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Several approaches to Hawking radiation on Schwarzschild spacetime rely in some way or another on the
fact that the Kruskal manifold has two causally disconnected exterior regions. To assess the physical input
implied by the presence of the second exterior region, we investigate the Hawkingh) effect for a real
scalar field on thé& P geon: an inextendible, globally hyperbolic, space and time orientable eternal black hole
spacetime that is locally isometric to Kruskal but contains only one exterior region. The Hartle-Hawking-like
vacuum|Og), which can be characterized alternatively by the positive frequency properties along the horizons
or by the complex analytic properties of the Feynman propagator, turns out to contain exterior region Boulware
modes in correlated pairs, and any operator in the exterior that only couples to one member of each correlated
Boulware pair has thermal expectation values in the usual Hawking temperature. Generic operators in the
exterior do not have this special form; however, we use a Bogoliubov transformation, a particle detector
analysis, and a particle emission-absorption analysis that invokes the analytic properties of the Feynman
propagator, to argue thH) appears as a thermal bath with the standard Hawking temperature to any exterior
observer at asymptotically early and late Schwarzschild time&aive saddle-point estimate for the path-
integral-approach partition function yields for the geon only half of the Bekenstein-Hawking entropy of a
Schwarzschild black hole with the same ADM mass: possible implications of this result for the validity of
path-integral methods or for the statistical interpretation of black-hole entropy are discussed. Analogous results
hold for a Rindler observer in a flat spacetime whose global properties mimic those of the geon.
[S0556-282198)06614-4

PACS numbeps): 04.62+v, 04.60.Gw, 04.70.Dy

I. INTRODUCTION flat space, a saddle-point estimate of the path integral yields
a partition function that reproduces the Bekenstein-Hawking
Black hole entropy was first put on a firm footing by black hole entropy. The subject has since evolved consider-
combining Hawking's result of black hole radiatiph] with  ably; see for example Ref§11-15, and the references
the dynamical laws of classical black hole geometfgsin therein.
the manner anticipated by Bekensté®y]. Hawking's first Although it is empirically true that these two methods for
calculation of black hole temperatuf&] invoked quantum  arriving at black hole entropy have given mutually compat-
field theory in a time-nonsymmetric spacetime that modelegye results in modtsituations considered, it does not seem to

a collapsing star, and the resulting time-nonsymmetric quansg el understood why this should be the case. The first
tum state contained a net flux of radiation from the blaCkmethod is quite indirect, and it gives few hints as to the

hole [5]. However, it was soon realized that the same tem Hantum gravitational degrees of freedom that presumably

perature, and hence the same entropy, is also associated Wﬂnderlie the black hole entropy. In contrast, the path integrals

a time-symmetric state that describes a thermal equilibriurr(1)f the second method arise from quantum dravity oroner. but
[6,7]. For a review, see for example RE8]. 9 gravity proper,

A second avenue to black hole entropy has arisen via pat e argument is quite formal, and one is left with the chal-

integral methods. Here, a judiciously chosen set of thermo!€"9€ Of justifying that the boundary conditions imposed on

dynamic variables is translated into geometrical boundaryn€se intégrals indeed correspond to thermodynamics as con-
conditions for a gravitational path integral, and the path in-véntionally understood. One expects that the connection be-
tegral is then interpreted as a partition function in the approtWeen the path integrals and the thermodynamics could be
priate thermodynamic ensemble. The initial impetus for theN@de precise through some appropriate operator formulation,
path-integral approach came in the observafi®e/i(] that @S IS the case in Minkowski space finite temperature field

for the Kerr-Newman family of black holes in asymptotically theory[16]. Achieving such an operator formulation in quan-
tum gravity does however not appear imminent, the recent
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progress in string theoryl7,18 notwithstanding. We first construct the Bogoliubov transformation between
The purpose of this paper is to examine the Hawking/Og) and the Boulware vacuuf®g), which is the vacuum
effect and gravitational entropy on the eternal black holewith respect to the timelike Killing vector of the exterior
spacetime known as thBP® geon[19]. This inextendible Schwarzschild regiof22,23. For a massless scalar field, we
vacuum Einstein spacetime is locally isometric to thefind that|Og) contains Boulware modes in correlated pairs,
Kruskal manifold, and it in particular contains one exterior and for operators that only couple to one member of each
Schwarzschild region. The spacetime is also both space an@yrelated pair, the expectation valued4Og) are given by a
time orientable and globally hyperbolic, and hence free okhermal density matrix at the usual Hawking temperature. As
any apparent pathologies. A novel feature is, however, thaioi, members of each correlated pair reside in the single
the black and white hole interior regions are not globallyyterior Schwarzschild region, not every operator with sup-

|some;cjr|c o thosse ?]f the Krﬁl(j(al manlfoldaAr!so,_thelrE 'SKr.‘HOport in the exterior region has this particular form; neverthe-
second exterior Schwarzschild region, and the timelike Ki “less, we find that, far from the black hole, thésthe form

ing vector of the single exterior Schwarzschild region Canno%ssumed by every operator whose support is at asymptoti-

be extended into a globally-defined Killing vector on the ; !

. . cally late (or early values of the exterior Schwarzschild
whole spacetime. Among the continuum of Constanttim For a massiv lar field. similar statements hold for
Schwarzschild time hypersurfaces in the exterior region €. For a massive scalar field, simiiar statements hold 1o

there is only one that can be extended into a smooth Caucli?e field modes that reach the infinity. As a side result, we
hypersurface for the whole spacetime, but probing only th&Ptain an explicit demonstration that the restrictionGy) to
exterior region provides no clue as to which of the constanthe exterior region is not invariant under translations in the
Schwarzschild time hypersurfaces this one actualfy is. Schwarzschild time.

These features of thBP® geon lead one to ask to what The contrast between these results and those in the
extent quantum physics on this spacetime, especially in thgacuum|Oy) on the Kruskal manifold7] is clear.|Ox) is
exterior region, knows that the spacetime differs fromalso a superposition of correlated pairs of Boulware modes,
Kruskal behind the horizons. In particular, is there a Hawk-but the members of each correlated paitGp) reside in the
ing effect, and if yes, can an observer in the exterior regiorppposite exterior Schwarzschild regions of the Kruskal mani-
distinguish this Hawking effect from that on the Kruskal fold. In |Ox), the expectation values are thermal for any op-
manifold? Also, can one attribute to tfé® geon a gravita- erators with support in just one of the two exterior Schwarz-
tional entropy by either of the two methods mentionedschild regions.
above, and if yes, does this entropy agree with that for the We then consider the response of a monopole particle
Kruskal spacetime? detectof{5,24—26 in the vacuunOg). The detector is taken

Answers to these questions have to start with the specifito be in the exterior Schwarzschild region, and static with
cation of the quantum state of the fiedlon theRP® geon.  respect to the Schwarzschild time translation Killing vector
To this end, we recall that the geon can be constructed as th# this region. The response turns out to differ from that of a
quotient space of the Kruskal manifold under an involutivesimilar detector in the vacuuj@,) on Kruskal; in particular,
isometry[19]. Any vacuum on Kruskal that is invariant un- while the response on Kruskal is static, the response on the
der this involution therefore induces a vacuum on the geongeon is not. However, we argue that the responses on the
This is in particular the case for the Hartle-Hawking vacuumgeon and on Kruskal should become identical in the limit of
|0k) [6,7], which describes a Kruskal hole in equilibrium early or late geon Schwarzschild times might be inferred
with a thermal bath at the Hawking temperatufe from the Bogoliubov transformation described aboead
=(87M)~1. We shall fix our attention to the Hartle- also in the limit of a detector at large curvature radius for any
Hawking-like vacuum|0g) that |0) induces on the geon. fixed geon Schwarzschild time. To make the argument rig-
|0g) can alternatively be definggee Sec. V Bby postulat- ~ Orous, it would be sufficient to verify certain technical as-
ing for its Feynman propagator a suitable relation withsumptions about the falloff of the Wightman functi@ in
Green’s functions on the Riemannian section of the com{Ok)-
plexified manifold, in analogy with the path-integral deriva- We proceed to examine the complex analytic properties of
tion of |0k) in Ref.[6]. A final definition which leads to the the Feynman propagat@f, in |0g). The quotient construc-
same vacuum state is to constr{@) as the state defined by tion of the geon from the Lorentzian Kruskal manifold can
modes that are positive frequency along the horizon generde analytically continued, via the formalism @intiholo-
tors. morphic involutions on the complexified manifol@27,28,
into a quotient construction of the Riemannian section of the
geon from the Riemannian Kruskal manifold. It follows that
GE, is regular on the Riemannian section of the geon every-

2Another inextendible spacetime that is locally isometric to . o F .
Kruskal but contains only one exterior Schwarzschild region is theWhere except at the coincidence ling turns out to be, in

elliptic interpretation of the Schwarzschild hole, investigated in Ref.2 Certain weak local sense, periodic in the Riemannian
[20] in the context of 't Hooft's analysis of Hawking radiatipg1]. ~ Schwarzschild time with period 8M in each argument.
On this spacetime, all the local continuous isometries can be extlowever, this local periodicity is not associated with a con-
tended into global ones. The spacetime is, however, not timetinuous invariance under simultaneous translations of both
orientable, which gives rise to subtleties when one wishes to build @arguments in the Riemannian Schwarzschild time. Put differ-
quantum field theory with a Fock spafe0]. ently, the Riemannian section of the geon does not admit a
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globally-defined Killing vector that would locally coincide integral entropy might be sought in the quantum statistics in
with a generator of translations in the Riemannian Schwarzshhe whole exterior region, rather than just in the thermody-
child time. It is therefore not obvious what to conclude aboutnamics at late times in the exterior region.
the thermality of|Og) by just inspecting the symmetries of Al these results for the geon turn out to have close coun-
Gg on the Riemannian section. Nevertheless, we can use therparts in the thermodynamics of an accelerated observer in
analytic properties of5§ to relate the probabilities of the a flat spacetimé _ whose global properties mimic those of
geon to emit and absorb a Boulware particle with a giverthe geon.M _ has a global timelike Killing vector that de-
frequency, in analogy with the calculation done for thefines a Minkowski-like vacuum0_), but it has only one
Kruskal spacetime in Ref6]. We find that the probability Rindler wedge, and the Rindler time translations in this
for the geon to emit a particle with frequenayat late exte- wedge cannot be extended into globally-defined isometries
rior Schwarzschild times ie”8™¢ times the probability for of M _. |0_) is thus analogous to the Hartle-Hawking-like
the geon to absorb a particle in the same mode. This ratio ofacuum|0g) on the geon, and the Rindler vacuum in the
the probabilities is characteristic of a thermal spectrum at th®indler wedge oM _ is analogous to the Boulware vacuum
Hawking temperaturd =(87M) %, and it agrees with that |0g). We find, from a Bogoliubov transformation, a particle
obtained for|Ox) in Ref.[6]. A difference between Kruskal detector calculation, and the analytic properties of the Feyn-
and the geon is, however, that the Killing time translationman propagator, that the accelerated observer|fegsas a
isometry of the Kruskal manifold guarantees the thermal rethermal bath at the Rindler temperature under a restricted
sult for |0k) to hold for particles at arbitrary values of the class of observations, and in particular in the limit of early
exterior Schwarzschild time, while we have not been able tand late Rindler times, but not under all observations. Note,
relax the assumption of late exterior Schwarzschild times fohowever, thatM _ does not exhibit a nontrivial analogue of
|0g)- the large curvature radius limit of the geon. The reason for

