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Inextendible Schwarzschild black hole with a single exterior:
How thermal is the Hawking radiation?
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Several approaches to Hawking radiation on Schwarzschild spacetime rely in some way or another on the
fact that the Kruskal manifold has two causally disconnected exterior regions. To assess the physical input
implied by the presence of the second exterior region, we investigate the Hawking~-Unruh! effect for a real
scalar field on theRP3 geon: an inextendible, globally hyperbolic, space and time orientable eternal black hole
spacetime that is locally isometric to Kruskal but contains only one exterior region. The Hartle-Hawking-like
vacuumu0G&, which can be characterized alternatively by the positive frequency properties along the horizons
or by the complex analytic properties of the Feynman propagator, turns out to contain exterior region Boulware
modes in correlated pairs, and any operator in the exterior that only couples to one member of each correlated
Boulware pair has thermal expectation values in the usual Hawking temperature. Generic operators in the
exterior do not have this special form; however, we use a Bogoliubov transformation, a particle detector
analysis, and a particle emission-absorption analysis that invokes the analytic properties of the Feynman
propagator, to argue thatu0G& appears as a thermal bath with the standard Hawking temperature to any exterior
observer at asymptotically early and late Schwarzschild times. A~naive! saddle-point estimate for the path-
integral-approach partition function yields for the geon only half of the Bekenstein-Hawking entropy of a
Schwarzschild black hole with the same ADM mass: possible implications of this result for the validity of
path-integral methods or for the statistical interpretation of black-hole entropy are discussed. Analogous results
hold for a Rindler observer in a flat spacetime whose global properties mimic those of the geon.
@S0556-2821~98!06614-4#
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I. INTRODUCTION

Black hole entropy was first put on a firm footing b
combining Hawking’s result of black hole radiation@1# with
the dynamical laws of classical black hole geometries@2# in
the manner anticipated by Bekenstein@3,4#. Hawking’s first
calculation of black hole temperature@1# invoked quantum
field theory in a time-nonsymmetric spacetime that mode
a collapsing star, and the resulting time-nonsymmetric qu
tum state contained a net flux of radiation from the bla
hole @5#. However, it was soon realized that the same te
perature, and hence the same entropy, is also associated
a time-symmetric state that describes a thermal equilibr
@6,7#. For a review, see for example Ref.@8#.

A second avenue to black hole entropy has arisen via p
integral methods. Here, a judiciously chosen set of therm
dynamic variables is translated into geometrical bound
conditions for a gravitational path integral, and the path
tegral is then interpreted as a partition function in the app
priate thermodynamic ensemble. The initial impetus for
path-integral approach came in the observation@9,10# that
for the Kerr-Newman family of black holes in asymptotical

*Electronic address: louko@aei-potsdam.mpg.de
†Present address.
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flat space, a saddle-point estimate of the path integral yie
a partition function that reproduces the Bekenstein-Hawk
black hole entropy. The subject has since evolved consi
ably; see for example Refs.@11–15#, and the references
therein.

Although it is empirically true that these two methods f
arriving at black hole entropy have given mutually comp
ible results in most1 situations considered, it does not seem
be well understood why this should be the case. The fi
method is quite indirect, and it gives few hints as to t
quantum gravitational degrees of freedom that presuma
underlie the black hole entropy. In contrast, the path integ
of the second method arise from quantum gravity proper,
the argument is quite formal, and one is left with the ch
lenge of justifying that the boundary conditions imposed
these integrals indeed correspond to thermodynamics as
ventionally understood. One expects that the connection
tween the path integrals and the thermodynamics could
made precise through some appropriate operator formula
as is the case in Minkowski space finite temperature fi
theory@16#. Achieving such an operator formulation in qua
tum gravity does however not appear imminent, the rec

1For a discussion of discrepancies for extremal holes, see R
@14,15#.
© 1998 The American Physical Society07-1
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JORMA LOUKO AND DONALD MAROLF PHYSICAL REVIEW D 58 024007
progress in string theory@17,18# notwithstanding.
The purpose of this paper is to examine the Hawk

effect and gravitational entropy on the eternal black h
spacetime known as theRP3 geon @19#. This inextendible
vacuum Einstein spacetime is locally isometric to t
Kruskal manifold, and it in particular contains one exter
Schwarzschild region. The spacetime is also both space
time orientable and globally hyperbolic, and hence free
any apparent pathologies. A novel feature is, however,
the black and white hole interior regions are not globa
isometric to those of the Kruskal manifold. Also, there is
second exterior Schwarzschild region, and the timelike K
ing vector of the single exterior Schwarzschild region can
be extended into a globally-defined Killing vector on t
whole spacetime. Among the continuum of consta
Schwarzschild time hypersurfaces in the exterior regi
there is only one that can be extended into a smooth Cau
hypersurface for the whole spacetime, but probing only
exterior region provides no clue as to which of the const
Schwarzschild time hypersurfaces this one actually is.2

These features of theRP3 geon lead one to ask to wha
extent quantum physics on this spacetime, especially in
exterior region, knows that the spacetime differs fro
Kruskal behind the horizons. In particular, is there a Haw
ing effect, and if yes, can an observer in the exterior reg
distinguish this Hawking effect from that on the Krusk
manifold? Also, can one attribute to theRP3 geon a gravita-
tional entropy by either of the two methods mention
above, and if yes, does this entropy agree with that for
Kruskal spacetime?

Answers to these questions have to start with the spe
cation of the quantum state of the field~s! on theRP3 geon.
To this end, we recall that the geon can be constructed as
quotient space of the Kruskal manifold under an involut
isometry@19#. Any vacuum on Kruskal that is invariant un
der this involution therefore induces a vacuum on the ge
This is in particular the case for the Hartle-Hawking vacuu
u0K& @6,7#, which describes a Kruskal hole in equilibrium
with a thermal bath at the Hawking temperatureT
5(8pM )21. We shall fix our attention to the Hartle
Hawking-like vacuumu0G& that u0K& induces on the geon
u0G& can alternatively be defined~see Sec. V B! by postulat-
ing for its Feynman propagator a suitable relation w
Green’s functions on the Riemannian section of the co
plexified manifold, in analogy with the path-integral deriv
tion of u0K& in Ref. @6#. A final definition which leads to the
same vacuum state is to constructu0G& as the state defined b
modes that are positive frequency along the horizon gen
tors.

2Another inextendible spacetime that is locally isometric
Kruskal but contains only one exterior Schwarzschild region is
elliptic interpretation of the Schwarzschild hole, investigated in R
@20# in the context of ’t Hooft’s analysis of Hawking radiation@21#.
On this spacetime, all the local continuous isometries can be
tended into global ones. The spacetime is, however, not ti
orientable, which gives rise to subtleties when one wishes to bu
quantum field theory with a Fock space@20#.
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We first construct the Bogoliubov transformation betwe
u0G& and the Boulware vacuumu0B&, which is the vacuum
with respect to the timelike Killing vector of the exterio
Schwarzschild region@22,23#. For a massless scalar field, w
find that u0G& contains Boulware modes in correlated pai
and for operators that only couple to one member of e
correlated pair, the expectation values inu0G& are given by a
thermal density matrix at the usual Hawking temperature.
both members of each correlated pair reside in the sin
exterior Schwarzschild region, not every operator with su
port in the exterior region has this particular form; neverth
less, we find that, far from the black hole, thisis the form
assumed by every operator whose support is at asymp
cally late ~or early! values of the exterior Schwarzschil
time. For a massive scalar field, similar statements hold
the field modes that reach the infinity. As a side result,
obtain an explicit demonstration that the restriction ofu0G& to
the exterior region is not invariant under translations in
Schwarzschild time.

The contrast between these results and those in
vacuumu0K& on the Kruskal manifold@7# is clear. u0K& is
also a superposition of correlated pairs of Boulware mod
but the members of each correlated pair inu0K& reside in the
opposite exterior Schwarzschild regions of the Kruskal ma
fold. In u0K&, the expectation values are thermal for any o
erators with support in just one of the two exterior Schwa
schild regions.

We then consider the response of a monopole part
detector@5,24–26# in the vacuumu0G&. The detector is taken
to be in the exterior Schwarzschild region, and static w
respect to the Schwarzschild time translation Killing vec
of this region. The response turns out to differ from that o
similar detector in the vacuumu0K& on Kruskal; in particular,
while the response on Kruskal is static, the response on
geon is not. However, we argue that the responses on
geon and on Kruskal should become identical in the limit
early or late geon Schwarzschild times~as might be inferred
from the Bogoliubov transformation described above! and
also in the limit of a detector at large curvature radius for a
fixed geon Schwarzschild time. To make the argument
orous, it would be sufficient to verify certain technical a
sumptions about the falloff of the Wightman functionG1 in
u0K&.

We proceed to examine the complex analytic properties
the Feynman propagatorGG

F in u0G&. The quotient construc-
tion of the geon from the Lorentzian Kruskal manifold ca
be analytically continued, via the formalism of~anti!holo-
morphic involutions on the complexified manifolds@27,28#,
into a quotient construction of the Riemannian section of
geon from the Riemannian Kruskal manifold. It follows th
GG

F is regular on the Riemannian section of the geon eve
where except at the coincidence limit.GG

F turns out to be, in
a certain weak local sense, periodic in the Riemann
Schwarzschild time with period 8pM in each argument.
However, this local periodicity is not associated with a co
tinuous invariance under simultaneous translations of b
arguments in the Riemannian Schwarzschild time. Put dif
ently, the Riemannian section of the geon does not adm
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INEXTENDIBLE SCHWARZSCHILD BLACK HOLE WITH . . . PHYSICAL REVIEW D 58 024007
globally-defined Killing vector that would locally coincid
with a generator of translations in the Riemannian Schwa
child time. It is therefore not obvious what to conclude abo
the thermality ofu0G& by just inspecting the symmetries o
GG

F on the Riemannian section. Nevertheless, we can use
analytic properties ofGG

F to relate the probabilities of the
geon to emit and absorb a Boulware particle with a giv
frequency, in analogy with the calculation done for t
Kruskal spacetime in Ref.@6#. We find that the probability
for the geon to emit a particle with frequencyv at late exte-
rior Schwarzschild times ise28pMv times the probability for
the geon to absorb a particle in the same mode. This rati
the probabilities is characteristic of a thermal spectrum at
Hawking temperatureT5(8pM )21, and it agrees with tha
obtained foru0K& in Ref. @6#. A difference between Kruska
and the geon is, however, that the Killing time translati
isometry of the Kruskal manifold guarantees the thermal
sult for u0K& to hold for particles at arbitrary values of th
exterior Schwarzschild time, while we have not been able
relax the assumption of late exterior Schwarzschild times
u0G&.

These results for the thermal properties ofu0G& imply that
an observer in the exterior region of the geon, at l
Schwarzschild times, can promote the classical first law
black hole mechanics into a first law of black hole therm
dynamics exactly as for the Kruskal black hole. Such
observer thus finds for the thermodynamic entropy of
geon the usual Kruskal value 4pM2, which is one quarter of
the area of the geon black hole horizon at late times. If o
views the geon as a dynamical black-hole spacetime, w
the asymptotic far-future horizon area 16pM2, this is the
result one might have expected on physical grounds.

On the other hand, the area-entropy relation for the g
is made subtle by the fact that the horizon area is in fact
constant along the horizon. Away from the intersection
the past and future horizons, the horizon duly has topol
S2 and area 16pM2, just as in Kruskal. The critical surfac
at the intersection of the past and future horizons, howe
has topologyRP2 and area 8pM2. As it is precisely this
critical surface that belongs to both the Lorentzian and R
mannian sections of the complexified manifold, and con
tutes the horizon of the Riemannian section, one may ex
that methods utilizing the analytic structure of the geon a
the Riemannian section of the complexified manifold wou
produce for the entropy the value 2pM2, which is one quar-
ter of the critical surface area, and only half of the Krusk
entropy. We shall find that this is indeed the semiclass
geon entropy that emerges from the path-integral formali
when the boundary conditions for the path integral are c
sen so that the saddle point is the Riemannian section o
geon.

Several viewpoints on this discrepancy between the th
modynamic late time entropy and the path-integral entro
are possible. At one extreme, there are reasonable groun
suspect outright the applicability of the path-integral me
ods to the geon. At another extreme, the path-integral
tropy might be correct but physically distinct from the su
jective thermodynamic entropy seen by a late time exte
observer. For example, a physical interpretation for the p
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integral entropy might be sought in the quantum statistics
the whole exterior region, rather than just in the thermod
namics at late times in the exterior region.

All these results for the geon turn out to have close co
terparts in the thermodynamics of an accelerated observe
a flat spacetimeM 2 whose global properties mimic those o
the geon.M 2 has a global timelike Killing vector that de
fines a Minkowski-like vacuumu02&, but it has only one
Rindler wedge, and the Rindler time translations in th
wedge cannot be extended into globally-defined isomet
of M 2 . u02& is thus analogous to the Hartle-Hawking-lik
vacuum u0G& on the geon, and the Rindler vacuum in th
Rindler wedge ofM 2 is analogous to the Boulware vacuu
u0B&. We find, from a Bogoliubov transformation, a partic
detector calculation, and the analytic properties of the Fe
man propagator, that the accelerated observer seesu02& as a
thermal bath at the Rindler temperature under a restric
class of observations, and in particular in the limit of ea
and late Rindler times, but not under all observations. No
however, thatM 2 does not exhibit a nontrivial analogue o
the large curvature radius limit of the geon. The reason
this is thatu02& and the Rindler vacuum coincide far from
the acceleration horizon, just as the Minkowski-vacuum a
the usual Rindler-vacuum coincide far from the accelerat
horizon in the topologically trivial case.

For a massless field, we also compute the renormali
expectation value of the stress-energy tensor inu02&. This
expectation value is not invariant under Rindler time tra
lations in the Rindler wedge, but the noninvariant piece tu
out to vanish in the limit of early and late Rindler times,
well as in the limit of large distances from the accelerati
horizon. Results concerning the entropy of flat spaces@29#
are again similar to those mentioned above for the geon
tropy.

The rest of the paper is as follows. Sections II and III a
devoted to the accelerated observer onM 2 : Sec. II con-
structs the Minkowski-like vacuum and finds the renorm
ized expectation value of the stress-energy tensor, while
III analyzes the Bogoliubov transformation in the Rindl
wedge, a particle detector, and the analytic properties of
Feynman propagator. Section IV is a mathematical interlu
in which we describe the complexifiedRP3 geon manifold as
a quotient space of the complexified Kruskal manifold w
respect to an holomorphic involution: this formalizes t
sense in which the Riemannian section of the geon can
regarded as a quotient space of the Riemannian Kru
manifold. Section V analyzes the vacuumu0G& in terms of a
Bogoliubov transformation, a particle detector, and the a
lytic properties of the Feynman propagator. Section VI a
dresses the entropy of the geon from both the thermo
namic and path integral points of view, and discusses
results in light of the previous sections. Finally, Sec. V
summarizes the results and discusses remaining issues.

We work in Planck units,\5c5G51. A metric with
signature~2111! is called Lorentzian, and a metric wit
signature~1111! Riemannian. All scalar fields are globa
sections of a real line bundle over the spacetime~i.e., we do
not consider twisted fields!. Complex conjugation is denote
by an overline.
7-3
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JORMA LOUKO AND DONALD MAROLF PHYSICAL REVIEW D 58 024007
A note on the terminology is in order. The name ‘‘Haw
ing effect’’ is sometimes reserved for particle production in
collapsing star spacetime, while the existence of a ther
equilibrium state in a spacetime with a bifurcate Killing h
rizon is referred to as the Unruh effect; see for example R
@8#. In this terminology, the partial thermal properties ofu0G&
andu02& might most naturally be called a generalized Unr
effect, as these states are induced by genuine Unruh e
states on the double cover spacetimes. However, neithe
geon norM 2 in fact has a bifurcate Killing horizon, and ou
case study seems not yet to establish the larger geome
context of the thermal effects inu0G& and u02& sufficiently
precisely to warrant an attempt at precise terminology.
simplicity, we refer to all the thermal properties as t
Hawking effect.

