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Weyl gravity has been advanced in the recent past as an alternative to general relativity. The theory has had
some success in fitting galactic rotation curves without the need for copious amounts of dark matter. To check
the viability of Weyl gravity, we propose two additional classical tests of the theory: the deflection of light and
time delay in the exterior of a static spherically symmetric source. The result for the deflection of light is
remarkably simple: in addition to the usual positiadtractive Einstein deflection of &M/r, we obtain an
extra deflection term of- yry wherey is a constant and, is the radius of closest approach. With a negative
v, the extra term can increase the deflection on large distance $galastic or greatgrand therefore imitate
the effect of dark matter. Notably, the negative sign requiredyfds opposite to the sign oy used to fit
galactic rotation curves. The experimental constraints show explicitly that the magnityde of the order of
the inverse Hubble length something already noted as an interesting numerical coincidence in the fitting of
galactic rotation curve§S0556-282(98)05514-3

PACS numbd(s): 04.50+h, 04.20.Cv

I. INTRODUCTION baryonic candidates is of date singularly lackitthough
many experiments are currently under developméBi.

The higher-derivative conformally invariant Weyl action, Hence, to date, the nature of the dark matter that is thought
the integral of the square of the Weyl tensor, has attractetb comprise most of the mass of our universe is still elusive.
much interest as a candidate action for quantum gravity. Unls it possible that the copious amounts of dark matter we are
like general relativity(GR), the lack of scale in the theory searching for is simply not there? We believe it is reasonable
probably implies that it is pertubatively renormalizaple?].  at this juncture to consider such a possibility.

The theory is also asymptotically fré8,4]. As far as we know, the deviation of galactic rotation

