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Classical tests for Weyl gravity: Deflection of light and time delay

A. Edery and M. B. Paranjape
Groupe de Physique des Particules, De´partement de Physique, Universite´ de Montréal, C.P. 6128, succ. centreville,
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~Received 25 August 1997; revised manuscript received 27 February 1998; published 23 June 1998!

Weyl gravity has been advanced in the recent past as an alternative to general relativity. The theory has had
some success in fitting galactic rotation curves without the need for copious amounts of dark matter. To check
the viability of Weyl gravity, we propose two additional classical tests of the theory: the deflection of light and
time delay in the exterior of a static spherically symmetric source. The result for the deflection of light is
remarkably simple: in addition to the usual positive~attractive! Einstein deflection of 4GM/r 0 we obtain an
extra deflection term of2gr 0 whereg is a constant andr 0 is the radius of closest approach. With a negative
g, the extra term can increase the deflection on large distance scales~galactic or greater! and therefore imitate
the effect of dark matter. Notably, the negative sign required forg is opposite to the sign ofg used to fit
galactic rotation curves. The experimental constraints show explicitly that the magnitude ofg is of the order of
the inverse Hubble length something already noted as an interesting numerical coincidence in the fitting of
galactic rotation curves.@S0556-2821~98!05514-3#

PACS number~s!: 04.50.1h, 04.20.Cv
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I. INTRODUCTION

The higher-derivative conformally invariant Weyl actio
the integral of the square of the Weyl tensor, has attrac
much interest as a candidate action for quantum gravity.
like general relativity~GR!, the lack of scale in the theor
probably implies that it is pertubatively renormalizable@1,2#.
The theory is also asymptotically free@3,4#.

Weyl gravity, as a classical theory, has attracted less
tention because GR has been so remarkably successf
large distances, i.e., on solar system scales, and there
there seems no pressing need to study a higher-deriva
alternative classical theory. However, GR may not be free
difficulties either theoretical or experimental. At present, it
faced with one long-standing problem: the notorious cosm
logical constant problem@5# whose solution is not yet in
sight. There may however be an experimental problem w
GR: the so-called dark matter problem. The clearest evide
for the existence of large amounts of dark matter comes f
the flat rotation curves of galaxies, velocities of galaxies
clusters and the deflection of light from galaxies and clus
@6# ~for short, we will call these observations ‘‘galactic ph
nomenology’’!. From this evidence, there is a consensus
the astrophysical community that most of the mass of ga
ies ~and of our universe! consists of non-luminous matte
However, the nature of this dark matter is still unknown a
is one of the great unsolved problems in astrophysics. At
it was thought that it may be faint stars or other forms
baryonic matter i.e. the so-called massive compact halo
jects~MACHOs!. However, it is safe to say that observatio
have obtained much fewer events than required for an ex
nation of the galactic phenomenology with a dark halo do
nated by MACHOs@7# ~though there is still the possibility
that future experiments might show otherwise!. One is then
left to consider non-baryonic forms of dark matter such
massive neutrinos, axions, and the weakly interacting m
sive particles, as predicted for example by supersymme
theories. The direct experimental observation of such n
0556-2821/98/58~2!/024011~8!/$15.00 58 0240
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baryonic candidates is of date singularly lacking~though
many experiments are currently under development! @8#.
Hence, to date, the nature of the dark matter that is thou
to comprise most of the mass of our universe is still elusi
Is it possible that the copious amounts of dark matter we
searching for is simply not there? We believe it is reasona
at this juncture to consider such a possibility.

As far as we know, the deviation of galactic rotatio
curves from the Newtonian expectation occurs at distan
way beyond the solar-system scale@9#. In other words, it is a
galactic scale phenomena. Newton’s gravity theory, wh
GR recovers in the non-relativistic weak gravity limit, wa
originally formulated to explain solar-system phenomen
ogy and it may be incorrect to extrapolate this theory
galactic scales. It has therefore been suggested by a ha
of authors@10,11,9# that there may not be large amounts
dark matter after all and that the ‘‘galactic phenomenolog
may be signaling a breakdown of Newtonian gravity~and
hence GR! on galactic scales.