II. SCALAR FIELD THEORY ON M 0 AND M 2

In this section we discuss scalar field theory on two
spacetimes whose global properties mimic respectively th
of the Kruskal manifold and theRP3 geon. In Sec. II A we
construct the spacetimes as quotient spaces of Minkow
space, and we discuss their causal and isometry structure
Sec. II B we quantize on these spacetimes a real scalar fi
using a global Minkowski-like timelike Killing vector to de
fine positive and negative frequencies.

A. The spacetimesM 0 and M 2

Let M be the (311)-dimensional Minkowski spacetime
and let (t,x,y,z) be a set of standard Minkowski coordinat
on M . The metric onM reads explicitly

ds252dt21dx21dy21dz2. ~2.1!

Let a be a prescribed positive constant, and let the mapJ0
andJ2 be defined onM by

J0 :~ t,x,y,z!°~ t,x,y,z12a!, ~2.2a!

J2 :~ t,x,y,z!°~ t,2x,2y,z1a!. ~2.2b!

J0 andJ2 are isometries, they preserve space orientation
time orientation, and they act freely and properly discontin
ously. We are interested in the two quotient spaces

M0ªM /J0 , ~2.3a!

M 2 ªM /J2 . ~2.3b!

By construction,M0 and M 2 are space and time orientab
flat Lorentzian manifolds.

The universal covering space of bothM0 andM 2 is M .
We can therefore construct atlases onM0 andM 2 by using
the Minkowski coordinates (t,x,y,z) as the local coordinate
functions, with suitably restricted ranges in each local ch
It will be useful to suppress the local chart and underst
M0 andM 2 to be coordinatized in this fashion by (t,x,y,z),
with the identifications
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~ t,x,y,z!;~ t,x,y,z12a!, for M0 , ~2.4a!

~ t,x,y,z!;~ t,2x,2y,z1a!, for M 2 . ~2.4b!

As J2
2 5J0 , M0 is a double cover ofM 2 . M 2 is there-

fore the quotient space ofM0 under the involutive isometry
J̃2 that J2 induces onM0 . In our ~local! coordinates on
M0 , in which the identifications~2.4a! are understood, the
action of J̃2 reads as in Eq.~2.2b!.

M0 andM 2 are static with respect to the global timelik
Killing vector ] t . They are globally hyperbolic, and the sp
tial topology of each isR23S1.3

M0 admits seven Killing vectors. These consist of the
Killing vectors of the (211)-dimensional Minkowski space
coordinatized by (t,x,y), and the Killing vector]z , which
generates translations in the compactified spacelike direc
The isometry subgroupR33U(1) generated by the Killing
vectors (] t ,]x ,]y ,]z) acts onM0 transitively, andM0 is a
homogeneous space@30#. On M 2 , the only Killing vectors
are the time translation Killing vector] t , the spacelike trans
lation Killing vector ]z , and the rotational Killing vector
x]y2y]x . The isometry group ofM 2 does not act transi-
tively, andM 2 is not a homogeneous space. One way to
the inhomogeneity explicitly is to consider the shorte
closed geodesic in the totally geodesic hypersurface of c
stantt.

It is useful to depictM0 andM 2 in two-dimensional con-
formal spacetime diagrams in which the local coordinatey
andz are suppressed. The diagram forM0 , shown in Fig. 1,
is that of (111)-dimensional Minkowski spacetime. Eac
point in the diagram represents a flat cylinder of circumf
ence 2a, coordinatized locally by (y,z) with the identifica-
tion (y,z);(y,z12a). The mapJ̃2 appears in the diagram
as the reflection (t,x)°(t,2x) about the vertical axis, fol-
lowed by the involution (y,z)°(2y,z1a) on the sup-
pressed cylinder. A diagram that representsM 2 is obtained
by taking just the~say! right half, x>0, as shown in Fig. 2.
The spacetime regions depicted asx.0 in these two dia-
grams are isometric, with each point representing a s
pressed cylinder. In the diagram forM 2 , each point atx
50 represents an open Mo¨bius strip (.RP2\$point%), with
the local coordinates (y,z) identified by (y,z);(2y,z
1a).

B. Scalar field quantization with Minkowski-like vacua
on M 0 and M 2

We now turn to the quantum theory of a real scalar fieldf
with massm>0 on the spacetimesM0 and M 2 . In this
subsection we concentrate on the Minkowski-like vacua

3These properties remain true for quotient spaces ofM with re-
spect to arbitrary Euclidean screw motions, (t,x,y,z)°(t,x cosa
2y sina,x sina1y cosa,z1b), wherebÞ0 @30#. J0 is the screw
motion with a50 and b52a, and J2 is the screw motion with
a5p andb5a.
7-4
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which the positive and negative frequencies are defined w
respect to the global timelike Killing vector] t .

Recall that the massive scalar field action on a gen
curved spacetime is

S52
1

2 E A2gd4x@gmnf ,mf ,n1~m21jR!f2#,

~2.5!

whereR is the Ricci scalar andj is the curvature coupling

FIG. 1. A conformal diagram of the constanty andz sections of
the spacetimeM0 . When the diagram is understood to depictM0 ,
each point in the diagram is a flat cylinder of circumference 2a,
coordinatized locally by (y,z) with the identification (y,z);(y,z
12a). Because of the suppressed dimensions, the infinities of
diagram do not faithfully represent the infinity structure ofM0 . The

involution J̃2 consists of the reflection (t,x)°(t,2x) about the
vertical axis, followed by the map (y,z)°(2y,z1a) on the sup-
pressed cylinder.

FIG. 2. A conformal diagram of the constanty andz sections of
the spacetimeM 2 . When the diagram is understood to depictM 2 ,
the regionx.0 is identical to that in the diagram of Fig. 1, eac
point representing a suppressed cylinder. Atx50, each point in
the diagram represents a suppressed open Mo¨bius strip
(.RP2\$point%), with the local coordinates (y,z) identified by
(y,z);(2y,z1a). Because of the suppressed dimensions, the
finities of the diagram do not faithfully represent the infinity stru
ture of M2 .
02400
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constant. On our spacetimes the Ricci scalar vanishes. In
local Minkowski coordinates (t,x,y,z), the field equation
reads

~2] t
21]x

21]y
21]z

22m2!f50. ~2.6!

The ~indefinite! inner product is

~f1 ,f2!ª i E
S
f1]J tf2dxdydz, ~2.7!

where the integration is over the constantt hypersurfaceS.
We denote the inner products~2.7! on M0 and M 2 respec-
tively by (•,•)0 and (•,•)2 .

We define the positive and negative frequency solutio
to the field equation with respect to the global timelike Ki
ing vector] t . It follows that a complete orthonormal basis
positive frequency mode functions can be built from t
usual Minkowski positive frequency mode functions as t
linear combinations that are invariant under respectivelyJ0
andJ2 .

On M0 , a complete set of positive frequency modes
$Ukx ,ky ,n%, where

Ukx ,ky ,nª
1

4pAav
exp~2 ivt1 ikxx1 ikyy1 inpa21z!,

~2.8!

nPZ, kx andky take all real values, and

vªAm21kx
21ky

21~np/a!2. ~2.9!

The orthonormality relation is

~Ukx ,ky ,n ,Uk
x8 ,k

y8 ,n8!05dnn8d~kx2kx8!d~ky2ky8!,

~2.10!

with the complex conjugates satisfying a similar relati
with a minus sign, and the mixed inner products vanishi
On M 2 , a complete set of positive frequency modes
$Vkx ,ky ,n%, where

Vkx ,ky ,n :5
1

4pAav
exp~2 ivt1 inpa21z!

3@exp~ ikxx1 ikyy!

1~21!nexp~2 ikxx2 ikyy!#, ~2.11!

nPZ, kx andky take all real values, andv is as in~2.9!. The
orthonormality relation is

~Vkx ,ky ,n ,Vk
x8 ,k

y8 ,n8!25dnn8@d~kx2kx8!d~ky2ky8!

1~21!nd~kx1kx8!d~ky1ky8!#,

~2.12!
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with the complex conjugates again satisfying a similar re
tion with a minus sign, and the mixed inner produc
vanishing.4

Let u0& denote the usual Minkowski vacuum onM , let
u00& denote the vacuum of the set$Ukx ,ky ,n% on M0 , and let

u02& denote the vacuum of the set$Vkx ,ky ,n% on M 2 . From

the quotient space construction ofM0 andM 2 it follows that
the various two-point functions inu00& andu02& can be built
from the two-point functions inu0& by the method of images
~see, for example, Ref.@31#!. If G(x,x8) stands for any of
the usual two-point functions, this means

GM0
~x,x8!5 (

n52`

`

GM„x,J0
n~x8!…, ~2.13a!

GM2
~x,x8!5 (

n52`

`

GM„x,J2
n ~x8!…, ~2.13b!

wherex andx8 on the right-hand side stand for points inM ,
while on the left-hand side they stand for points inM0 and
u

c-
r

.

.
x-

y

02400
-M 2 in the sense of our local Minkowski coordinates. A
J2

2 5J0 andM 25M0 / J̃2 , we further have

GM2
~x,x8!5GM0

~x,x8!1GM0
„x,J̃2~x8!…, ~2.14a!

or, more explicitly,

GM2
~ t,x,y,z;t8,x8,y8,z8!

5GM0
~ t,x,y,z;t8,x8,y8,z8!

1GM0
~ t,x,y,z;t8,2x8,2y8,z81a!.

~2.14b!

For the rest of the subsection we specialize to a mass
field, m50. The two-point functions can then be express
in terms of elementary functions. Consider for concreten
the Wightman functionG1(x,x8)ª^f(x)f(x8)&. In u0&, we
have~see, for example, Ref.@25#!
GM
1~x,x8!5

21

4p2@~ t2t82 i e!22~x2x8!22~y2y8!22~z2z8!2#
, ~2.15!

wheree specifies the distributional part ofGM
1 in the sensee→01 . From Eq.~2.13a!, we find

GM0

1 ~x,x8!5
1

4p2 (
n52`

`
1

~z2z812na!21~x2x8!21~y2y8!22~ t2t82 i e!2

5
1

8paA~x2x8!21~y2y8!22~ t2t82 i e!2

3
sinh@pa21A~x2x8!21~y2y8!22~ t2t82 i e!2#

cosh@pa21A~x2x8!21~y2y8!22~ t2t82 i e!2#2cos@pa21~z2z8!#
, ~2.16!
om-

where we have evaluated the sum by the calculus of resid
GM2

1 (x,x8) is found from Eq.~2.16! using Eq.~2.14b!.

Similar calculations hold for the other two-point fun
tions. For example, for the Feynman propagator, one
places (t2t82 i e)2 in Eq. ~2.15! with (t2t8)22 i e, includes
an overall multiplicative factor2 i , and proceeds as above

In the Minkowski vacuumu0& on M , the renormalized
expectation value of the stress-energy tensor vanishes
M0 and M 2 are flat, it is easy to find the renormalized e
pectation values of the stress-energy tensor in the vacuau00&

4Labeling the modes~2.11! by the two-dimensional momentum
vector (kx ,ky) contains the redundancy Vkx ,ky ,n

5(21)nV2kx ,2ky ,n . This redundancy could be eliminated b
adopting some suitable condition~for example,ky.0! that chooses
a unique representative from almost every equivalence class.
es.

e-

As

and u02& by the point-splitting technique@25,31#. On a
Ricci-flat spacetime, the classical stress-energy tensor c
puted from the action~2.5! with m50 reads

Tmn5~122j!f ,mf ,n1S 2j2
1

2Dgmngrsf ,rf ,s

22jf ;mnf1
1

2
jgmngrsf ;rsf. ~2.17!

Working in the local chart (t,x,y,z), in which gmn5hmn

5diag(21,1,1,1), we then have, separately inu00& andu02&,

^Tmn~x!&5 lim
x8→x

Dmn~x,x8!@G~1!~x,x8!2GM
~1!~x,x8!#,

~2.18!
7-6
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where G(1)(x,x8)ªG1(x,x8)1G1(x8,x) is the Hadamard
function, and the two-point differential operatorDmn(x,x8)
reads

Dmn~x,x8!5
1

4
~122j!~¹m¹n81¹m8¹n!

1
1

4 S 2j2
1

2Dhmn~hrs8¹r¹s81hr8s¹r8¹s!

2
1

2
j~¹m¹n1¹m8¹n8!

1
1

8
jhmn~hrs¹r¹s1hr8s8¹r8¹s8!. ~2.19!

The issues of parallel transport in the operatorDmn are
trivial, and the renormalization has been achieved simply
subtracting the Minkowski vacuum piece. Using Eq.~2.14b!
and~2.16!, the calculations are straightforward. It is useful
express the final result in the orthonormal non-coordin
frame$dt,dr,vŵ,dz%, defined by

x5r cosw, ~2.20a!

y5r sin w, ~2.20b!

andvŵ
ªrdw. We have

^00uTmnu00&5
p2

90~2a!4 diag~21,1,1,23! ~2.21!

and

^02uTmnu02&5^00uTmnu00&1 ~1!Tmn1 ~2!Tmn , ~2.22!

where the nonvanishing components of the tensors(1)Tmn

and (2)Tmn are

~1!Ttt5
p2

4~2a!4

1

s

d

ds S tanhs

s D , ~2.23a!

~1!Tzz5
p2

4~2a!4

1

s2

d

ds S s2
d

dsD S tanhs

s D ,

~2.23b!

~2!Tzz52 ~2!Ttt5
~4j21!p2

4~2a!4

1

s

d

ds

3S s
d

dsD S tanhs

s D , ~2.24a!

~2!Trr 5
~4j21!p2

4~2a!4

1

s

d

ds S tanhs

s D ,

~2.24b!

~2!Tŵŵ5
~4j21!p2

4~2a!4

d2

ds2 S tanhs

s D ,

~2.24c!
02400
y

e

with sªpa21Ax21y2.
^00uTmnu00& and ^02uTmnu02& are conserved, and the

are clearly invariant under the isometries of the respec
spacetimes.̂00uTmnu00& is traceless, whilê02uTmnu02& is
traceless only for conformal coupling,j5 1

6 . At large r , the
difference^02uTmnu02&2^00uTmnu00& vanishes asO(r 23).

III. UNIFORMLY ACCELERATED OBSERVER
ON M 0 AND M 2

In this section we consider on the spacetimesM0 andM 2

a uniformly accelerated observer whose world line is, in o
local Minkowski coordinates,

t5a sinh~t/a!, ~3.1a!

x5a cosh~t/a!, ~3.1b!

with constanty andz. The acceleration is in the direction o
increasingx, and its magnitude isa21.0. The parametert
is the observer’s proper time.

In Minkowski space, it is well known that the observ
~3.1a,b! sees the Minkowski vacuumu0& as a thermal bath a
the temperatureT5(2pa)21 @8,25,26#. The same conclu-
sion is also known to hold for the vacuumu00& in M0 @26#.
Our purpose is to address the experiences of the observ
the vacuumu02& on M 2 .

