a function of jubt(x,p).]
It may be verified directly that

fo(x,p)=0.
(53

Qxfo=

if . X+i
p—?&x—ltan % Eap

This appendage of bound states to a potential generalizes

PHYSICAL REVIEW D58 025002

RENE codyp)
fO(N,x,p)—; Jo dy[cosr(zx/h)+cosf(y)]N

1 ( —h

N—1
~(N—D)! | 2sinf(2x/A) ax) fo(1x,p),

(57)

where the integral only need be evaluated from the above
fo(1;x,p). Alternatively,

fo(N;x,p)=[sectix/A)* N1 (1;x,p)[* seckix/A)]N"1.
(58)

The (unnormalizedl state above the ground state &t
=—(N-1)2 is [(A/2m)d,—W(N)]¢o(N—1), and its
corresponding Wigner functiogsettingm= 1/2) is found re-
cursively from the ground state oH(N—1), through

Q" (N)*fo(N—1)*xQ(N),

*Q(N)

X
pxfo(N—1)+iN tanl‘(g)*fo(N—l)

=(P*fo(N—1)+ p*fo(N—l))*Q(N)

N—1

2N—-1)\?

[16] to the hierarchy associated with the Korteweg—de Vriesby virtue of

(KdV) equation. Specifically,

ﬁx) (54)

W(n)=n tan)‘( 7

connects the reflectionless $ohl-Teller potential

V'(x)=n?-n(n— 1)/cosﬁ( \/Zﬁ_mx)

to its contiguous

(55

V(x)=n?—n(n+ 1)/cosﬁ(@) ,

which has one more bound stathape invariange Recur-

sively, then, one may go iN steps, with the suitable shifts
of the potential by 2—1 in each step, from the constant

potential to

V(N;x)=N?—N(N+1)/cosit (56)

V2mx
— |
Shifting this potential down byN? assigns the energl
=—N?2 to the corresponding ground statg(N) =sech!(x)
(unnormalized, which is the null state of #/\2m)d,
+W(N). The correspondingunnormalizedl Wigner func-
tion is thex-null state ofQ(N),

Q(N—1)xfo(N—=1)=0="fo(N—1)*Q* (N—1). (60)

The state above that, &= —(N—2)?, is found recur-
sively through

Q" (N)*Q* (N=1)*fo(N=2)*»Q(N-1)xQ(N),
(61)

and so forth. Thus, the entire Wignergenfunction spec-
trum of H(N) is obtained with hardly any reliance on Schro
dinger eigenfunctions.

VI. CANONICAL TRANSFORMATION
OF THE WIGNER FUNCTION

For notational simplicity, takés=1 in this section. The
area element in phase space is preserved by canonical trans-
formations

(X,p)—(X(x,p),P(x,p)) (62)
which yield trivial JacobiansdXdP=dxdp{X,P}) by pre-
serving the Poisson brackets

(63)

They thus preserve the “canonical invariants” of their func-
tions:

1X,P}xp=1 and hence {x,p}xp=1. (64)
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Equivalently, SF(x.X) X
p= , P=- . (66)
{x,p}={X,P}, (65) X X

in any basis. Motion being a canonical transformation,

Hamilton’s classical equations of motion are preserved, fofFollowing Dirac’s celebrated exponentiatiph8] of such a

H(X,P)=H(x,p), as well[17]. What happens upon quanti- generator, in the implementation ¢f2,19, the energy

zation? eigenfunctions transform canonically through a generaliza-
Since, in deformation quantization, the Hamiltonian is ation of the “representation-changing” Fourier transform:

c-number function, and so transforms ‘“classically,”

H(X,P)=H(x,p), the effects of a canonical transformation

on the quantumx-genvalue equation of lemma 1 will be _ iF (XX

carried gy a suitagly transforrﬂed Wigner function. Predict- wE(X)_NEJ dXe IV e(X). 67)

ably, the answer can be deduced from Dirac’s quantum trans-

formation theory. Consider the canonical transformations

generated by (x,X): Thus,

Ng|? - . .
f(x,p)=|2';|_ fdyf dx.e” " <X—y/zixl>qf§(x1)e-'ypf dX, e P HY2Xw(X,). (68)