Some authors have therefore proposed alternative cla
cal theories of gravity. Most notably there is Milgrom
modified nonrelativistic dynamics~MOND! program @10#,
the Kazanas-Mannheim Weyl~conformal! gravity program
@11#, and the Bekenstein-Sanders scalar-tensor gravity the
@12#. In MOND, Newtonian dynamics are modified at lo
accelerations typical of orbits on galactic scales. It has
success in fitting galactic rotation curves without the need
dark matter@10,9#. MOND, however, is a non-relativistic
theory and therefore cannot make any predictions on rela
istic phenomena such as the deflection of light, cosmolo
etc. In the scalar-tensor theory, it has been shown that
bending of light cannot exceed that which is predicted by G
@12#, in conflict with the observations i.e. the observed ben
ing is actually even greater than that predicted by GR.
aesthetic grounds, conformal gravity is more appealing t
other alternative theories because it is based on a loca
variance principle i.e. conformal invariance of the metr
Weyl gravity encompasses the largest symmetry gro
© 1998 The American Physical Society11-1
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which keep the light cones invariant i.e. the 15-parame
conformal group. It has already been stressed in the past
unlike Weyl gravity and gauge theories, GR is not based
an invariance principle. The principle of general covarian
which follows from the principle of equivalence, is not a
invariance principle. It describes how physical systems
have in a given arbitrary gravitational field but it does not t
us much about the gravitational field itself beyond restrict
the gravitational action to a scalar. The lack of an invarian
principle is partly the reason why guesswork is inevitable
the derivation of Einstein’s gravitational field equations~see
@13# for details!. In contrast, the Weyl action is unique due
its conformal invariance. Besides its aesthetic appeal, W
gravity has many other attractive features not the least b
that it is renormalizable owing to its lack of length sca
Since the early days of GR, it has been known that
vacuum GR equationsRmn50 are also vacuum solutions o
the Weyl theory. One therefore expects the Schwarzsc
metric to be one possible solution to the spherically symm
ric Weyl vacuum equations. More recently, Weyl gravity h
attracted some interest because it has had reasonable su
in fitting galactic rotation curves without recourse to a
dark matter@14#.

The principal reason that Weyl gravity has not receiv
general acceptance is because some solutions of the cla
theory are expected to have no lower energy bound
therefore exhibit instabilities@15# i.e. runaway solutions
common to higher-derivative theories. For example, th
may exist some Weyl vacuum solutions other thanRmn50
which are not desirable. Though it has been shown that
Einstein-Hilbert action plus higher-derivative terms have
well posed initial value problem@16# this has yet to be
shown for the pure fourth order Weyl gravity. Fortunate
however, the static spherically symmetric vacuum solutio
@11#, the analog to the Schwarzschild metric, has been fo
to be stable and to make important corrections to
Schwarzschild metric at large distances i.e. it contains a
ear potential that plays a non-trivial role on galactic scales
therefore becomes compelling and interesting to comp
Weyl gravity to GR in their classical predictions.

II. GEODESIC EQUATIONS

Weyl gravity is a theory that is invariant under the co
formal transformationgmn(x)→V2(x)gmn(x) whereV2(x)
is a finite, non-vanishing, continuous real function. The m
ric exterior to a static spherically symmetric source~i.e. the
analog of the Schwarzschild solution in GR! has already
been obtained in Weyl gravity by Mannheim and Kazan
@11#. For a metric in the standard form

dt25B~r !dt22A~r !dr22r 2~du21sin2 udw2! ~1!

they obtain the vacuum solutions

B~r !5A21~r !512
2b

r
1gr 2kr2 ~2!