These results for the thermal propertieg@f) imply that  this is that|0_) and the Rindler vacuum coincide far from
an observer in the exterior region of the geon, at latehe acceleration horizon, just as the Minkowski-vacuum and
Schwarzschild times, can promote the classical first law ofhe usual Rindler-vacuum coincide far from the acceleration
black hole mechanics into a first law of black hole thermo-horizon in the topologically trivial case.
dynamics exactly as for the Kruskal black hole. Such an For a massless field, we also compute the renormalized
observer thus finds for the thermodynamic entropy of theexpectation value of the stress-energy tensojOiny. This
geon the usual Kruskal valuemM?, which is one quarter of expectation value is not invariant under Rindler time trans-
the area of the geon black hole horizon at late times. If ondations in the Rindler wedge, but the noninvariant piece turns
views the geon as a dynamical black-hole spacetime, witlout to vanish in the limit of early and late Rindler times, as
the asymptotic far-future horizon area##?, this is the well as in the limit of large distances from the acceleration
result one might have expected on physical grounds. horizon. Results concerning the entropy of flat spd@8

On the other hand, the area-entropy relation for the geoare again similar to those mentioned above for the geon en-
is made subtle by the fact that the horizon area is in fact notropy.
constant along the horizon. Away from the intersection of The rest of the paper is as follows. Sections Il and Il are
the past and future horizons, the horizon duly has topologylevoted to the accelerated observer dn : Sec. Il con-
S? and area 16M?, just as in Kruskal. The critical surface structs the Minkowski-like vacuum and finds the renormal-
at the intersection of the past and future horizons, howeveized expectation value of the stress-energy tensor, while Sec.
has topologyRPP?> and area &M?. As it is precisely this 1l analyzes the Bogoliubov transformation in the Rindler
critical surface that belongs to both the Lorentzian and Riewedge, a particle detector, and the analytic properties of the
mannian sections of the complexified manifold, and constiFeynman propagator. Section IV is a mathematical interlude
tutes the horizon of the Riemannian section, one may expedd which we describe the complexifidl® geon manifold as
that methods utilizing the analytic structure of the geon andx quotient space of the complexified Kruskal manifold with
the Riemannian section of the complexified manifold wouldrespect to an holomorphic involution: this formalizes the
produce for the entropy the valuer®?, which is one quar- sense in which the Riemannian section of the geon can be
ter of the critical surface area, and only half of the Kruskalregarded as a quotient space of the Riemannian Kruskal
entropy. We shall find that this is indeed the semiclassicamanifold. Section V analyzes the vaculfy) in terms of a
geon entropy that emerges from the path-integral formalismBogoliubov transformation, a particle detector, and the ana-
when the boundary conditions for the path integral are cholytic properties of the Feynman propagator. Section VI ad-
sen so that the saddle point is the Riemannian section of thdresses the entropy of the geon from both the thermody-
geon. namic and path integral points of view, and discusses the

Several viewpoints on this discrepancy between the therresults in light of the previous sections. Finally, Sec. VIl
modynamic late time entropy and the path-integral entropysummarizes the results and discusses remaining issues.
are possible. At one extreme, there are reasonable grounds toWe work in Planck unitsf=c=G=1. A metric with
suspect outright the applicability of the path-integral meth-signature(—+++) is called Lorentzian, and a metric with
ods to the geon. At another extreme, the path-integral ersignature(++ ++) Riemannian. All scalar fields are global
tropy might be correct but physically distinct from the sub- sections of a real line bundle over the spacetiime, we do
jective thermodynamic entropy seen by a late time exterionot consider twisted fieldsComplex conjugation is denoted
observer. For example, a physical interpretation for the pathby an overline.
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A note on the terminology is in order. The name “Hawk- (t,x,y,2)~(t,x,y,z+2a), for My, (2.4a
ing effect” is sometimes reserved for particle production in a
collapsing star spacetime, while the existence of a thermal

equilibrium state in a spacetime with a bifurcate Killing ho- (t,x,y,2)~(t,—x,—~y,z+a), for M_. (2.4b
rizon is referred to as the Unruh effect; see for example Ref.
[8]. In this terminology, the partial thermal propertied Of) As J?> =J,, M, is a double cover oM _. M_ is there-

and|0-) might most naturally be called a generalized Unruhfore the quotient space o, under the involutive isometry
eIf?Ct’ as ttrr:esde S;?tes are mducti_d by g:nume Unru{]heffz-:-g'g that J_ induces onMg. In our (local) coordinates on
states on the double cover spacelimes. However, neither rﬁo, in which the identification§2.49 are understood, the
geon norM _ in fact has a bifurcate Killing horizon, and our . ~ .

gtion of J_ reads as in Eq2.2h.

case study seems not yet to establish the larger geometric& . . .
y y ger g M, andM _ are static with respect to the global timelike

context of the thermal effects D) and |0_) sufficiently o _
precisely to warrant an attempt at precise terminology. Fofilling vector dy. They are gli)g)ally hyperbolic, and the spa-
simplicity, we refer to all the thermal properties as thel@l topology of each isi“x S-. , _
Hawking effect. _ MO admits seven Killing ve.ctors..These .c0n5|st pf the six
Killing vectors of the (2+1)-dimensional Minkowski space
coordinatized by t;x,y), and the Killing vectord,, which
generates translations in the compactified spacelike direction.
In this section we discuss scalar field theory on two flatThe isometry subgrouf®x U(1) generated by the Killing
spacetimes whose global properties mimic respectively thoseectors ¢ ,dx,dy ,d,) acts onM, transitively, andM, is a
of the Kruskal manifold and th&P® geon. In Sec. Il A we homogeneous spa¢80]. On M _, the only Killing vectors
construct the spacetimes as quotient spaces of Minkowsldre the time translation Killing vecta , the spacelike trans-
space, and we discuss their causal and isometry structures. lltion Killing vector ,, and the rotational Killing vector
Sec. Il B we quantize on these spacetimes a real scalar fieldg,—yd,. The isometry group oM _ does not act transi-
using a global Minkowski-like timelike Killing vector to de- tively, andM _ is not a homogeneous space. One way to see

Il. SCALAR FIELD THEORY ON My AND M_

fine positive and negative frequencies. the inhomogeneity explicitly is to consider the shortest
closed geodesic in the totally geodesic hypersurface of con-
A. The spacetimesM, and M _ stantt.

It is useful to depictMy andM _ in two-dimensional con-
formal spacetime diagrams in which the local coordingtes
andz are suppressed. The diagram g, shown in Fig. 1,
is that of (1+1)-dimensional Minkowski spacetime. Each
) ) ) 5 point in the diagram represents a flat cylinder of circumfer-
ds’= —dt?*+dx*+dy*+dZ. (2D ence 2, coordinatized locally byy(,z) with the identifica-

Let a be a prescribed positive constant, and let the nigps tion ()/,Z)N()/_,ZﬂL 2a). The mapJ_ appears ir_1 the d?agram
andJ_ be defined oM by as the reflectiont(x)— (t,—x) about the vertical axis, fol-

lowed by the involution ¥,z)—(—y,z+a) on the sup-

pressed cylinder. A diagram that represets is obtained
Jo:(Lx,y,2)=>(txy,z+2a), (228 py taking just the(say right half, x=0, as shown in Fig. 2.
The spacetime regions depicted xas 0 in these two dia-
grams are isometric, with each point representing a sup-

Jo andJ_ are isometries, they preserve space orientation anargssed cylinder. In the__rai_agram fdbﬂﬁpzeach_ point ‘iwr(]
time orientation, and they act freely and properly discontinu-_ 0 "€Presents an open Mius strip (=RP\{point}), wit

ously. We are interested in the two quotient spaces the) local coordinates y(z) identified by §.2)~(-y.z
+a).

Let M be the (3t 1)-dimensional Minkowski spacetime,
and let ¢,x,y,z) be a set of standard Minkowski coordinates
on M. The metric onM reads explicitly

J_(t,x,y,2)—(t,—x,—y,z+a). (2.2b

Mo:=M/Jo, (2.39 _ o .
B. Scalar field quantization with Minkowski-like vacua

on My and M _

M_:=M/J_. 2.3h
(2.39 We now turn to the quantum theory of a real scalar fig¢ld

By constructionM, andM _ are space and time orientable With massu=0 on the spacetimeM, and M_. In this

flat Lorentzian manifolds. subsection we concentrate on the Minkowski-like vacua for
The universal covering space of bdthy andM _ is M.

We can therefore construct atlasesig andM _ by using

the Minkowski coordinatest(x,y,z) as the local coordinate  3These properties remain true for quotient spacedofith re-

functions, with suitably restricted ranges in each local chartgpect to arbitrary Euclidean screw motiongx(y,z)— (t,x cosa

It will be useful to suppress the local chart and understand-y sin a,x sin a+y cosa,z+b), whereb=0 [30]. J, is the screw

Mg andM _ to be coordinatized in this fashion by, X,y,z), motion with «=0 andb=2a, andJ_ is the screw motion with

with the identifications a=m andb=a.

024007-4



INEXTENDIBLE SCHWARZSCHILD BLACK HOLE WITH . .. PHYSICAL REVIEW D 58 024007

constant. On our spacetimes the Ricci scalar vanishes. In the
local Minkowski coordinatest(x,y,z), the field equation
reads

(= 0+ 5+ 05+ 32— u?) =0, (2.6)

The (indefinite) inner product is

(¢1,02) =i Lagﬁzdxdydz 2.7)

where the integration is over the constaritypersurfaces..
We denote the inner product®.7) on My and M _ respec-
tively by (-,-)pand (-,-)_.

