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Late-time evolution of charged gravitational collapse and decay of charged scalar hair. I
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~Received 8 December 1997; published 25 June 1998!

We studyanalytically the asymptotic evolution ofchargedfields around a Reissner-Nordstro¨m black hole.
Following the no-hair theorem we focus attention on thedynamicalmechanism by which the charged hair is
radiated away. We find an inverse power-law relaxation of the charged fields at future timelike infinity, along
future null infinity, and an oscillatory inverse power-law relaxation along the future outer horizon. We show
that charged hair is shedslower than neutral hair. Our results are also of importance to the study of mass
inflation and the stability of Cauchy horizons during a dynamical gravitational collapse of charged matter to
form a charged black hole.@S0556-2821~98!01614-2#

PACS number~s!: 04.70.Bw, 04.20.Ex, 04.20.Ha
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I. INTRODUCTION

The statement that black holes have no hair was in
duced by Wheeler in the early 1970s@1#. The various no-hair
theorems state that the external field of a black hole rela
to a Kerr-Newman field described solely by three para
eters: the black hole’s mass, charge, and angular momen
The mechanism responsible for the relaxation ofneutral ex-
ternal perturbations was first studied by Price@2#. He has
found that the late-time behavior of these neutral pertur
tions for a fixed positionr is dominated byt2(2l 13) tails ~if
there is no initial static field!, wherel is the multipole mo-
ment of the mode andt is the standard Schwarzschild tim
coordinate. The behavior ofneutral perturbations along nul
infinity and along the future event horizon was further stu
ied by Gundlach, Price, and Pullin@3#. They have found tha
the neutral perturbations along null infinity decay accord
to an inverse power lawu2( l 12), whereu is the outgoing
Eddington-Finkelstein null coordinate. Along the event ho
zon the perturbations decay according tov2(2l 13), wherev
is the ingoing Eddington-Finkelstein null coordinate.

In this work we study the gravitational collapse of
chargedmatter to form a charged black hole. In such a c
lapse one should expect thatchargedperturbations will de-
velop outside the collapsing star. In particular we focus
tention on the late-time behavior of suchcharged scalar
perturbations along these three asymptotic regions.

Our results are of importance for two major areas
black-hole physics.

~1! The no-hair theorem of Mayo and Bekenstein@4#
states that black holes cannot have a charged scalar
However, it was never before studied how a charged bl
hole, which is formed during a gravitational collapse of
charged matter, dynamically sheds its charged scalar h
during the collapse. We study, here, the mechanism
which thechargedhair is radiated away.

~2! The mass-inflation scenario and the stability
Cauchy horizons were studied under the assumption of
existence of inverse power-law~neutral! perturbations along
the outer horizon of a Reissner-Nordstro¨m black hole. How-
ever, these models did not take into account the existenc
chargedperturbations which are expected to appear in
dynamical collapse of achargedstar. Here, we study the
asymptotic behavior of such perturbations.
0556-2821/98/58~2!/024017~6!/$15.00 58 0240
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The plan of the paper is as follows. In Sec. II we descr
our physical system and formulate the evolution equation
Sec. III we study the late-time evolution of charged sca
perturbations for a collapse that leads to the formation o
~charged! black hole. Here we generalize the formalism
Refs. @2,3# to the charged situation. We study the ca
ueQu!1, which simplifies things enough to allow usanalyti-
cal derivations of our results. In paper II in this series w
will examine the problem for a general value ofueQu. We
find an inverse power-law behavior of the charged pertur
tions along the three asymptotic regions. However, the ex
nents differ for those of neutral perturbations. Additiona
along the outer horizon there are periodicoscillationson top
of this power-law decay~which do not exist for neutral per
turbations!.