The pair of Wigner functions in the respective canonical varialflesp) and

F(X P)=inY«y* X— EY e YPP| X+ fiv (69)
' 2 2 2 )
are connected by a transformation functio®ék,p;X,P),
f(x,p)=f dxf dPT(x,p;X,P)@f(X,P)zf dxf dPZ(x,p; X,P)F(X,P), (70
where® is with respect to the variables and P.
To find this functional, le)X=3(X;+ X,) andY=X,—X;, so thatfdX;fdX,=[dX[dY. Noting that
h h .
P* | X— 5Y Vi X+ 5Y =fdPéYF’f(x,P), (72)
it follows that Eq.(68) reduces to
|N|2 —iF* (X= Y2 X A * —iyp iF(x+y/2X5)
f(x,p)=§ dy| dX;e 2UP*(X)e dX,e 72 (X,)
INJ? o IF* (X v/2 X :
=5 f dXdYdyeYPe IF (x yi2X le)q,*(X_le)\l,(x+Y/Z)euF(x+y/2,x+Y/2)
aa
IN|? U
_ f dXdeYdyelyp-HPY iF*(x—y/2,X Y/2)+|F(x+y/2,X+Y/2)}-(X’P)’ (72)
2
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which leads to the following lemma.
Lemma 3. (x,p;X,P)=(|N|?27)[dYdyexd—iyp

+iIPY—iF*(x—y/2X—Y/2)+iF (x+y/2X+Y/2)]. & =(2w)2f dEfe(x,p) Fe(X,P)6(p+X).
Corollary 2. This phase-space transformation functional

obeys the “two-star” equation (76)

HX,p)*xT(x,p; X,P)=Z(X,p; X,P)@H(X,P), (73  Note Ng=1/\2= for the free-particle energy eigenfunction
normalization choicel ¢(X)=(2) 2 exp(EX). Thus, in-
as follows from H(x,—id)exdiF(xX)]  deed, the free-particle Wigner functiotFz(X,P)=&(E
=H(X,idx)exdiF(x,X)]. If F satisfies a®-genvalue equa- —P)/(2+) transforms into
tion, thenf satisfies ax-genvalue equation with the same

eigenvalue, and vice versii 1
Note that, by virtue of the spectral projection feat(i6), fx.p)=5— f dPdXTS(E—-P)
(19), this equation is also solved by any representation-
changing equal-energy bilinear in real Wignergenfunc- 223
tions of H and A, =5 A @%(x+p*-E)), (77)

T(x,p:X,P)= E)fo(X,p) F(X,P), 74 as it should, a_md Eq.73) is seen to pe satisfigd d'irectl'y, by

(x.p ) EE: 9(E)felx.p) Fel ) (74 virtue of the linearity of the respective Hamiltonians in the
variablesP,x, conjugate to those of the arguments &ffp
+X).

for arbitrary realg(E). Such a bilinear transformation func-  The structure of the result in E(Z6) underscores that the:

tional is nonsingulafinvertible) if and only if g(E) has no linear potential is as “close to classical” as one can get, in

zeros on the spectrum of either Hamiltonfan. simple quantum mechanics. It has been noted beffb2d
As an example, consider the linear potential again, whicihat the transformation functional for linear potential wave
transforms into a free particlé{=P) through functions isexactlythe exponential of the classical generat-

ing function for the canonical transformation to a free par-
ticle, and that this is not the case for any other potential. The
1 present result for the transformation functional for Wigner
F=- §X3—XX:>p= —-X, x=P-X2 (75) functions is further evidence for this “close to classical”
behavior. The delta functiod(p+ X) in Eq. (76) is half of
the classical story. Were the Airy function also a delta func-
) ) tion of its argument, we would have an exact implementation
By direct computation, of the X,P—>x,p classical correspondence. As it is, there is
some typically quantum mechanical spread around the clas-
sical constraink+X2—P=0, in the form of oscillations of
T(x,p; X, P) =223 Ai (223(x+X2—P))3(p+X) the Airy function, and, in consequence, the Wigner functions
of the free particle do not retain their delta-function form
under the canonical transformation to the linear potential
2In general, if the transformation functional effects a map to a free/Vigner functions. Reinstating into Eq. (36),° and taking
particle, theP integration is trivial in Eq(70), and the result for the ~the limit —0 converts the Airy function to a delta function,
Wigner function of thex,p theory is just an average ovirof the ~ 8(x+X%—P), thereupon producing the complete classical
transformation functional. That is, JF(X,P) = 8(P—k(E)), where  correspondence between the two sets of phase space vari-
k(E) is the momentum-energy relation for the free particle theoryables, in that limit.

