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Late-time evolution of charged gravitational collapse and decay of charged scalar hair. |
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We studyanalytically the asymptotic evolution ofhargedfields around a Reissner-Nordstidolack hole.
Following the no-hair theorem we focus attention on dyaamicalmechanism by which the charged hair is
radiated away. We find an inverse power-law relaxation of the charged fields at future timelike infinity, along
future null infinity, and an oscillatory inverse power-law relaxation along the future outer horizon. We show
that charged hair is sheslower than neutral hair. Our results are also of importance to the study of mass
inflation and the stability of Cauchy horizons during a dynamical gravitational collapse of charged matter to
form a charged black hol¢S0556-282(198)01614-2

PACS numbd(s): 04.70.Bw, 04.20.Ex, 04.20.Ha

I. INTRODUCTION The plan of the paper is as follows. In Sec. Il we describe
our physical system and formulate the evolution equation. In
The statement that black holes have no hair was introSec. lll we study the late-time evolution of charged scalar
duced by Wheeler in the early 197(. The various no-hair perturbations for a collapse that leads to the formation of a
theorems state that the external field of a black hole relaxegharged black hole. Here we generalize the formalism of
to a Kerr-Newman field described solely by three paramRefs. [2,3] to the charged situation. We study the case
eters: the black hole’s mass, charge, and angular momentuf@ Q|<1, which simplifies things enough to allow asalyti-
The mechanism responsible for the relaxatiometitralex-  cal derivations of our results. In paper Il in this series we
ternal perturbations was first studied by Pr{@. He has will examine the problem for a general value |@fQ|. We
found that the late-time behavior of these neutral perturbafind an inverse power-law behavior of the charged perturba-
tions for a fixed position is dominated byt~ (?'*3) tails (if ~ tions along the three asymptotic regions. However, the expo-
there is no initial static fielg wherel is the multipole mo- nents differ for those of neutral perturbations. Additionally
ment of the mode antlis the standard Schwarzschild time along the outer horizon there are periodaxillationson top
coordinate. The behavior afeutral perturbations along null  of this power-law decaywhich do not exist for neutral per-
infinity and along the future event horizon was further stud-turbations.
ied by Gundlach, Price, and Pulli]. They have found that In Sec. IV we study the behavior of charged perturbations
the neutral perturbations along null infinity decay accordingin the noncollapsing casémploding and exploding shelis
to an inverse power lam~ (2, whereu is the outgoing Qualitatively, we find the same late-time behavior as in the
Eddington-Finkelstein null coordinate. Along the event hori-collapsing situation. In Sec. V we compare the late-time be-

zon the perturbations decay accordingto® +3), wherev havior of charged perturbations with the late-time behavior

is the ingoing Eddington-Finkelstein null coordinate. of neutral perturbations. We find that the dynamical process
In this work we study the gravitational collapse of a Of shedding hair is different for neutral and charged hair,
chargedmatter to form a charged black hole. In such a col-Poth quantitatively and qualitatively. We show that a black
|apse one should expect tl'm‘argedperturbations will de- hole which is formed from the gl’avitational COIIapse of
velop outside the collapsing star. In particular we focus atthargedmatter becomes “bald’slowerthan a neutral black
tention on the late-time behavior of suahargedscalar hole due to the existence of charged perturbations. Further-

perturbations a|ong these three asymptotic regions_ more, while the late-time behavior of neutral perturbations is
Our results are of importance for two major areas Ofdetermined by the Space-time curvature, the late-time behav-
black-hole physics. ior of charged fields is dominated Wlat space-time effects

(1) The no-hair theorem of Mayo and Bekenstgd]  (scattering due to thelectromagneticinteraction in flat
states that black holes cannot have a charged scalar hafiPace-timg We conclude in Sec. VI with a brief summary of
However, it was never before studied how a charged blacRur results.
hole, which is formed during a gravitational collapse of a

charged matter, dynamically sheds its charged scalar hair Il. DESCRIPTION OF THE SYSTEM
during the collapse. We study, here, the mechanism by _ i _ _
which thechargedhair is radiated away. The external gravitational field of a spherically symmetric

(2) The mass-inflation scenario and the stability ofcollapsing star of mas#! and chargeQ is given by the
Cauchy horizons were studied under the assumption of thBeissner-Nordstra metric
existence of inverse power-laimeutra) perturbations along

the outer horizon of a Reissner-Nordstrdlack hole. How- d2= _ ( 1— 2M n _2 de2

ever, these models did not take into account the existence of B r?