In Sec. IV we study the behavior of charged perturbatio
in the noncollapsing case~imploding and exploding shells!.
Qualitatively, we find the same late-time behavior as in
collapsing situation. In Sec. V we compare the late-time
havior of charged perturbations with the late-time behav
of neutral perturbations. We find that the dynamical proc
of shedding hair is different for neutral and charged ha
both quantitatively and qualitatively. We show that a bla
hole which is formed from the gravitational collapse
chargedmatter becomes ‘‘bald’’slowerthan a neutral black
hole due to the existence of charged perturbations. Furt
more, while the late-time behavior of neutral perturbations
determined by the space-time curvature, the late-time beh
ior of charged fields is dominated byflat space-time effects
~scattering due to theelectromagneticinteraction in flat
space-time!. We conclude in Sec. VI with a brief summary o
our results.

II. DESCRIPTION OF THE SYSTEM

The external gravitational field of a spherically symmet
collapsing star of massM and chargeQ is given by the
Reissner-Nordstro¨m metric

ds252S 12
2M

r
1

Q2

r 2 Ddt2

1S 12
2M

r
1

Q2

r 2 D 21

dr21r 2dV2. ~1!
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We will also use the tortoise radial coordinatey, defined
by dy5dr/(122M /r 1Q2/r 2), in terms of which the metric
becomes

ds25S 12
2M

r
1

Q2

r 2 D ~2dt21dy2!1r 2dV2, ~2!

wherer 5r (y).
We consider the evolution of masslesschargedscalar per-

turbation fields outside a charged collapsing star. The w
equation for the complex scalar field is@5#

f ;abg
ab2 ieAagab~2f ;b2 ieAbf!2 ieAa;bgabf50,

~3!

wheree is a constant.
Resolving the charged scalar field into spherical harm

ics f5( l ,mhm
l (t,r )Yl

m(u,w)/r , we obtain a wave equatio
for each multipole moment:

h ,tt22ieAth ,t2h ,yy1Ṽh50, ~4!

where

Ṽ5ṼM ,Q,l ,e~r !

5S 12
2M

r
1

Q2

r 2 D F l ~ l 11!

r 2 1
2M

r 3 2
2Q2

r 4 G2e2At
2 . ~5!

Here we have suppressed the indicesl ,m on h.
The electromagnetic potential satisfies the relation

At5F2
Q

r
, ~6!

whereF is a constant.
In order to get rid of the physically unimportant quanti

F, we introduce the auxiliary fieldc5e2 ieFth, in terms of
which the equation of motion~4! becomes

c ,tt12ie
Q

r
c ,t2c ,yy1Vc50, ~7!

where

V5VM ,Q,l ,e~r !

5S 12
2M

r
1

Q2

r 2 D F l ~ l 11!

r 2 1
2M

r 3 2
2Q2

r 4 G2e2
Q2

r 2 .

~8!

It is well known that a gauge transformation of the for
h→e2 iath ~wherea is a real constant! merely adds a con
stant toAt , i.e., At→At2(1/e)a.

III. EVOLUTION OF CHARGED PERTURBATIONS
IN THE COLLAPSING CASE
„BLACK-HOLE FORMATION …

The general solution to the wave equation~7! can be writ-
ten as
02401
e

-

c5 (
k50

l

Akr
2k@e2 ieQ ln rG~ l 2k!~u!

1~21!keieQ ln rF ~ l 2k!~v !#

1 (
k50

`

@Bk~r !G~ l 2k21!~u!1Ck~r !F ~ l 2k21!~v !#, ~9!

whereG and F are arbitrary functions. The coefficientsAk
5Ak( l )5( l 1k)!/ @2kk!( l 2k)! # are equal to those that aris
in the neutral case@2# and Bk(r )5Bk(r ;eQ,l ,M ),Ck(r )
5Ck(r ;eQ,l ,M ). Here u[t2y is a retarded time coordi
nate andv[t1y is an advanced time coordinate. For a
function H,H (k) is thekth derivative ofH (0); negative-order
derivatives are to be interpreted as integrals. The first sum
Eq. ~9! represents the zeroth-order solution, i.e., neglect
terms of orderO(eQ), O(M /r ), O(Q/r ), and higher.