whereb, g, andk are constants. The authors note that w
b5GM, the Schwarzschild metric can be recovered on
02401
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certain distance scale~say the solar system! providedg andk
are small enough. The linearg term would then be signifi-
cant only on larger distance scales~say galactic or greater!
and hence would deviate from Schwarzschild only on th
scales. The constantk, which should be taken negative, ca
then be made even smaller so that thekr2 term becomes
significant only on cosmological scales~in fact, it has been
shown@11# that k is proportional to the cosmological scala
curvature!. It should be noted that solution~2! is not unique.
The Weyl gravitational field equations are conformally i
variant so that any metric which is related to the stand
metric ~1! by a conformal factorV2(r ) is also a valid solu-
tion. This is in contrast to GR where the Schwarzschild
lution is the unique vacuum solution for a spherically sy
metric source. Two metrics that differ by a conformal fact
of course have different curvatures. Remarkably, howev
the geodesic equations for light are conformally invaria
Massive particles, on the other hand, have geodesics
depend on the conformal factor~though it is conceivable to
envisage some spontaneous conformal symmetry brea
mechanism which gives rise to conformally covariant m
sive geodesics. e.g. see@17#. We do not entertain conforma
symmetry breaking in this paper!.

The geodesic equations along the equatorial pl
(u5p/2) for a metric of form~1! are @13#

r 2
dw

dt
5JB~r !, ~3!

A~r !

B2~r ! S dr

dt D
2

1
J2

r 2 2
1

B~r !
52E, ~4!

dt25EB2~r !dt2, ~5!

whereE and J are constants withE50 for null geodesics
~photons! andE.0 for massive particles. The above geod
sic equations are only conformally invariant for photons a
therefore two classical tests can be carried out unamb
ously: the deflection of light and the time delay of rad
echos.

III. DEFLECTION OF LIGHT

The geodesic equations~3!–~5! enable one to express th
anglew as a function ofr :

w~r !5E A1/2~r !

r 2S 1

J2B~r !
2

E

J2 2
1

r 2D 1/2 dr, ~6!

where the functionsA(r ) andB(r ) are given by Eq.~2!. To
do a scattering experiment, the light is taken to approach
source from infinity. Unlike the Schwarzschild solutio
where the metric is Minkowskian at large distances from
source i.e.B(r ) andA(r )→1 asr→`, B(r ) given by solu-
tion ~2! diverges asr→` and we do not recover Minkowsk
space at large distances. However, this is not a problem
large r it has been shown that the metric is conformal to
Robertson-Walker metric with three space curvatu
1-2
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CLASSICAL TESTS FOR WEYL GRAVITY: . . . PHYSICAL REVIEW D58 024011
K52k2g2/4 @11#. Hence, at larger the photon is simply
moving in a ‘‘straight’’ line in this background geometr
@i.e. with B(r ) given by Eq.~2! andw(r ) given by Eq.~6!, it
is easy to see thatdw/dr→0 as r→`#. The photon then
deviates from this ‘‘straight’’ line path as it approaches t
source.

We now substitute the appropriate quantities in Eq.~6!.
For the photon we setE50. At the point of closest approac
r 5r 0 , we have thatdr/dw50 and using Eqs.~5! one ob-
tains (1/J2)5B(r 0)/r 0

2. From the solutions~2! we know that
A1/2(r )5B21/2(r ). The deflection of the photon as it move
from infinity to r 0 and off to infinity can be expressed as

Dw52E
r 0

`S B~r 0!

r 0
2 2

B~r !

r 2 D 21/2 dr

r 22p, ~7!

wherep is the change in the anglew for straight line motion
and is therefore subtracted out. We now calculate the inte
in Eq. ~7! usingB(r )512 2b/r 1gr 2kr2. This yields

E
r 0

`F S 12
2b

r 0
1gr 0D r 4

r 0
2 2gr 32r 212br G21/2

dr. ~8!