Weyl gravity, as a classical theory, has attracted less aturves from the Newtonian expectation occurs at distances
tention because GR has been so remarkably successful why beyond the solar-system scp®. In other words, it is a
large distances, i.e., on solar system scales, and therefogalactic scale phenomena. Newton’s gravity theory, which
there seems no pressing need to study a higher-derivati@R recovers in the non-relativistic weak gravity limit, was
alternative classical theory. However, GR may not be free obriginally formulated to explain solar-system phenomenol-
difficulties either theoretical or experimental. At present, itisogy and it may be incorrect to extrapolate this theory to
faced with one long-standing problem: the notorious cosmogalactic scales. It has therefore been suggested by a handful
logical constant probleni5] whose solution is not yet in of authors[10,11,9 that there may not be large amounts of
sight. There may however be an experimental problem witldark matter after all and that the “galactic phenomenology”
GR: the so-called dark matter problem. The clearest evidenamay be signaling a breakdown of Newtonian graviand
for the existence of large amounts of dark matter comes frorhence GR on galactic scales.
the flat rotation curves of galaxies, velocities of galaxies in Some authors have therefore proposed alternative classi-
clusters and the deflection of light from galaxies and clustersal theories of gravity. Most notably there is Milgrom’s
[6] (for short, we will call these observations “galactic phe- modified nonrelativistic dynamicéMOND) program|[10],
nomenology’). From this evidence, there is a consensus inthe Kazanas-Mannheim Weytonforma) gravity program
the astrophysical community that most of the mass of galaxt11], and the Bekenstein-Sanders scalar-tensor gravity theory
ies (and of our universeconsists of non-luminous matter. [12]. In MOND, Newtonian dynamics are modified at low
However, the nature of this dark matter is still unknown andaccelerations typical of orbits on galactic scales. It has had
is one of the great unsolved problems in astrophysics. At firssuccess in fitting galactic rotation curves without the need for
it was thought that it may be faint stars or other forms ofdark matter[10,9]. MOND, however, is a non-relativistic
baryonic matter i.e. the so-called massive compact halo oltheory and therefore cannot make any predictions on relativ-
jects(MACHOs). However, it is safe to say that observationsistic phenomena such as the deflection of light, cosmology,
have obtained much fewer events than required for an explatc. In the scalar-tensor theory, it has been shown that the
nation of the galactic phenomenology with a dark halo domi-bending of light cannot exceed that which is predicted by GR
nated by MACHOY 7] (though there is still the possibility [12], in conflict with the observations i.e. the observed bend-
that future experiments might show otherwis®ne is then ing is actually even greater than that predicted by GR. On
left to consider non-baryonic forms of dark matter such asesthetic grounds, conformal gravity is more appealing than
massive neutrinos, axions, and the weakly interacting massther alternative theories because it is based on a local in-
sive particles, as predicted for example by supersymmetrigariance principle i.e. conformal invariance of the metric.
theories. The direct experimental observation of such nonweyl gravity encompasses the largest symmetry group
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which keep the light cones invariant i.e. the 15-parametecertain distance scalsay the solar systenprovidedy andk
conformal group. It has already been stressed in the past thate small enough. The linearterm would then be signifi-
unlike Weyl gravity and gauge theories, GR is not based orcant only on larger distance scalesy galactic or greatgr
an invariance principle. The principle of general covarianceand hence would deviate from Schwarzschild only on those
which follows from the principle of equivalence, is not an scales. The constakt which should be taken negative, can
invariance principle. It describes how physical systems bethen be made even smaller so that #& term becomes
have in a given arbitrary gravitational field but it does not tell significant only on cosmological scaléis fact, it has been
us much about the gravitational field itself beyond restrictingshown[11] thatk is proportional to the cosmological scalar
the gravitational action to a scalar. The lack of an invariancecurvature. It should be noted that solutid®) is not unique.
principle is partly the reason why guesswork is inevitable inThe Weyl gravitational field equations are conformally in-
the derivation of Einstein’s gravitational field equatidsse  variant so that any metric which is related to the standard
[13] for detail9. In contrast, the Weyl action is unique due to metric (1) by a conformal factof?(r) is also a valid solu-
its conformal invariance. Besides its aesthetic appeal, Weyion. This is in contrast to GR where the Schwarzschild so-
gravity has many other attractive features not the least beinition is the unique vacuum solution for a spherically sym-
that it is renormalizable owing to its lack of length scale. metric source. Two metrics that differ by a conformal factor
Since the early days of GR, it has been known that thef course have different curvatures. Remarkably, however,
vacuum GR equationR,,,=0 are also vacuum solutions of the geodesic equations for light are conformally invariant.
the Weyl theory. One therefore expects the Schwarzschilflassive particles, on the other hand, have geodesics that
metric to be one possible solution to the spherically symmetdepend on the conformal fact@hough it is conceivable to
ric Weyl vacuum equations. More recently, Weyl gravity hasenvisage some spontaneous conformal symmetry breaking
attracted some interest because it has had reasonable sucoggshanism which gives rise to conformally covariant mas-
in fitting galactic rotation curves without recourse to anysive geodesics. e.g. s€E7]. We do not entertain conformal
dark matter14]. symmetry breaking in this paper

The principal reason that Weyl gravity has not received The geodesic equations along the equatorial plane
general acceptance is because some solutions of the classi¢al= 7/2) for a metric of form(1) are[13]
theory are expected to have no lower energy bound and
therefore exhibit instabilitied15] i.e. runaway solutions r2d<P

common to higher-derivative theories. For example, there EZ‘]B(”' )
may exist some Weyl vacuum solutions other thy),=0

which are not desirable. Though it has been shown that the A(r) (dr\? J? 1

Einstein-Hilbert action plus higher-derivative terms have a gzm(a) + 2 W: —E, (4)

well posed initial value problenj16] this has yet to be

shown for the pure fourth order Weyl gravity. Fortunately, dr?=EB(r)dt, (5)
however, the static spherically symmetric vacuum solutions

[11], the analog to the Schwarzschild metric, has been foungihere E and J are constants wittE=0 for null geodesics

to be stable and to make important corrections to thgphotons andE>0 for massive particles. The above geode-
Schwarzschild metric at large distances i.e. it contains a linsic equations are only conformally invariant for photons and
ear potential that plays a non-trivial role on galactic scales. Itherefore two classical tests can be carried out unambigu-

therefore becomes compelling and interesting to compargusly: the deflection of light and the time delay of radar
Weyl gravity to GR in their classical predictions. echos.