There are three usual ways to argue that the experie
of the observer~3.1a,b! in the Minkowski vacuumu0& are
thermal@8,25,26#. First, one can perform a Bogoliubov tran
formation between the Minkowski positive frequency mo
functions and the Rindler positive frequency mode functio
adapted to the accelerated observer, and in this way ex
the Rindler-mode content of the Minkowski vacuum. Se
ond, one can analyze perturbatively the response of a par
detector that moves on the trajectory~3.1a,b!. Third, one can
explore the analytic structure of the two-point functions
the complexified time coordinate adapted to the accelera
observer, and identify the temperature from the period
imaginary time. In the following subsections we shall rec
how these arguments work foru0& and u00&, and analyze in
detail the case ofu02&.

A. Bogoliubov transformation: non-localized Rindler modes

Consider onM the Rindler wedgeutu,x, denoted byR.
We introduce onR the Rindler coordinates (h,j,y,z) by

t5j sinh~h!, ~3.2a!

x5j cosh~h!. ~3.2b!

These coordinates provide a global chart onR, with j.0
and2`,h,`. The metric reads

ds252j2dh21dj21dy21dz2. ~3.3!

The metric~3.3! is static with respect to the timelike Killing
vector]h , which generates boosts in the (t,x) plane. In the
Minkowski coordinates,]h5t]x1x] t .
7-7
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In the Rindler coordinates, the world line~3.1a,b! is static.
This suggests that the natural definition of positive and ne
tive frequencies for the accelerated observer is determine
]h . One can now find the Bogoliubov transformation b
tween the Rindler modes, which are defined to be posi
frequency with respect to]h , and the usual Minkowsk
modes, which are positive frequency with respect to the g
bal Killing vector ] t ~see, for example, Ref.@26#!. One finds
that the Minkowski vacuum appears as a thermal state w
respect to the Rindler modes, and the temperature see
the observer~3.1a,b! is T5(2pa)21. The reason why a pure
state can appear as a thermal superposition is that the Ri
modes onR do not form a complete set onM : the mixed
state results from tracing over an unobserved set of Rin
modes in the ‘‘left’’ wedge,x,2utu.

This Bogoliubov transformation onM is effectively (1
11)-dimensional: the only role of the coordinates (y,z) is to
contribute, through separation of variables, to the effec
mass of the (111)-dimensional modes. The transformatio
therefore immediately adapts fromM to M0 . One concludes
that the observer~3.1a,b! in M0 sees the vacuumu00& as a
thermal state at the temperatureT5(2pa)21 @26#.

We now turn toM 2 . Let M̃ 2 denote the open region i
M 2 that is depicted as the ‘‘interior’’ of the conformal dia
gram in Fig. 2. From Sec. II we recall thatM̃ 2 is isometric to
the ‘‘right half’’ of M0 , as shown in Fig. 1, and it can b
covered by local Minkowski coordinates (t,x,y,z) in which
x.0 and the only identification is (t,x,y,z);(t,x,y,z
12a). We introduce onM 2 the Rindler wedgeR2 as the
subsetutu,x of M̃ 2 . R2 is clearly isometric to the~right-
hand side! Rindler wedge onM0 , which we denote byR0 ,
and the observer trajectory~3.1a,b! on M 2 is contained in
R2 .

On R2 , we introduce the local Rindler coordinate
(h,j,y,z) by Eqs. ~3.2a,b!. The only difference from the
global Rindler coordinates onR is that we now have the
identification (h,j,y,z);(h,j,y,z12a). The vector]h is a
well-defined timelike Killing vector onR2 , even though it
cannot be extended into a globally-defined Killing vector
M 2 .

The Rindler quantization inR2 is clearly identical to that
in R0 . A complete normalized set of positive frequen
modes is$uV,ky ,n%, where@26#

uV,ky ,n :5ei unup/2Asinh~pV!

4p3a
KiV~nj!

3exp~2 iVh1 ikyy1 inpa21z!, ~3.4!

nPZ, V.0, ky takes all real values,KiV is the modified
Bessel function@32#, and

nªAm21ky
21~np/a!2. ~3.5!

The ~indefinite! inner product inR2 , taken on a hypersur
face of constanth, reads
02400
a-
by
-
e

-

th
by

ler

er

e

~f1 ,f2!R2
ª i E

0

` dj

j E f1]Jhf2dydz. ~3.6!

The orthonormality relation is

~uV,ky ,n ,uV8,k
y8 ,n8!R2

5dnn8d~V2V8!d~ky2ky8!,

~3.7!

with the complex conjugates satisfying a similar relati
with a minus sign, and the mixed inner products vanishi
The quantized field is expanded as

f5 (
n52`

` E
0

`

dVE
2`

`

dky~bV,ky ,nuV,ky ,n1bV,ky ,n
† uV,ky ,n!,

~3.8!

where the operatorsbV,ky ,n andbV,ky ,n
† are the annihilation

and creation operators associated with the Rindler m
uV,ky ,n . The Rindler vacuumu0R2

& on R2 is defined by

bV,ky ,nu0R2
&50. ~3.9!

We are interested in the Rindler-mode content of
vacuumu02&. A direct way to proceed would be to compu
the Bogoliubov transformation between the sets$Vkx ,ky ,n%
and$uV,ky ,n%. However, it is easier to follow Unruh@5# and

to build from the set$uV,ky ,n% a complete set of linear com

binations, calledW-modes, that are bounded analytic fun
tions in the lower half of the complext plane. As such modes
are purely positive frequency with respect to] t , their
vacuum isu02&. The Rindler-mode content ofu02& can then
be read off of the Bogoliubov transformation that relates
set$uV,ky ,n% to theW-modes.

In M0 , the implementation of this analytic continuatio
argument is well known. In the future wedge ofM0 ,
t.uxu, theW-modes onM0 are proportional to@33#

Hi uku
~2! ~nt!exp~ ikl1 ikyy1 inpa21z!, ~3.10!

wherenPZ, k takes all real values,n is given by Eq.~3.5!,
andHi uku

(2) is the Hankel function@32#. Here (t,l,y,z) are the
Milne coordinates in the future wedge, defined by

t5t cosh~l!, ~3.11a!

x5t sinh~l!, ~3.11b!

with t.0 and2`,l,`. The metric in the Milne coordi-
nates reads

ds252dt21t2dl21dy21dz2. ~3.12!

The form of theW-modes in the other three wedges ofM0 is
recovered by analytically continuing the expression~3.10!
across the horizons in the lower half of the complext plane.
The Bogoliubov transformation can then be read off by co
paring theseW-modes to the Rindler modes in the right an
left Rindler wedges,utu,x andx,2utu.
7-8
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To develop the analogous analytic continuation inM 2 ,
we note that theW-modes in the future region ofM 2 can be
built from the expression~3.10! as linear combinations tha
are well defined in this region: as the mapJ2 ~2.2b! acts on
the Milne coordinates by (t,l,y,z)°(t,2l,2y,z1a), the
W-modes are in this region proportional to

Hi uku
~2! ~nt!exp~ inpa21z!@exp~ ikl1 ikyy!

1~21!n exp~2 ikl2 ikyy!], ~3.13!

where nPZ and n is given by Eq.~3.5!. To eliminate the
redundancy (k,ky)→(2k,2ky) in Eq. ~3.13!, we take k
,0 and2`,ky,`. When analytically continued toR2 ,
in the lower half of the complext plane, the expression
~3.13! then become proportional to@32#

KiV~nj!exp~ inpa21z!@epV/2 exp~2 iVh1 ikyy!

1~21!ne2pV/2 exp~ iVh2 ikyy!#, ~3.14!

wherek has been renamed as2V, with V.0. Comparing
Eqs.~3.4! and~3.14!, we see that a complete set ofW-modes
in R2 is $WV,ky ,n%, where

WV,ky ,nª
1

A2 sinh~pV!
~epV/2uV,ky ,n1e2pV/2uV,ky ,2n!,

~3.15!

nPZ, V.0, andky takes all real values.5 The orthonormal-
ity relation is

~WV,ky ,n ,WV8,k
y8 ,n8!25~WV,ky ,n ,WV8,k

y8 ,n8!R2

5dnn8d~V2V8!d~ky2ky8!,

~3.16!

with the complex conjugates again satisfying a similar re
tion with a minus sign, and the mixed inner products vani
ing.

We can now expand the quantized field in terms of
W-modes as

f5 (
n52`

` E
0

`

dVE
2`

`

dky~dV,ky ,nWV,ky ,n

1dV,ky ,n
† WV,ky ,n!, ~3.17!

wheredV,ky ,n and dV,ky ,n
† are respectively the annihilatio

and creation operators associated with the modeWV,ky ,n .

The vacuum of theW-modes is by constructionu02&,

dV,ky ,nu02&50. ~3.18!

5The phase choice in Eq.~3.4! was made for the convenience o
the phases on the right-hand side of Eq.~3.15!.
02400
-
-

e

Comparing the expansions~3.8! and ~3.17!, and using the
orthonormality relations, we find that the Bogoliubov tran
formation between the annihilation and creation operator
the two sets is

bV,ky ,n5
1

A2 sinh~pV!
~epV/2dV,ky ,n1e2pV/2dV,ky ,2n

† !,

~3.19!

with the inverse

dV,ky ,n5
1

A2 sinh~pV!
~epV/2bV,ky ,n2e2pV/2bV,ky ,2n

† !.

~3.20!

We eventually wish to exploreu02& in terms of Rindler
wave packets that are localized inh and y, but it will be
useful to postpone this to Sec. III B, and concentrate in
remainder of the present subsection on the content ofu02& in
terms of the unlocalized Rindler modes$uV,ky ,n%. We first
note that the transformation~3.20! can be written as

dn5exp~2 iJ !bn exp~ iJ !, ~3.21!

whereJ is the ~formally! Hermitian operator

Jª
1

2
i (
n52`

`

r V~bn
†b2n

† 2bnb2n!, ~3.22!

with r V defined by

tanh~r V!5exp~2pV!. ~3.23!

Here, and in the rest of this subsection, we suppress
labelsV and ky . It follows from Eqs.~3.9! and ~3.21! that
dn exp(2iJ)u0R2

&50. Comparing this with Eq.~3.18!, we
have

u02&5exp~2 iJ !u0R2
&. ~3.24!

Expanding the exponential in Eq.~3.24! and commuting the
annihilation operators to the right, we find

u02&5
1

Acosh~r V!
S (

q50

`
~2q21!!! exp~2pVq!

A~2q!!
u2q&0D

3 )
n51

` S 1

cosh~r V! (q50

`

exp~2pVq!uq&nuq&2nD ,

~3.25!

whereuq&n denotes the normalized state withq excitations in
the Rindler mode labeled byn ~and the suppressed quantu
numbersV andky!,

uq&nª~q! !21/2~bn
†!qu0R2

&. ~3.26!

The notation in Eq.~3.25! is adapted to the tensor produ
structure of the Hilbert space over the modes: the s
uq&nuq&2n containsq excitations both in the moden and in
7-9
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the mode2n. The vacuumu02& therefore contains Rindle
excitations withnÞ0 in pairs whose members only differ i
the sign ofn.

Now, suppose thatÂ is an operator whose support is
R2 , and suppose thatÂ only couples to the Rindler mode
uV,ky ,n for which n.0. By Eq.~3.25!, the expectation value

of Â in u02& takes the form

^02uÂu02&5 )
n51

` S @12exp~22pV!#

3 (
q50

`

exp~22qpV!n^quÂuq&nD
5tr~Âr!, ~3.27!

where

r5 )
n51

`

(
q50

` F exp~22qpV!

(
m50

`

exp~22mpV!G uq&nn^qu. ~3.28!

The operatorr has the form of a thermal density matri
Specializing to anÂ that is concentrated on the accelerat
world line ~3.1a,b!, we infer from Eqs.~3.27! and~3.28!, and
the redshift in the metric~3.2a,b!, that the accelerated ob
server sees the operatorÂ as coupling to a thermal bath a
the temperatureT5(2pa)21 @25,26#. A similar result
clearly holds whenÂ is replaced by any operator that do
not couple to the modes withn50 and, for each triplet
(V,ky ,n) with nÞ0, only couples to one of the mode
uV,ky ,n and uV,ky ,2n . For operators that do not satisfy th
property, on the other hand, the experiences of the acc
ated observer are not thermal.

It is instructive to contrast these results onM 2 to their
well-known counterparts onM0 @25,26#. On M0 there are
two sets of Rindler modes, one set for the right-hand-s
Rindler wedge and the other for the left-hand-side Rind
wedge. There are also twice as manyW-modes as onM 2 ,
owing to the fact the modes~3.10! are distinct for positive
and negative values ofk. The counterpart of Eq.~3.19! con-
sists of the two equations

bV,ky ,n
~1! 5

1

A2 sinh~pV!
@epV/2dV,ky ,n

~1! 1e2pV/2~dV,ky ,n
~2! !†#,

~3.29a!

bV,ky ,n
~2! 5

1

A2 sinh~pV!
@epV/2dV,ky ,n

~2! 1e2pV/2~dV,ky ,n
~1! !†#,

~3.29b!

where the superscript on theb’s indicates the Rindler wedge
and the superscript on thed’s serves as an additional label o
the W-modes in a way whose details are not relevant he
The counterpart of Eq.~3.25! on M0 therefore reads
02400
er-

e
r

e.

u00&5 )
n52`

` S 1

cosh~r V!

3 (
q50

`

exp~2pVq!uq&n
~1!uq&n

~2!D , ~3.30!

where the superscripts again indicate the Rindler wedge.
any operatorÂ(1) on M0 whose support is in the wedg
labeled by the superscript~1!, we obtain

^00uÂ~1!u00&5 )
n52`

` S @12exp~22pV!#

3 (
q50

`

exp~22qpV! n
~1!^quÂ~1!uq&n

~1!D
5tr~Â~1!r~1!!, ~3.31!

where

r~1!5 )
n52`

`

(
q50

` F exp~22qpV!

(m50
` exp~22mpV!G

3uq&n
~1!

n
~1!^qu. ~3.32!

r (1) has the form of a thermal density matrix. OnM0 , Eqs.
~3.31! and~3.32! hold now for any operator whose support
on the accelerated world line~3.1a,b!, regardless how this
operator couples to the various Rindler modes. One in
that the accelerated observer onM0 sees a thermal bath a
the temperatureT5(2pa)21 @25,26#, no matter what~local!
operators the observer may employ to probeu00&.

Finally, let us consider number operator expectation v
ues. Using respectively Eqs.~3.19! and ~3.29a,b!, we find

^02ubV,ky ,n
† bV8,k

y8 ,n8u02&

5^00u~bV,ky ,n
~1! !†b

V8,k
y8 ,n8

~1! u00&

5~e2pV21!21dnn8d~V2V8!d~ky2ky8!.

~3.33!

Setting the primed and unprimed indices equal in Eq.~3.33!
shows that the number operator expectation value of a g
Rindler mode is divergent both inu00& andu02&. This diver-
gence arises from the delta-function-normalization of o
mode functions, and it disappears when one introdu
finitely-normalized Rindler wave packets@1,26#. What can
be immediately seen from Eq.~3.33! is, however, that the
number operator expectation values are identical inu00& and
u02&, even after introducing normalized wave packets. W
shall return to this point in the next subsection.

B. Bogoliubov transformation: Rindler wave packets

In Sec. III A we exploredu02& in terms of Rindler modes
that are unlocalized inh andy. While translations inh andy
are isometries of the Rindler wedgeR2 , the restriction of
7-10
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u02& to R2 is not invariant under these isometries, as
evident from the isometry structure of the two-point fun
tions in u02&. This suggests that more information abo
u02& can be unraveled by using Rindler wave packets t
are localized inh andy. In this subsection we consider suc
modes.