The above integral, being the inverse of the square root
fourth-degree polynomial, can be expressed in terms of
liptic integrals. However, this is not very illuminating. It wil
prove more instructive to evaluate the integral after expa
ing the integrand in some small parameters. Note that
constantk, important on cosmological scales, has cance
out and does not appear in the integral~8!. The deflection of
light is insensitive to the cosmology of the theory and
general would not be affected by a spherically symme
Hubble flow. On the other hand, the motion of massive p
ticles on galactic or greater scales is affected by the Hub
flow @14,18#. Hence, the bending of light is highly appropr
ate for testing Weyl gravity.

We now evaluate the integral~8!. It can be rewritten in
the form

E
r 0

`S 1

r 0
2 2

1

r 2D 21/2H 122bS 1

r 0
1

1

r
2

1

r 1r 0
D

1
gr 0

11r 0 /r J 21/2 dr

r 2 . ~9!

After making the substitution sinu5r0 /r the integral be-
comes

E
0

p/2F12
2b

r 0
S 11sin u2

sin u

11sin u D1
gr 0

~11sin u!G
21/2

du.

~10!

For any realistic situation, such as the bending of light fro
the sun, galaxies or cluster of galaxies the deflection is of
order of arc seconds and therefore the parametersb/r 0 and
gr 0 , which measure the deviation from straight line moti
02401
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in Eq. ~10!, must be much less than one. We will therefo
expand the integrand to first order in the small parame
b/r 0 andgr 0 . One obtains

E
0

p/2F11
b

r 0
S 11sin u2

sin u

11sin u D2
gr 0

2~11sin u!Gdu

5
p

2
1

2b

r 0
2

gr 0

2
. ~11!

The deflection, given by Eq.~7!, is therefore

Dw5
4b

r 0
2gr 0 ~12!

a simple modification of the standard ‘‘Einstein’’ result o
4GM/r 0 ~where b5GM!. The constantg must be small
enough such that the extra term2gr 0 is negligible com-
pared to 4GM/r 0 on solar distance scales. The linearg term,
however, can begin to make important contributions
larger distance scales where discrepancies between ex
ment and theory presently exist i.e. the ‘‘Einstein’’ deflecti
due to the luminous matter in galaxies or clusters of galax
is less than the observed deflection. Of course, these disc
ancies are usually taken as evidence for the existence of l
amounts of dark matter in the halos of galaxies. If the ex
term 2gr 0 is to ever replace or imitate this dark matter o
large distance scales it would have to be positive~i.e. attrac-
tive!, implying thatg must be negative. The sign ofg used to
fit galactic rotation curves@14# however, is positive~the rea-
son why the sign ofg is different for null and non-relativistic
massive geodesics is discussed in the next section on po
tials!. Therefore there is an incompatibility between the
two analyses. This means that Weyl gravity does not seem
solve the dark matter problem, although this does not sig
any inconsistency of Weyl gravity itself. In addition, th
mechanism of conformal symmetry breaking is not well u
derstood and it must be addressed in more detail before
sidering massive geodesics or just mass in general.
analysis of the deflection of light is more reliable since it
completely independent of any such conformal symme
breaking mechanism.

IV. THE POTENTIAL IN WEYL GRAVITY

In general relativity, the Schwarzschild geodesic eq
tions can be viewed as ‘‘Newtonian’’ equations of motio
with a potential~see@19#!. In Weyl gravity, a potential can
also be extracted from the vacuum equations and for
purpose it is convenient to define a new ‘‘time’’ coordinatep
such thatdp5B(r )dt. The vacuum equations~3!–~5! in
these new coordinates are

r 2
dw

dp
5J, ~13!
1-3
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1

2 S dr

dpD 2

1
J2

2r 2 B~r !2
1

2
5

2EB~r !

2
, ~14!

dt25Edp2. ~15!