[l. GEODESIC EQUATIONS IIl. DEFLECTION OF LIGHT

Weyl gravity is a theory that is invariant under the con-  The geodesic equatiori8)—(5) enable one to express the
formal transformatiorgw(x)—>Qz(x)gw(x) where Q?(x) angle¢ as a function of :
is a finite, non-vanishing, continuous real function. The met-

ric exterior to a static spherically symmetric soufce. the AY(r)
analog of the Schwarzschild solution in GRas already <P(f):f 1 g mdn (6)
been obtained in Weyl gravity by Mannheim and Kazanas r2<m— 22

[11]. For a metric in the standard form

d2=B(r)dt?— A(r)dr2—r2(d6?+sir? 6de?) (1) where the fqnction&é\(r) and B(r).are_given by Eq(2). To
do a scattering experiment, the light is taken to approach the

they obtain the vacuum solutions source from infinity. Unlike the Schwarzschild solution
where the metric is Minkowskian at large distances from the
source i.eB(r) andA(r)—1 asr—oo, B(r) given by solu-
tion (2) diverges as —< and we do not recover Minkowski
space at large distances. However, this is not a problem. At
where B, y, andk are constants. The authors note that withlarger it has been shown that the metric is conformal to a
B=GM, the Schwarzschild metric can be recovered on &Robertson-Walker metric with three space curvature

B(r)=A*1(r)=1—ZTﬁﬁLyr—kr2 2)
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K=—k—»?/4 [11]. Hence, at large the photon is simply in Eq. (10), must be much less than one. We will therefore
moving in a “straight” line in this background geometry expand the integrand to first order in the small parameters
[i.e. withB(r) given by Eq.(2) and¢(r) given by Eq.(6), it  B/ry and yry. One obtains

is easy to see thale/dr—0 asr—o]. The photon then

deviates from this “straight” line path as it approaches the

source. w2 14 B L+sin o— sing \ T 40
We now substitute the appropriate quantities in E). 0 ro sin 1+sin6) 2(1+sin o)

For the photon we sdt=0. At the point of closest approach
r=ry, we have thadr/de=0 and using Eqgs(5) one ob- _ z+ 2_,8_ Yo (11)
tains (10%) =B(r)/r3. From the solution$2) we know that 2 g 2
AY2(r)=B~Y4r). The deflection of the photon as it moves
from infinity to ro and off to infinity can be expressed as  The deflection, given by Eq7), is therefore

=(B(rg) B(r)| ¥2dr

A(PZZJ' (r—z—r—z Tz (7 A 4B
o 0 ¢= E — Yo (12

wherer is the change in the anglefor straight line motion
and is therefore subtracted out. We now calculate the integral simple modification of the standard “Einstein” result of

in Eq. (7) usingB(r)=1— 28/r+ yr —kr2. This yields 4GM/ry (where B=GM). The constanty must be small
enough such that the extra termyr, is negligible com-
2 1 pared to 45 M/r on solar distance scales. The lingaerm,

r
——yr3—r2+2pr
o

j ) dr. (g however, can begin to make important contributions on
o larger distance scales where discrepancies between experi-
ment and theory presently exist i.e. the “Einstein” deflection
The above integral, being the inverse of the square root of gue to the luminous matter in galaxies or clusters of galaxies
fourth-degree polynomial, can be expressed in terms of els |ess than the observed deflection. Of course, these discrep-
liptic integrals. However, this is not very illuminating. It will - ancies are usually taken as evidence for the existence of large
prove more instructive to evaluate the integral after expandamounts of dark matter in the halos of galaxies. If the extra
ing the integrand in some small parameters. Note that thgerm — yr, is to ever replace or imitate this dark matter on
constantk, important on cosmological scales, has cancelledarge distance scales it would have to be positive attrac-
out and does not appear in the integi@l The deflection of  tjve), implying thaty must be negative. The sign gfused to
light is insensitive to the cosmology of the theory and infit galactic rotation curvegL4] however, is positivéthe rea-
general would not be affected by a spherically symmetricson why the sign ofis different for null and non-relativistic
Hubble flow. On the other hand, the motion of massive parmassive geodesics is discussed in the next section on poten-
ticles on galactic or greater scales is affected by the Hubblgals). Therefore there is an incompatibility between these
flow [14,18. Hence, the bending of light is highly appropri- two analyses. This means that Weyl gravity does not seem to