For concreteness, we form wave packets followi
closely Refs.@1,26#. As a preliminary, lete1.0, and define
the functionsf ml :R→C, with m,l PZ, by

f ml~k!

ªH e1
21/2 exp~22p i e1

21lk !, for me1,k,~m11!e1

0, otherwise.

~3.34a!

Similarly, let e2.0, and define the functionshrs :R1→C,
with r,sPZ andr>0, by

hrs~V!

ªH e2
21/2 exp~22p i e2

21sV!, for re2,V,~r11!e2 ,

0, otherwise.

~3.34b!

These functions satisfy the orthonormality and completen
relations@26#

E
2`

`

dkf ml~k! f m8 l 8~k!5dmm8d l l 8 , ~3.35a!

E
0

`

dVhrs~V!hr8s8~V!5drr8dss8 , ~3.35b!

(
ml

f ml~k! f ml~k8!5d~k2k8!, ~3.35c!

(
rs

hrs~V!hrs~V8!5d~V2V8! . ~3.35d!

We define the Rindler wave packets$ursmln% by

ursmlnªE
0

`

dVE
2`

`

dkyhrs~V! f ml~ky!uV,ky ,n .

~3.36a!

It is easily verified that the set$ursmln% is complete and
orthonormal in the Klein-Gordon inner product, and that t
inverse of Eq.~3.36a! reads

uV,ky ,n5 (
rsml

hrs~V! f ml~ky!ursmln . ~3.36b!

The annihilation and creation operators associated with
modeursmln are denoted bybrsmln andbrsmln

† . From Eqs.
~3.36a,b!, we then have the relations

brsmln5E
0

`

dVE
2`

`

dkyhrs~V! f ml~ky!bV,ky ,n ,

~3.37a!
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bV,ky ,n5 (
rsml

hrs~V! f ml~ky!brsmln . ~3.37b!

It is clear from the definition that the modeursmln is
localized inky around the value (m1 1

2 )e1 with width e1 ,
and in V around the valueVr ª(r1 1

2 )e2 with width e2 .
What is important for us is that the mode is approximat
localized also inh and y. When theky-dependence of the
modified Bessel functionKiV(nj) in Eq. ~3.4! @via n, Eq.
~3.5!# can be ignored6 in the integral~3.36a!, one sees as in
Ref. @26# that ursmln is approximately localized iny around
yl ª2pe1

21l with width 2pe1
21. Similarly, whenV is large

enough thatnj!V, KiV(nj) is proportional to a linear com
bination of two terms whosej-dependence isj6 iV, and it
follows as in Ref.@26# that, at fixedj, ursmln is approxi-
mately localized inh around two peaks, situated ath
522pe2

21s6 ln j, and each having width 2pe2
21. We can

therefore understandursmln to be localized at large positive
~negative! values ofy for large positive~negative! l , and, for
given j, at large positive~negative! values ofh for large
negative~positive! s. While this leaves the sense of the lo
calization somewhat imprecise, especially regarding the u
formity of the localization with respect toj and the various
parameters of the modes, this discussion will nevertheles
sufficient for obtaining qualitative results about the vacuu
u02& in the limits of interest. We will elaborate further on th
technical details below.

In order to write u02& in terms of the operatorsbrsmln
†

acting on u0R2
&, we define theW-packets$Wrsmln% by a

formula analogous to Eq.~3.36a!, with uV,ky ,n replaced by

WV,ky ,n . Denoting bydrsmln and drsmln
† the annihilation

and creation operators associated with the modeWrsmln , we
have fordrsmln anddV,ky ,n a pair of relations analogous t
Eqs.~3.37a,b!. From Eq.~3.19!, we then obtain

brsmln5e2
21(

s8
E

re2

~r11!e2
dV

exp@2p i e2
21~s2s8!V#

A2 sinh~pV!

3~epV/2drs8mln1e2pV/2dr~2s8!m~2 l !~2n!

†
!.

~3.38!

We now assumee2!1. Equation~3.38! can then be approxi-
mated by

brsmln'
1

A2 sinh~pVr!
~epVr/2drsmln

1e2pVr/2dr~2s!m~2 l !~2n!
† !. ~3.39!

Comparing Eq.~3.39! to Eq.~3.19! and proceeding as in Sec
III A, we find

6For example, fore1!n or V@n.
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u02&')
rm

F 1

Acosh~r Vr
!
S (

q50

`
~2q21!!! exp~2pVrq!

A~2q!!
u2q&r0m00D

3 )
@s ln#

8S 1

cosh~r Vr
! (

q50

`

exp~2pVrq!uq&rsmlnuq&r~2s!m~2 l !~2n!D G , ~3.40!
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where uq&rsmln denotes the normalized state withq excita-
tions in the modeursmln ,

uq&rsmlnª~q! !21/2~brsmln
† !qu0R2

&. ~3.41!

The primed productP@s ln#8 is over all equivalence classe
@s ln# of triples under the identification (s,l ,n);(2s,2 l ,
2n), except the equivalence class@000#.

Comparing Eq.~3.40! to Eq. ~3.25!, we see that the ex
pectation values inu02& are thermal for any operator tha
does not couple to the modes withs5 l 5n50, and, for
fixed r andm, only couples to one member of each equiv
lence class@s ln#Þ@000#. Because of the mode localizatio
properties discussed above, the accelerated observer~3.1a,b!
at early~late! times only couples to modes with large pos
tive ~negative! values ofs, and thus seesu02& as a thermal
state in the temperatureT5(2pa)21. Similarly, if the world
line of the observer is located at a large positive~negative!
value of y, the observer only couples to modes with lar
positive ~negative! values ofl , and seesu02& as thermal in
the same temperature. In these limits, the observer thus
not distinguish between the vacuau02& and u00&.

We note that, in these limits, the observer is in a region
spacetime wherê02uTmnu02& and ^00uTmnu00& for a mass-
less field agree, as seen in Sec. II B. The same prop
seems likely to hold also for the stress-energy tensor o
massive field.

The correlations exhibited in Eq.~3.40! should not be
surprising. To see this, consider the analogue of Eq.~3.40!
for the vacuumu00& on M0 @26#. From the invariance ofu00&
under the isometries ofM0 it follows that a right-hand-side
Rindler packet localized at early~late! right-hand-side Rin-
dler times is correlated with a left-hand-side Rindler pac
localized at late~early! left-hand-side Rindler times, and tha
a right-hand-side Rindler packet localized at large posit
~negative! y is correlated with a left-hand-side Rindle
packet localized at large positive~negative! y. As the map
J̃2 on M0 takes late~early! right-hand-side Rindler times to
late ~early! left-hand-side Rindler times, and inverts the si
of y, one expects that inu02&, a Rindler-packet localized a
early Rindler times should be correlated with a packet loc
ized at late Rindler times, and a packet localized at la
positive y should be correlated with a packet localized
large negativey. This is exactly the structure displayed b
Eq. ~3.40!.

Finally, consider the number operator expectation va
of the modeursmln in u02&. Using Eqs.~3.33! and ~3.37a!,
we obtain
02400
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Nrsmln :5^02ubrsmln
† brsmlnu02&

5e2
21E

re2

~r11!e2
dV~e2pV21!21. ~3.42!

As e2!1, Eq. ~3.42! yields

Nrsmln'~e2pVr21!21. ~3.43!

The spectrum forNrsmln is thus Planckian and, taking int
account the redshift to the local frequency seen by the ac
erated observer, corresponds to the temperatureT
5(2pa)21. The result~3.42! is precisely the same as in th
vacuumu02& on M0 @26#, as noted at the end of Sec. III A
The number operator expectation value thus contains no
formation about the noninvariance ofu02& under translations
in h andy.

In the above analysis, we have so far justified the loc
ization arguments inh only for modes withV@nj. These
are the modes where the radial momentum is large eno
that the mode behaves relativistically out to this locati
~i.e., the effective massn for radial propagation is irrelevan
out to j!. As a result, the radial propagation is that of a
11)-dimensional free scalar field, with minimal spreadi
and dispersion. In fact, even in this case, we did not disc
the uniformity of our approximations, and it turns out th
the localized modes defined by Eqs.~3.34a,b! are somewhat
too broad to be of use in a rigorous analysis. The point h
is that, due to the sharp corners of the step functions in E
~3.34a,b!, the modes$ursmln% have long tails that decay onl
as h21 or y21, too slowly for convergence of certain inte
grals. However, this can be handled in the usual ways,
example by wavelet techniques@34#.

Although it is too complicated to discuss in detail, th
lower energy modes~whereV@nj does not hold! are also
well localized inh. For the following discussion, let us ig
nore they andz directions except as they contribute to th
effective mass for propagation in the~h,j!-plane. Our discus-
sion will make use of the fact@see Eq.~3.34b!# that replacing
the indexs on the modeursmln with s1t is equivalent to a
translation of the mode underh→h12pt/e2 . Thus, if any
mode is localized inh ~for fixed j!, the localization is deter-
mined by the value ofs. In particular, for large positives
(s@e2), the mode will be localized ath@1, while for large
negatives (s!2e2) the mode will be localized ath!
21. Thus, we need only show that at fixedj the lower en-
ergy modes decay rapidly ash→6` in order to show that
operators at late times couple only to modes with large p
tive s.
7-12
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Consider those modes with energyV;nj. We will ad-
dress such modes through the equivalence principle. F
this perspective, the modes withV!nj are those modes tha
do not have sufficient energy to climb to the heightj in the
effective gravitational field. Similarly, the modes withV
@nj have so much energy that, not only can they climb
the heightj, but that they remain relativistic in this regio
and so continue to propagate with minimal dispersion. Th
we see that the modes withV;nj are those modes tha
while they have sufficient energy to reach the vicinity ofj,
propagate nonrelativistically through this region. Thus,
may describe them as the wave functions of nonrelativi
particles in a gravitational field.

For large times, it is reasonable to model the correspo
ing wave packets by ignoring the effect of the gravitation
field on the dispersion of the packet and only including t
field through its effects on the center of the wave pack
That is, we model such a wave packet as the wave pack
a free nonrelativistic particle for which, instead of followin
a constant velocity trajectory, the center of the packet ac
erates downward as described by the field. Such an estim
of the large time behavior at fixed position gives an exp
nential decay of the wave function as the packet ‘‘falls do
the gravitational well.’’ Thus, we conclude that the mo
decays exponentially with the proper time~proportional toh!
at any locationj. It follows that modes withV!nj should
also have at least exponential decay inh at fixed j, since
they do not even have enough energy to classically reach
height j. Thus, even for modes that do not satisfyV@nj,
we conclude that operators at large positiveh couple only to
modes with large positives, and so viewu02& as a thermal
bath.

C. Particle detector

In this subsection we consider on the spacetimesM0 and
M 2 a monopole detector whose world line is given by E
~3.1a,b!. The detector is turned on and off in a way to
explained below, and the detector ground state energy is
malized to 0. The field is taken to be massless.

In first order perturbation theory, the probability for th
detector becoming excited is@5,24–26#

c2 (
E.0

u^^Eum~0!u0&&u2F~E!, ~3.44!

where c is the coupling constant,m~t! is the detector’s
monopole moment operator,u0&& is the ground state of the
detector, the sum is over all the excited statesuE&& of the
detector, and

F~E!:5E dtE dt8e2 iE~t2t8!

3G1
„x~t!,x~t8!…. ~3.45!

Here G1(x,x8) stands onM0 for the Wightman function
GM0

1 (x,x8)ª^00uf(x)f(x8)u00&, and onM 2 for the Wight-

man functionGM2

1 (x,x8)ª^02uf(x)f(x8)u02&. The detec-
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tor response functionF(E) contains the information abou
the environment~by definition, ‘‘particles’’! seen by the de-
tector, while the remaining factor in Eq.~3.44! contains the
information about the sensitivity by the detector.

Consider first the vacuumu00& on M0 . The Wightman
function GM0

1 (x,x8) is by construction invariant under th

boosts generated by the Killing vectorx] t1t]x . We there-
fore haveGM0

1
„x(t),x(t8)…5GM0

1
„x(t2t8),x(0)…. This im-

plies that the excitation probability per unit proper time
constant. In particular, if the detector is turned on at
infinite past and off at the infinite future, each integral in E
~3.45! has a fully infinite range, and the total probabili
~3.44! is either divergent or zero. A more meaningful qua
tity in this instance is the excitation probability per un
proper time, given by the counterpart of Eq.~3.44! with
F(E) replaced by

F̃~E!ªE dte2 iEtG1
„x~t!,x~0!…. ~3.46!

Inserting the trajectory~3.1a,b! into the image sum expres
sion in Eq.~2.16!, we find

GM0

1
„x~t!,x~0!…

5
21

16p2a2 (
n52`

`
1

sinh2@~t2 i e!/~2a!#2n2a2a22 .

~3.47!

The contributions to Eq.~3.46! from each term in Eq.~3.47!
can then be evaluated by contour intergrals, with the res

F̃M0
~E!5

E

2p~e2paE21!

3S 11 (
n51

`
sin@2aE arcsinh~na/a!#

naEA11n2a2a22 D .

~3.48!

F̃M0
(E) clearly satisfies the Kubo-Martin-Schwinger~KMS!

condition

F̃M0
~E!5e22paEF̃M0

~2E!, ~3.49!

which is characteristic of a thermal response at the temp
tureT5(2pa)21 @26#. In the limit a→`, only the first term
in Eq. ~3.48! survives, andF̃M0

(E) correctly reduces to

F̃M(E) @25#.
Consider then the vacuumu02& on M 2 . From Eqs.

~2.14a! and ~2.16! we obtain

GM2

1
„x~t!,x~t8!…5GM0

1
„x~t!,x~t8!…1DG1~t,t8!,

~3.50!

where
7-13
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DG1~t,t8!5
tanh$~p/a!Aa2 cosh2@~t1t8!/~2a!#1y0

2%

16paAa2 cosh2@~t1t8!/~2a!#1y0
2

,

~3.51!

and y0 is the value of the coordinatey on the detector tra-
jectory. If the detector is turned on at the infinite past and
at the infinite future, the contribution fromDG1(t,t8) to
FM2

(E) is equal to a finite number timesd(E). This implies

that DG1(t,t8) does not contribute to the~divergent! total
excitation probability~3.44!. However, the excitation prob
ability per unit proper time is now not a constant along t
trajectory, sinceDG1(t,t8) depends ont and t8 through
the sumt1t8. The vacuau02& and u00& appear therefore
distinct to particle detectors that only operate for some fin
duration, and it is not obvious whether the response of s
detectors inu02& can be regarded as thermal. Neverthele
the suppression ofDG1(t,t8) at largeut1t8u shows that
the responses inu02& and u00& are asymptotically identica
for a detector that only operates in the asymptotic pas
future. Similarly, the suppression ofDG1(t,t8) at largeuy0u
shows that the responses inu02& and u00& become asymp-
totically identical for a detector whose trajectory lies at a
ymptotically large values ofuyu, uniformly for all proper
times along the trajectory. The detector inu02& therefore
responds thermally, at the temperatureT5(2pa)21, in the
limit of early and late proper times for a prescribedy0 , and
for all proper times in the limit of largeuy0u. These are
precisely the limits in which we deduced the experien
along the accelerated world line to be thermal from the B
goliubov transformation in Sec. III B.

D. Riemannian section and the periodicity of Riemannian
Rindler time

In this section we consider the analytic properties of
Feynman Green functions in the complexified Rindler tim
coordinate. We begin by discussing the relevant Riemann
sections of the complexified spacetimes.