Let B(r )[112f(r ) where f is not necessarily a wea
field. Equation~14! becomes

1

2 S dr

dpD 2

1
J2

2r 2 1fS J2

r 2 1ED5
12E

2
. ~16!

The above geodesic equation together with Eq.~13! can be
viewed as a particle having energy per unit mass (12E)/2
and angular momentumJ moving in ordinary mechanics
with a potential

V~r !5fS J2

r 2 1ED . ~17!

The derivative of the potential is

V8~r !5
b

r 2 S 3J2

r 2 1ED1
g

2 S E2
J2

r 2D2krE, ~18!

wheref(r )52b/r 1gr /22kr2/2 was used. There are thre
terms in Eq.~18!: a b, g, and k term, respectively. Thek
term vanishes for null geodesics in agreement with our
sults on the deflection of light. For massive geodesics thk
term is non-zero but is negligible unless one is consider
cosmological scales. Hence, this term will be ignored. T
factor 3J2/r 21E in front of the b term is always positive
sinceE>0. Therefore, theb term is attractive for both mas
sive and null geodesics~which is the case in GR!. On the
other hand, the factorE2J2/r 2 in front of theg term, can be
positive or negative depending on the physical situation.
a non-relativistic particle moving in a weak field, which
the case of galactic rotation curves, we obtainE'1, J2/r 2

!1, and therefore the factorE2J2/r 2 is positive. For light,
E is zero and the factor is negative. The potential~17! is
different for non-relativistic particles and light: thegr term
in f contributes a linear potential for non-relativistic pa
ticles but an inverser potential for light. Their corresponding
derivatives therefore have opposite sign and this expla
why g obtained through galactic rotation curves has the
posite sign to that obtained in the deflection of light.

Of course, a negativeg term is not reserved to null geo
desics only. Any massive particle which is sufficiently re
tivistic will also have this property. For example conside
particle moving in a weak fieldf with a negligible ‘‘radial
velocity’’ dr/dp. One obtains from Eq.~16! that J2/r 2'1
2E22f and thereforeE2J2/r 2'2E12f21. It follows
that if a particle is sufficiently relativistic such thatE,1/2
2f'1/2 then we obtain a negativeg term.
02401
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We can actually reproduce the deflection of light res
Eq. ~12! in a most straightforward way using the potent
Eq. ~17!. For null geodesics (E50) the potential is given by

Vnull~r !5
2bJ2

r 3 1
gJ2

2r
1

2kJ2

2
. ~19!

The deflection by a potentialV(r ) is obtained by integrating
along the straight line path the gradient ofV(r ) ~in the'

direction i.e. in the direction ofr 0!. As long as the deflection
is very small, integrating along the straight line path inste
of the curved path gives the same results. The deflectio
given by

Dw5E
2`

`

¹'V~r !dZ, ~20!

whereZ is the distance along the straight line path i.e.r 2

5Z21r 0
2. In the potentialVnull , the g term is an inverser

potential. This is the reason why its contribution to the d
flection of light Eq.~20! is finite and comes with a relative
negative sign. IfVnull had contained a linear potential, th
integral for the deflection would diverge, implying that n
scattering states could exist.

Using J25r 0
2/B(r 0) given in Sec. III andVnull as the po-

tential, the deflection Eq.~20! yields

Dw5
4b

r 0
2gr 0 , ~21!

where only first order terms inb/r 0 andgr 0 were kept. The
deflection of light result Eq.~12! is therefore reproduced in
straightforward fashion that allows one to trace clearly
origin of the negative sign in2gr 0 .

V. THE WEYL RADIUS

The geometry of a typical lens system is shown in Fig.
below. A light ray from a source S is deflected by an anglea
at the lens and reaches an observer at O. The angle bet
the optic axis and the true position of the source isb and the
angle between the optic axis and the image I isu. The angu-
lar diameter distances between observer and lens, lens
source, and observer and source aredol , dls anddos , respec-

FIG. 1. Light from the source S bends at the lensl and arrives at
the observer O who then sees the image I.
1-4
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tively. For a spherically symmetric lens, image formation
governed by the one-dimensional lens equation

b5u2a~dls /dos!. ~22!