2
Mo

ate for testing Weyl gravity. ~ solve the dark matter problem, although this does not signal
We now evaluate the integra8). It can be rewritten in  any inconsistency of Weyl gravity itself. In addition, the
the form mechanism of conformal symmetry breaking is not well un-

derstood and it must be addressed in more detail before con-

w1 1)\-12 1 1 sidering massive geodesics or just mass in general. The
f (—2— 7> [1—2,8 —+ - analysis of the deflection of light is more reliable since it is
ro\fo T fo T I+l completely independent of any such conformal symmetry
yre |~ Y2dr breaking mechanism.
RTINS ®

IV. THE POTENTIAL IN WEYL GRAVITY

After making the substitution sifk=ro/r the integral be- In general relativity, the Schwarzschild geodesic equa-

tions can be viewed as “Newtonian” equations of motion
with a potential(see[19]). In Weyl gravity, a potential can
-2 also be extracted from the vacuum equations and for this
do. purpose it is convenient to define a new “time” coordinpte

comes
1+sin 6—
(10) such thatdp=B(r)dt. The vacuum equation&3)—(5) in

sin 6 N Yo
1+sin@/ (1+sin )

2 ZB
(12

0 o
these new coordinates are

For any realistic situation, such as the bending of light from

the sun, galaxies or cluster of galaxies the deflection is of the

order of arc seconds and therefore the paramegdérg and rgd_QDZJ (13)
I, Which measure the deviation from straight line motion dp '
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1(dr)2 J? 1 —EB(r) 0.
2lap) TPz (149
dr?=Edp°. (15

Let B(r)=1+2¢(r) where ¢ is not necessarily a weak
field. Equation(14) becomes dos

FIG. 1. Light from the source S bends at the leémsd arrives at
the observer O who then sees the image I.

2 1-E
re +E) 2 (16) We can actually reproduce the deflection of light result
Eqg. (12) in a most straightforward way using the potential
The above geodesic equation together with @) can be  Eq.(17). For null geodesicsE=0) the potential is given by
viewed as a particle having energy per unit mass E})/2
and angular momenturd moving in ordinary mechanics

with a potential —BJ? yI?> —kF
P Vnuu(r)=r—3+7+ 5

1/dr\?2 J2
2\dp) T2zt

(19

The deflection by a potentiad(r) is obtained by integrating

. (17)  along the straight line path the gradient\éfr) (in the L
direction i.e. in the direction afy). As long as the deflection
is very small, integrating along the straight line path instead
of the curved path gives the same results. The deflection is
given by

JZ
r—2+E

vV(r)=¢

The derivative of the potential is

J2

72_+E

2

A E—f—z)—krE, (18)

, Y
V(I’):r—z + =

2

A(,D=fm V,V(r)dz, (20)

whereg(r)=— BIr + yr/2—kr?/2 was used. There are three
terms in Eq.(18): a B, 7, andk term, respectively. Th&k  whereZ is the distance along the straight line path re.
term vanishes for null geodesics in agreement with our re=Z2+ rg. In the potentiaV,,,;, the v term is an inverse
sults on the deflection of light. For massive geodesicskthe potential. This is the reason why its contribution to the de-
term is non-zero but is negligible unless one is considerindlection of light Eq.(20) is finite and comes with a relative
cosmological scales. Hence, this term will be ignored. Thenegative sign. IfV,,, had contained a linear potential, the
factor 33%/r?+E in front of the B8 term is always positive integral for the deflection would diverge, implying that no
sinceE=0. Therefore, thg3 term is attractive for both mas- scattering states could exist.
sive and null geodesicwvhich is the case in GROn the Using J?=r2/B(r,) given in Sec. Ill andV,,, as the po-
other hand, the factd®— J%/r2 in front of the y term, can be  tential, the deflection Eq(20) yields
positive or negative depending on the physical situation. For
a non-relativistic particle moving in a weak field, which is
the case of galactic rotation curves, we obtBis 1, J%/r? 4B
oo o . Ap=——yrg, (22)