The functionsBk(r ) satisfy the recursion relation

2l2Bk812ieQBkr
212l2~Bk218 l2!8

2l2@Ak~2k2 ieQ!r 2k212 ieQl2#8

22Ak11r 2k222 ieQ@ ieQ~l221!1l2~k11!#

1V~r !@Akr
2k2 ieQ1Bk21#50, ~10!

wherel2[122M /r 1Q2/r 2 andB8[dB/dr.
The functionsCk(r ) satisfy an analogous recursion rel

tion; however, we will not need them as the late-time beh
ior of the charged scalar field does not depend onCk . We
can now expandBk(r ) in the form

Bk~r !5akr
2~k11!2 ieQ1bkr

2~k12!2 ieQ1•••, ~11!

whereak[ak( l ,eQ),bk[bk( l ,eQ)••• .
Substituting Eq.~11! into Eq. ~10!, one finds, for the

lowest-order coefficients,

al52 ieQAl

2l 11

2~ l 11!
@11O~eQ!#. ~12!

The star begins to collapse at retarded timeu5u0. The
world line of the stellar surface is asymptotic to an ingoi
null line v5v0, while the variation of the field on the stella
surface is asymptotically infinitely redshifted@2,6#. This ef-
fect is caused by the time dilation between static frames
infalling frames. A static external observer sees all proces
on the stellar surface become ‘‘frozen’’ as the star a
proaches the horizon. Thus, he sees all physical quant
approach a constant. Using the above effect, we make
explicit assumption that after some retarded timeu
5u1 ,Duf50 on v5v0, where Dm5]m2 ieAm is the
gauge-covariant derivative. This assumption has been pro
to be very successful for the neutral scalar field@2,3#.

We start with the first stage of the evolution, i.e., t
scattering of the charged field in the regionu0<u<u1.

The first sum in Eq.~9! represents the primary waves
the wave front, while the second sum represents backs
tered waves. The interpretation of these integral terms
7-2
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backscatter comes from the fact that they depend on
spread out over asectionof the past light cone, while outgo
ing waves depend only on data at a fixedu @2#. It should be
noted that this physical distinction between the prima
waves and the backscattered waves is valid in the regior
!uQue1/ueQu.

After the passage of the primary waves there is no out
ing radiation for u.u1, aside from backscattered wave
This means thatG(u1)50. Thus, for a larger at u5u1, the
dominant term in Eq.~9! is

c~u5u1,r !5alr
2~ l 11!G~21!~u1!. ~13!

This is the dominant backscatter of the primary waves.
After we had determined the dominant backscatter of

charged scalar field, we shall next consider the asympt
evolution of the field. We confine our attention to the regi
y@M ,uQu,u.u1. In this region~and for ueQu!1) the evo-
lution of the field is dominated byneutral flat space-time
terms, i.e.,

c ,tt2c ,rr 1
l ~ l 11!

r 2 c50. ~14!

@It should be noted that forr @M ,uQu, we havec ,yy.c ,rr
1(2M /r 2)c ,r . However, in this regionO(c ,rr )5O(r 22c)
@O(Mr 22c ,r). So, in this region, we may replacer by y.#

Thus, the solution forc can be written as

c5 (
k50

l

Aky
2k@g~ l 2k!~u!1~21!kf ~ l 2k!~v !#. ~15!

Comparing Eq.~15! with the initial data~13! on u5u1, one
finds

f ~v !5F0v21, ~16!

where

F05 ieQG~21!~u1!~21! l 11~2l 11!!!/ ~ l 11!! 1O@~eQ!2#.
~17!

For late timest@y we can expand

g~u!5 (
n50

`
~21!n

n!
g~n!~ t !yn

and

f ~v !5 (
n50

`
1

n!
f ~n!~ t !yn.

Using these expansions we can rewrite Eq.~15! as

c5 (
n52 l

`

Knyn@ f ~ l 1n!~ t !1~21!ng~ l 1n!~ t !#, ~18!

where the coefficientsKn are those given in the neutral ca
@2#.
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Using the boundary conditions for smallr ~regularity as
y→2`, at the horizon of a black hole, or atr 50, as in the
next section!, one finds that at late times the termsh(t)
[ f (t)1(21)lg(t) and f (2l 11)(t) must be of the same orde
~see@3# for additional details!. Thus, we conclude that

f ~ t !.F0t21, ~19!

g~ t !.~21! l 11F0t21, ~20!

and

h~ t !5O@ t22~ l 11!#. ~21!