A source is imaged as a ring if the source, the lens and
observer lie on a ‘‘straight’’ line~i.e. b50!. For an Einstein
deflection angle ofa54GM/r 0 , the radius of the ring is
called the Einstein radius and is given by

uE5S 4GM

D D 1/2

, ~23!

whereD[doldos /dls andM is the mass of the lens enclose
in the Einstein radius. For a Weyl deflection angle given
Eq. ~12!, the radius of the ring, which we will call the
‘‘Weyl’’ radius, can be readily calculated and yields

uw5S 4GM

D1g~dol!
2D 1/2

. ~24!

The above result for the Weyl radius will be used later
obtain an estimate for the constantg. If the source, lens and
observer are not aligned in a ‘‘straight’’ line~i.e. bÞ0! then
instead of a ring one obtains two images, one inside and
outside the Weyl ring. Using the Weyl deflection angle E
~12! and the definitions for the Einstein and Weyl radius, t
lens equation~22! gives

b5~11ng!u2
4GM

Du
, ~25!

whereng[gdol
2 /D. The two solutions to the above equatio

are

u65
1

2~11ng!
@b6Ab214uw

2 ~11ng!2#. ~26!

VI. CIRCULAR ORBITS IN EQUILIBRIUM

In the Schwarzschild metric, it is known that photons
not have circular orbits with stable equilibrium but have o
unstable equilibrium at the radiusr 53GM. We now deter-
mine the radii of equilibrium for photons in the Wey
vacuum solution~2!. The geodesic equation of interest is E
~4! where we substituteE50 for photons and setdr/dt to
zero at the radius of orbitr 5R. Equation~4! becomes

J2

R2 2
1

B~R!
50. ~27!

For equilibrium, the derivative of the left-hand side~LHS! of
Eq. ~27! at r 5R must vanish and we obtain
02401
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22J2

R3 1
B8~R!

B2~R!
50. ~28!

With J2 given by Eq.~27! and B(r ) given by Eq.~2!, Eq.
~28! becomes

gR212R26GM50, ~29!

whereb5GM was used. Note that the constantk has again
cancelled out. The two solutions to Eq.~29! are

R.3GM and R.22/g, ~30!

where it has been assumed thatubgu!1. We see that beside
the R53GM solution a second equilibrium exists a
R522/g if g is negative. By differentiating Eq.~29! we see
that this second equilibrium is a stable one while the firs
an unstable one as in the Schwarzschild case. This st
equilibrium provides us with a natural length scale i.e.
scale which determines the ‘‘region of influence’’ of a pa
ticular localized source in contrast to the background or g
bal aspects. A length scale of this sort is probably neces
if we ever want to develop a concept of ‘‘energy of an is
lated system’’ in Weyl gravity. In the Scwarzschild case, t
metric tends towards Minkowski space in the limitr→` and
a Gauss’s law formulation of total energy of an ‘‘isolated
system is possible. In the Weyl case we obtain a metric c
formal to a Robertson-Walker spacetime in the limitr→`.
We therefore need a natural cutoff radius at which the in
ence of the specific source in question ceases and the g
aspects take over. Indeed, we have shown that the con
k, which is proportional to the cosmological curvature, pla
no role in determining the radius of stable equilibrium a
lends support to the idea that the stable radius is determ
by the localized source. Hence, from the arguments abov
negativeg is desirable.

VII. TIME DELAY

We now calculate the time taken by a photon for a t
between any two points in a gravitational field produced b
central mass. We expect modifications to the standard
result when the radius of closest approach to the central m
is on the order of galactic scales. The equation governing
time evolution of orbits is Eq.~4!, with E50 for light. At the
point of closest approachr 5r 0 , dr/dt50 so that Eq.~4!
gives J25r 0

2/B(r 0). The time for light to travel fromr 0 to
r 1 , given by Eq.~4!, is

t5E
r 0

r 1S A~r !/B~r !