FIG. 1. A conformal diagram of the constanandz sections of We define the positive and negative frequency solutions
the spacetimé,. When the diagram is understood to depit}, to the field equation with respect to the global timelike Kill-
each point in the diagram is a flat cylinder of circumferenee 2 ing vectord; . It follows that a complete orthonormal basis of
coordinatized locally by ¥(,z) with the identification ¥,zZ)~(y,z  positive frequency mode functions can be built from the
+2a). Because of the suppressed dimensions, the infinities of thesual Minkowski positive frequency mode functions as the
diagram do not faithfully represent the infinity structureMd$. The  |inear combinations that are invariant under respectivgly
involution J_ consists of the reflectiont(x)—(t,—x) about the andJ_.
vertical axis, followed by the mapy(z)—(—y,z+a) on the sup- On M,, a complete set of positive frequency modes is
pressed cylinder. {ka,ky,n}v where

which the positive and negative frequencies are defined with
respect to the global timelike Killing vectay, . Ue o= ;

Recall that the massive scalar field action on a general *¥" 4x\aw
curved spacetime is (2.8

exp( —iot+ikx+iky+inma 'z),

neZ, k, andk, take all real values, and

1
S=-3 f V=9d™X(9"" .8, + (u*+ ER) $7],

(2.5 w==\//,L2+k>2(+k)2,+(nﬂT/a)2. (2.9

. . ) ) The orthonormality relation is
whereR is the Ricci scalar and is the curvature coupling

(ka Ky N ’Uk; ,k)’/ ,n’)O: Onn 5(kx_ k>,<) 5(ky_ k;,),
(2.10

with the complex conjugates satisfying a similar relation
with a minus sign, and the mixed inner products vanishing.
On M_, a complete set of positive frequency modes is
{ka,ky'n}, where

exp(—iwt+inma 1z)

1
et g aw

X[explikx+ikyy)

+(—1)"exp(—ik,x—ikyy)], (2.1)

FIG. 2. A conformal diagram of the constantandz sections of
the spacetim&1 _ . When the diagram is understood to depitt ,
the regionx>0 is identical to that in the diagram of Fig. 1, each
point representing a suppressed cylinder.xAt0, each point in

neZ, ky andk, take all real values, and is as in(2.9). The
orthonormality relation is

the diagram represents a suppressed openbibdo strip (ka,k Vi k) == Snnr[ 8k — k) &( ky— k)’,)
(=RP?{point), with the local coordinatesy(z) identified by ’ Y

(y,2)~(—y,z+a). Because of the suppressed dimensions, the in- +(—1)"8(k,+ k)'()ﬁ(ky-l- k;,)],
finities of the diagram do not faithfully represent the infinity struc-

ture of M _ . (2.12
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with the complex conjugates again satisfying a similar rela-M _ in the sense of our local Minkowski coordinates. As
tion with a minus sign, and the mixed inner productsj? =3, andM_=M,/J_, we further have
vanishing?
Let |0) denote the usual Minkowski vacuum o, let G " — ' Tyt
X,X")=Gy (X, x")+ Gy (X,J_(X")), (2.14
|00) denote the vacuum of the st a} on Mo, and let m_ (XX =G X) F+ Guglx,J-(X'), - (2.148
|0_) denote the vacuum of the s{athlky,n} onM_. From

the quotient space constructionidf, andM _ it follows that
the various two-point functions if0,) and|0_) can be built Gu (tx,y,z;it' x'.y',z')
from the two-point functions if0) by the method of images -
(see, for example, Ref31]). If G(x,x") stands for any of
the usual two-point functions, this means

or, more explicitly,

=G, (txy,z;t" x",y",z')

+Gu (tXy,zit", =X, —y" ' +a).

Gu,(xX)= 2 Gu(xJ5(x)), (2133
n=-e (2.14b

©

Gy (xX')= S Gy (X)), (2.13H For the rest of the subsection we specialize to a massless
n=—wx

field, u=0. The two-point functions can then be expressed
in terms of elementary functions. Consider for concreteness
wherex andx’ on the right-hand side stand for pointshh, the Wightman functior& " (x,x") :=((x) ¢(x’)). In |0), we
while on the left-hand side they stand for pointshiy and  have(see, for example, Ref25])

+ ry — _1
X U 17 (e X2 (Y P (2 2 (219

where e specifies the distributional part &,, in the sense—0, . From Eq.(2.133, we find

1

Gy, (XX )=~ % ;
Mot ™ 472 A, (z—7'+2na)’+(x—x)2+(y—y')?—(t—t' —ie)?

1
C 8ma(x—x)2+(y—y' ) 2—(1—t' —ie)?

sinf ra 1\(x—x")?+(y—y")2—(t—t' —ie)?]
cosira t\(x—x")2+(y—y')?—(t—t' —ie)?’]—cog ma *(z—z')]

, (2.16

where we have evaluated the sum by the calculus of residueand |0_) by the point-splitting techniqug¢25,31. On a
G,T,,_(x,x’) is found from Eq.(2.16 using Eq.(2.14D. Ricci-flat spacetime, the classical stress-energy tensor com-

Similar calculations hold for the other two-point func- Puted from the actioi2.5) with =0 reads
tions. For example, for the Feynman propagator, one re-
places {(—t'—ie€)? in Eq.(2.19 with (t—t')%—ie, includes 1
an overall multiplicative factor-i, and proceeds as above. T,w=(l—2§)¢,#¢,y+(2§— §>gwgp"¢,p¢,g
In the Minkowski vacuum|0) on M, the renormalized
expectation value of the stress-energy tensor vanishes. As 1
Mo andM_ are flat, it is easy to find the renormalized ex- 2800+ 5 69,97 b0 b- (217
pectation values of the stress-energy tensor in the viga

Working in the local charttx,y,z), in which g,,=7,,

“4Labeling the modeg$2.11) by the two-dimensional momentum =diag(~1,1,1,1), we then have, Separateljm@ and|0‘>’

vector Ky .ky) contains the redundancy Vi, ko

=(—1.)”V,kxy,ky‘r]. This rerndancy could be eliminated by (T,,(x))= lim DM,,(X,X')[G(D(X,X’)—G(Nll)(X,X’)],
adopting some suitable conditi¢for example k,>0) that chooses N,

a unique representative from almost every equivalence class. (2.18
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where GA(x,x") =G ¥ (x,x")+G*(x',x) is the Hadamard

function, and the two-point differential operatéy,,(x,x")
reads

1
DX, X")= 1 (1-24)(V,V,+V, V)

1 , ,
25_ E 77,LLV( 7]’” VpVU’+ 77[1 UVP’VU)

*3
1
- E S(VMVV+V;L’VV’)

1 o
5 Enul TV NVt 0 VY, (219

The issues of parallel transport in the operafdy, are

PHYSICAL REVIEW D 58 024007

with s:=ra~1{Xx?+y?2.

(00| T,,/00) and (0_|T,,|0_) are conserved, and they
are clearly invariant under the isometries of the respective
spacetimes(0|T,,,|00) is traceless, whilg0_|T,,|0_) is
traceless only for conformal coupling=:. At larger, the
difference(0_|T,,|0_)—(00|T,,|00) vanishes a®(r ~3).

Ill. UNIFORMLY ACCELERATED OBSERVER
ON My AND M _

In this section we consider on the spacetirvggsandM _
a uniformly accelerated observer whose world line is, in our
local Minkowski coordinates,

(3.18

(3.1b

t=a sinh 7/ «a),

X=a cosh 7/ a),

trivial, and the renormalization has been achieved simply by

subtracting the Minkowski vacuum piece. Using E2.14bh

with constanty andz. The acceleration is in the direction of

and(2.16), the calculations are straightforward. It is useful to increasingx, and its magnitude i&~1>0. The parameter
express the final result in the orthonormal non-coordinatés the observer’s proper time.

frame{dt,dr,w®,dz}, defined by
X=Tr COS ¢, (2.203
y=r sin ¢, (2.20b

and w¥:=rd ¢. We have

2
(00| T .| 00) = @ diag —1,1,1-3) (2.21)

and
<0— |TMV|0—>:<OO|TMV|OO> + (l)T,uv+ (Z)T,uv ' (222

where the nonvanishing components of the tens&{s,,
and @T,, are

W, — 7> 1 d [tanhs )23
" 2(2a)*sds| s | (2.233
2
wp o™ 1d[,d)ftanhs
i 4(28)4 52 ds ds s '
(2.23b
2) 2. WE-Dm*l d
L T PILI
y d\/tanhs -
S3s . (2.243
@71 _(45_1)7721 d (tanhs
rr_wgd_s S !
(2.24h
(2>-|-M_(4§—1)772 d? [tanhs
e 4(28.)4 E s ,
(2.249

In Minkowski space, it is well known that the observer
(3.1a,b sees the Minkowski vacuuff) as a thermal bath at
the temperaturd =(2ma) ! [8,25,26. The same conclu-
sion is also known to hold for the vacuui®,) in M [26].

Our purpose is to address the experiences of the observer in
the vacuumO0_) onM _ .

There are three usual ways to argue that the experiences
of the observer(3.1a,b in the Minkowski vacuum|0) are
thermal[8,25,2§. First, one can perform a Bogoliubov trans-
formation between the Minkowski positive frequency mode
functions and the Rindler positive frequency mode functions
adapted to the accelerated observer, and in this way exhibit
the Rindler-mode content of the Minkowski vacuum. Sec-
ond, one can analyze perturbatively the response of a particle
detector that moves on the trajectd81a,b. Third, one can
explore the analytic structure of the two-point functions in
the complexified time coordinate adapted to the accelerated
observer, and identify the temperature from the period in
imaginary time. In the following subsections we shall recall
how these arguments work f¢®) and|0p), and analyze in
detail the case of0_).

A. Bogoliubov transformation: non-localized Rindler modes

Consider onM the Rindler wedgét| <x, denoted byR.
We introduce orR the Rindler coordinatesr(, ¢,y,z) by

t=¢ sinh(7), (3.29

x= ¢ cosh 7). (3.2b
These coordinates provide a global chart Rnwith £>0
and — o< p<<w, The metric reads

ds?=—£2dnp?+ de?+ dy’+ d 2. (3.3
The metric(3.3) is static with respect to the timelike Killing
vectord, , which generates boosts in thgx) plane. In the
Minkowski coordinatesg, = tdy+Xd .
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In the Rindler coordinates, the world lii@.1a,} is static. > dé [ —.
This suggests that the natural definition of positive and nega- (1, P2)r_ ==iJ 3 f $1d,¢9,dydz (3.6
tive frequencies for the accelerated observer is determined by 0
d,. One can now find the Bogoliubov transformation be'The orthonormality relation is
tween the Rindler modes, which are defined to be positive
frequency with respect t@,, and the usual Minkowski (Ug i noUar i )R =B 8(Q—Q) 8(k,—K]),
modes, which are positive frequency with respect to the glo- s YT Y 37
bal Killing vector g, (see, for example, Ref26]). One finds '

that the Minkowski vacuum appears as a thermal state witkyith the complex conjugates satisfying a similar relation

respect to the Rindler modes, and the temperature seen kyith a minus sign, and the mixed inner products vanishing.
the observe(3.1a,b is T=(27@) ~1. The reason why a pure The quantized field is expanded as

state can appear as a thermal superposition is that the Rindler
modes onR do not form a complete set od: the mixed * o w
state results from tracing over an unobserved set of Rindlerp= _2 dﬂf dky(bﬂyky’nuﬂyky'nJr bB,kyyan,ky,n),
modes in the “left” wedgex< —|t|. n=-=J0 o 3.8
This Bogoliubov transformation oM is effectively (1 3.8
+1)-Q|men5|onalz the only rple of the poordlnateysz() is to _ where the operators,  , and b}z « . are the annihilation
contribute, through separation of variables, to the effective . e R .
mass of the (# 1)-dimensional modes. The transformation and creation operators associated with the Rindler mode
therefore immediately adapts from to M,. One concludes Y.k .n- The Rindler vacuuniO ) onR_ is defined by
that the observe3.1a,b in M, sees the vacuurf0,) as a _
thermal state at the temperatife: (27a) ~* [26]. bQ’*ky'n|0R—>_O' (3.9
We now turn toM _ . Let M_ denote the open region in
M _ that is depicted as the “interior” of the conformal dia-

gram in Fig. 2. From Sec. Il we recall thisk _ is isometric to the Bogoliubov transformation between the sf¥§ . .t
the “right half” of My, as shown in Fig. 1, and it can be XLy

covered by local Minkowski coordinates,,y,z) in which and{l.J“"‘y'”}' However, it is easier to follow Unru[ﬁ] and
x>0 and the only identification ist(x,y,z)~(t,x,y,z © build from the se{uQ,ky,n} a complete set of linear com-
+2a). We introduce orM _ the Rindler wedgeR_ as the binations, called/V-modes, that are bounded analytic func-
subsetlt|<x of M_. R_ is clearly isometric to théright-  tions in the lower half of the compledplane. As such modes
hand sid¢ Rindler wedge orM,, which we denote byr,, @€ purgly positive f'requency with respect &, their
and the observer trajector.1a,b on M_ is contained in Vacuumisl0_). The Rindler-mode content ¢_) can then