in question: As already seen, there is substantial nonuniqueness in the
choice of transformation functional. For example, for the lin-
f(x,p)= | dX [ dPZ(x,p;X,P) A X,P)= | dXZT(x,p;X,k(E)). ear potential again, E473),
One might then be tempted to wonder if juBtx, p; X, P) = ¥ (x
— 5 X[2)e” XPyo(x+ i X/2) 2= (X, p;X,P). However, what de- (X+p?)*S(x,p; X,P)=&(x,p; X,P)®P (78)

termines the allowed range f&? It is always possible to embed

any real energy spectrum into the real line, but knowing this doess also satisfied by a differenfand somewhat simpler
not help at all to determine what points are to be embedded. Frorghoice:

the point of view of this paper, even when the spectrum is obvious,

such a choice for the transformation functional in general does not . _ _ir2y3 2_

satisfy the twox equation(73). Rather, the equation fails by total Sx,p:X,P)=exp ZI[5X"+2(x+p = P)X]}. (79
derivatives that vary contingent on particularities of the case. E.g.
for free-particle plane wavesyg(X)=exp(EX), so that px®
—®®P=0dy6. This choice for%, then, does not yield useful in-  3The exponent of the integrand turns intiy (E—x— p?
formation on the Wigner functions. —h2y?/12).
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This transformation functional also converts the free-particle Actually, it is not necessary to integrate over the phase
Wigner functionFg(X,P)= §(E— P)/2# into an Airy func-  space. In generak multiplying a delta function spreads it
tion (as abovg after integrating over the free-particle phaseout, and yields a Fourier transform with respect to the con-
space,/dXdP. jugate variable. Thus, for the example considered,

ei[(—2/3)x3 2(x+p? —P)X]*é(P E)= e2IX(P—E) — dee 2Z(P-E)gil( —213)23-2(x+p2-P)Z]

:eziX(P—E)i f dzdl(—2373-2(x+p?~E)Z] — g2IX(P~E) 923 pj (23(x+p2—E)).
T

(80)
Hence,
f dxf dPdl(-23X°-20c+p?=P)X], 5 p— E) = 2287 Aj(22%(x+ p2—E)). (81)
Compare this to the action of the abo¥éx,p;X,P),
_ 1 _
[Ai(22’3(x+X2—P))5(p+X)]*5(P—E)zez'x(P’E);dee’z'Z(P’E) Ai(223(x+22—P))é(p+2)
2i( +x>(P—E)1 i 5213 2
=ge“'(P ;AI(Z (X+p°—P)). (82

Aside from innocuous normalizations, the difference in the 1

two transformation functionals acting on the free-particle Ye(X)= San(W\/— E)K; e(€), (89

Wigner function is just the phase factefP("~ and the

argument of the Airy function, where has been replaced by \which are normalized such thay”*”dXz//E (X) e (X)
. Indeed, the phase factor precisely compensates for the € 5(E,—E,). There is no solutiofi20] for E= 0 2

d|fferent energy eigenvalue occurring in the argument of Ai, Forlcomzpleteness, consider the Fourier transfénuud-

2 .
ay be used (0 shif & genvalue vinenever the Hamilionian 19 @ CONVeTgence factor, necessary for. = o cortrol
Y 9 plane wave behavior, but not far— )

is linear in any variable.
+ o0

<I)E(p+ie)=f_ dxe XPH e (x)

VII. ILLUSTRATIONS USING LIOUVILLE QUANTUM

MECHANICS 1
A summary illustration of all the above, in particular the =1 sinh(7E)271(P*19
canonical transformation effects on Wigner functions, is pro-
vided by the Liouville mode[20]. Our conventions for the —i(p+ie)+iVE| [—i(p+ie)—iVE
model [which are essentially those ¢21], with their m r 5 r 5 :

=1/(47) and theirg=1] are given by
(86)

Hiiouille = P2+ e 83 This follows, e.g., from a result ifi22], Vol. II, p 51, Eq.