12
B~r !r 0

2

B~r 0!r 2
D 1/2

dr. ~31!

We evaluate the above integral withA(r ) andB(r ) given by
Eq. ~2!. This yields
1-5
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A. EDERY AND M. B. PARANJAPE PHYSICAL REVIEW D58 024011
r 0 Ar 22r 0
2F12

2b

r 0
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We can expand the above integral to first order in the par
etersb/r , gr andkr2 which are much less than 1 within th
usual limits of integration. To first order in the paramete
the integral~32! yields

t.E
r 0

r 1
r F S 12

1

2
kr0

2D1
2b

r
1

br 0

r ~r 1r 0!

2gr 1
gr 0

2

2~r 1r 0!
1kr2G dr

Ar 22r 0
2

. ~33!

There are six elementary integrals to evaluate above.
result is

t.Ar 1
22r 0

212b lnS r 11Ar 1
22r 0

2

r 0
D 1bAr 12r 0

r 11r 0

2
g

2 S r 1
32r 0

3

Ar 1
22r 0

2D 1
k

6
~2r 1

21r 0
2!Ar 1

22r 0
2. ~34!

The leading term is identified as the time for light to travel
a straight line in Minkowski space~whereb5g5k50! and
we recognize theb terms as the standard ‘‘Shapiro’’ tim
delay. Theg andk terms evidently produce a modification o
the time delay. We see that the effect of theg term is to
increase the time delay ifg is negative and to decrease it ifg
is positive.

VIII. CONSTRAINTS ON g FROM EXPERIMENTS

A. Solar gravitational deflection

In solar experiments, the sun can be treated as a p
mass and no lens model is required. To date, the best m
surements on the deflection of light from the sun were
tained using radio-interferometric methods and verified E
stein’s prediction to within 1%. The measured deflection
the solar limb was 1.76160.016 arc sec@20# compared to
Einstein’s prediction of 4GM( /R(51.75 arc sec. Using
the Weyl deflection angle Eq.~12! these measuremen
constrain the constant g to the range
3.45310219 cm21>g>21.87310218 cm21. Clearly, the so-
lar gravitational deflection experiments constrain stron
the order of magnitude ofg but leave open the possibility fo
a positive or negativeg.

B. Signal retardation by solar gravity

The results of the Viking relativity experiment publishe
in 1979 @21# confirmed the ‘‘Shapiro’’ time delay on sola
system scales to an accuracy of 0.1%. For example, a ray
02401
-

,

he

int
a-
-
-
t

y

at

leaves the earth, grazes the sun, reaches Mars and c
back would have a time delay of 24860.25ms where the
248 ms is the exact prediction of the ‘‘Shapiro’’ time dela
and the uncertainty60.25ms can be used to constraing. At
superior conjunction, the radius of the sun to the Earthr e ,
and to Marsr m , are much greater than the radius of the s
R( so thatr 0 can be neglected in the factor in front ofg in
Eq. ~34!. We therefore have2g(r e

21r m
2 )560.2531026s.

This constrainsg to the rangeugu<1.02310223 cm21. This
is roughly five orders of magnitude better than the constra
on g from solar deflection experiments but does not allow
to draw any conclusions on the sign ofg.