We are interested in the Rindler-mode content of the
vacuum|0_). A direct way to proceed would be to compute

R_. be read off of the Bogoliubov transformation that relates the
On R_, we introduce the local Rindler coordinates S€H{Uqk, .n} to theW-modes.
(n,¢,y,2) by Egs.(3.2a,h. The only difference from the In My, the implementation of this analytic continuation

global Rindler coordinates oR is that we now have the argument is well known. In the future wedge o,
identification (7,£,y,2)~(7.£,y,z+2a). The vectord, isa  t>|x|, theW-modes onM, are proportional t¢33]
well-defined timelike Killing vector orR_, even though it @ _ _ _ .
cannot be extended into a globally-defined Killing vector on Hiji(v7)expikh +ikyy+inma™"z), (3.10
M - - -

The Rindler quantization iR_ is clearly identical to that WhereneZ, k takes all real values; is given by Eq.(3.9),

in Ro. A complete normalized set of positive frequency @ndH({ is the Hankel functiorid2]. Here (r,\,y,z) are the
modes is{uq « n}, where[26] Milne coordinates in the future wedge, defined by
Ky

t=7 cosh\), (3.11a

. sinh(7Q)
Ug k0= gllnl 2 N 2.3 Kia(vé) x= 7 sinh(\), (3.11h

Xexp(—iQp+iky+inmalz), (3.9 with 7>0 and— <<\ <. The metric in the Milne coordi-
nates reads

neZ Q>0, k, takes all real values;q is the modified ds?=—d7r?+ r2d 2+ dy?+dZ2. (3.12
Bessel functiorf32], and

The form of theW-modes in the other three wedgeshbj, is
recovered by analytically continuing the expressi@il0
across the horizons in the lower half of the compieptane.
The Bogoliubov transformation can then be read off by com-
The (indefinite) inner product inR_, taken on a hypersur- paring thesaV-modes to the Rindler modes in the right and
face of constant;, reads left Rindler wedges|t|<x andx< —]|t|.

v::\/,u2+k§+(n77/a)2. (3.5
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To develop the analogous analytic continuationMn_, Comparing the expansion8.8) and (3.17, and using the
we note that th&V-modes in the future region ®fl _ can be  orthonormality relations, we find that the Bogoliubov trans-
built from the expressiori3.10 as linear combinations that formation between the annihilation and creation operators in
are well defined in this region: as the map (2.2b acts on  the two sets is
the Milne coordinates by#,\,y,z)—(7,—\,—Yy,z+a), the

W-modes are in this region proportional to 1 - o
= ——=—=(e QIZdQ,ky,n+e led;r),ky,—n)’

b
S0 2 sinh( 7 Q)

Hifj(vr)expinma™tz)[exp(ik\ +ikyy) (3.19
+(—1)" exp(—ikN—ikyy)], (3.13  with the inverse

whereneZ and v is given by Eq.(3.5. To eliminate the

- d — (e’JTQ/Zb —e” wQ/ZbT )
redundancy K,k,)—(—k,—ky) in Eq. (3.13, we takek Qky.n 2 sinl(7Q) Q.ky.n Q.ky,—n/

<0 and - <k,<%. When analytically continued t& _, (3.20
in the lower half of the complex plane, the expressions
(3.13 then become proportional {32] We eventually wish to explorf ) in terms of Rindler
wave packets that are localized yandy, but it will be
Kia(vé)expinma™'z)[e™2 exp(—iQ n+ik,y) useful to postpone this to Sec. Ill B, and concentrate in the

remainder of the present subsection on the contef@ of in
terms of the unlocalized Rindler modésgyky,n}. We first

wherek has been renamed as(), with Q>0. Comparing note that the transformatio3.20 can be written as

Egs.(3.4) and(3.14), we see that a complete set\wfFmodes ; :

ian( is){WmE }4)where P d,=exp —iJ)b, expid), (3.2)
_ Ky}

+(—1)"e ™2 expiQp—ik,y)], (3.19

wherelJ is the (formally) Hermitian operator

1 -
W = (eWQIZU +e WQ/ZU B ), 1 ®
Sy 2 sinl(7Q) ey by J=2i D ra(blbt —byb ), (3.22
(3.15 n=-c
neZ, Q>0, andk, takes all real valueThe orthonormal- with rq defined by
ity relation is tank(r o) = exp( — (). (3.23
(Wa ks War k) ) -=(Wa 0 War kg R Here, and in the rest of this subsection, we suppress the
, , labels ) andk, . It follows from Egs.(3.9) and (3.2)) that
= o 8(Q = Q") 5(ky—ky), d, exp(-iJ)|0g )=0. Comparing this with Eq(3.18, we
(3.16 have
with the complex conjugates again satisfying a similar rela- |0_)=exp(—iJ)|0g_). (3.29
tion with a minus sign, and the mixed inner products vanish-
ing. Expanding the exponential in E¢3.24) and commuting the

We can now expand the quantized field in terms of theannihilation operators to the right, we find
W-modes as

1 “ (2g—-1)!! exp(— 7Qq)
* 3 S |07>: \/7 ZO \/T |2q>0
¢= > | do f dk,(da. Wo i, n cosfira) 14= (20t
n=—o 0 — o =]
+d;r2,ky,nWQ,ky,n)r (3.17 ><n];[l coshrg)qgo exq—wﬂq)|q>n|q>_n),
T . D (3.29
wheredﬂyky,n and dﬂ,ky‘n are respectively the annihilation
and creation operators associated with the mWigky,n. where|q), denotes the normalized state wiffexcitations in
The vacuum of thav-modes is by constructiof®_), the Rindler mode labeled by (and the suppressed quantum
numbers() andk,),
dq k, nl0-)=0. (3.18 _
" |@)n:=(a!) " Y4(b})%0g ). (3.26

The notation in Eq(3.25 is adapted to the tensor product

>The phase choice in Eq3.4) was made for the convenience of structure of the Hilbert space over the modes: the state
the phases on the right-hand side of E3j15. |a)nlq) _, containsg excitations both in the mode and in
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the mode—n. The vacuun0_) therefore contains Rindler * 1
excitations withn# 0 in pairs whose members only differ in 10g)= Il |———
the sign ofn. n=== | COStiro)
Now, suppose thah is an operator whose support is in *
R_, and suppose that only couples to the Rindler modes X ZO exp(—7Qq)[g)Pla)? |, (3.30
Ug k, n for which n>0. By Eq.(3.25), the expectation value d
of Ain |0_) takes the form where the superscripts again indicate the Rindler wedge. For

any operatorA® on M, whose support is in the wedge

R - labeled by the superscript), we obtain
(0_|AJo_y=]T |[1—exp—2mQ)]
n=1

oo

(0o]AWI0g)= I |[1—exp(—2mQ)]

XqZO qu_quQ)n<q|A|q>n

=tr(Ap) (327 2 ex“‘2q779><?<q|2\<1>|q>$3>)
e —t(ATp), (331
i exp(—2qm Q) where
=l 2|2 @l (329 o
> exp—2mmQ) - S exp—2qm Q)
" n==% 4=0 | Zm—=o €XP(—2mMmQ)

The operatorp has the form of a thermal density matrix. x|q)tt Hq|. (3.32

Specializing to arA that is concentrated on the accelerated o ) i
world line (3.1a,h, we infer from Eqs(3.27 and(3.28, and P~ has the form of a thermal density matrix. Oy, Egs.
the redshift in the metri¢3.2a,b, that the accelerated ob- (3.3 and(3.32 hold now for any operator whose support is
A . on the accelerated world lin€.1a,h, regardless how this

server sees the operatAras coupling to a thermal bath at . . _

i ) L operator couples to the various Rindler modes. One infers
the temperatureT=(27a) [25,26. A similar result

A that the accelerated observer bh, sees a thermal bath at
clearly holds wherA is replac_ed by any operator tha; does the temperatur@ = (27a) ~ * [25,26], no matter whatlocal)
not couple to the modes with=0 and, for each triplet

, operators the observer may employ to pro@g.
(,ky,n) with n+0, only couples to one of the modes  kinally, let us consider number operator expectation val-

Ug k, n and Uk, —n- For operators that do not satisfy this eg. Using respectively EqE.19 and (3.29a,b, we find
property, on the other hand, the experiences of the acceler-
ated observer are not thermal. (0_|b{, « Wbk nr10-)

It is instructive to contrast these results bh_ to their ’ g
well-known counterparts oM, [25,26. On M, there are =(0o| (bt} B o /100)
two sets of Rindler modes, one set for the right-hand-side Y Ty
Rindler wedge and the other for the left-hand-side Rindler =(e®™-1)"15,, 5(Q—Q’)B(ky—k)’,).
wedge. There are also twice as mafymodes as oM _,
owing to the fact the mode8.10 are distinct for positive 333
and negative values & The counterpart of Eq3.19 con-

sists of the two equations Setting the primed and unprimed indices equal in B33

shows that the number operator expectation value of a given
Rindler mode is divergent both {9,) and|0_). This diver-

) — 1 [e7¥2d(d) e~ m2(g(d 1] gence arises from the delta-function-normalization of our

k" 2 sinh( Q) ky.n Lkyn/ b mode functions, and it disappears when one introduces
(3.299 finitely-normalized Rindler wave packef4,26]. What can
be immediately seen from E@3.33 is, however, that the

1 number operator expectation values are identicag)y and
b} = —=——=[e™AZ\ +e "2dP\ ', |0_), even after introducing normalized wave packets. We
V2 sini(m Q) Y Y shall return to this point in the next subsection.