As M , M0 , and M 2 are static, they can be regarded
Lorentzian sections of complexified flat spacetimes that a
admit Riemannian sections. In terms of the~local! coordi-
nates (t,x,y,z), the Riemannian sections of interest arise
writing t52 i t̃ , letting the ‘‘Riemannian time’’ coordinatet̃
take all real values, and keepingx, y, andz real.7 We denote
the resulting flat Riemannian manifolds by respectivelyMR,
M0

R , andM 2
R . Note that ast is a global coordinate on th

Lorentzian sections,t̃ is a global coordinate on the Rieman
ian sections, andMR, M0

R , andM 2
R are well defined.

M0
R andM 2

R are the quotient spaces ofMR with respect to
the Riemannian counterparts of the mapsJ0 andJ2 ~2.2a,b!.
The coordinates (t̃ ,x,y,z) are global onMR, whereas onM0

R

7The Lorentzian and Riemannian sections could be defined a
sets stabilized by suitable antiholomorphic involutions on the co
plexified spacetimes. We shall rely on this formalism with the bla
hole spacetimes in Sec. IV@27,28#.
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R they have the identifications

~ t̃ ,x,y,z!;~ t̃ ,x,y,z12a!, for M0
R , ~3.52a!

~ t̃ ,x,y,z!;~ t̃ ,2x,2y,z1a!, for M 2
R . ~3.52b!

The metric reads explicitly

dsR
25d t̃21dx21dy21dz2. ~3.53!

The isometries ofMR, M0
R , andM 2

R are clear from the quo-
tient construction.

We now wish to understand how the~local! Lorentzian
Rindler coordinates (h,j,y,z), defined on the Rindler
wedges ofM , M0 , and M 2 , are continued into~local!
Riemannian Rindler coordinates on respectivelyMR, M0

R ,
and M 2

R . For M and M0 , the situation is familiar. Setting

t52 i t̃ andh52 i h̃, the transformation~3.2a,b! becomes

t̃ 5j sin~ h̃ !, ~3.54a!

x5j cos~ h̃ !, ~3.54b!

and the metric~3.53! reads

dsR
25j2dh̃21dj21dy21dz2. ~3.55!

On MR, one can therefore understand the set (h̃,j,y,z) as
~local! Riemannian Rindler coordinates, such thatj.0 and
h̃ is periodically identified as (h̃,j,y,z);(h̃12p,j,y,z).
The only part ofMR not covered by these coordinates is t
flat R2 of measure zero atj50. On M0

R , one has the addi-

tional identification (h̃,j,y,z);(h̃,j,y,z12a), which
arises from Eq.~3.52a!. On bothMR andM0

R , the globally-

defined Killing vector]h̃5x] t̃2 t̃ ]x generates a U~1! isom-
etry group of rotations about the origin in the (t̃ ,x)-planes.
The geometry is often described by saying that the Riema
ian Rindler timeh̃ is periodic with period 2p, and the U~1!
isometry group is referred to as ‘‘translations in the R
mannian Rindler time.’’

On M 2
R , we can again introduce by Eqs.~3.54a,b! the

local Riemannian Rindler coordinates (h̃,j,y,z) which, with
j.0, cover in local patches all ofM 2

R except the flat open
Möbius strip of measure zero atj50. The identifications in
these coordinates read

~ h̃,j,y,z!;~h̃12p,j,y,z!;~p2h̃,j,2y,z1a!,
~3.56!

the latter one arising from Eq.~3.52b!. The locally-defined
Killing vector ]h̃5x] t̃2 t̃ ]x can be extended into a smoo
line field ṼR ~a vector up to a sign! on M 2

R , but the identi-

fication ~3.52b! makes it impossible to promoteṼR into a
smooth vector field onM 2

R by a consistent choice of the sign
This means thatM 2

R does not admit a global U~1! isometry
that would correspond to ‘‘translations in the Riemanni
Rindler time.’’

he
-

k
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M 2
R does, however, possess subsets that admit such~1!

isometries. It is easy to verify that any pointxPM 2
R with j

.0 has a neighborhoodU.S13R3 with the following prop-

erties:~1! The restriction ofṼR to U can be promoted into a
unique, complete vector fieldVU

R in U by choosing the sign
at one point;~2! The flow of VU

R forms a freely-acting U~1!
isometry group ofU; ~3! On U, the Riemannian Rindle

time h̃ can be defined as an angular coordinate with per
2p, and the action of the U~1! isometry group onU consists

of ‘‘translations’’ in h̃. In this sense, one may regardh̃ on
M 2

R as a local angular coordinate with period 2p.
We can now turn to the Feynman propagators on

spacetimes. Recall first that the Feynman propagatorGM
F

analytically continues into the Riemannian Feynman pro
gator GMR

F , which depends on its two arguments on

through the Riemannian distance function@( t̃ 2 t̃ 8)21(x
2x8)21(y2y8)21(z2z8)2#1/2, and whose only singularity
is at the coincidence limit.GMR

F is therefore invariant unde
the full isometry group ofMR. As the Riemannian Feynma
propagators onM0

R and M 2
R are obtained fromGMR

F by the
method of images, they are likewise invariant under the
spective full isometry groups ofM0

R and M 2
R , and they are

singular only at the coincidence limit. In the massless ca
explicit expressions can be found by analytically continu
the Lorentzian Feynman propagators given in Sec. II B.

The properties of interest of the Riemannian Feynm
propagators can now be inferred from the above discus
of the Riemannian Rindler coordinates. It is immediate t
GMR

F andGM
0
R

F
are invariant under the rotations generated

the Killing vector]h̃ , respectively onMR andM0
R , and that

they are periodic inh̃ in each argument with period 2p. This
periodicity of the propagator in Riemannian time is char
teristic of thermal Green’s functions. The local temperat
seen by the observer~3.1a,b! is read off from the period by
relatingh to the observer’s proper time and the local redsh
factor, with the resultT5(2pa)21 @25,26#.

GM
2
R

F
, on the other hand, displays no similar rotation

invariance. This is the Riemannian manifestation of the f
that the restriction ofu02& to R2 is not invariant under the
boost isometries ofR2 generated by]h . GM

2
R

F
is invariant

under ‘‘local 2p translations’’ of each argument inh̃, in the
above-explained sense in whichh̃ provides onM 2 a local
coordinate with periodicity 2p. However, in the absence of
continuous rotational invariance, it is difficult to draw co
clusions about the thermal character ofu02& merely by in-
spection of the symmetries ofGM

2
R

F
.

One can, nevertheless, use the complex analytic pro
ties of GM

2
R

F
to explicitly calculate the relation between th

quantum mechanical probabilities of the vacuumu02& to
emit and absorb a Rindler particle with prescribed quant
numbers. We shall briefly describe this calculation in S
V D, after having performed the analogous calculation on
RP3 geon. For late and early Rindler times, the emission
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absorption probabilities of Rindler particles with local fr
quencyE turn out to be related by the factore22paE. This is
the characteristic thermal result at the Rindler tempera
T5(2pa)21.

IV. THE COMPLEXIFIED KRUSKAL AND RP3

GEON SPACETIMES

This section is a mathematical interlude in which we d
scribe the Lorentzian and Riemannian sections of the c
plexifiedRP3 geon. The main point is to show how the qu
tient construction of the LorentzianRP3 geon from the
Lorentzian Kruskal spacetime@19# can be analytically con-
tinued to the Riemannian sections of the respective co
plexified manifolds. When formalized in terms of~anti!holo-
morphic involutions on the complexified Kruskal manifo
@27,28#, this observation follows in a straightforward wa
from the constructions of Ref.@28#.

M.0 denotes throughout the Schwarzschild mass.

A. Complexified Kruskal

Let (Z1,Z2,Z3,Z4,Z5,Z6,Z7) be global complex coordi-
nates onC7, and letC7 be endowed with the flat metric

ds25~dZ1!21~dZ2!21~dZ3!21~dZ4!2

1~dZ5!21~dZ6!22~dZ7!2. ~4.1!

We define the complexified Kruskal spacetimeM C as the
algebraic variety inC7 determined by the three polynomia
@35#

~Z6!22~Z7!21 4
3 ~Z5!2516M2, ~4.2a!

@~Z1!21~Z2!21~Z3!2#~Z5!45576M6, ~4.2b!

)Z4Z51~Z5!2524M2. ~4.2c!

The Lorentzian and Riemannian sections of interest, deno
by M̃L and M̃R, are the subsets ofM C stabilized by the
respective antiholomorphic involutions@27,28#

JL :~Z1,Z2,Z3,Z4,Z5,Z6,Z7!°~Z1,Z2,Z3,Z4,Z5,Z6,Z7!,
~4.3a!

JR :~Z1,Z2,Z3,Z4,Z5,Z6,Z7!°~Z1,Z2,Z3,Z4,Z5,Z6,2Z7!.
~4.3b!

M̃L andM̃R are clearly real algebraic varieties. OnM̃L, Zi

are real for alli ; onM̃R, Zi are real for 1< i<6 while Z7 is
purely imaginary.

The Lorentzian sectionM̃L consists of two connected
components, one withZ5.0 and the other withZ5,0. Each
of these components is isometric to the Kruskal spaceti
which we denote byM L. An explicit embedding ofM L

onto the component ofM̃L with Z5.0 reads, in terms of the
usual Kruskal coordinates (T,X,u,w),

Z15r sin u cosw, ~4.4a!
7-15
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Z25r sin u sin w, ~4.4b!

Z35r cosu, ~4.4c!

Z454M S r

2M D 1/2

22M S 2M

r D 1/2

,

~4.4d!

Z552M S 6M

r D 1/2

, ~4.4e!

Z654M S 2M

r D 1/2

expS 2
r

4M DX,

~4.4f!

Z754M S 2M

r D 1/2

expS 2
r

4M DT,

~4.4g!

whereX22T2.21, andr is determined as a function ofT
andX from

S r

2M
21DexpS r

2M D5X22T2. ~4.5!

In the Kruskal coordinates, the metric onM L reads

dsL
25

32M3

r
expS 2

r

2M D
3~2dT21dX2!1r 2dV2, ~4.6!

wheredV25du21sin2 udw2 is the metric on the unit two-
sphere. In what follows, the singularities of the spheri
coordinates~u,w! on S2 can be handled in the standard wa
and we shall not explicitly comment on these singularitie
M L is both time and space orientable, and it admits

global foliation with spacelike hypersurfaces whose topolo
is S23R.S3\$two points at infinity%. M L is manifestly
spherically symmetric, with an O~3! isometry group that acts
transitively on the two-spheres in the metric~4.6!. M L has
also the Killing vector

VL
ª

1

4M
~X]T1T]X!, ~4.7!

which is timelike for uXu.uTu and spacelike foruXu,uTu.
We define the time orientation onM L so thatVL is future-
pointing for X.uTu and past-pointing forX,2uTu. A con-
formal diagram ofM L, with the two-spheres suppressed,
shown in Fig. 3.

In each of the four regions ofM L in which uXuÞuTu, one
can introduce local Schwarzschild coordinates (t,r ,u,w) that
are adapted to the isometry generated byVL. In the exterior
regionX.uTu, this coordinate transformation reads

T5S r

2M
21D 1/2

expS r

4M D sinhS t

4M D , ~4.8a!
02400
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X5S r

2M
21D 1/2

expS r

4M D coshS t

4M D , ~4.8b!

wherer .2M and2`,t,`. The metric takes the familia
form

dsL
252S 12

r

2M Ddt21
dr2

S 12
r

2M D 1r 2dV2, ~4.9!

andVL5] t .
The Riemannian sectionM̃R consists of two connected

components, one withZ5.0 and the other withZ5,0. Each
of these components is isometric to the~usual! Riemannian
Kruskal spacetime, which we denote byMR. An explicit
embedding ofMR onto the component ofM̃L with Z5.0 is
obtained, in terms of the usual Riemannian Kruskal coor
nates (T̃,X,u,w), by settingT52 i T̃ in Eqs. ~4.4a!–~4.6!.
The ranges ofT̃ andX are unrestricted.
MR is orientable, and it admits an O~3! isometry group

that acts transitively on the two-spheres in the Riemann
counterpart of the metric~4.6!. It also admits the Killing
vector

VR
ª

1

4M
~X] T̃2T̃]X!, ~4.10!

which is the Riemannian counterpart ofVL ~4.7!. The Rie-
mannian horizon is a two-sphere atT̃5X50, whereVR van-
ishes.

With the exception of the Riemannian horizon,MR can
be covered with the Riemannian Schwarzschild coordina
( t̃ ,r ,u,w), which are obtained from the Lorentzia
Schwarzschild coordinates in the regionX.uTu by settingt

52 i t̃ and taking t̃ periodic with period 8pM . The well-
known singularity of the Riemannian Schwarzschild coor
nates at the Riemannian horizon is that of two-dimensio
polar coordinates at the origin.

FIG. 3. A conformal diagram of the Kruskal manifold. Eac
point represents a suppressedS2 orbit of the O~3! isometry group.
(T,X) are the Kruskal coordinates introduced in Sec. IV A, and
hypersurfacesT50 andX50 are shown. The involutionJL ~4.12a!
consists of the reflection (T,X)°(T,2X) about the vertical axis,
followed by the antipodal map (u,w)°(p2u,w1p) on the sup-
pressed two-sphere.
7-16
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The intersection ofM L andMR embeds into bothM L

andMR as a maximal three-dimensional wormhole hyp
surface of topologyS23R. In the Lorentzian~Riemannian!
Kruskal coordinates, this hypersurface is given byT50 (T̃
50).

B. Complexified RP3 geon

Consider onM C the map@28#

J:~Z1,Z2,Z3,Z4,Z5,Z6,Z7!

°~2Z1,2Z2,2Z3,Z4,Z5,2Z6,Z7!. ~4.11!

J is clearly an involutive holomorphic isometry, and it ac
freely onM C. We define the complexifiedRP3 geon space-
time as the quotient spaceM C/J. In the notation of Ref.
@28#, J5RZP.

As J commutes withJL andJR , the restrictions ofJ to
M̃L and M̃R are freely-acting involutive isometries. AsJ
leavesZ5 invariant, these isometries ofM̃L andM̃R restrict
further into isometries of each of the connected compone
J thus restricts into freely and properly discontinuously a
ing involutive isometries onM L andMR. We denote these
isometries respectively byJL and JR. The LorentzianRP3

geon is now defined as the quotient spaceM L/JL, and the
RiemannianRP3 geon is defined as the quotient spa
MR/JR. Their intersection is a three-dimensional hypers
face of topologyRP3\$a point at infinity%, embedding as a
maximal hypersurface into bothM L/JL andMR/JR.

For elucidating the geometries ofM L/JL andMR/JR, it
is useful to write the mapsJL andJR in explicit coordinates.
In the Lorentzian~Riemannian! Kruskal coordinates onM L

~MR, respectively!, we have

JL:~T,X,u,w!°~T,2X,p2u,w1p!, ~4.12a!

JR:~ T̃,X,u,w!°~ T̃,2X,p2u,w1p!. ~4.12b!

In the Riemannian Schwarzschild coordinates onMR, JR

reads

JR:~ t̃ ,r ,u,w!°~ t̃ 14pM ,r ,p2u,w1p!. ~4.13!

It is clear thatJL preserves both time orientation and spa
orientation onM L, and JR preserves orientation onMR.
M L/JL is therefore both time and space orientable, a
MR/JR is orientable.