chargedperturbations which are expected to appear in the S

dynamical collapse of &hargedstar. Here, we study the +(1_2_M+ Q_ dr2+r2d02 1)
asymptotic behavior of such perturbations. r r? '
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We will also use the tortoise radial coordinatedefined ! _
by dy=dr/(1—2M/r +Q?/r?), in terms of which the metric =2, AgKe eQnrgl-k(y)
becomes k=0

oM QZ +(_1)keieQ|an(|*k)(v)]

dszz(l—T+T2-)(—dt2+dy2)+r2dﬂz, 2 -
+ >, [B(NG! V() +C(nF!*Yw)], (9
wherer =r(y). k=0

We consider the evolution of massledmrgedscalar per- . . L
! Vol g P g/hereG andF are arbitrary functions. The coefficients,

=A () =(1+Kk)!/[2%! (1 —Kk)!] are equal to those that arise
in the neutral casd2] and By(r)=B(r;eQ,l,M),C,(r)
¢.a0%°— ieAg3P(2.p—ieAyd) —ie A, ,g?Pp=0, =Cy(r;eQ,I,M). Hereu=t—y is a retarded time coordi-
(3) nate andv=t+y is an advanced time coordinate. For any
. functionH,H® is thekth derivative ofH(®); negative-order
wheree is a constant. o _ derivatives are to be interpreted as integrals. The first sum in
Resolving the charged scalar field into spherical harmonEq_ (9) represents the zeroth-order solution, i.e., neglecting
ics =3 mm(t.1) YI'(6,¢)/r, we obtain a wave equation terms of ordeiO(eQ), O(M/r), O(Q/r), and higher.

equation for the complex scalar field[i5]

for each multipole moment: The functionsB,(r) satisfy the recursion relation
74— 2ieAm,— 7yt V=0, 4 2\2B|+2ieQBr 1—\%(B[_ \?)’
where “N[A(—k—ieQ)r k-1-ieQy2}r
V=Vuq1.elr) —2A,;1r 2Tl Q(N2— 1) +A2(k+1)]
oM QA\I1+1) 2™ 2Q?] +V(r)[Agr ¥+ B, _4]=0, (10
=\ l-—+ || =2+t —7|~€A{. B
rr r r r wherex?=1-2M/r +Q?/r? andB’'=dB/dr.

The functionsC,(r) satisfy an analogous recursion rela-
tion; however, we will not need them as the late-time behav-
ior of the charged scalar field does not dependCgn We

Q can now expandB,(r) in the form
A=d——, (6)
r Be(r)=a,r kKtD-1eQp p=(kt2)=ieQy ... (11)

Here we have suppressed the inditgs on 7.
The electromagnetic potential satisfies the relation

where® is a constant.

In order to get rid of the physically unimportant quantity
®, we introduce the auxiliary fielgy=e~'®®'y, in terms of
which the equation of motiod) becomes

wherea,=a,(l,eQ),b,=b,(l,eQ)--- .
Substituting Eq.(11) into Eq. (10), one finds, for the
lowest-order coefficients,

2l+1
. Q = il
Wik 2yt V=0, @ A= TIeQAG ol 12
where The star begins to collapse at retarded ticveu,. The
world line of the stellar surface is asymptotic to an ingoing
V=V o.ell) null line v =v,, while the variation of the field on the stellar
5 5 5 surface is asymptotically infinitely redshift¢d,6]. This ef-
B 2M - QA\[I(I+1) 2M  2Q ,Q fect is caused by the time dilation between static frames and
= 1_—+—2 ———t—3 7| . . . .
r r r r r r infalling frames. A static external observer sees all processes

®) on the stellar surface become “frozen” as the star ap-
proaches the horizon. Thus, he sees all physical quantities
It is well known that a gauge transformation of the form @Pproach a constant. Using the above effect, we make the
n—e 'ty (wherea is a real constaitmerely adds a con- €Xplicit assumption that after some retarded tine
stant toA;, i.e., A—A— (lle) . =U;,D,$=0 on v=vo, where D,=d,—ieA, is the
gauge-covariant derivative. This assumption has been proven
Ill. EVOLUTION OF CHARGED PERTURBATIONS to be very successful for the neutral scalar fig2¢3].
IN THE COLLAPSING CASE We start with the first stage of the evolution, i.e., the
(BLACK-HOLE FORMATION ) scattering of the charged field in the regiog<u<uj.
The first sum in Eq(9) represents the primary waves in
The general solution to the wave equati@hcan be writ-  the wave front, while the second sum represents backscat-
ten as tered waves. The interpretation of these integral terms as
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backscatter comes from the fact that they depend on data Using the boundary conditions for small(regularity as
spread out over aectionof the past light cone, while outgo- y— —co, at the horizon of a black hole, or a0, as in the