(3.29h

where the superscript on thes indicates the Rindler wedge, B. Bogoliubov transformation: Rindler wave packets

and the superscript on thiks serves as an additional label on  In Sec. Ill A we explored0_) in terms of Rindler modes
the W-modes in a way whose details are not relevant herethat are unlocalized i andy. While translations iny andy
The counterpart of Eq.3.25 on M, therefore reads are isometries of the Rindler wedd®_, the restriction of
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|0_) to R_ is not invariant under these isometries, as is
evident from the isometry structure of the two-point func- ba i, n= 2 o) Fi(ky)Dymin- (3.37H

. . . . . poml

tions in |0_). This suggests that more information about

|0_) can be unraveled by using Rindler wave packets that

are localized inp andy. In this subsection we consider such It is clear from the definition that the mode,,y, is
modes. localized ink, around the valueni+ )€, with width €,

For concreteness, we form wave packets followingand in{) around the valud}, =(p+3)e, with width e,.
closely Refs[1,26]. As a preliminary, lete;>0, and define What is important for us is that the mode is approximately
the functionsf,;:R—C, with m,l e Z, by localized also inp andy. When thek,-dependence of the
f(K) modified Bessel functioK;q(v£) in Eqg. (3.4 [via v, Eq.

ml (3.5)] can be ignoretin the integral(3.363, one sees as in

[61—1/2 exp(—2mie; k), for me;<k<(m+1)e; Ref.[26] thatu,,min is approximately localized iy around
= y, :=2e; | with width 27e; . Similarly, whenQ is large

enough thav£<Q, Ko (v£) is proportional to a linear com-
(3.343 bination of two terms whosé-dependence ig='?, and it
o ) _ . follows as in Ref.[26] that, at fixed¢, U,,min IS approxi-
Similarly, let €,>0, and define the functions,,: R, —C,  mately localized iny around two peaks, situated af
with p,oeZ andp=0, by =—2me, 'o+In ¢ and each having width2¢, *. We can
h,e(0) therefqre understand, ;,, to be Ipf:alized a.t large positive
1 _— (r]egatlve) values ofy fqr large p0_3|t|ve(negat|ve) I, and, for
€ T exp—2mie; o)), for pe;<Q<(p+1l)e;, given ¢ at large positive(negative values of » for large
= 0, otherwise. negative(positive) o. While this leaves the sense of the lo-
calization somewhat imprecise, especially regarding the uni-
(3.34D  formity of the localization with respect t6 and the various
Sgarameters of the modes, this discussion will nevertheless be
Sufficient for obtaining qualitative results about the vacuum
|0_) in the limits of interest. We will elaborate further on the
% technical details below.
f xdkfml(k)fm’l’(k)zamm’ O (3.353 In order to write|0_) in terms of the operatorb

pomin

acting on|Og ), we define theW-packets{W,,mi,} by a
formula analogous to Eq3.363, with Ug k,.n replaced by
WS),ky,n. Denoting byd,;min and df the annihilation

“ |0, otherwise.

These functions satisfy the orthonormality and completene
relations[26]

jo thpa’(Q)hp'o"(Q):5pp’50'0"’ (335[)
pomlin
and creation operators associated with the mage.,,, we
2 fr(K)f (k') =8(k—k'), (3.350 have ford,,,min and dﬂ,ky,n a pair of relations analogous to
ml

Egs.(3.37a,p. From Eq.(3.19, we then obtain

> h,e(2)h,,(Q")=86Q—-Q"). (3.350 o iy (p+1>52dQ exg2mie, (o—o')Q]
po o =€
pomin 2 o' Jper V2 Sin|’(7TQ)
We define the Rindler wave packeis,,y,n} by oo it
% % X (€T dpgrminte " dp(—a’)m(—n(—n))'
pomn= | 7400 [ ko, ()t o 2.39

(3.363
We now assume,<1. Equation(3.38 can then be approxi-

It is easily verified that the sefu,,min} is complete and | oiaq by

orthonormal in the Klein-Gordon inner product, and that the
inverse of Eq(3.363 reads

- bpo'mln~ - ! eWQp/deo'mln
Uoky 0= 20 Mool D) (k) Upmin- (336D v2sinf(m(2,)
pa o
TN 1)) (3.39

The annihilation and creation operators associated with the
modeu, ,m, are denoted by, ,m, and b;(,m,n. From Egs.

(3.36a.,b, we then have the relations Comparing Eq(3.39 to Eq.(3.19 and proceeding as in Sec.

A, we find
Bpomin= | 40 [ kg (Ot bas .

(3.373 SFor example, fore;<v or Q> .
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1
\/COSKI’QP) (q=0

pm

where|q),,min denotes the normalized state withexcita-
tions in the mode, ;i

|9) pormin =(a) " Y40 1) 9I0R_). (3.4)

. , . .
The primed producll;,,, is over all equivalence classes

[aIn] of triples under the identificationo(,l,n)~(—o,—1,
—n), except the equivalence cla€0qQ].

f 1 o
x [1 (—ZO exp(—

)
|2CI>p0moo)

V(29)!
Wqu)|q)prrmln|q>p(—rr}m(—|)(—n)) ]v (34@
[
Npomln::<0—|b;amlnbpamln|0—>
(ptl)e
:eglf "0l (342
per
As €,<1, EQq.(3.42 yields
Npam|n~(62WQP_ 1)_1- (343)

Comparing Eq(3.40 to Eq. (3.29, we see that the ex- The spectrum foN ), is thus Planckian and, taking into
pectation values if0_) are thermal for any operator that account the redshift to the local frequency seen by the accel-

does not couple to the modes with=1=n=0, and, for

erated observer, corresponds to the temperatdre

fixed p andm, only couples to one member of each equiva-=(27a) 1. The result(3.42) is precisely the same as in the
lence clas$ oln]+#[000]. Because of the mode localization vacuum|0_) on M, [26], as noted at the end of Sec. Il A.

properties discussed above, the accelerated obsgnler,h

The number operator expectation value thus contains no in-

at early(late) times only couples to modes with large posi- formation about the noninvariance |6f_) under translations

tive (negative values ofo, and thus seel® ) as a thermal
state in the temperatufie= (27a) ~*. Similarly, if the world
line of the observer is located at a large positinegative

in 7 andy.
In the above analysis, we have so far justified the local-
ization arguments in only for modes withQ)>v¢. These

value ofy, the observer only couples to modes with largeare the modes where the radial momentum is large enough

positive (negative values ofl, and see$0_) as thermal in

that the mode behaves relativistically out to this location

the same temperature. In these limits, the observer thus cafi-e., the effective mass for radial propagation is irrelevant

not distinguish between the vaci{@ ) and|0g).

out to §. As a result, the radial propagation is that of a (1

We note that, in these limits, the observer is in a region of+ 1)-dimensional free scalar field, with minimal spreading

spacetime wheré0_|T,,,[0_) and(0q|T,,|0o) for a mass-

and dispersion. In fact, even in this case, we did not discuss

less field agree, as seen in Sec. Il B. The same propertie uniformity of our approximations, and it turns out that
seems likely to hold also for the stress-energy tensor of #e localized modes defined by E¢3.34a,b are somewhat

massive field.

The correlations exhibited in Eq3.40 should not be
surprising. To see this, consider the analogue of (Bgi0
for the vacuun0,) on M [26]. From the invariance dDg)
under the isometries d¥l, it follows that a right-hand-side
Rindler packet localized at earljate) right-hand-side Rin-

too broad to be of use in a rigorous analysis. The point here
is that, due to the sharp corners of the step functions in Egs.
(3.34a,h, the modegu,,min} have long tails that decay only
asn Y ory ! too slowly for convergence of certain inte-
grals. However, this can be handled in the usual ways, for
example by wavelet techniqué34].

dler times is correlated with a left-hand-side Rindler packet Although it is too complicated to discuss in detail, the
localized at lateearly) left-hand-side Rindler times, and that |ower energy modeéwvhere Q> v¢ does not holiare also

a right-hand-side Rindler packet localized at large positivayell localized in . For the following discussion, let us ig-
(negative y is correlated with a left-hand-side Rindler nore they andz directions except as they contribute to the
packet localized at large positiveegative y. As the map effective mass for propagation in the,£-plane. Our discus-
J_ on M, takes late(early) right-hand-side Rindler times to sion will make use of the fa¢see Eq(3.34b] that replacing
late (early) left-hand-side Rindler times, and inverts the signthe indexo on the modeu,,m, With o+ 7 is equivalent to a
of y, one expects that if0_), a Rindler-packet localized at translation of the mode under— »+2w7/€,. Thus, if any
early Rindler times should be correlated with a packet localinode is localized iry (for fixed &), the localization is deter-
ized at late Rindler times, and a packet localized at largenined by the value ot In particular, for large positiver
positive y should be correlated with a packet localized at(o> €,), the mode will be localized ay> 1, while for large
large negativey. This is exactly the structure displayed by negativeo (0<—¢€;) the mode will be localized aty<

Eqg. (3.40.

—1. Thus, we need only show that at fixédhe lower en-

Finally, consider the number operator expectation valueergy modes decay rapidly ag— *o0 in order to show that

of the modeu,,,m, in |0_). Using Egs.(3.33 and(3.373,
we obtain

operators at late times couple only to modes with large posi-
tive o.
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Consider those modes with ener@y~v¢. We will ad-  tor response functiotF(E) contains the information about
dress such modes through the equivalence principle. Fronhe environmentby definition, “particles”) seen by the de-
this perspective, the modes wiéh< v¢ are those modes that tector, while the remaining factor in E¢3.44) contains the
do not have sufficient energy to climb to the heighih the  information about the sensitivity by the detector.
effective gravitational field. Similarly, the modes with Consider first the vacuurf0p) on Mo. The Wightman
>vé have so much energy that, not only can they climb tofunction Gw,(x,x") is by construction invariant under the
and 50 Sontinue 0 propagate with minimal dispersion. ThusD00SS denerated by the Killng vectsn+ to,. We there-
we see that the modes with~ v¢ are those modes that, fo.re haveGMo(X(T),’X(.T ))_GMO(,X_(T_ T )’X(,O))' This |.m- ,
while they have sufficient energy to reach the vicinityéof plies that the exqtatlon.probabnlty per unit proper time is
propagate nonrelativistically through this region. Thus, wetonstant. In particular, if the detector is turned on at the
may describe them as the wave functions of nonrelativistidnfinite past and off at the infinite future, each integral in Eq.
particles in a gravitational field. (3.45 _has_ a fuII_y infinite range, and the total_probablhty

For large times, it is reasonable to model the correspond3-44 is either divergent or zero. A more meaningful quan-
ing wave packets by ignoring the effect of the gravitationalt'ty in th_|s instance is the excitation probability per unit
field on the dispersion of the packet and only including thisProPer time, given by the counterpart of E@.44) with
field through its effects on the center of the wave packet/(E) replaced by
That is, we model such a wave packet as the wave packet of
a free nonrelativi_stic p_article for which, instead of following %(E)’zj dre ETG* (x(7),x(0)). (3.46
a constant velocity trajectory, the center of the packet accel-
erates downward as described by the field. Such an estimate
of the large time behavior at fixed position gives an expo-nserting the trajectory3.1a,h into the image sum expres-
nential decay of the wave function as the packet “falls downsion in Eq.(2.16), we find
the gravitational well.” Thus, we conclude that the mode

decays exponentially with the proper tir@roportional toz) Gy x(7),x(0))

at any locationé. It follows that modes witH)<v¢ should .

also have at least exponential decayrat fixed & since 1 2 1

they do not even have enough energy to classically reach the 167’ “. sintf[(rt—ie)/(2a)]—n%a’a”?"

height & Thus, even for modes that do not sati§h v¢,

we conclude that operators at large positiveouple only to (3.47)

modes with large positiver, and so view0_) as a thermal _ .

bath gep wo-) The contributions to Eq.3.46) from each term in Eq3.47)

' can then be evaluated by contour intergrals, with the result
C. Particle detector _ E
In this subsection we consider on the spacetiigsand }—’\"o(E)= 2m(e?™E—1)

M _ a monopole detector whose world line is given by Egs. .