<1, and therefore the fact@— J</r~ is positive. For light, o
E is zero and the factor is negative. The potentll) is
different for non-relativistic particles and light: the term  Where only first order terms iB/r, and yr, were kept. The
in ¢ contributes a linear potential for non-relativistic par- deflection of light result Eq12) is therefore reproduced in a
ticles but an inverse potential for light. Their corresponding Straightforward fashion that allows one to trace clearly the
derivatives therefore have opposite sign and this explaingrigin of the negative sign in-yr,.
why v obtained through galactic rotation curves has the op-
posite sign to that obtained in the deflection of light. V. THE WEYL RADIUS

Of course, a negative term is not reserved to null geo-
desics only. Any massive particle which is sufficiently rela- The geometry of a typical lens system is shown in Fig. 1,
tivistic will also have this property. For example consider abelow. A light ray from a source S is deflected by an angle
particle moving in a weak fielg with a negligible “radial  at the lens and reaches an observer at O. The angle between
velocity” dr/dp. One obtains from Eq(16) that J%/r>~1  the optic axis and the true position of the sourcg isnd the
—E—2¢ and thereforeE—J?/r2~2E+2¢—1. It follows  angle between the optic axis and the image 4.i¥he angu-
that if a particle is sufficiently relativistic such thE<<1/2  lar diameter distances between observer and lens, lens and
— ¢~1/2 then we obtain a negativeterm. source, and observer and sourceaye d;s andd,g, respec-
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tively. For a spherically symmetric lens, image formation is -2J32 B'(R)
governed by the one-dimensional lens equation R + mzo- (28

With J? given by Eq.(27) and B(r) given by Eq.(2), Eq.

B=0—a(dis/dyy). (22 (28) becomes

A source is imaged as a ring if the source, the lens and the
observer lie on a “straight” lindi.e. 8=0). For an Einstein
deflection angle ole=4GM/rq, the radius of the ring is
called the Einstein radius and is given by

yR?+2R—6GM=0, (29

where3=GM was used. Note that the consténhas again
cancelled out. The two solutions to EHQ9) are

D

4GM\ 2
ET ( ) ’ (23)

R=3GM and R=-2/y, (30

whereD =d,d,s/d;s andM is the mass of the lens enclosed yhere it has been assumed that| <1. We see that besides
in the Einstein radius. For a Weyl deflection angle given bythe R=3GM solution a second equi“brium exists at

Eq. (12), the radius of the ring, which we will call the R=_2/y if yis negative. By differentiating Eq29) we see

“Weyl” radius, can be readily calculated and yields that this second equilibrium is a stable one while the first is
an unstable one as in the Schwarzschild case. This stable

AGM 12 equilibrium provides us with a natural length scale i.e. a

= m) (29 scale which determines the “region of influence” of a par-

ticular localized source in contrast to the background or glo-
bal aspects. A length scale of this sort is probably necessary
if we ever want to develop a concept of “energy of an iso-
lated system” in Weyl gravity. In the Scwarzschild case, the

instead of a ring one obtains two images, one inside and ongetric tepds towards M'_nkOWSk' space in the I'm“%:_w and .
a Gauss's law formulation of total energy of an “isolated

outside the Weyl ring. Using the Weyl deflection angle Eq. ; . : .
sl y! ing ng y ! 9 d system is possible. In the Weyl case we obtain a metric con-

(12) and the definitions for the Einstein and Weyl radius, the N S
lens equatior(22) gives formal to a Robertson-Walker spacetime in the limit .

We therefore need a natural cutoff radius at which the influ-

ence of the specific source in question ceases and the global
M aspects take over. Indeed, we have shown that the constant
(25 k, which is proportional to the cosmological curvature, plays
no role in determining the radius of stable equilibrium and
lends support to the idea that the stable radius is determined
by the localized source. Hence, from the arguments above, a
negativey is desirable.