Hence, we find that the late-time behavior of the charg
scalar field foruQue1/ueQu@t@y@M ,uQu is

c.2Kl 11yl 11f ~2l 11!~ t !

522Kl 11F0~2l 11!! t22~ l 11!yl 111O@~eQ!2#.

~22!

This is the late-time behavior of the charged scalar field
timelike infinity i 1 .

From Eqs.~15!, ~16!, and~20! one finds that the behavio
of the charged scalar field at future null infinityscri1 ~i.e.,
at u!v!uQue1/ueQu) is

c~v@u,u!.A0g~ l !~u!.2F0l !u2~ l 11!. ~23!

Finally, we go on to consider the behavior of the charg
scalar field at the black-hole outer horizonr 1 .

As y→2` the wave equation~7! can be approximated
by the equation

c ,tt12ie
Q

r 1
c ,t2c ,yy2

e2Q2

r 1
2 c50, ~24!

whose general solution is

c5e2 ieQ/r 1t@a~u!1g~v !#. ~25!

On v5v0 we takeDuf50 ~for u→`). Thus,a(u) must
be a constant, and with no loss of generality we can choo
to be zero. Next, we expandg(v) for t@uyu as

c5e2 ieQ/r 1tg~v !5e2 ieQ/r 1t (
n50

`
1

n!
g~n!~ t !yn. ~26!

In order to match they!2M solution ~26! with the y@M
solution ~22!, we make the ansatzc.cstat(r )t22(l 11) for
the solution in the regiony!2M andt@uyu. In other words,
we assume that the solution in they!2M region has the
same late-timet dependence as they@M solution. Using
this assumption, one findscstat5G0eieQ/r 1y and g(t)
5G0eieQ/r 1tt22(l 11) ~whereG0 is a constant!. Thus, the late-
time behavior of the charged scalar field at the horizon is~for
v!uQue1/ueQu)

c~u→`,v !5G0eieQ/r 1yv22~ l 11!. ~27!
7-3
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IV. EVOLUTION OF CHARGED PERTURBATIONS
IN THE NONCOLLAPSING CASE

„IMPLODING AND EXPLODING SHELLS …

We now consider the case of imploding and explod
shells of a charged scalar field. In this situation, the charg
the space-time falls to zero as the evolution proceeds~the
charged scalar field, which is the source of that charge,
capes to infinity!. One might think that this dissipation of th
charge of the spacetime would lead to a late-time evolu
which is identical with the neutral case. However, this isnot
the case; as we have seen, the late-time behavior of
charged scalar field at constantr and atscri1 depends on
thebackscatteringof the initially outgoing waves. This back
scattering is different for the charged scalar field compa
with the neutral one, and hence would lead to a differ
late-time behavior. It should be noted that the backscatte
is taking place in an early stage (u,u1), when the space
time still contains a considerable amount of charge. Thus,
initial data onu5u1 are still given by Eq.~13!. Furthermore,
the late-time behavior of the charged scalar field at cons
r and atscri1 is independent of the small-r nature of the
background~this is the situation in the neutral case as w
@2,3#!. Thus, we expect that the noncollapsing charged fi
would produce a similar late-time behavior compared w
the collapsing one.

Finally, it should be noted that in this situation the spa
time has no internal ‘‘infinity’’ ~no event horizon! and thus
r 15`.

V. CHARGED SCALAR HAIR VS NEUTRAL SCALAR
HAIR

The no-hair theorems for black holes state that a bl
hole can have neither neutral scalar hair@7,8# nor a charged
scalar-field hair@4#. Price@2# has investigated the mechanis
which leads to the relaxation of such external neutral sc
hair. However, it was never before investigated how
charged black hole, which is formed during a gravitation
collapse of a charged matter, dynamically sheds itscharged
scalar hair during the process of the collapse.