(3.1a,b. The detector is turned on and off in a way to be |14 Z si2«E arcsintina/ a) ]

explained below, and the detector ground state energy is nor- ~ E1+n?a2a 2

malized to 0. The field is taken to be massless. " na e
In first order perturbation theory, the probability for the (3.48

detector becoming excited §,24—-24

7—'MO(E) clearly satisfies the Kubo-Martin-Schwing@gMS)
¢ 2, [((EIm(0)[0))[2F(E), (3.44  condition
E>0

Fu (E)=e"2mEF, (—E), (3.49
where ¢ is the coupling constantn(s) is the detector’s 0 0
monopole moment operato)) is the ground state of the
detector, the sum is over all the excited stdtés) of the
detector, and

which is characteristic of a thermal response at the tempera-
tureT=(2ma) 1 [26]. In the limita—o, only the first term

in Eq. (3.48 survives, and?fMO(E) correctly reduces to
. , Fu(E) [25].
. t A—IiE(7— 7T M
]'—(E)'_f de dr'e "= Consider then the vacuurf0_) on M_. From Egs.

(2.149 and(2.16 we obtain
XGH(x(7),x(7")). (3.45

Gh (X(7).X(7)=Gmp (X(7).X(7)+AG(7,7),
Here G*(x,x’) stands onM, for the Wightman function - 0 (3.50
G, (X,X") :=(0o| #(x) $(x)|0g), and onM _ for the Wight- '

man functionGy; (x,x'):=(0_|$(x)¢(x")|0_). The detec- where
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AGHmr) tank{(m/a)\a? cosR[(7+ 7')/(2a)]+y2} andM® they have the identifications
T, 7T )= , ~ ~
16maya? cosi[(T+ r’)/(Za)]+yS( . (t.xy,2)~(t,x,y,z+2a), for M§, (3.523
35

. , (t,x,y,2)~(t,—x,—y,z+a), for MR. (3.52n
andyy is the value of the coordinate on the detector tra-

jectory. If the detector is turned on at the infinite past and offThe metric reads explicitly

at the infinite future, the contribution frodG™*(r,7') to

Fu_(E) is equal to a finite number timeXE). This implies dsi=dt?+dx?+dy?+dZ. (3.53
that AG*(7,7') does not contribute to th@ivergenj total . . R R R

excitation probability(3.44). However, the excitation prob- | N€ isometries oM™, Mg, andMZ are clear from the quo-
ability per unit proper time is now not a constant along thetl€nt construction. _
trajectory, sinceAG ™ (r,7') depends onr and 7' through _We now W|§h to understand h0\_/v th{ocal) Lorent_2|an
the sumr+7'. The vacud0_) and|0,) appear therefore Rindler coordinates #,£¢,y,2), deflned_ on the Rindler
distinct to particle detectors that only operate for some finitéVeédges ofM, My, andM_, are continued mto(locgl)
duration, and it is not obvious whether the response of sucfiemannian Rindler coordinates on respectivelf, Mg,
detectors in0_) can be regarded as thermal. Neverthelessand M¥ . For M and My, the situation is familiar. Setting

the suppression oAG*(7,7') at large|7+ 7’| shows that t=—it and »=—i7, the transformatiori3.2a,b becomes
the responses if0_) and|0,) are asymptotically identical _ 5

for a detector that only operates in the asymptotic past or t=¢ sin(7p), (3.54a
future. Similarly, the suppression &fG* (7,7’) at large|yy|

shows that the responses i) and|0,) become asymp- x= & cog7n), (3.54b

totically identical for a detector whose trajectory lies at as-

ymptotically large values ofy|, uniformly for all proper and the metrig3.53 reads

times along the trajectory. The detector |®_) therefore ~

responds thermally, at the temperatdre (27a) 2, in the dsh=£2d 7 +dé2+dy?+d 2. (3.59
limit of early and late proper times for a prescribgg and _

for all proper times in the limit of largey,|. These are On MR, one can therefore understand the sgt&(y,z) as
precisely the limits in which we deduced the experienceglocal) Riemannian Rindler coordinates, such t§at0 and
along the accelerated world line to be thermal from the Bo-; is periodically identified as#%,&,y,z)~(7+2m,£,y,2).

goliubov transformation in Sec. Il B. The only part ofMR not covered by these coordinates is the
flat R? of measure zero &=0. OnM§, one has the addi-
D. Riemannian section and the periodicity of Riemannian tional identification @,£,y,2)~(7,£,y,z+2a), which
Rindler time arises from Eq(3.529. On bothMR andef, the globally-

In this section we consider the analytic properties of thedefined Killing vectorﬂ;7=xa;—TaX generates a (1) isom-
Feynman Green furjctions. in thg complexified Rin.dler timeetry group of rotations about the origin in the,X)-planes.
coor_dlnate. We begin by _dlscussmg_ the relevant Riemanniamhe geometry is often described by saying that the Riemann-
sections of the complexified spacetimes. ian Rindler time is periodic with period 2, and the 1)

As M, Mo, andM _ are static, they can be regarded asisometry group is referred to as “translations in the Rie-
Lorentzian sections of complexified flat spacetimes that als@,annian Rindler time.”

admit Riemannian sections. In terms of tflecal) coordi-
nates {,X,y,z), the Riemannian sections of interest arise by
writing t=—it, letting the “Riemannian time” coordinate
take all real values, and keepirgy, andz real’ We denote
the resulting flat Riemannian manifolds by respectivdl,
M§, andM® . Note that ag is a global coordinate on the
Lorentzian sectiond, is a global coordinate on the Riemann- (7,&Y,2)~(p+2m,&y,2)~(m—7,&,—Yy,z+a),
ian sections, and1®, M(Ff, andM® are well defined. (3.56
Mff andM® are the quotient spaces B with respect to
the Riemannian counterparts of the mdpsandJ_ (2.2a,h.

The coordinatest(x,y,z) are global orMR, whereas oM §

On MR | we can again introduce by Eq3.54a,b the

local Riemannian Rindler coordinates,&,y,z) which, with
£>0, cover in local patches all df1? except the flat open
Mobius strip of measure zero &t=0. The identifications in
these coordinates read

the latter one arising from Ed3.520. The locally-defined
Killing vector ajyzxa;—Tax can be extended into a smooth
line field VR (a vector up to a signon MR, but the identi-
fication (3.52H makes it impossible to promotéR into a

"The Lorentzian and Riemannian sections could be defined as tH&Mooth vector field oM® by a consistent choice of the sign.
sets stabilized by suitable antiholomorphic involutions on the com-This means tham® does not admit a global (@) isometry
plexified spacetimes. We shall rely on this formalism with the blackthat would correspond to “translations in the Riemannian
hole spacetimes in Sec. IN27,2§. Rindler time.”
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MR does, however, possess subsets that admit sgth U absorption probabilities of Rindler particles with local fre-

isometries. It is easy to verify that any poxe MR with & quencyE turn out to be related by the facter 27*E. This is
>0 has a neighborhodd = S*x R® with the following prop- the characteristic thermal result at the Rindler temperature

. " . T=27ma) .
erties:(1) The restriction ofVR to U can be promoted into a (2ma)

unique, complete vector fiehdﬁ in U by choosing the sign V. THE COMPLEXIFIED KRUSKAL AND  RP®
at one point;(2) The flow ofVE forms a freely-acting (1) ' GEON SPACETIMES

isometry group ofU; (3) On U, the Riemannian Rindler
d This section is a mathematical interlude in which we de-

time}} can be defined as an angular coordinate with perio scribe the Lorentzian and Riemannian sections of the com
2m, and the action of the (1) isometry group ot consists plexified R’ geon. The main point is to show how the quo-

ofF;‘transIatlons” in 7. In this sense, one may regasdon et construction of the Lorentzia®P® geon from the
MT as a local angular coordinate with period.2 Lorentzian Kruskal spacetimd9] can be analytically con-

We can now turn to the Feynman propagators on oufinyed to the Riemannian sections of the respective com-
spacetimes. Recall first that the Feynman propag@Qr plexified manifolds. When formalized in terms @ftjholo-
analytically continues into the Riemannian Feynman propamorphic involutions on the complexified Kruskal manifold
gator GEAR, which depends on its two arguments only [27,28], this observation follows in a straightforward way
through the Riemannian distance functip@—1')2+(x  from the constructions of Ref28]. .

—x") 2+ (y—y')2+ (z—2')?]¥2 and whose only singularity M>0 denotes throughout the Schwarzschild mass.

is at the coincidence IimilG,f,,R is therefore invariant under
the full isometry group oMR. As the Riemannian Feynman
propagators oM T and MR are obtained fronG,x by the Let (z%,22,23,2%,2°,25,27) be global complex coordi-
method of images, they are IikevF\l/ise inv%riant under the renates onC’, and letC’ be endowed with the flat metric
spective full isometry groups dl; andMZ , and they are

singular only at the coincidence limit. In the massless case, ds?=(dZh)+(dZ?)*+(dZ%)*+(dZ%)?
explicit expressions can be found by analytically continuing +(dZ%)%+(dZ8)2—(dZ")2 (4.2)
the Lorentzian Feynman propagators given in Sec. Il B.

The properties of interest of the Riemannian Feynmarwe define the complexified Kruskal spacetimé® as the
propagators can now be inferred from the above discussioalgebraic variety in.’ determined by the three polynomials
of the Riemannian Rindler coordinates. It is immediate thaf35]
G,\FAR and Gf/lfj are invariant under the rotations generated by

A. Complexified Kruskal

6\2__ N2 4 5\2_ 2
the Killing vectord;,, respectively orMR andMS, and that (29)7= (2074 5 (22)"=16M7, (4.29
they are periodic iny in each argument with period2 This [(ZY2+(Z2%)2+(Z3)%)(Z5)*=576M°, (4.2b
periodicity of the propagator in Riemannian time is charac-
teristic of thermal Green’s functions. The local temperature V3Z4Z5+(Z25)2=24M2. (4.20

seen by the observéB.1a,b is read off from the period by
relating  to the observer’s proper time and the local redshiftThe Lorentzian and Riemannian sections of interest, denoted

i — -1 ~ ~ .
factor, with the resull =(27a) "~ [25,28. ~ by M" and MR, are the subsets of1 " stabilized by the
GMF_g, on the other hand, displays no similar rotationalrespective antiholomorphic involutiohig7,2§

invariance. This is the Riemannian manifestation of the fact 192 53 54 55 56 7 —I=3S3=7SES5 =7
that the restriction of0_) to R_ is not invariant under the ~ JL:(2%,2%,2°,2%,2°,2°,2°)~(2",2%,2°,2",2°,Z 124):%
boost isometries oR_ generated by, . G;R is invariant (439

under “local 2r translations” of each argument i, inthe  Jr:(2,22,23,2%,2°,2%,27)—(Z%,22,23,2%,25,25,- Z7).
above-explained sense in whicjprovides onM _ a local (4.3
coordinate with periodicity 2. However, in the absence ofa ~ ~n . o ~ 1
continuous rotational invariance, it is difficult to draw con- M~ andM are clearly real algebraic varieties. Qu", Z
clusions about the thermal character|6f ) merely by in-  are real for ali; on MR, Z' are real for ki<6 whileZ’ is

spection of the symmetries G',\:AR . purely imaginary.