The above result for the Weyl radius will be used later to
obtain an estimate for the constantlf the source, lens and
observer are not aligned in a “straight” linge. 8+ 0) then

_1 4G
B=( +ny)0_W:

wheren,= yd?,/D. The two solutions to the above equation
are

VII. TIME DELAY

1
0. =———[B+BZ+462(1+n.)2]. (26)
- 2(1+ny) =6 " o] We now calculate the time taken by a photon for a trip

between any two points in a gravitational field produced by a
VI. CIRCULAR ORBITS IN EQUILIBRIUM central mass. We expect modifications to the standard GR
result when the radius of closest approach to the central mass

Ir;]the S.chV\I/arzs%hild mﬁtric,bilt is kngfyl;/r} thaé phr?tons dois on the order of galactic scales. The equation governing the
not have circular orbits with stable equilibrium but have one;q ey olution of orbits is Eq4), with E=0 for light. At the

unstable equilibrium at the radius=3GM. We now deter-
mine the radii of equilibrium for photons in the Weyl
vacuum solutior(2). The geodesic equation of interest is Eq.
(4) where we substitut&=0 for photons and sedr/dt to
zero at the radius of orbit=R. Equation(4) becomes

point of closest approach=ry, dr/dt=0 so that Eq.(4)
givesJ2=r(2)/B(r0). The time for light to travel fronr, to
ri, given by Eq.(4), is

_(raf A(r)/B(r) \ 2
JZ 1 t—fro m dr. (31)
E—W=O. (27) B(ro)r?

For equilibrium, the derivative of the left-hand sideHS) of ~ We evaluate the above integral wift{r) andB(r) given by
Eq. (27) atr =R must vanish and we obtain Eq. (2). This yields
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ra r(1=2BIr +yr —kr®) "X 1—28/r g+ yro—kr2)2
0
t= 25 7 dr. (32
r
* Jr2—rf1-— (1+

o

;
r(r+rq)

We can expand the above integral to first order in the paramleaves the earth, grazes the sun, reaches Mars and comes
etersB/r, yr andkr? which are much less than 1 within the back would have a time delay of 24®.25 us where the
usual limits of integration. To first order in the parameters,248 us is the exact prediction of the “Shapiro” time delay
the integral(32) yields and the uncertainty- 0.25 s can be used to constrajn At
superior conjunction, the radius of the sun to the Eagth
and to Mars ,,, are much greater than the radius of the sun
- frlr[(l— Ekrz) n 2_18+ Bro Ro so thatry can be neglected in the factor in front efin
o 270 7 1 Tr(r+rg) Eq. (34). We therefore have- y(r2+r2)=+0.25< 10 s,
This constraingy to the rangdy|<1.02<10 22 cm™L This
is roughly five orders of magnitude better than the constraint
N (33 on yfrom solar deflection experiments but does not allow us
0 to draw any conclusions on the sign of

There are six elementary integrals to evaluate above. The
result is C. Deflection of light by galaxies and clusters

2
2

0
— Y+ ———+
7 2(r+rg)

One should expect measurements on the deflection of
r+ m light by galaxies and clusters to determine the most accurate

ry—r L
t=\r?-r2+2p In(—l) + L0 value for y because it is on those scales where therm
Fo

Fitro plays a significant role. However, the interpretation of the

r3_¢3 K experimental data on those scales is more difficult than in the
Y % +=(2r2+r2) /ril_roi_ (34)  solar system b_ecause g_alaxies and clusters have unknown
2\ Jri-r5) 6 matter distributions and in general cannot be assumed to be

either point masses or spherically symmetric. A parametrized
The leading term is identified as the time for light to travel in |ens model is therefore required for each case of gravitational
a straight line in Minkowski spac@vhereg=y=k=0) and  |ensing. For example, to understand the time delay in the
we recognize thes terms as the standard “Shapiro” time gravitational lens 095¥561, one has to describe not only
delay. They andk terms evidently produce a modification of the distribution of the lensing galaxy G1 but also the effect
the time delay. We see that the effect of theerm is to  of the surrounding cluster. Nonetheless, it has been pointed
increase the time delay if is negative and to decrease itif  out[22,23 that though a spherically symmetric lens model is

is positive. an idealization, it is a good first approximation in under-
standing the large arcs that are observed in clusters and is
VIIl. CONSTRAINTS ON y FROM EXPERIMENTS extremely useful in obtaining the same order of magnitude

results as the more realistic case. We will therefore use data
on the large arcs found in clusters to obtain a value yor