ing waves depend only on data at a fixe@2]. It should be

next sectiof one finds that at late times the terrhét)

noted that this physical distinction between the primary=f(t)+(—1)'g(t) andf®*1(t) must be of the same order
waves and the backscattered waves is valid in the region (see[3] for additional details Thus, we conclude that

<[Qlet’eC.

After the passage of the primary waves there is no outgo-
ing radiation foru>u,, aside from backscattered waves.

This means tha&(u,)=0. Thus, for a large atu=u,, the
dominant term in Eq(9) is

plu=ur)=ar UG Y(uy). (13)

This is the dominant backscatter of the primary waves.

f(t)=Fot 1, (19
g(=(-1)'"Fet ™%, (20)

and
h(t)=0[t 2!+ V1. (21

After we had determined the dominant backscatter of thdience, we find thf}lteé‘he late-time behavior of the charged
charged scalar field, we shall next consider the asymptotigcalar field forlQ[e**¥>t>y>M,|Q] is

evolution of the field. We confine our attention to the region
y>M,|Q|,u>uj;. In this region(and for|eQ|<1) the evo-
lution of the field is dominated byeutral flat space-time

terms, i.e.,

I(1+1)
'r//,tt_’/’,rr+ r2

$=0. (14)

[It should be noted that for>M,|Q|, we havey =i

+(2M/r?)¢ .. However, in this regiorO(# ) =O(r ~2y)

>O(Mr*21,/;,r). So, in this region, we may replaceby y.]
Thus, the solution foy can be written as

|
w=k20Aky*k[g“*‘“(u)ﬂ—1>kf<'*k>(v>]. (15

Comparing Eq(15) with the initial data(13) onu=u4, one
finds

f(v)=Fe 1, (16)
where

Fo=ieQG  Y(uy)(—1)' 21+ 1)1/ (1+1)! +O[(eQ)?].
(17

For late times>y we can expand

1n
g(u)=>, Sk

n=0 n!

g™ (t)y"

and

o

1
fo)=2 —fmMny".

n=0

Using these expansions we can rewrite Bd) as

g= > Ky Tf M +(-1)"g" (1)),  (18)

n=—I

where the coefficientk,, are those given in the neutral case

[2].

P=2K,, 1y A1)
=— 2K, 1Fo(2l+ )1t 20T DyI+14 O (e Q)?].
(22)

This is the late-time behavior of the charged scalar field at
timelike infinity i . .

From Eqgs.(15), (16), and(20) one finds that the behavior
of the charged scalar field at future null infinisgri, (i.e.,
atu<v<|Q|e!e?) is

Yo=>u,u)=Ag"(u)=—Fgllu~ "+, (23

Finally, we go on to consider the behavior of the charged
scalar field at the black-hole outer horizop.

As y— —o the wave equatiori7) can be approximated
by the equation

. Q e’Q?
‘/’,tt+2|e:¢,t_¢,yy_ rra =0, (24
+
whose general solution is
y=e ¥ [a(u)+ y(v)]. (25)

Onv=v, we takeD =0 (for u— ). Thus,a(u) must
be a constant, and with no loss of generality we can choose it
to be zero. Next, we expang(v) for t>|y| as

0

¢:e—ieQ/r+t,y(v):e—ieQ/r+tE % (n)(t)yn. (26)
n=0 Tk

In order to match thgg<—M solution (26) with the y>M
solution (22), we make the ansatg= g(r)t 201 for
the solution in the regiog< —M andt>|y|. In other words,
we assume that the solution in tlyes —M region has the
same late-timg dependence as thg=M solution. Using
this assumption, one finds/g =10+ and y(t)
=T ye'®¥r+1t~20+1) (wherel', is a constant Thus, the late-
time behavior of the charged scalar field at the horizdifois
v<|QleYe?)

l//(u_>ooyv):FoeieQ/r+yv72(|+l). (27)
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IV. EVOLUTION OF CHARGED PERTURBATIONS (on M) in the first step o<u<u,), but not in the second
IN THE NONCOLLAPSING CASE step.
(IMPLODING AND EXPLODING SHELLS ) On the other hand, th#fat space-timechargedterms in