- . The Lorentzian section* consists of two connected
One can, nevertheless, use the complex analytic proper-

_ r " _ components, one witd°>>0 and the other witiZ®<0. Each
ties of Gyr to explicitly calculate the relation between the ¢ these components is isometric to the Kruskal spacetime,

quantum mechanical probabilities of the vaculin) to  which we denote byM"“. An explicit embedding ofM -
emit and absorb a Rindler particle with prescribed quantunpnto the component of1" with Z°>0 reads, in terms of the
numbers. We shall briefly describe this calculation in Secysual Kruskal coordinatesT(X, 6, ¢),

V D, after having performed the analogous calculation on the

RP? geon. For late and early Rindler times, the emission and Z'=r sin 6 cos ¢, (4.49
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Z%=r sin 6 sin ¢, (4.4b
Z3=r cos¥#, (4.49
Z4_4M r 1/2 oM 2M 1/2
- M/ T
(4.49
6M 1/2
Z5—2M(T) , (4.40
2M\ 2 r
6— — —_——
Z 4M< ; ) ex;{ M X,
(4.41)
2M\ 12 r
7: — —_——
Z 4M< r) ex;{ 4M)T’
(4.49

whereX2—T2>—1, andr is determined as a function df
and X from

L 1]ex | =x2—- 12 .5
oM ex M| = ) )
In the Kruskal coordinates, the metric dvi - reads
32m3 r
= ex*’( - m)
X (—dT?+dX?) +r2dQ?, (4.6)

where dQ?=d#?+ sir? 6d¢? is the metric on the unit two-

PHYSICAL REVIEW D 58 024007

FIG. 3. A conformal diagram of the Kruskal manifold. Each
point represents a suppress&dorbit of the Q3) isometry group.
(T,X) are the Kruskal coordinates introduced in Sec. IV A, and the
hypersurface¥ =0 andX=0 are shown. The involutiod" (4.123
consists of the reflectionT(X)—(T,— X) about the vertical axis,
followed by the antipodal mapé{¢)—(7— 6,0+ ) on the sup-
pressed two-sphere.

r 1 1/2 r t
2M &P am | N am

wherer >2M and — o <t<c. The metric takes the familiar
form

X= ,  (4.8D

2

+r2dQ?, (4.9

r

2M

andVt=g,.

The Riemannian sectioM® consists of two connected
components, one witd°>0 and the other witZ°<0. Each
of these components is isometric to thesua) Riemannian

sphere. In what follows, the singularities of the sphericalKruskal spacetime, which we denote byl ?. An explicit

coordinateg6,¢) on S? can be handled in the standard way, embedding of\ R onto the component of1" with Z5>0 is

and we shall not explicity comment on these singularities. obtained, in terms of the usual Riemannian Kruskal coordi-
M" is both time and space orientable, and it admits anates ﬁ',x,g, ©), by settingT=—iT’ in Egs. (4.49—(4.6).

global foliation with spacelike hypersurfaces whose topolog

is S°xR=S3\{two points at infinity. M" is manifestly
spherically symmetric, with an @) isometry group that acts
transitively on the two-spheres in the metfi6). M" has
also the Killing vector

1
vL:=m(xaT+ Tay), 4.7

which is timelike for|X|>|T| and spacelike fotX|<|T]|.
We define the time orientation o " so thatV' is future-
pointing for X>|T| and past-pointing foX< —|T|. A con-

¥The ranges off andX are unrestricted.

MR is orientable, and it admits an(8) isometry group
that acts transitively on the two-spheres in the Riemannian
counterpart of the metri¢4.6). It also admits the Killing
vector

1 ~
szzm(xa;— Tdy), (4.10

which is the Riemannian counterpart gt (4.7). The Rie-
mannian horizon is a two-sphere®t X =0, whereVR van-

formal diagram ofM -, with the two-spheres suppressed, isiShes.

shown in Fig. 3.

In each of the four regions of1" in which |X|#|T|, one
can introduce local Schwarzschild coordinates,@, ¢) that
are adapted to the isometry generatedvby In the exterior
regionX>|T|, this coordinate transformation reads

r 1/2 r t
T:(m_l) exr{m)sinr(m , (4.83

With the exception of the Riemannian horizokf R can
be covered with the Riemannian Schwarzschild coordinates

(t.,r,6,0), which are obtained from the Lorentzian
Schwarzschild coordinates in the regi¥i»|T| by settingt

=—it and takingt periodic with period 8M. The well-
known singularity of the Riemannian Schwarzschild coordi-
nates at the Riemannian horizon is that of two-dimensional
polar coordinates at the origin.
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The intersection of\ - and M R embeds into both -
and MR as a maximal three-dimensional wormhole hyper-
surface of topology8°x R. In the Lorentzian(Riemanniah

Kruskal coordinates, this hypersurface is givenTby0 (T
=0).

B. Complexified RP® geon
Consider onM “ the map[28]

J:(Z,22,28,2%,25,25,27)

FIG. 4. A conformal diagram of thBP® geon[19]. Each point

_ 71 _ 72 _ 23 74 55 _ 56 57

=(=20,-25,-2°,2°2°-2°,Z"). (41) represents a suppressed orbit of th@)dsometry group. The re-
gion X>0 is isometric to the regioK>0 of the Kruskal spacetime,
shown in Fig. 3; in particular, the @) isometry orbits in this region
are two-spheres. AX=0, the (3) orbits have topologRP?.

J is clearly an involutive holomorphic isometry, and it act
freely on M “. We define the qomplexifieHP?’ geon space-
time as the quotient spac&t“/J. In the notation of Ref.

[28], I=R,P. _ . region X>0 is isometric to that in the Kruskal diagram of
_ As J commutes with7, and Jg, the restrictions ol 0 Fig. 3, and the CB) isometry orbits are two-spheres. Xt
M" and MR are freely-acting involutive isometries. Ak =0, the G3) isometry orbits have topologyP?: it is this set

leavesZ® invariant, these isometries g#1- and MR restrict ~ Of exceptional orbits that cannot be consistently moved by

further into isometries of each of the connected componentghe local isometries generated Wy/J". AM'/3% is inextend-

J thus restricts into freely and properly discontinuously act-ble, and it admits a global foliation with spacelike hypersur-

ing involutive isometries oo\ - and M R. We denote these faces whose topology iB*\{a point at infinity.

isometries respectively by- and JR. The LorentzianRP® M"13% is clearly an eternal black hole spacetime. It pos-

geon is now defined as the quotient spaee-/J-, and the Sesses one asymptotically flat infinity, and an associated

RiemannianRIP® geon is defined as the quotient spaceStatic exterior region that is isometric to one Kruskal exterior

MPRIIR. Their intersection is a three-dimensional hypersurr€gion. As mentioned above, the exterior timelike Killing

face of topologyRP®\{a point at infinity, embedding as a Vector cannot be extended into a global Killing vector on
For elucidating the geometries g#“/J- and M R/JR it ~ faces in the exterior region, there is only one that can be

is useful to write the mapa" andJR in explicit coordinates. €xtended into a smooth Cauchy hypersurfacefot/J": in

In the Lorentziar(Riemanniah Kruskal coordinates ot our (local) coordinates T, X, 6,¢), this distinguished exte-

(MR, respectively, we have rior hypgrsurfacg is at=0. . .
The intersection of the past and future horizons is the

J5(T,X,0,0)—(T,—X,m— 0,p+m), (4123 two-surface on which the Killing line fiel/*/J" vanishes.
This critical surface has topologRP’> and area &M?.
JR(T X, 0,0)—(T,— X, m7—60,0+m). (4120  Away from the critical surface, the future and past horizons
have topologyS? and area 16M?, just as in Kruskal.
In the Riemannian Schwarzschild coordinates etf?, JR A parallel discussion holds fat R/IR. M R/IR inherits
reads from MR an Q3) isometry whose generic orbits are two-
~ - spheres, but there is an exceptional hypersurface of topology
JR(tr,0,0)—>(t+47M,r,m—6,0+m). (413  RxRP2 on which the orbits have topology’2. The “loca-

. L ) ) . tion” of this hypersurface prevents one from consistently
It is clear thatJ- preserves both time orientation and SPacegxtending the local isometries generated by the line field
orientation onM", and J® preserves orientation oM ™. \/R/JR into globally-defined isometries.

Lyl ; i
M*=1J- is therefore both time and space orientable, and The line field VR/JR can be promoted into a globally-

R/1R ; H
MTIITis orlgntabIeL. . . , defined Killing vector field only in certain subsets of
Consider firstM*=/J-. As J- commutes with the (3) MPRIIR. In particular, any poink e M R/JR with r >2M has

isometry of M ", M"/3" admits the induced @) isometry 5 neighborhoodJ =S R® with the following properties:

with two-dimensional spacelike orbitdz1“/J" is spherically (1) The restriction ofVR/JR to U can be promoted into a
) " N

symmetric. On the other hand, the Killing vectdr of M" e complete vector fied? in U by choosing the sign

changes sign undel-, and it therefore induces only a line at one pointi(2) The flow ofVE forms a freely-acting (1)

field V-/J" but no globally-defined vector field an /35, , . :
This means thatM /3" does not admit globally-defined |sor_netr_y group ol; (3 _On U, the Riemannian S.chwarz—_
schild timet can be defined as an angular coordinate with

isometries that would be locally generated Wy/J-. Alge- : _ ,
braically, this can be seen by noticing thitdoes not com- Period 87M, and the action of the () isometry group on

mute with the isometries oM - generated by/*. U consists of “translations” int. In this sense, one may
A conformal diagram ofM “/J" is shown in Fig. 4. Each regardt on M R/JR as a local angular coordinate with period
point in the diagram represents ari3pDisometry orbit. The 87 M.
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We define the Riemannian horizon as the set on which the b= (4mo)‘1’2r‘1Rw|(r)e““"Y|m( 6,0), (5.2
Riemannian Killing line fieldv®/JR vanishes. This horizon
is located aX=0=T, and it is a surface with topolog§P?  whereY, are the spherical harmoni€&he equation for the
and area &M? at X=0=T. The Riemannian horizon radial functionR,(r) is
clearly lies in the intersection af1 ?/JR and M /3", and 5
on M /3" it consists of the set where the Lorentzian Killing 0:[ d ol ( 1— ﬂ)
S ) . . . o tow
line field Vt/J* vanishes. The Riemannian horizon thus only dr r
sees the part of the Lorentzian horizon that is exceptional in I(1+1) 2M
both topology and area. This will prove important for the X(M2+ — —3”Rwl, (5.3
geon entropy in Sec. VI. r r