Consider firstM L/JL. As JL commutes with the O~3!
isometry ofM L, M L/JL admits the induced O~3! isometry
with two-dimensional spacelike orbits:M L/JL is spherically
symmetric. On the other hand, the Killing vectorVL ofM L

changes sign underJL, and it therefore induces only a lin
field VL/JL but no globally-defined vector field onM L/JL.
This means thatM L/JL does not admit globally-define
isometries that would be locally generated byVL/JL. Alge-
braically, this can be seen by noticing thatJL does not com-
mute with the isometries ofM L generated byVL.

A conformal diagram ofM L/JL is shown in Fig. 4. Each
point in the diagram represents an O~3! isometry orbit. The
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region X.0 is isometric to that in the Kruskal diagram o
Fig. 3, and the O~3! isometry orbits are two-spheres. AtX
50, the O~3! isometry orbits have topologyRP2: it is this set
of exceptional orbits that cannot be consistently moved
the local isometries generated byVL/JL.M L/JL is inextend-
ible, and it admits a global foliation with spacelike hypersu
faces whose topology isRP3\$a point at infinity%.
M L/JL is clearly an eternal black hole spacetime. It po

sesses one asymptotically flat infinity, and an associa
static exterior region that is isometric to one Kruskal exter
region. As mentioned above, the exterior timelike Killin
vector cannot be extended into a global Killing vector
M L/JL. Among the constant Schwarzschild time hypers
faces in the exterior region, there is only one that can
extended into a smooth Cauchy hypersurface forM L/JL: in
our ~local! coordinates (T,X,u,w), this distinguished exte-
rior hypersurface is atT50.

The intersection of the past and future horizons is
two-surface on which the Killing line fieldVL/JL vanishes.
This critical surface has topologyRP2 and area 8pM2.
Away from the critical surface, the future and past horizo
have topologyS2 and area 16pM2, just as in Kruskal.

A parallel discussion holds forMR/JR. MR/JR inherits
from MR an O~3! isometry whose generic orbits are two
spheres, but there is an exceptional hypersurface of topo
R3RP2 on which the orbits have topologyRP2. The ‘‘loca-
tion’’ of this hypersurface prevents one from consisten
extending the local isometries generated by the line fi
VR/JR into globally-defined isometries.

The line field VR/JR can be promoted into a globally
defined Killing vector field only in certain subsets o
MR/JR. In particular, any pointxPMR/JR with r .2M has
a neighborhoodU.S13R3 with the following properties:
~1! The restriction ofVR/JR to U can be promoted into a
unique, complete vector fieldVU

R in U by choosing the sign
at one point;~2! The flow of VU

R forms a freely-acting U~1!
isometry group ofU; ~3! On U, the Riemannian Schwarz
schild time t̃ can be defined as an angular coordinate w
period 8pM , and the action of the U~1! isometry group on
U consists of ‘‘translations’’ int̃ . In this sense, one ma
regardt̃ onMR/JR as a local angular coordinate with perio
8pM .

FIG. 4. A conformal diagram of theRP3 geon@19#. Each point
represents a suppressed orbit of the O~3! isometry group. The re-
gion X.0 is isometric to the regionX.0 of the Kruskal spacetime
shown in Fig. 3; in particular, the O~3! isometry orbits in this region
are two-spheres. AtX50, the O~3! orbits have topologyRP2.
7-17
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We define the Riemannian horizon as the set on which
Riemannian Killing line fieldVR/JR vanishes. This horizon
is located atX505T, and it is a surface with topologyRP2

and area 8pM2 at X505T. The Riemannian horizon
clearly lies in the intersection ofM R/JR andM L/JL, and
onM L/JL it consists of the set where the Lorentzian Killin
line field VL/JL vanishes. The Riemannian horizon thus on
sees the part of the Lorentzian horizon that is exceptiona
both topology and area. This will prove important for th
geon entropy in Sec. VI.

The above discussion is intended to emphasize the p
lels between the black hole spacetimes and the flat sp
times of Sec. II. The Kruskal spacetimeM L is analogous to
M0 , and the RP3 geon M L/JL is analogous toM 2

5M0 / J̃2 . The isometries ofM L generated byVL corre-
spond to the boost-isometries ofM0 generated by the Killing
vectort]x1x] t . The analogies of the conformal diagrams
Figs. 3 and 4 to those in Figs. 1 and 2 are clear. The ana
extends to the Riemannian sections of the flat spacetim
discussed in Sec. III D. The U~1! isometry ofMR generated
by VR corresponds to the U~1! isometry ofM0

R generated by

]h̃ , and the 8pM periodicity of t̃ onMR corresponds to the
2p periodicity of h̃ on M0

R . The ‘‘local 8pM periodicity’’

of t̃ onMR/JR corresponds to the ‘‘local 2p periodicity’’ of
h̃ on M 2

R , but in neither case is this local periodicity ass
ciated with a globally-defined U~1! isometry. Finally, the
intersection of the future and past acceleration horizons
M 2 is exceptional both in topology and in what we mig
call the ‘‘formal area’’ ~though the actual area is infinite!,
and it is precisely this exceptional part of the Lorentzi
horizon that becomes the horizon of the Riemannian sect

V. SCALAR FIELD THEORY ON THE RP3 GEON

In this section we analyze scalar field theory on theRP3

geon spacetime. Section V A reviews the construction of
Boulware vacuumu0B& in one exterior Schwarzschild region
The Bogoliubov transformation betweenu0B& and the Hartle-
Hawking-like vacuumu0G& is presented in Sec. V B. Sectio
V C discusses briefly the experiences of a particle detecto
u0G&, concentrating on a detector that is in the exterior reg
of the geon and static with respect to the timelike Killin
vector of this region. Section V D derives the Hawking effe
from the complex analytic properties of the Feynman pro
gator in u0G&.

A. Boulware vacuum

We begin by reviewing the quantization of a real sca
field f in one exterior Schwarzschild region.

As the Kruskal spacetime has vanishing Ricci scalar,
curvature coupling term drops out from the scalar field act
~2.5!, and the field equation reads

~¹a¹a2m2!f50. ~5.1!

In the exterior Schwarzschild metric in the Schwarzsch
coordinates~4.9!, the field equation~5.1! can be separate
with the ansatz
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f5~4pv!21/2r 21Rv l~r !e2 ivtYlm~u,w!, ~5.2!

whereYlm are the spherical harmonics.8 The equation for the
radial functionRv l(r ) is

05F d2

dr* 2 1v22S 12
2M

r D
3S m21

l ~ l 11!

r 2 1
2M

r 3 D GRv l , ~5.3!

wherer * is the tortoise coordinate,

r *ªr 12M lnS r

2M
21D . ~5.4!

The ~indefinite! inner product, evaluated on a hypersurfa
of constantt, reads

~f1 ,f2!ª i E
S2

sin ududwE
2`

`

r 2dr* f1]J tf2 . ~5.5!

For presentational simplicity, we now set the field mass
zero,m50. The casem.0 will be discussed at the end o
Sec. V B.

The vacuum of positive frequency mode functions w
respect to the timelike Killing vector] t is called the Boul-
ware vacuum@22,23#. A complete orthonormal basis o
mode functions with this property is recovered from t
separation~5.2! by takingv.0 and choosing, for eachl , for
Rv l a basis of solutions that are 2pd-orthonormal inv in the
Schrödinger-type inner product*2`

` dr* R1R2 . We shall now
make a convenient choice for such an orthonormal basis

For each l and m, it follows from standard one-
dimensional Schro¨dinger scattering theory@37,38# that the
spectrum forv is continuous and consists of the entire po
tive real line, and further that the spectrum has twofold d
generacy. One way@39# to break this degeneracy and obta
an orthonormal basis would be to choose forRv l the conven-
tional scattering-theory eigenfunctionsRW v l and RQ v l whose
asymptotic behavior asr *→6` is

RW v l;H eivr* 1AW v le
2 ivr* , r *→2`,

Bv le
ivr* , r *→`,

~5.6a!

RQ v l;H Bv le
2 ivr* , r *→2`,

e2 ivr* 1AQ v le
ivr* , r *→`.

~5.6b!

The coefficients satisfy@37#

0,uBv l u<1, ~5.7a!

AW v lBv l52AQ v lBv l , ~5.7b!

8We use the Condon-Shortley phase convention~see for example
Ref. @36#!, in which Yl (2m)(u,w)5(21)mYlm(u,w) and Ylm(p
2u,w1p)5(21)lYlm(u,w).
7-18
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uAW v l u25uAQ v l u2512uBv l u2. ~5.7c!

The modes involvingRW v l are purely outgoing at infinity, and
those involvingRQ v l are purely ingoing at the horizon. Thi
basis would be especially useful if one were to consi
vacua that are not invariant under the time inversiont→2t
@5#. For us, however, it will be more transparent to use
basis in which complex conjugation is simple. To this en
we introduce the solutionsRv l

6 for which

&Rv l
1 ;A11A12uAW v l u2 eivr* 1

AW v le
2 ivr*

A11A12uAW v l u2

as r *→2`, ~5.8a!

and

Rv l
2 5Rv l

1 . ~5.8b!

Equations~5.6a,b! and ~5.8a,b! defineRv l
6 uniquely. Using

the identities~5.7a–c!, it is straightforward to verify that the
set $Rv l

6 % is 2pd-orthonormal inv in the Schro¨dinger-type
inner product. Conversely, it can be verified that t
Schrödinger-type orthonormality and the complex conjuga
relation ~5.8b! determine these solutions uniquely up to
overall phase.

We now take the complete orthonormal set of posit
frequency modes to be$uv lm

e %, where the indexe takes the
values6 and

uv lm
e

ªei ~ l 1umu!p/2~4pv!21/2r 21Rv l
e e2 ivtYlm . ~5.9!

The orthonormality relation reads

~uv lm
e ,uv8 l 8m8

e8 !5dee8d l l 8dmm8d~v2v8!, ~5.10!

with the complex conjugates satisfying a similar relati
with a minus sign, and the mixed inner products vanishin

The asymptotic behavior ofRv l
1 at infinity is

&Bv lRv l
1

uBv l u
;A11A12uAW v l u2eivr* 1

AQ v le
2 ivr*

A11A12uAW v l u2

as r *→`. ~5.11!

When uAW v l u!1, Eqs. ~5.8a! and ~5.11! show thatuv lm
1 is

mostly outgoing, with small ingoing scattering correctio
both at the horizon and at infinity. WhenuAW v l u is not small,
the relative weights of the incoming and outgoing comp
nents inuv lm

1 become comparable, both at the horizon and
infinity. Analogous statements hold foruv lm

2 , with ingoing
and outgoing reversed.

We expand the quantized field as

f5(
e lm

E
0

`

dv@bv lm
e uv lm

e 1~bv lm
e !†uv lm

e #, ~5.12!
02400
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where bv lm
e and (bv lm

e )† are the annihilation and creatio
operators associated with the Boulware modeuv lm

e . The
Boulware vacuumu0B& is defined by

bv lm
e u0B&50. ~5.13!

B. Hartle-Hawking-like vacuum and the Bogoliubov
transformation

In the Kruskal spacetimeM L, the Hartle-Hawking
vacuumu0K& is the vacuum of mode functions that are po
tive frequency with respect to the affine parameters of
horizon-generating null geodesics@6,7#. As u0K& is invariant
under the involutionJL, it induces a unique vacuum on th
RP3 geon M L/JL. We denote this Hartle-Hawking-like
vacuum onM L/JL by u0G&. In terms of, say, the corre
sponding Feynman propagatorsGK

F on the Kruskal spacetime
and GG

F on theRP3 geon, this construction is given by th
method of images,

GG
F~x,x8!5GK

F~x,x8!1GK
F
„x,JL~x8!…. ~5.14!

The arguments of the functions on the two sides of Eq.~5.14!
represent points on respectively theRP3 geon and on the
Kruskal spacetime in the sense of local charts with iden
cations, as with the flat spaces in Sec. II A@cf. Eq. ~2.14a!#.
A complete set of the mode functions whose vacuum isu0G&
can be recovered by forming from the Kruskal Hartl
Hawking mode functions linear combinations that are inva
ant underJL @40#.

Several other characterizations of the stateu0G& can also
be given. In particular,u0G& can be defined as the analyt
continuation of the Green’s function on the RiemannianRP3

geonMR/JR, and as the vacuum of mode functions that a
positive frequency with respect to the affine parameters
the horizon-generating null geodesics of the geon. The
of these characterizations follows from the observation@6#
that GK

F analytically continues to the Riemannian Green
function on the Riemannian Kruskal manifoldMR and that
the Green’s functionsGKR

F onMR andGGR
F onMR/JR are

related by the Riemannian version of Eq.~5.14!. The result-
ing GGR

F is regular everywhere except at the coinciden
limit, and so analytically continues toGG

F . The second char-
acterization follows from the observation that the mod
constructed in@40# ~or, for example, theW-modes below!
have, when restricted to any generator of the geon horiz
no negative frequency part with respect to the affine para
eter along that generator.

We wish to find the Boulware-mode content ofu0G&. To
this end, we recall that the Boulware-mode content ofu0K&
can be found by an analytic continuation argument@5,7# that
is closely similar to the analytic continuation argument us
in finding the Rindler-mode content of the Minkows
vacuum@5#. In Sec. III A we adapted the Rindler analyt
continuation arguments from Minkowski space first toM0
and then toM 2 . The analogy between the quotient constru
tions M0→M 25M0 / J̃2 and M L→M L/JL makes it
straightforward to adapt our flat spacetime analytic conti
7-19
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ation to the geon. One finds that a complete orthonorma
of W-modes in the exterior region ofM L/JL is $Wv lm

e %,
where

Wv lm
6

ª

1

A2 sinh~4pMv!
~e2pMvuv lm

6 1e22pMvuv l ~2m!
7 !.

~5.15!

In analogy with Eq.~3.25!, we find

u0G&5)
v lm

S 1

cosh~r v! (
q50

`

exp~24pMvq!

3uq&v lm
1 uq&v l ~2m!

2 D , ~5.16!

where

tanh~r v!5exp~24pMv!, ~5.17!

anduq&v lm
e denotes the normalized state withq excitations in

the modeuv lm
e ,

uq&v lm
e

ª~q! !21/2@~bv lm
e !†#qu0B&. ~5.18!

Thus,u0G& contains Boulware modes in correlated pairs. F
any set of operators that only couple to one member of e
correlated Boulware pair, it is seen as in Sec. III A that
expectation values inu0G& are thermal, and the temperatu
measured at the infinity is the Hawking temperature,T
5(8pM )21. However, for operators that do not have th
special form, the expectation values are not thermal.

The definition ofu0G& gives no reason to expect that th
restriction ofu0G& to the exterior region would be invarian
under Schwarzschild time translations. That the restrict
indeed is not invariant becomes explicit upon decompos
the Boulware modes$uv lm

e % into wave packets that are loca
ized in the Schwarzschild time. Using the functions$hrs%
~3.34b!, we define such packets by

urs lm
e

ªE
0

`

dvhrs~v!uv lm
e . ~5.19!

urs lm
e is localized inv around the valuevr ª(r1 1

2 )e2 with
width e2 . When r * is so large that the asymptotic form
~5.11! holds, we see as in Sec. III B thaturs lm

e is approxi-
mately localized in t around two peaks, situated att
522pe2

21s6r * , with heights determined by the coeffi
cients in Eq.~5.8a!, and each having width 2pe2

21. In fact,
the discussion is somewhat simplified by the massless na
of the current case and by the asymptotic flatness of
geon. Takinge2!1 and proceeding as in Sec. III B, we fin

u0G&' )
rs lm

S 1

cosh~r vr
! (

q50

`

exp~24pMvrq!

3uq&rs lm
1 uq&r~2s!l ~2m!