Here, we have shown that the two mechanisms are q
different, both quantitatively and qualitatively. While th
late-time behavior of a neutral scalar field outside a bla
hole is dominated by;t2(312l ) tails, the relaxation of the
chargedscalar hair outside a charged black hole is dom
nated by a;t2(212l ) behavior. Therefore, we conclude th
charged perturbations dieslower than neutral ones; i.e.,
charged black hole, which is formed during a gravitation
collapse of a charged matter, is expected to lose itscharged
scalar hair and relax to its final stateslower than a neutral
one. In a more pictorial way, a black hole, which is form
from the gravitational collapse of achargedmatter, becomes
‘‘bald’’ slower than a neutral one.

Mathematically, it is the relation ofr to y which deter-
mines the dominant initial backscattering~and therefore the
behavior of the late-time tails! for neutral perturbations@2#.
This means that to a leading order inM the evolution of
neutral perturbations depends on the space-time curva
02401
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~on M ) in the first step (u0,u,u1), but not in the second
step.

On the other hand, theflat space-timechargedterms in
the evolution equation for the charged scalar field are
critical importance in determining the dominant initial bac
scattering forchargedperturbations. Indeed, the flat spac
time evolution equation is

c ,tt12ie
Q

r
c ,t2c ,rr 1

l ~ l 11!2e2Q2

r 2 c50, ~28!

whose general solution can be written as

c5 (
k50

`

r 2k@e2 ieQ ln rCkp
~2k!~u!1eieQ ln rDkq

~2k!~v !#,

~29!

where

Ck5Ck~ l ,eQ!

5
1

2kk! )n50

k21

@ l ~ l 11!2n~n11!2 ieQ~2n11!#,

Dk5Dk~ l ,eQ!5~21!kCk* , ~30!

for k>1 andC05D0[1.
For eQ50 this infinite series is cut off atk5 l 11, i.e.,

Cl 11

Cl
5

Dl 11

Dl
52 ieQ

2l 11

2~ l 11!
. ~31!

In other words, foreQ50 there isno backscatter of the
waves.

For ueQu!1, we may rewrite Eq.~29! as

c. (
k50

l

Akr
2k@e2 ieQ ln rG~ l 2k!~u!

1~21!keieQ ln rF ~ l 2k!~v !#

1 (
k5 l 11

`

r 2k@e2 ieQ ln rCkG
~ l 2k!~u!

1eieQ ln rDkF
~ l 2k!~v !#, ~32!

whereAk are the coefficients given in Sec. III andCk5Ak
1O(eQ) for 0<k< l . Thus, we conclude that the domina
backscatter of the primary waves, foruQu!r !uQue1/ueQu, is
given byCl 11r 2( l 11)G(21)(u1) where

Cl 1152 ieQAl

2l 11

2~ l 11!
@11O~eQ!#.

This is just the result obtained earlier; see Eq.~12!.
The physical significance of this result is the conclusi

that unlike neutral perturbations the late-time behavior o
7-4
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LATE-TIME EVOLUTION OF CHARGED . . . . I. PHYSICAL REVIEW D58 024017
chargedscalar field is entirely determined byflat space-time
effects. In other words, the scattering is caused by theelec-
tromagneticinteraction inflat space-time.

Our results show that mass inflation in a gravitational c
lapse of a charged scalar field will be stronger than in
collapse of a neutral field. Mass-inflation models have rel
heavily on the existence of inverse power-law tails along
outer horizon of a Reissner-Nordstro¨m black hole. However,
these models did not take into account the existence
chargedperturbations outside the collapsing star~during the
gravitational collapse of a charged star to form a Reissn
Nordström ~RN! black hole we, of course, do expect to fin
chargedperturbations outside the star!. We have investigated
the behavior of these charged perturbations on theouter ho-
rizon of a RN black hole. We do find a rather similar beha
ior of the charged field along the outer horizon@see Eq.
~27!#, although with adifferent exponent and with periodic
oscillations ~which do not exist for neutral perturbations!.
The power-law falloff ~times periodic oscillations! of the
chargedperturbations suggests that mass inflation should
cur in the gravitational collapse ofchargedmatter in which a
charged black hole forms. Moreover, sincechargedpertur-
bations havesmaller dumping exponents compared wi
neutral ones, they will dominate the influx through the ou
horizon and hence will be themain cause for the mass
inflation phenomena. One should remember that the m
function diverges likem(v)'v2pek0v ~for v→`, near the
Cauchy horizon!, where 1

2 p is the dumping exponent of th
field @9#.