C. Deflection of light by galaxies and clusters

One should expect measurements on the deflection
light by galaxies and clusters to determine the most accu
value for g because it is on those scales where theg term
plays a significant role. However, the interpretation of t
experimental data on those scales is more difficult than in
solar system because galaxies and clusters have unkn
matter distributions and in general cannot be assumed t
either point masses or spherically symmetric. A parametri
lens model is therefore required for each case of gravitatio
lensing. For example, to understand the time delay in
gravitational lens 09571561, one has to describe not on
the distribution of the lensing galaxy G1 but also the effe
of the surrounding cluster. Nonetheless, it has been poin
out @22,23# that though a spherically symmetric lens model
an idealization, it is a good first approximation in unde
standing the large arcs that are observed in clusters an
extremely useful in obtaining the same order of magnitu
results as the more realistic case. We will therefore use d
on the large arcs found in clusters to obtain a value fog
with confidence that the order of magnitude is correct.
constraing beyond ‘‘order of magnitude’’ accuracy, a de
tailed lens model for each cluster is required and would t
us beyond the scope of the present paper.

In a spherically symmetric lens, the radius of the tang
tially oriented large arcs,uarc, is a good estimate of the ra
dius which occurs atb50 in the lens equation~22!. In GR,
the radius of the arc is therefore interpreted as the Eins
radius whereM is the total mass (M total) i.e. the sum of the
luminous and presumed dark matter. In the context of W
gravity, thesamearc is to be interpreted as the Weyl radiu
with M representing only the luminous matter (ML) andg a
constant to be determined. Using Eqs.~23! and ~24! for the
Einstein and Weyl radius, respectively and equating them
the same observed arc, one obtains

g5S dos

dlsdol
D S ML

M total
21D . ~35!
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In experiments one measures the redshiftsZl and Zs in the
spectrum of the light reaching us from the lens~i.e., the
cluster! and source, respectively. We define a dimension
quantity ~often called the angular size distance! y[(1
1Z)d/LH0

whereLH0
[c/H0 is the Hubble length andd are

the angular diameter distances that appear in Eq.~35! ~we
have reinserted the speed of light c for clarity!. The values of
y are related to redshifts by@24#

yox5H Zx~11Zx/2!

11Zx
for V50,

22
2

A11Zx

for V51,
~36!

yls5 H yos~11yol
2 !1/22yol~11yos

2 !1/2

yos2yol

for V50,
for V51, ~37!

wherex represents either the lensl or the sources andV is
y

v

er

02401
s

the cosmological density parameter~we have takenV50
andV51 as examples though we will see thatg is insensi-
tive to V!. Equation~35! can be rewritten in terms ofy and
yields

g5
1

LH0

S yos

ylsyol
D S ML

M total
21D . ~38!

To obtain a value forg reliable data on the redshiftsZl and
Zs is required as well as values for the mass-to-light ratios
clusters derived from gravitational lensing. Fortunately, su
data exists for many large arcs in clusters. Before looking
the data it is important to note that the mass-to-light ratio
large for a typical cluster (.100) and thereforeML /M total
!1. It follows that the factor (ML /M total21) will not differ
from cluster to cluster. Data is shown below~taken from
@25,26,27#! for different clusters with the value ofg calcu-
lated in each case.
Hubble

authors

s

Cluster Zl Zs ML /M total

yos

ylsyol
U
V51,0

guV51,0

A370 0.375 0.724 '1/200 6.877, 7.765 26.83,27.72
A2390 0.231 0.913 '1/120 7.885, 7.308 27.82,27.25
Cl2244-02 0.331 0.83 ,1/100 7.68, 6.87 27.60,26.80

whereg is in units of the inverse Hubble length, 1/LH0
@which is equal to (H0/100)31.08310228 cm21.# As can be seen from

the data,g is negative, reasonably constant from one cluster to the next and its order of magnitude is clearly the inverse
length. Interestingly enough, the value forugu obtained by Mannheim and Kazanas@11# in the context of galactic rotation
curves is of the same order of magnitude. Though no use of Hubble’s constant was made in their calculation, the
recognized thatg was close numerically to the inverse Hubble length. Lensing data in clusters confirms via Eq.~38! thatg is
not independent of Hubble’s constant. In conclusion, we obtain the same order of magnitude forg as in galactic rotation curve
but with opposite sign. This discrepancy merits further investigation.
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