2 D , ~5.20!
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where uq&rs lm
e denotes the normalized state withq excita-

tions in the modeurs lm
e ,

uq&rs lm
e

ª~q! !21/2@~brs lm
e !†#qu0B&. ~5.21!

The noninvariance ofu0G& under Schwarzschild time trans
lations is apparent from the noninvariance of Eq.~5.20! un-
der ~integer! translations ins.

Consider now an observer in the exterior region at a c
stant value ofr and the angular coordinates. At early~late!
Schwarzschild times, the mode localization properties d
cussed above imply that the observer only couples to mo
with large positive~negative! values ofs, and thus seesu0G&
as a thermal state. In particular, the observer cannot dis
guishu0G& from u0K& in these limits. Forr @M , the tempera-
ture is the Hawking temperatureT5(8pM )21.

Just as in the flat space case, the correlations exhibite
Eq. ~5.20! should not be surprising. In the vacuumu0K& in
the Kruskal spacetime, invariance under Killing time tran
lations implies that the partner of a right-hand-side Boulw
mode localized at asymptotically early~late! Schwarzschild
times is a left-hand-side Boulware mode localized at asym
totically late ~early! Schwarzschild times. The properties
the involutionJL on the Kruskal spacetime lead one to e
pect in u0G& a correlation between Boulware modes at ea
and late times, and a correlation between Boulware mo
with opposite signs ofm: this is indeed borne out by Eq
~5.20!.

For the number operator expectation value of the mo
urs lm in u0G&, one finds precisely the same result as inu0G&,

Nrs lm'~e8pMvr21!21. ~5.22!

This is the Planckian distribution in the temperatureT
5(8pM )21. In particular, the number operator expectati
value contains no information about the noninvariance
u0G& under the Schwarzschild time translations.

To end this subsection, we note that the above discus
can be easily generalized to a scalar field with a posit
massm. For eachl and m, the spectrum forv is again
continuous and consists of the entire positive real line,
the spectrum is now degenerate only forv.m. In the non-
degenerate part, 0,v,m, the eigenfunctions vanish expo
nentially at r *→`, while at r *→2` they are asymptoti-
cally proportional to cos(vr*1dvl), where dv l is a real
phase. The nondegenerate part of the spectrum thus c
sponds classically to particles that never reach infinity, a
the Bogoliubov transformation for these modes is qual
tively similar to that of then50 modes in Sec. III A. In the
degenerate part of the spectrum,v.m, the asymptotic solu-
tions to the radial equation~5.3! at r *→` are now linear
combinations of (r * /M )6 im2M /p exp(6ipr* ), where
pªAv22m2, and the relations~5.6a,b! and~5.7a,b! need to
be modified accordingly, but Eqs.~5.8a,b! and~5.9! do then
again define an orthonormal set of modes, and the rest o
discussion proceeds as in the massless case. Thus, also
massive case, expectation values of operators that co
only to one member of each correlated Boulware mode p
are thermal in the Hawking temperatureT5(8pM )21.
7-20
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INEXTENDIBLE SCHWARZSCHILD BLACK HOLE WITH . . . PHYSICAL REVIEW D 58 024007
Again, arguments similar to those of Sec. III B show that t
is the case for any operators that only couple to the infin
reaching modes at large distances and at asymptotically e
or late Schwarzschild times.

C. Particle detector in the Hartle-Hawking-like vacuum

We shall now briefly consider the response of a parti
detector on theRP3 geon in the vacuumu0G&.

We describe the internal degrees of freedom of the de
tor by an idealized monopole interaction as in Sec. III C.
first order perturbation theory, the detector transition pr
ability is given by formulas~3.44! and~3.45!, wherex(t) is
the detector trajectory parametrized by the proper time,
G1(x,x8) stands for the Wightman functio
GG

1(x,x8)ª^0Guf(x)f(x8)u0G&. In analogy with Eq.
~5.14!, we have

GG
1~x,x8!5GK

1~x,x8!1GK
1
„x,JL~x8!…, ~5.23!

where GK
1(x,x8)ª^0Kuf(x)f(x8)u0K& is the Kruskal

Wightman function.
Of particular interest is a detector that is in the exter

region and static with respect to the Schwarzschild ti
translation Killing vector of this region. The contribution t
the response function~3.45! from the first term on the right-
hand-side of Eq.~5.23! is then exactly as in Kruskal, and th
contribution indicates a thermal response at the Hawk
temperatureT5(8pM )21 @5#. The new effects on theRP3

geon are due to the additional contribution from

DGG
1~t,t8!ªGK

1@x~t!,JL
„x~t8!…#. ~5.24!

Unfortunately, the existing literature on the Kruskal Wigh
man functions seems to contain little information abo
DGG

1 . The pointsx(t) andJL
„x(t8)… in Eq. ~5.24! are in the

opposite exterior Kruskal regions, and field theory on
Kruskal spacetime gives little incentive to study the Wig
man functions in this domain. We therefore only offer som
conjectural remarks.

As translations in the exterior Killing time cannot be e
tended into globally-defined isometries of theRP3 geon,
there is no apparent symmetry that would make the dete
excitation rate independent of the proper time along the
jectory. However, from the locations of the pointsx(t) and
JL
„x(t8)… in the Kruskal spacetime, it seems likely th

DGG
1(t,t8) tends to zero whenut1t8u tends to infinity, as

was the case with the analogous quantity~3.51! in the Rin-
dler analysis onM 2 . If true, this means that the responses
u0G& and u0K& are identical for a detector that only operat
in the asymptotic past or asymptotic future. Further, it see
likely that GK

1(x,x8) tends to zero whenever the pointsx and
x8 tend to large values of the curvature radius in the oppo
Kruskal exterior regions, as a power law for a massless fi
and exponentially for a massive field.9 If true, this implies
that the responses inu0G& and u0K& become asymptotically

9We thank Bob Wald for this remark.
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identical for a detector far from the hole, even if the detec
operates at proper times that are not in the asymptotic pa
future.

Finally, we note that the contribution to the renormaliz
expectation valuê0GuTmn(x)u0G& from the second term in
Eq. ~5.23! is manifestly finite. IfGK

1(x,x8) satisfies the fall-
off properties mentioned above, and if its derivatives fall o
similarly, it follows that ^0GuTmn(x)u0G& approaches
^0KuTmn(x)u0K& when the curvature radius of the pointx is
asymptotically large, or when the pointx is taken to asymp-
totically distant future or past along a path of fixed curvatu
radius in the exterior region. If true, this means that t
asymptotic agreement of the detector responses inu0G& and
u0K& is accompanied by the asymptotic agreement of
stress-energy tensors.

D. Derivation of the Hawking effect from the analytic
properties of the Feynman propagator

In this section we derive the Hawking effect on theRP3

geon from the analytic properties of the Feynman propag
in the vacuumu0G&. The idea is to consider the probabilitie
of the geon to emit and absorb particles with a given f
quency, at late exterior times, and to reduce these proba
ties to those of the Kruskal hole. This section is meant to
read in close conjunction with the Kruskal analysis of R
@6#.

Following Sec. IV of Ref.@6#, we envisage a family of
particle detectors located on a timelike hypersurfaceO of
constant curvature radius in the exterior region of theRP3

geon ~see Fig. 5!. The detectors are assumed to meas
particles that are purely positive frequency with respect
the exterior Killing vector] t . The amplitude that a particle i
detected in a modef i(x8), having started in a modehj (x) on
some hypersurfaceÕ that bounds a region interior toO, is
given by Eq.~4.1! of Ref. @6#,

2E
O

dsm~x8!E
Õ

dsn~x! f i~x8! ]JmGG
F~x8,x! ]Jnhj~x!. ~5.25!

If the mode f i(x8) is peaked at an asymptotically lat
Schwarzschild time, we argue as in Ref.@6# that Õ can be

FIG. 5. A conformal diagram for the emission and absorpt
calculation of Sec. V D on theRP3 geon. The timelike hypersurfac

O and the spacelike hypersurfacesC̃1 and C̃2 are shown. The
diagram for the corresponding emission and absorption calcula
on Kruskal is shown in Fig. 3 of Ref.@6#.
7-21
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JORMA LOUKO AND DONALD MAROLF PHYSICAL REVIEW D 58 024007
replaced by a spacelike hypersurfaceC̃1 of constant two-
sphere curvature radius in the black hole interior.10 To find
the total probability that a particle is detected, one thus ne
to compute the modulus squared of the amplitude~5.25! and
sum over a complete set of states$hj% on C̃1 .

Recall that in the future interior region on the Krusk
spacetime, one can introduce the interior Schwarzschild
ordinates (t,r ,u,w), in which the metric is given by Eq.~4.9!
with 0,r ,2M , the coordinater decreases toward the fu
ture, and the mapJL ~4.12a! reads

JL:~ t,r ,u,w!°~2t,r ,p2u,w1p!. ~5.26!

The interior Schwarzschild coordinates therefore provide
the future interior region of the geon a set of local coor
nates with the identification (t,r ,u,w);(2t,r ,p2u,w
1p). Working in this chart, we obtain a complete set
states$hj% on C̃1 by separation of variables: the states a
proportional to

r 21R̃v l@eivt1~21! le2 ivt#Ylm , ~5.27!

wherev.0 andR̃v l satisfies the counterpart of Eq.~5.3! for
the interior region.

Consider now the integration overx in Eq. ~5.25!, with Õ

replaced byC̃1 . In our coordinates,r is constant onC̃1 ,
and we coverC̃1 precisely once, up to a set of measure ze
by taking t.0 and letting the angles range over the f
two-sphere. We writeGG

F as in Eq.~5.14! and perform in the
second term the change of variablest→2t. The amplitude
~5.25! takes then the form

2E
O

dsm~x8!E
C1

dsn~x! f i~x8! ]JmGK
F~x8,x! ]Jnhj~x!,

~5.28!

where the integration overx is now over the hypersurfac
C1 of constantr in the future interior region of theKruskal
spacetime~see Fig. 3 of Ref.@6#!, and the functionhj has
been extended into all of this region by the formula~5.27!.

Let now the exterior mode functionf i be of the form~5.2!
with frequencyv8.0. The invariance ofGK

F under the Kill-
ing time translations on the Kruskal spacetime implies t
the integrals overt and t8 in Eq. ~5.28! yield a linear com-
bination of two terms, proportional respectively tod(v

10 Reference@6# invoked the Killing time translation invariance o
GK

F(x8,x) to argue that the contribution from a timelike hypersu
face connecting a point onO to a point on the Kruskal counterpa

of C̃1 can be neglected, by taking this timelike hypersurface to
in the distant future. For us, this argument shows that one
neglect the contribution from the first term on the right-hand side
Eq. ~5.14!. To argue that the contribution from the second term
the right-hand side of Eq.~5.14! can be neglected, again by takin
the timelike hypersurface to be in the distant future, it would
sufficient to show thatGK

F satisfies a slightly stronger falloff tha
that assumed forGK

1 in Sec. V C, which seems likely to be the cas
02400
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n
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2v8) andd(v1v8). The latter term is however vanishing
because in it the argument of the delta-function is alwa
positive.

These manipulations have reduced our amplitude to
analyzed in Ref.@6#. A similar reduction can be performe
for the amplitude for a particle to propagatefrom the hyper-
surfaceO to the hypersurfaceC̃2 of constant curvature ra
dius in the past interior region~see Fig. 5!. The relation
derived in Ref.@6# for the Kruskal amplitudes, from the ana
lytic properties ofGK

F , holds therefore also for our ampli
tudes. We infer that the probability for theRP3 geon to emit
a late time particle with frequencyv is e28pMv times the
probability for the geon to absorb a particle in the sa
mode. This is the thermal result, at the Hawking temperat
T5(8pM )21.

It should be emphasized that this derivation of the therm
spectrum foru0G& explicitly assumes that the emitted an
absorbed particles are in the distant future. By the glo
time reversal invariance of the geon, the thermal result a
holds for particles that are emitted and absorbed in the
tant past. It seems more difficult to assess whether the re
could be extended to particles at finite values of the exte
Schwarzschild time, however. One concern with such p
ticles is whether one can justify the arguments for choos
the interior hypersurfaces to beC̃1 and C̃2 . Another con-
cern is whether one would need to replace the energy eig
states~5.2! by exterior modes that are explicitly localized
the exterior Schwarzschild time. Note that foru0K& neither of
these concerns arise, as there the Killing time transla
symmetry implies that the thermal result holds for partic
emitted and absorbed at arbitrary values of the exte
Schwarzschild time.

Finally, we remark that a similar emission-absorpti
analysis can be performed for Rindler particles in t
vacuumu02& on M 2 . In this case, the necessary assum
tions about the falloff of the Feynman propagator can
explicitly verified. For late and early Rindler times, one fin
that the vacuum emission and absorption probabilities
Rindler particles with local frequencyE are related by the
thermal factore22paE. This is the thermal result at the Rin
dler temperatureT5(2pa)21.

VI. ENTROPY OF THE RP3 GEON?

We have seen that the Hartle-Hawking-like vacuumu0G&
on theRP3 geon has certain characteristics of a thermal b
at the Hawking temperatureT5(8pM )21. We shall now
discuss whether it is possible to associate with the geon
a gravitational entropy.

Consider first an observerQ in the exterior Schwarzschild
region. The future ofQ may or may not be isometric to
region of the Kruskal spacetime, but the possible differen
are hidden behind the black hole horizon. For any class
means thatQ may employ to probe the spacetime, such
letting matter fall into the black hole, the response of t
spacetime is toQ indistinguishable from that of the Kruska
spacetime, providedQ remains outside the black hole hor
zon also in the deformed spacetime. In particular, ifQ is in
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n
f
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INEXTENDIBLE SCHWARZSCHILD BLACK HOLE WITH . . . PHYSICAL REVIEW D 58 024007
the asymptotically flat region, and ifQ deforms the hole only
in the mass~but not in the angular momentum or charge!, the
first law of black hole mechanics takes forQ the standard
form @2#

dM5
1

32pM
dA, ~6.1!

whereAª16pM2 is the horizon area of a Kruskal hole wit
massM . As discussed in Sec. IV B,A is equal to the geon
horizon area away from the critical surface at the intersec
of the past and future horizons.

Suppose now that the quantum state isu0G&, and thatQ is
at late exterior Schwarzschild time. We have argued thaQ
then sees the black hole as being in equilibrium with a th
mal bath at the Hawking temperatureT5(8pM )21. By the
usual arguments@1,3,4#, this leadsQ to reinterpret Eq.~6.1!
as the first law of thermodynamics,

dE5TdS, ~6.2!

where S5 1
4 A is the entropy of the geon. This entropy

exactly the same as in the Kruskal spacetime with the s
mass.

Consider then the path-integral approach. Following R
@9,10#, we assume that the thermodynamics seen by an
server at infinity is described by the partition function

Z~b!5E Dgmn exp~2I !, ~6.3!

whereb is the inverse temperature at infinity,I is the action
of the Riemannian metricgmn , and the boundary condition
for the path integral are to encode the topology of the ma
fold, the asymptotic flatness, the lack of angular momentu
and the value ofb. We further assume that the partitio
function can be estimated by the saddle point contributio

Z~b!'exp~2I c!, ~6.4!

whereI c is the action of the classical solution satisfying t
boundary conditions of the integral in Eq.~6.3!. Discussing
the validity of these assumptions at any general level f
beyond the scope of this paper~for some perspectives, se
for example Refs.@10, 41–44#!, but what we do wish to do is
to contrast the consequences of these assumptions fo
Kruskal black hole and theRP3 geon.