VI. SUMMARY AND CONCLUSIONS

We have studied the gravitational collapse ofcharged
matter to form a charged black hole. The main issue con
ered is the late-time behavior ofchargedscalar perturbations
outside the collapsing star. We have shown thatpower-law
tails develop at timelike infinity~at a fixed radius at late
times! and along null infinity. Along the outer horizon ther
is anoscillatory power-lawtail. The period of these oscilla
tions is determined by the quantityeQ/r 1 . The exponents of
these inverse power-law tails are allsmallercompared with
neutral perturbations. Thus, we conclude that a black h
which is formed from the gravitational collapse of acharged
matter becomes ‘‘bald’’slowerthan a neutral one due to th
presence of charged perturbations.

While the late-time behavior of neutral perturbations
determined by the space-time curvature~mathematically, the
relation betweeny and r ), the asymptotic behavior o
charged fields is dominated byflat space-time effects.
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Our work reveals thedynamicalmechanism by which the
charged scalar hair is radiated away, leaving behind
Reissner-Nordstro¨m black hole. We have shown that th
mechanism differs from the neutral one bothquantitatively
~different power-law exponents and oscillatory behav
along the black-hole outer horizon! and qualitatively ~the
initial backscattering and thus the late-time behavior
dominated byflat space-time terms, namely, by theelectro-
magnetic interaction, rather than by curvature effects!.

Furthermore, we have shown that the late-time behav
of charged fields in the noncollapsing situation~imploding
and exploding shells! is dominated by a similar invers
power-law behavior both at a fixed radius~and late times!
and along null infinity.

Finally, our results are of importance for the mas
inflation scenario and stability of Cauchy horizons. Here,
have shown that the asymptotic behavior of charged per
bations along the outer horizon of a RN black hole is ch
acterized by anoscillatory inverse power-lawbehavior~with
smaller exponents compared with neutral tails!. Thus, one
should expect that these inverse power-lawchargedpertur-
bations will cause a mass-inflation singularity during t
gravitational collapse of the charged matter that forms
charged black hole. Moreover, theslower relaxation of
charged perturbations makes them thedominantcause for
the divergence of the mass function.

The most significant shortfall in our analysis is the lim
tation to the caseueQu!1. In an accompanying paper~paper
II ! we extend ouranalytical results to includegeneralvalues
of eQ ~using a spectral decomposition! and we confirm them
numerically. On the other hand, the main advantage ofthis
approach is the fact that it gives aclear picture of thephysi-
cal mechanism responsible for the late-time behavior
charged perturbations; namely, the tail arises because
backscattering of thechargedfield off the electromagnetic
potential far away from the black hole. The physical pictu
that arises from this paper is clear—dealing with charg
~massless! perturbations, one mayneglectany curvature ef-
fects.

In accompanying papers we study thefully nonlinear
gravitational collapse of a charged scalar field to form
chargedblack hole. In order to numerically confirm ourana-
lytical predictions we will first focus attention on th
asymptotic behavior of thechargedfield outside thedynami-
cally formed charged black hole.
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@6# J. Bičák, Gen. Relativ. Gravit.3, 331 ~1972!.
02401
@7# J. E. Chase, Commun. Math. Phys.19, 276 ~1970!.
@8# J. D. Bekenstein, Phys. Rev. Lett.28, 452 ~1972!; Phys. Rev.

D 5, 1239~1972!; 5, 2403~1972!.
@9# E. Poisson and W. Israel, Phys. Rev. D41, 1796~1990!.
7-6