27):

The energy eigenfunctions are then solutions of

+oo 1+u+v 1+u—v
f dz2K (2)=2#" 17| — & i
0 2 2

e(x) =Ee(x). (84 (87)

valid for R(1+u=*=v)>0 (i.e., the previous transform is
The solutions are Kelviimodified BesselK functions, for  valid for €>0). The right-hand side of this last relation
0<E< o, clearly displays the symmetry— — v, which just amounts

2
— + %%
- 52
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to the physical statement that the energy eigenfunctions are Many, if not all, properties of the Liouville wave func-

nondegenerate for the transmissionless exponential potentiabns may be understood from the following integral repre-

of the Liouville model. sentation[[24], Chap. VI, Sec. 6.22, Eq.10)]. Explicitly
Further note the effect o®Pg(p+ie) of shifting p—p  emphasizing the abovementioned nondegeneracy,

+2i, usingl'(1+2)=2zI(2),

Pe(p+2i +ie)=4(_|(p++)+l\/g> Kik(e)=K_j (€)= %e’f"’zrdeeiex sinhXglkX
VR (90
><('('°++)'JE De(ptie)

o ] (Also se€[25], Eg. 9.6.22. This integral representation may
=[E—(p+ie)?]P(p+ie). (88 pe effectively regarded as the canonical transformation of a

; ; s kX
S0, ase—0, Be(p+2i)=(E—p?)de(p). But this simple free-particle energy elgenfuncnoei through use of the

generating function F(x,X)=¢€* sinhX. Classically, p
ggffgﬁgﬁﬁne&léa:goonmlznjtﬁ; r:SIIglouwlle energy eigenvalueZ aF/ax e sinhX andP= — gF/9X= —¢e* coshX, and so

P2—p2=e?. That is,Hiouiie = Hiree= P? under the clas-
(p2—E)®g(p)+e2%dg(p)=0. (89)  sical effects of the canonical transformation. The quantum
effects are detailed below, byacting with the Liouville and
Such first-order difference equations invariably lead tofree Hamiltonians on the suitable transformation functional.
gamma functiong23]. Below, it turns out that the Wigner The Liouville Wigner function may be obtained from the
functions also satisfy momentum difference equations, but oflefinition (1) in terms of known higher transcendental func-
second order. tions:

1 +oo 1 )
f(x,p): Z f7 dy ? Sinl'(ﬂ\/E)KiV‘E(exiylz)eilypKi\;E(ex+y/2)

4133|nr(77\/_ D2ipg(~1-2ip) xG40( 14; 1+i|\/_, 1— il\/—,1+2|\{1—+4|p’ 1— 2|\/4_+4|p e
The following K transform was utilized to express this result in closed form:
o _ o a’?|lpy—0 —p—0c 1l v1 v
fo dw(wz)Yaw’ 1K (a/w)K (wz)=2"7 5’2a0632( o7 3 'Z+§'Z_§)' (92)
The right-hand side involves a special case of Meij&’$unction,
Gm”(z a, i-zl,...,p) @3
PA\ by, j=1...9

(cf. [22], Sec. 5.3, which is fully symmetric in the parameter subsdts,,....a.}, {an+1,....8p}, {b1,....bn}, and
{bmi1,....bg}. It is possible to reexpress the result as a linear combination of generallzed hypergeometric functlons of type
oF 3, but there is little reason to do so here. This transform is validfar-0, and is taken fromi26], p. 711, Eq(55).* The
transform is complementary {®7], Sec. 10.3, Eq(49), in an obvious way, & transform which appears in perturbative
computations of certain Liouville correlation functiofl].

The result(91) may be written in slightly different alternate forms

sinh(7\E)e™ XG40(84X 1+2iVE—2ip 1-2iJE—2ip 1+2iJVE+2ip 1-2iJE+2ip
1.3 ‘o

fxp)=—73 4 16 2 ' 2 ' 2 ' 2
S|nr(7r\/—)G4o e |\/— ip —|\/_—|p |\/—+|p —|\/—+|p 94
- 87x° 16 2 2 2 2 (94

“There is an error in this result as it appear$ai], Vol. Il, Sec. 10.3, Eq(58), where the formula haa?z?/4 instead 0fa®z%/16 as the
argument of theG function. The latter argument is correct, and appears in Meijer’s original paper cited here.
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by making use of the parameter translation identity for @é&unction[[22], Sec. 5.3.1, Eq9)]:

a,

b =Gl z (95)

a.+A\
Amn r
szq(z bs+>\)'

Yet another way to express the result utilizes the Fourier transform of the wave functio®8Edqn terms of which the
Wigner function reads, in general,

f (A ko 1k Xk 1k 96
xp)=|5- - E| P= ke P pt+ Sk (96)
The specific resul(86) then gives, ag— 0,