In solar experiments, the sun can be treated as a pointith confidence that the order of magnitude is correct. To
mass and no lens model is required. To date, the best meaenstrainy beyond “order of magnitude” accuracy, a de-
surements on the deflection of light from the sun were ob+ailed lens model for each cluster is required and would take
tained using radio-interferometric methods and verified Ein-us beyond the scope of the present paper.
stein’s prediction to within 1%. The measured deflection at In a spherically symmetric lens, the radius of the tangen-
the solar limb was 1.76%£0.016 arc se¢20] compared to tially oriented large arcsd,., is a good estimate of the ra-
Einstein’s prediction of &My /Ry=1.75 arc sec. Using dius which occurs aB=0 in the lens equatiof22). In GR,
the Weyl deflection angle Eq(12) these measurements the radius of the arc is therefore interpreted as the Einstein
constrain the constant y to the range radius whereM is the total massNl ,) i.e. the sum of the
3.45x10 ¥ cm 1=y=-1.87x10 ¥cm™L. Clearly, the so- luminous and presumed dark matter. In the context of Weyl
lar gravitational deflection experiments constrain stronglygravity, thesamearc is to be interpreted as the Weyl radius,
the order of magnitude of but leave open the possibility for with M representing only the luminous mattév() andy a

A. Solar gravitational deflection

a positive or negative. constant to be determined. Using E¢23) and (24) for the
Einstein and Weyl radius, respectively and equating them for
B. Signal retardation by solar gravity the same observed arc, one obtains

The results of the Viking relativity experiment published
in 1979[21] confirmed the “Shapiro” time delay on solar
system scales to an accuracy of 0.1%. For example, a ray that

dos )( M )
—-1]. 35
dIsdol Mtotal ( )
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In experiments one measures the redsliftand Z; in the  the cosmological density paramet@ve have taken()=0
spectrum of the light reaching us from the leti®., the andQ=1 as examples though we will see thais insensi-
cluste)y and source, respectively. We define a dimensionlestive to Q). Equation(35) can be rewritten in terms of and
guantity (often called the angular size distancg=(1 vyields

+Z)d/Ly whereLy =c/Hq is the Hubble length and are

the angular diameter distances that appear in(B§). (we 1 y M
have reinserted the speed of light ¢ for claritfhe values of y=— ( > )( L 1). (39)
y are related to redshifts Hy4] Lt YisYol/ | Miotal
Z(1+Z,12) -0 To obtain a value fory reliable data on the redshif® and
1+2, ' Z is required as well as values for the mass-to-light ratios of
Yox= 2 (36) clusters derived from gravitational lensing. Fortunately, such
2— for O=1, data exists for many large arcs in clusters. Before looking at
V1+2Zy the data it is important to note that the mass-to-light ratio is
large for a typical cluster>100) and thereforé, /My
Yos(1+Y2) 2=y (1+y32)Y2 for Q=0, <1. It follows that the factor K1, /M qe— 1) will not differ
Is™ Yos— Yol for Q=1, (87 from cluster to cluster. Data is shown beldtaken from

[25,26,27) for different clusters with the value of calcu-
wherex represents either the lehor the sources and() is  lated in each case.

Cluster Z z, M\ Mo Yos Y-t

y|Sy0| 0=1,0
A370 0.375 0.724 ~1/200 6.877, 7.765 —6.83,—-7.72
A2390 0.231 0.913 ~1/120 7.885, 7.308 —7.82-7.25
Cl2244-02 0.331 0.83 <1/100 7.68, 6.87 —7.60,—6.80

wherev is in units of the inverse Hubble Iength,l_:u0 [which is equal to H/100)x 1.08x 1028 cm™1.] As can be seen from

the data,y is negative, reasonably constant from one cluster to the next and its order of magnitude is clearly the inverse Hubble
length. Interestingly enough, the value fot obtained by Mannheim and Kazangkl] in the context of galactic rotation

curves is of the same order of magnitude. Though no use of Hubble’s constant was made in their calculation, the authors
recognized that was close numerically to the inverse Hubble length. Lensing data in clusters confirms y&8Eiat vy is

not independent of Hubble's constant. In conclusion, we obtain the same order of magnityde fargalactic rotation curves

but with opposite sign. This discrepancy merits further investigation.
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