We now consider the case of imploding and explodingthe evolution equation for the charged scalar field are of

shells of a charged scalar field. In this situation, the charge O(fritical Importance in determining the dominant initial back-
harg ' Y 9 scattering forchargedperturbations. Indeed, the flat space-
the space-time falls to zero as the evolution procegs

charged scalar field, which is the source of that charge, estl—me evolution equation is

capes to infinity. One might think that this dissipation of the Q I(1+1)— e2Q?

charge of the spacetime would lead to a late-time evolution Yputie——y+——>—=0, (28

which is identical with the neutral case. However, thisigd r r

the case; as we have seen, the Iate-time behavior of tnﬁhose general solution can be written as

charged scalar field at constantand atscri, depends on

thebackscatteringf the initially outgoing waves. This back- *

scattering is different for the charged scalar field compared y= >, r Ke €@ rc, p~R(u)+e'eRM D, q~¥(v)],

with the neutral one, and hence would lead to a different k=0

late-time behavior. It should be noted that the backscattering (29

is taking place in an early stagei{u,), when the space- |, nare

time still contains a considerable amount of charge. Thus, the

initial data onu=u;, are still given by Eq(13). Furthermore,

the late-time behavior of the charged scalar field at constant C=Cu(l,eQ

r and atscri, is independent of the smallhature of the K

background(this is the situation in the neutral case as well

[2,3]). Thus, we expect that the noncollapsing charged field

would produce a similar late-time behavior compared with

the collapsing one. D,=D(l,eQ =(—1)kC} , (30
Finally, it should be noted that in this situation the space-

time has no internal “infinity” (no event horizonand thus for k=1 andCy=Dy=1.

-1
= —kl— [I(1+1)—n(n+1)—ieQ(2n+1)],
2k <o

ry=oo, For eQ=0 this infinite series is cut off k=I+1, i.e.,
C D 2l+1
e jeQ . (31)
V. CHARGED SCALAR HAIR VS NEUTRAL SCALAR C D, 2(1+1)
HAIR

] In other words, foreQ=0 there isno backscatter of the
The no-hair theorems for black holes state that a blackyayes.

hole can have neither neutral scalar H&i8] nor a charged For [eQ|<1, we may rewrite Eq(29) as

scalar-field haif4]. Price[2] has investigated the mechanism

which leads to the relaxation of such external neutral scalar |

hair. However, it was never before investigated how a - —kr a—ieQInr~(1—k)

charged black hole, which is formed during a gravitational (!/_IZO Ad e G W

collapse of a charged matter, dynamically shedsligrged '

scalar hair during the process of the collapse. +(— 1)k RN TEI-0 ()]
Here, we have shown that the two mechanisms are quite

different, both quantitatively and qualitatively. While the - K amieQl (1-k)

late-time behavior of a neutral scalar field outside a black +k=§|:+1 r e R IC G )

hole is dominated by-t~(3*2) tails, the relaxation of the

chargedscalar hair outside a charged black hole is domi- +eeQinrp FU=k )], (32

nated by a~t~(2*2) behavior. Therefore, we conclude that

charged perturbations diglower than neutral ones; i.e., a whereA, are the coefficients given in Sec. Ill arfgl=Ay

charged black hole, which is formed during a gravitational+O(eQ) for O<k=I. Thus, we conclude that the dominant

collapse of a charged matter, is expected to loseritgzged  backscatter of the primary waves, f|<r<|Q|ee?, is

scalar hair and relax to its final staséowerthan a neutral given byC,, r ~(*YG("Y(u,) where

one. In a more pictorial way, a black hole, which is formed

from the gravitational collapse of@argedmatter, becomes 21+1

“bald” slower than a neutral one. Cii1=—ieQA+—=[1+0(eQ].
Mathematically, it is the relation of to y which deter- 2(1+1)

mines the dominant initial backscatterif@nd therefore the

behavior of the late-time taildor neutral perturbationg§2].  This is just the result obtained earlier; see Ep).