1\2 toe o [i(p—ki2—ie)—iyE

f(X,p)=<—2) sinf(m/E)f dkéxk4—'<k/2+'f>r( (P © J—)
8 o 2
i(p—ki2—ie)+iE —i(p+ki2+ie)+iVE —i(p+k/i2+ie)—iyE
F( (p 26) W)F( (p : €) f)r( (p : €) J‘)_ 97

However, this is a contour integral representation of the particalfunction given above. Because of th@rescription, the
contour in the variable=k/2+i e runs parallel to the real axis, but slightly above the poles ofitlienctions located on the
real axis az=p—E, z=p++E, z=—p+E, andz=—p— JE. Changing variables te= iz yields
e™\s [ip—iJE ip+iVE —ip+iVE —ip—iJE

r -s|I -s|I'\ ——%—-5s|T — S

f 1 JE ! fd
(X,p)= gz sin(mVE) 5= | dsi 75 2 2 2

(98)

where the contou€ in the s plane runs from—iw to +io, 1

just to the left of the four poles on the imaginasyaxis at (DZ—E— Za§+ e Cosap)f(xyp)=0- (109
i(p+VE)2, i(p—+E)2, i(—p++E)2, and i(—p

—JE)/2. This is recognized as the Mellin-Barnes-type inte-The first of these is a first-order differential-difference equa-
gral definition of theGgs function[cf. [22], Sec. 5.3, Eq(1)] tion relating thex andp dependence:

in agreement with the second result above, ©4).

The translation identity95) is seen to hold by virtue of
Eq. (98), through simply shifting the variable of integration,
s. Moreover, deforming the contour in E¢P8) to enclose
the four sequences of poleg=n+i(*p=+ \/E)/Z reveals Similarly, the real part of thex-genvalue equation is a
the equivalence of this particul& function to a linear com- second-order differential-difference equation:
bination of fouryF 5 functions, one for each of the sequences 1 1
of poles. Evaluating the integral by the method of residues,-2x| .2_ =_ = .2 - ; —iy—
for all these poles produces the standgifd hypergeometric K (p E 4{9X) foop)+ 2[f(x,p+|)+f(x,p H]=0.
series. (103

It should now be straightforward to directly check that the
explicit result forf(x,p) is indeed a solution to the Liouville
*-genvalue equation,

1
e~ 2o, f(x,p)= m[f(x,p#—i)—f(x,p—i)]. (102

The previous first-order equation may now be substituted
(twice) into this last second-order equation, to convert it
from a differential-difference equation into a second-order
Hiiouine* f(X,p) difference-only equation in the momentum variable, with

nonconstant coefficients:
2

+ e2[x+(i/2)(7p] 2X

i
:[(p—zﬂx f(x,p)=Ef(x,p). (99 0=(p2—E)f(x,p) +

2
) [f(x,p+2i)—2f(x,p)

4p
For realE and realf(x,p), the imaginary part of this- 2%
genvalue equation is +f(x,p—20)]+i 4—p[f(x,p+i)—f(x,p—i)]
(—pay+e** sindp)f(x,p)=0, (100 o2

while the real part is LGP H+Hx,p=i)]. (104
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We leave it as an exercise for the reader to exploit the recursive properties of the Mdijgrction and show that this
difference equation is indeed obeyed by the re¢af). Rather than pursue this in detail, we turn our attention to the
transformation functional which connects the above resulf ftor a free-particle Wigner function.

Given Eq.(90), it follows that

¢E(x)— sinh(mVE)K; z(&) = Wemmf dX e Sinh Xl VEX, (105)

and henceNg=[47Ee™F sinh(mE) Y42, if we choose a5(E;— E,) normalization for the free-particle plane waves as
well as for the Liouville eigenfunctions. Therefore, lemma 3 yields

N 2
T(x,p;X,P):%fdeyexp[—iyp+iPY—iF*(x—y/2,X—Y/2)+iF(x+y/2,X+Y/2)]

1 ~ y y
:—(2 )3[477\/EemE Sinl”(ﬁ\/E)]f deyeX[{—iyp-pr_iexy/Z Sin?'(X—E +iexty2 Sinf(X—l— E”

y+Y +Y
e 3[477\/Ee”\ smr(m/—]j ( )ex;{l(P p)—+|ex*xsinr<y7
Y-y, [ Yoy o [Y-y
de(T)ex+(P+p)T+|e sinh —— |- (106
We thus conclude that
4 i B _
T(x,PiX,P) = — JEE™E sint(mJE)e™ ™K, (p_p) (€ X)Ki(p. py (€7 (107)