When the Lorentzian thermodynamic object is t
Kruskal hole, the boundary conditions for the integral in E
~6.3! were chosen in Ref.@9# so that that the saddle poin
solution is the Riemannian section of the Kruskal manifo
and b was identified with the period of the Riemannia
Schwarzschild time. This leads tob58pM , which repro-
duces the Hawking temperature. To arrive at a finite act
one introduces a boundary with topologyS13S2, subtracts
from the action at this boundary a boundary term that ma
the action of flat space vanish, and then lets the boundar
to infinity. The result is
02400
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c 54pM25

b2

16p
. ~6.5!

Using Eqs.~6.4! and ~6.5! in the formula for the entropy in
the canonical ensemble,

S5@12b~]/]b!# ln Z, ~6.6!

one finds the Bekenstein-Hawking result,S' 1
4 A.

When the Lorentzian thermodynamic object is theRP3

geon, it seems reasonable to choose the boundary condi
for the integral in Eq.~6.3! so that that the saddle poin
solution is the RiemannianRP3 geon. The thermodynamic
on the geon, discussed in Sec. V, then suggests introdu
the mass-temperature relationb58pM , which geometri-
cally means identifyingb with the ‘‘local period’’ of the
Riemannian Schwarzschild time on the Riemannian geon
recover an action, we note that theS13S2 boundary pre-
scription of Ref.@9# for the Riemannian Kruskal manifold i
invariant under the mapJR of Sec. IV B, and this prescrip
tion therefore induces on the Riemannian geon a bound
prescription that yields a finite action when the boundary
taken to infinity. Proceeding via these steps, we find for
action of the geon the result

I G
c 52pM25

b2

32p
, ~6.7!

which is half the Kruskal action~6.5!. For the entropy of the
geon we then obtain, using Eqs.~6.4!, ~6.6!, and ~6.7!, S
' 1

8 A. This is only half of the Bekenstein-Hawking result fo
the Kruskal hole.

From the mathematical point of view, the relative factor1
2

in the geon entropies obtained by the late-time thermo
namic arguments and the path-integral method should no
surprising. The horizon area relevant for the thermodyna
arguments is that at late times along the future horizon,
this area is exactly the same as in Kruskal. The horizon a
underlying the path-integral entropy, on the other hand
that of the Riemannian horizon, and we saw in Sec. IV B t
this is only half of the area of the Riemannian Kruskal ho
zon.

Physically, however, the disagreement between the
entropies calls for an explanation. The physical framew
of the first derivation, via the observerQ and the classica
first law ~6.1!, is relatively clear, and it is difficult to escap
the conclusion that the Bekenstein-Hawking entropy mus
the correct one from the thermodynamic viewpoint of t
observerQ. The framework of the path-integral derivatio
however, invites more scrutiny.

A first possibility is that the path-integral framework
simply inapplicable to the geon, for example due to the la
of sufficient symmetry in any of several aspects of our d
cussion. Recall, for instance, that despite the fact that
exterior region of the spacetime is static, the restriction
u0G& to this region is not. It seems likely that any state tha
static in the exterior region of the geon must become sing
somewhere on the horizon. Certainly, this is the case if
attempts the following construction: Suppose that we id
7-23
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JORMA LOUKO AND DONALD MAROLF PHYSICAL REVIEW D 58 024007
tify the exterior of the geon with an exterior region
Kruskal and consider the restriction of a Feynman Gree
functionGK(x,x8) of some static state to this region. Such
function cannot be smoothly extended to a regular Gree
function on the geon because it will not have the right s
gularities on the bifurcation surface. Approaching the bif
cation surface with two exterior pointsx andx8 on opposite
sides of the two-sphere, the Green’s functionGK(x,x8) will
have a smooth limit on the bifurcation surface. In the ge
spacetime, however, bothx and x8 will approach the same
point, and the Green’s function should diverge.

The saddle point solution that was used to arrive at
~6.7! above is another object with rather less symmetry th
one might like. This saddle point solution is the Riemann
RP3 geon MR/JR, and it differs from the Riemannian
Kruskal manifold in both its metric and topological prope
ties. For example, the asymptotic region ofMR/JR does not
have a global Killing field, and the homotopy group of a
neighborhood of infinity inM R/JR is Z2 as opposed to the
trivial group. It may well be that such an asymptotic stru
ture does not satisfy the boundary conditions that should
imposed in the integral~6.3!.11 We note that this point is
connected to the one above as it shows that no analytic
on the geon can be static in the exterior region.

In the context of this discussion it is interesting to rec
that while the RiemannianRP3 geon has the asymptoti
structure just described, the single asymptotic region of
LorentzianRP3 geon is just the familiar one, that is, th
asymptotic region of one Kruskal exterior. Thus, on t
geon, the structure of the Riemannian infinity is influenc
not only by the structure of the single Lorentzian infinity, b
also by what lies behind the Lorentzian horizons.

Another possibility is that the path-integral framework
applicable to the geon, but that the proper procedure is m
subtle than the one outlined above. However, it is difficult
see what reasonable modification of the above steps w
lead to a result consistent with the first law.

A final possibility is that the path-integral framework
applicable to the geon, and our way of applying it is corre
but the resulting entropy is physically distinct from the su
jective thermodynamic entropy associated with the obse
Q. If this is the case, the physical interpretation of the pa
integral entropy might be found in the quantum statistics
the whole exterior region, rather than just the thermodyna
ics of late times in the exterior region. In an operator form
ism, one might anticipate such an entropy to arise from tr
ing over the degrees of freedom that are in some se
unobservable.

From the operator point of view, the factor1
2 in the geon

entropy might even appear reasonable. In the Har
Hawking vacuum on the Kruskal manifold, the thermal e
pectation values for operators in one exterior region a
from tracing over all the Boulware modes in the seco

11We thank Rafael Sorkin for stressing the possible importanc
the asymptotic topology even in cases~unlike ours! in which the
asymptotic metric would admit a global Killing symmetry.
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unobserved exterior region. On the geon, on the other ha
thermal expectation values in the Hartle-Hawking-li
vacuumu0G& arise~for all exterior Schwarzschild times! only
for operators that do not couple to, and hence lead to a t
over, half of the Boulware modes in the single exterior
gion. On the geon, the thermal expectation values thus
volve a trace over half as many Boulware modes as on
Kruskal spacetime. If the statistical entropy were someh
to count modes that are traced over in these expectation
ues, the geon entropy indeedshouldbe half of the Kruskal
entropy.12 An uncomfortable aspect of this argument is, ho
ever, that the entropy18 A would then reflect not just the
geometry of the geon and the properties of the stateu0G&, but
also the choice of a particular class of operators in the e
rior region, and it seems difficult to motivate this choice
geometrical grounds only.

To end this section, we note that an analogous discus
can be carried out for the entropy associated with the Rin
observer and the acceleration horizon in the flat spaceti
M0 andM 2 . The horizon areas are formally infinite, owin
to the infinite range of the coordinatey, but this appears to
be a minor technicality: the thermodynamic discussion
Sec. III adapts readily, if in part less explicitly, to counte
parts ofM0 andM 2 in which y is periodic and the horizon
area finite. For they-periodized counterpart ofM0 , the path-
integral approach yields for the entropy one quarter of
horizon area@29#, while for they-periodized counterpart o
M 2 the path-integral entropy contains the additional fac
1
2 .

VII. SUMMARY AND DISCUSSION

In this paper we have investigated thermal effects on
RP3 geon and on a topologically analogous flat spaceti
M 2 via a Bogoliubov transformation, a particle detecto
particle emission and absorption coefficients, and stre
energy tensor expectation values. We fixed our attention
the Hartle-Hawking-like vacuumu0G& on the geon and to the
Minkowski-like vacuumu02& on M 2 . We saw that, at finite
times, these states are not exactly thermal unless they
sampled with a probe that couples to only half of the fie
modes. However,u0G& becomes fully thermal, at the usua
Hawking temperature, in the distant past and future in the
exterior Schwarzschild region, andu02& similarly becomes
fully thermal at early and late Rindler times in its Rindl
wedge, with the usual Rindler temperature for a uniform
accelerated observer. In addition, we found some evide
for the thermality ofu0G& at the geon spatial infinity, at ar
bitrary values of the exterior Schwarzschild time. In the ca
of the geon, some of these results rest on a set of plaus
assumptions about the asymptotic behavior of the Har
Hawking Green’s functionsGK(x,x8) on the Kruskal mani-
fold when x and x8 are in opposite asymptotic region
whereas forM 2 the asymptotic behavior of the releva

of
12We thank Karel Kucharˇ for suggesting~but not advocating! this

argument.
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Green’s function could be directly verified. We have al
noted a discrepancy in the calculations for the geon entr
via late-time thermodynamic arguments and the path-inte
method, and discussed some probable resolutions.

One may well ask whether it was necessary to perfo
each of these calculations separately. As the Bogoliu
transformations contain the full information aboutu0G& in
terms of Boulware modes, and aboutu02& in terms of the
Rindler modes, the detector response and the par
emission-absorption probabilities must already be some
encoded in the Bogoliubov coefficients. Understanding t
encoding would be particularly useful for the geon, as o
would then hope to use the expressions~5.16! and~5.20! for
the Boulware-mode content ofu0G& to show that the detecto
response does indeed become thermal in the asymptotic
or future. Unfortunately, only a partial understanding of t
encoding seems to be available@45#.

What our results do strongly suggest is that an esse
part of the information in the Bogoliubov transformation r
sides in the phase correlations between the alpha and
coefficients.13 We saw that the Boulware-mode occupati
number expectation values do not distinguish between
vacuumu0G& on the geon and the Hartle-Hawking vacuu
u0K& on the Kruskal spacetime, despite the fact thatu0K& is
static in the exterior region whileu0G& is not. The number
expectation values are determined by the absolute value
the beta coefficients, and these carry no information ab
the phases of the coefficients. To see explicitly where
phases enter, we observe that the geonW-modes~5.15! are
not invariant, not even up to an overall phase, under exte
Schwarzschild time translations, because such translat
would turn the phases of the two terms in Eq.~5.15! in the
opposite directions: these two terms in turn determine
alpha and beta coefficients, and thus encode into the ph
of the coefficients the fact that the spacetime has a dis
guished value of the exterior Schwarzschild time. In contr
theW-modes on Kruskal are invariant up to an overall pha
under Schwarzschild time translations, because the
terms in the Kruskal counterpart of Eq.~5.15! live in oppo-
site exterior regions@5#. Analogous considerations hold fo
M 2 . One might speculate on whether a continued study
the these spacetimes would shed further light on the con
tion between Bogoliubov coefficients and other measure
thermal behavior.

We have characterizedu0G& and u02& as states that ar
induced by well-studied states on the universal cover
spacetimes, as states with certain analytic properties, an
the no-particle states for modes that are positive freque
with respect to the horizon generator affine parameters.
might ask whether other, perhaps better and more geom
cal, characterizations of these states could be given.
might also seek uniqueness theorems that would single
these states, in the same way thatu0K& is selected on the
Kruskal manifold or the Minkowski vacuum is selected
Minkowski spacetime@8#. For example, it might be possibl

13We thank Bei-Lok Hu for stressing this point to us.
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to adapt the Kay-Wald conditions@46# to the geon in a way
in which it would suffice for the Killing vector to be only
local. On a converse note, one might seek to understand
late-time thermal properties ofu0G& in the framework of gen-
eral late-time behavior in dynamical black hole spacetim
It might for example be possible to adapt the theorems
Fredenhagen and Haag@47# to initial conditions compatible
with the geon.

Our analysis of the particle emission and absorption cr
sections relied in an essential way on the analytic structur
the Feynman propagators inu0G& and u02&. Although the
propagators are ‘‘periodic in imaginary time’’ in a certa
local sense, we saw that this local periodicity is not asso
ated with a globally-defined U~1! isometry of the Riemann-
ian sections of the spacetimes. The absence of such an i
etry reflects the nonstaticity ofu0G& and u02&, and would
certainly cast doubts on simply identifying the local peri
of the imaginary time as an inverse temperature. A sim
argument in another context was made in Ref.@48#. It should
therefore be emphasized that we used the local periodicit
imaginary time only as a mathematical device in the cal
lation of a genuinely Lorentzian observable quanti
namely, the ratio of the emission and absorption cross s
tions at late times. The thermal conclusion was drawn fr
this ratio.

For a class of operators that only couple to a judicious
chosen half of the field modes, the expectation values inu0G&
and u02& were seen to be thermal for all times, and not ju
in the limit of early or late times. One may ask wheth
detectors with such couplings could be built of matter who
underlying Lagrangian has reasonable properties, includ
general covariance and, in the case ofM 2 , local Lorentz
invariance.14 While it is likely that this can be achieved wit
sufficiently complicated composite detectors, at least in
approximate sense over a range of the field modes, we ex
the answer to be negative for detectors that couple locall
the field at finite positions and times.

For developing a geometrical understanding of the th
mal properties of our spacetimes, and for testing those c
clusions that rested in part on an unverified assumption ab
the Hartle-Hawking Green’s function on the Kruskal spac
time, it would be useful to have at hand more examples
spacetimes with similar properties. One example of inter
is the spacetimeM 1 ªM /J1 , where M is Minkowski
spacetime and the mapJ1 reads, in the notation of Sec. II A

J1 :~ t,x,y,z!°~ t,2x,y,z1a!. ~7.1!

It is easily seen that the spacetimeM0 introduced in Sec.
II A is a double cover ofM 1 , and thatM 1 provides another
flat analogue of theRP3 geon, distinct fromM 2 . In fact,
M 1 is in its isometry structure even more closely analogo
to the geon thanM 2 : the two-dimensional conformal dia
gram forM 1 is as in Fig. 2, but, unlike forM 2 , the bound-
ary of the diagram atx50 now depicts a set inM 1 that is
geometrically distinguished in terms of the orbits of t

14We thank Karel Kucharˇ for raising this question.
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isometry group, in analogy with the boundaryX50 in the
geon diagram in Fig. 4. All our results forM 2 adapt toM 1 ,
with conclusions that are qualitatively similar but exhib
some quantitative differences. In particular, asJ1 leaves the
coordinatey invariant, the counterpart of Eq.~3.40! displays
no correlations between different values ofy, and the coun-
terpart of Eq.~3.51! does not involvey0 . M 1 is globally
hyperbolic, but not space orientable: its spatial topology iR
times the open Mo¨bius strip. We have focused the prese
paper onM 2 in favor of M 1 in order to allay the suspicion
that nonorientability might have been a factor in the resu

Another spacetime with similar properties arises from t
ing the quotient of de Sitter space with respect to aZ2 isom-
etry group in such a way that the spatial topology becom
RP3. Explicitly, if we realize de Sitter space as the hyperb
loid

a252U21V21X21Y21Z2 ~7.2!

in five-dimensional Minkowski space with the metric

ds252dU21dV21dX21dY21dZ2, ~7.3!

we can choose the nontrivial generator of theZ2 to act as

~U,V,X,Y,Z!°~U,2V,2X,2Y,2Z!. ~7.4!

One would expect similar thermal results to hold for th
spacetime. It is in fact known that particle detectors in t
spacetime behave in the expected way@49#.
th
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y
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Our most intriguing result is probably the factor1
2 in the

path-integral-approach entropy of the geon, compared w
the Bekenstein-Hawking entropy of a Kruskal hole with t
same mass. While we argued that this result is mathem
cally understandable in view of the complexified geome
of the geon, its physical significance, or indeed physical c
rectness, remains unclear. It should prove interesting to
whether this factor12 might arise within any state-countin
approach to the geon entropy.
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