This means that to a leading order M the evolution of The physical significance of this result is the conclusion

neutral perturbations depends on the space-time curvatutbat unlike neutral perturbations the late-time behavior of a
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chargedscalar field is entirely determined lfkat space-time Our work reveals thelynamicalmechanism by which the
effects. In other words, the scattering is caused byelee- ~ charged scalar hair is radiated away, leaving behind a
tromagneticinteraction inflat space-time. Reissner-Nordstra black hole. We have shown that this

Our results show that mass inflation in a gravitational col-mechanism differs from the neutral one bathantitatively
lapse of a charged scalar field will be stronger than in the(?lfferer;]t %(I)W?(r_rlma\iv exponints and q osm:!atqryl beﬂawor
collapse of a neutral field. Mass-inflation models have relie ong the black-hole outer orizprand qualitatively (the

, . . : Initial backscattering and thus the late-time behavior are
heavily on the existence of inverse power-law tails along thedominated byflat space-time terms, namely, by tetectro-

outer horizon of a Reissner-Nordstdlack hole. However, magnetic interactionrather than by curvature effegts

these models did not take into account the existence of Fyrthermore, we have shown that the late-time behavior
chargedperturbations outside the collapsing stduring the  of charged fields in the noncollapsing situatiémploding
gravitational collapse of a charged star to form a Reissnerand exploding shellsis dominated by a similar inverse
Nordstran (RN) black hole we, of course, do expect to find power-law behavior both at a fixed radigand late times
chargedperturbations outside the stawe have investigated and along null infinity.

the behavior of these charged perturbations onotiter ho- Finally, our results are of importance for the mass-
rizon of a RN black hole. We do find a rather similar behav-inflation scenario and stability of Cauchy horizons. Here, we
ior of the charged field along the outer horizpsee Eq. have shown that the asymptotic behavior of charged pertur-
(27)], although with adifferentexponent and with periodic bations along the outer horizon of a RN black hole is char-
oscillations (which do not exist for neutral perturbations acterized by amscillatory inverse power-lawehavior(with

The power-law falloff (times periodic oscillationsof the ~ Smaller exponents compared with neutral failshus, one
chargedperturbations suggests that mass inflation should ocshould expect that these inverse power-letvargedpertur-
cur in the gravitational collapse ehargedmatter in which a  Pations will cause a mass-inflation singularity during the
charged black hole forms. Moreover, sindeargedpertur- gravitational collapse of the charged matter tha_t forms a
bations havesmaller dumping exponents compared with cEarged black hole. Morelc()ver,htheslower relaxation fOf
neutral ones, they will dominate the influx through the 0Uterfh;:jgisgrg:r:tc:uer%?tmgsmrggsiintct(ieonr]m duminantcause for
ir:](;lr;g:] ?)r;((janr(])enr]lgﬁa\.,vgnzesrci]ﬁ::nrgﬁquesribfeorr ttr?aet m‘;‘s;a The most significant shortfall in our anglysis is the limi-
function diverges likem(v)~v~Pe ® (for v, near the Yation to the casgeQ[<1. In an accompanying papgraper

hv hori herelp is the d ; £ th II) we extend oumnalyticalresults to includegeneralvalues
]Ei:;gc[gﬁl orizop where;p is the dumping exponent of the ¢ o 5 (ysing a spectral decompositioand we confirm them

numerically On the other hand, the main advantageto$

approach is the fact that it givescéear picture of thephysi-

cal mechanism responsible for the late-time behavior of
VI. SUMMARY AND CONCLUSIONS charged perturbations; namely, the tail arises because of
backscattering of thehargedfield off the electromagnetic
gootential far away from the black hole. The physical picture
that arises from this paper is clear—dealing with charged
(masslessperturbations, one mayeglectany curvature ef-
fects.

In accompanying papers we study tifidly nonlinear
gravitational collapse of a charged scalar field to form a
chargedblack hole. In order to numerically confirm oana-
Iytical predictions we will first focus attention on the
gsymptotic behavior of thehargedfield outside thedynami-
cally formed charged black hole.

We have studied the gravitational collapse atfarged
matter to form a charged black hole. The main issue consi
ered is the late-time behavior ohargedscalar perturbations
outside the collapsing star. We have shown thatver-law
tails develop at timelike infinityat a fixed radius at late
times and along null infinity. Along the outer horizon there
is anoscillatory power-lawtail. The period of these oscilla-
tions is determined by the quant&@/r .. . The exponents of
these inverse power-law tails are athallercompared with
neutral perturbations. Thus, we conclude that a black hol
which is formed from the gravitational collapse otlaarged
matter becomes “bald’slowerthan a neutral one due to the
presence of charged perturbations.
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