We now check that this result obeys E@3) and, in so doing, carry out the nontrivial steps needed to show the Liouville
Wigner functions satisfy the Liouville-genvalue equatiof@9). That is to say, we shall show

i .)\? s i _\?
((p—gax +e2[”<"2>"p])S(x,p;x,m:ﬂx,p;x,P) P+§5x) (108
or, equivalently,
i .\ s i . \?

[(p_iax + @2lx+(i12)ap] _ P+§‘9X) Ki(P—p)(eX+X)Ki(P+p)(eX_X):0' (109
Specifically,

—1. 5 X+ X X—X 2Xp¢ ! X+ X\ ¢ ! X—X

T(ﬁx_ax)Ki(pr)(e Kipip (e =—e Ki(p—p)(e )Ki(p+p)(e )s (110

(—ipdx—iP 3 Ki(p—p) (€ )Kipsp) (€)= —i(p+ P)e XK p_ (€ )Ki(psp) (€ ) —i(p—P)& *Kj(p_p)
X(EX)K (s py (€% (11
and
e (R2%IK; o (€ ) Ki(pp) (€ X) =K 14 (pop) (€ )K 1 1i(psp) (€7%). (112
Now, recall the recurrence relatiof®5|, Eq. 9.6.26

Kisipop) (€)= —K{p_p(e ) +i(P—ple * *Kp_p(e"7), (113
K_14ip+p) (€)= =K{(ps (€ —i(P+p)e ™ Kipip (e ). (114

So the previous relatiofll12) becomes
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eZ(X+i/2(9p)Ki(P_p)(eX+X)Ki(P+p)(eX—X) — ezxKil(Pfp)(eX+X)Ki,(P+p)(eX_X) +i ( P+ p)eX+XKi,(P—p)(eX+X)Ki(P+p)(eX_X)

—i(P=p)e* *Kip—p) (€ K/p, p)(eX7x) +(P2=p)Kip_p) (€%

X Ki(psp)(€°7%). (119
|
The sum of Eqs(110), (111), and(115 shows that Eq(109) The second Hamiltonian of the pair is
is, indeed, satisfied. .
Integrating ovetX andP the product off(x,p;X,P) and H'=p“+e”+¢e’, (120

the free-particle Wigner function, as given here by
(47\E)"18(P—\E), vyields another expression for the
Liouville Wigner function which checks against the previous

and the allowed spectrum is<(E<«, excluding zero
energy’ The E>0 eigenfunctions are then

result, Eq.(91). Using Eq.(92) and the parameter translation 1 1/2
) . . . N , «
identity for theG function, this other expression is just Eq. Ye(X)= — =€ coshw\/E)
(94). 4m?\E

Supersymmetric Liouville quantum mechanics is obtained : RN X
by carrying through the Darboux construction detailed above X[K -1 (€9 ~ 1K yri (€], (121
(with 4=1=2m), for the choice and may be obtained from the previd&s 0 eigenfunctions,

W(x)=¢€". (11 s Ye(X) = (LNE) (d5+ W) ().
For both Hamiltonians, the Wigner functions are straight-

The conventions used essentially foll¢@28]. forward to construct directly, once again leading to #e

The first Hamiltonian of the essentially isospectral pair istransform(92) and particular MeijeiG functions. We find it
then sufficient here to consider only the ground stateHior

H=p?+e>—eX, (117

1 A —2e* coshy/2)—iyp 2 X
fo(X.p)= 5 dye = 2 Kaip(287),
and the allowed spectrum issCE<w, including zero en- o

ergy, for which there is a bounded wave function normalized (122
as part of the continuum, a single modified Bessel function. It smootiB9] satisfies
L [p—iW(x)]xfy=0 and, hence, thex-genvalue equation
_eX Hxf,=0.
X)=—=e ¢. 118 0
tho(X) I (118
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Pe(X)=
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. . +oo _
again normalized so thatf“Zdxyg (X)¥e,(X) = 6(E4 The candidatey}(x) = 1/¢(X) = V7 exp€) solves the Schiro

—E,). dinger equation, but is obviously unbounded, as expected.
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