The above discussion is intended to emphasize the paral- . . :
lels between the black hole spacetimes and the flat spaC(‘é"-herer is the tortoise coordinate,
times of Sec. Il. The Kruskal spacetinie " is analogous to r
Mo, and the RP® geon MY/J‘ is analogous toM _ r*:=r+2M In(m—l). (5.9
=My/J_. The isometries ofM " generated by" corre-
spond to the boost-isometries ldfy generated by the Killing  The (indefinite) inner product, evaluated on a hypersurface
vectortd,+xd; . The analogies of the conformal diagrams in of constant, reads
Figs. 3 and 4 to those in Figs. 1 and 2 are clear. The analogy
extends to the Riemannian sections of the flat spacetimes, . . * —o
discussed in Sec. Ill D. The (W) isometry of M R generated (b1, ¢2):=i Jsz sin 6d ad“’J,wrzdr* b4z (5.9
by VR corresponds to the (@l) isometry ofM§ generated by
7, and the 8rM periodicity oft on MR corresponds to the For presentational simplicity, we now set the field mass to

27 periodicity of 7 on Mg. The “local 87M periodicity” éeeré),\;;go. The caseu>0 will be discussed at the end of

of t on M R/JR corresponds to the “local periodicity” of The vacuum of positive frequency mode functions with
7 on MR | but in neither case is this local periodicity asso- respect to the timelike Killing vecto#, is called the Boul-
ciated with a globally-defined (@) isometry. Finally, the ware vacuum[22,23. A complete orthonormal basis of
intersection of the future and past acceleration horizons omode functions with this property is recovered from the
M_ is exceptional both in topology and in what we might separation5.2) by takingw>0 and choosing, for eadh for
call the “formal area” (though the actual area is infinife R, a basis of solutions that arez®-orthonormal inw in the
and it is precisely this exceptional part of the LorentzianSChr"ajinger_type inner produqtfwdr*R_le. We shall now
horizon that becomes the horizon of the Riemannian sectiofnake a convenient choice for such an orthonormal basis.
For each| and m, it follows from standard one-
V. SCALAR FIELD THEORY ON THE RP® GEON dimensional Schinger scattering theor{37,3§ that the
spectrum forw is continuous and consists of the entire posi-

In this section we a_malyze scqlar field theory on_ﬁ‘ié"" tive real line, and further that the spectrum has twofold de-
geon spacetime. Section V A reviews the construction of the

Boulware vacuunjOg) in one exterior Schwarzschild region. generacy. One wajB9] to break this degeneracy and obtain

The Bogoliubov transformation betwe&y) and the Hartle- a,m orthonorm'al basis Wou'ld be to c'hoi)seﬁm trle conven-
Hawking-like vacuumOg) is presented in Sec. V B. Section tional scattering-theory eigenfunctiot, and R, whose
V C discusses briefly the experiences of a particle detector iASYMPptotic behavior as® — . is

|0g), concentrating on a detector that is in the exterior region or* | & giort N
of the geon and static with respect to the timelike Killing B~ e tAqe y e (5.69
vector of this region. Section V D derives the Hawking effect ol B, €, r*—o, '
from the complex analytic properties of the Feynman propa-
gator in|0g). B, e ", r*——oo,
wl ™ —jwr¥ A iwr* * (56b)
A. Boulware vacuum € TALEY , T,
We begin by reviewing the quantization of a real scalarThe coefficients satisf{37]
field ¢ in one exterior Schwarzschild region.
As the Kruskal spacetime has vanishing Ricci scalar, the 0<|B, =1, (5.739
curvature coupling term drops out from the scalar field action o
(2.5), and the field equation reads A,B,=—A,B,, (5.7b
(VaV,—p?) $=0. (5.1

In the exterior Schwarzschild metric in the Schwarzschild 8we use the Condon-Shortley phase conventi®e for example
coordinates(4.9), the field equation(5.1) can be separated Ref. [36]), in which Y|y (8,¢)=(—1)"Y;,(6,¢) and Yy,(m
with the ansatz —0,0+m)=(-1)'"Yn(6,0).
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|A12=|A,2=1—|B,|? (5.79  Wherebg,,, and 0" are the annihilation and creation

w w w . * . .
operators associated with the Boulware made,,. The

The modes involvingR,, are purely outgoing at infinity, and Boulware vacuumOg) is defined by
those involvingﬁw, are purely ingoing at the horizon. This
basis would be especially useful if one were to consider
vacua that are not invariant under the time inverdien—t

[5]. For us, however, it will be more transparent to use a B. Hartle-Hawking-like vacuum and the Bogoliubov
basis in which complex conjugation is simple. To this end, transformation

we introduce the solutionR;; for which
o vacuum|O) is the vacuum of mode functions that are posi-
‘QRLN‘/“' /1_|Aw||2eiwr*+ Aol tive frequency with respect to the affine parameters of the

[1+ 1-|A, 2 horizon-generating null geodesigs,7]. As |O) is invariant
TRl

under the involution“, it induces a unique vacuum on the

bgiml0g) =0. (5.13

In the Kruskal spacetimeM!', the Hartle-Hawking

H *
—iwr
e

as r*— -, (583 RP3 geon M/J-. We denote this Hartle-Hawking-like
vacuum onM /3% by |0g). In terms of, say, the corre-
and sponding Feynman propagat@§ on the Kruskal spacetime
_ and GE on the RPP® geon, this construction is given by the
R,i=R.- (5.80  method of images,
Equations(5.6a,b and (5.8a,b defineR;, uniquely. Using G&(X,X") =GR (X,X") +GE(x,J"(x)). (5.14

the identities(5.7a—¢, it is straightforward to verify that the
set{R;,} is 2w s-orthonormal inw in the Schidinger-type  The arguments of the functions on the two sides of(Bd4)
inner product. Conversely, it can be verified that therepresent points on respectively tfié*3 geon and on the
Schralinger-type orthonormality and the complex conjugateKruskal spacetime in the sense of local charts with identifi-
relation (5.8b determine these solutions uniquely up to ancations, as with the flat spaces in Sec. I[&. Eq.(2.143)].
overall phase. A complete set of the mode functions whose vacuu®ig
We now take the complete orthonormal set of positivecan be recovered by forming from the Kruskal Hartle-
frequency modes to b€}, where the index takes the Hawking mode functions linear combinations that are invari-
values* and ant underd" [40].
Several other characterizations of the stétg) can also
usim :=ei('+|m\>ﬂ/2(47m)*1/2r*1Rile*iwtylm_ (5.9  be given. In particular|0g) can be defined as the analytic
continuation of the Green’s function on the Riemanritdi?
The orthonormality relation reads geonM R/JR, and as the vacuum of mode functions that are
positive frequency with respect to the affine parameters of
(us, !ué/’l’m’):555’5||’5mm’ S(w—w'), (5.10 the horizon-generating null geodesics of the geon. The first
@ of these characterizations follows from the observatiéh
with the complex conjugates satisfying a similar relationthat Gic analytically continues to the Riemannian Green's
with a minus sign, and the mixed inner products vanishing.function on the Riemannian Kruskal manifafd ® and that

, . F F
The asymptotic behavior &®}, at infinity is the Green’s function§,z on MR andGgr on M ®/JR are
L related by the Riemannian version of E§.14). The result-
‘/ZB_wlel . Aiw,e*i“’r* ing GER is regular everywhere except at the coincidence
TBul V1+41-|A, 2" + T limit, and so analytically continues B;. The second char-
© V1+y1-|A,l? acterization follows from the observation that the modes
as r* —ow. (5.1  constructed in40] (or, for example, théN-modes below

have, when restricted to any generator of the geon horizon,
no negative frequency part with respect to the affine param-
) > oY , olm = ater along that generator.
mostly outgoing, with small ingoing sc:i\tterlng corrections  \ve wish to find the Boulware-mode content|6t). To
both at the horizon and at infinity. WheA,,| is not small,  this end, we recall that the Boulware-mode contentOgf
the relative weights of the incoming and outgoing compo-can be found by an analytic continuation arguniént] that
nents inu,,,, become comparable, both at the horizon and afs closely similar to the analytic continuation argument used
infinity. Analogous statements hold fer,,,, with ingoing in finding the Rindler-mode content of the Minkowski
and outgoing reversed. vacuum[5]. In Sec. Ill A we adapted the Rindler analytic
We expand the quantized field as continuation arguments from Minkowski space firstNi,
and then taM _ . The analogy between the quotient construc-
_ ” e e N tions My—M_=Mg/J_ and M'"—M"/J- makes it
¢ ; fo dolbuintioim+ (Oum) o], (5.12 straightforward to adapt our flat spacetime analytic continu-

When |A,|<1, Egs.(5.8a and (5.11) show thatu’, is
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ation to the geon. One finds that a complete orthonormal sathere |q);,,,, denotes the normalized state withexcita-
of W-modes in the exterior region of1"/3" is {W,},  tions in the modesS, .
where
@) foim =(a1) A (BFym) 1908). (5.2
+ 1 2rMw, =+

Wi == (e?"™ Ut e 2™ u g ). The noninvariance of0g) under Schwarzschild time trans-
2 sint(47Mw) lations is apparent from the noninvariance of E§20 un-
(5.19 der (intege) translations ino.
Consider now an observer in the exterior region at a con-

In analogy with Eq(3.25), we find )
stant value ofr and the angular coordinates. At eaflgte)

1 * Schwarzschild times, the mode localization properties dis-
|0g)= H (— E exp—47mMwq) cussed above imply that the observer only couples to modes
wm | COSHI,) G=0 with large positive(negative values ofc, and thus sed€)

as a thermal state. In particular, the observer cannot distin-
X |Q>Z|m|Q>;|(—m>), (5.16  Quish|0g) from[O) in these limits. For>M, the tempera-
ture is the Hawking temperatuie=(87M) L.

Just as in the flat space case, the correlations exhibited in
where Eq. (5.20 should not be surprising. In the vacuu@y) in
B the Kruskal spacetime, invariance under Killing time trans-
tanf(r,) =exp( —47Ma), (5.1 lations implies that the partner of a right-hand-side Boulware
mode localized at asymptotically earflate) Schwarzschild

c . . Lo
and|q);,r denotes the normalized state wifexcitations in times is a left-hand-side Boulware mode localized at asymp-

the modeu¢

olm> totically late (early) Schwarzschild times. The properties of
_ the involutionJ' on the Kruskal spacetime lead one to ex-

€ = | 1/ € 14 X X
|9 Gim = (ah) " ¥ (b1 T1%O). (5.18 pect in|Og) a correlation between Boulware modes at early

Thus,|0g) contains Boulware modes in correlated pairs Forand late times, and a correlation between Boulware modes
176 pairs. ith opposite signs ofm: this is indeed borne out by Eg.

any set of operators that only couple to one member of eacﬁo_
correlated Boulware pair, it is seen as in Sec. Il A that the*™"
expectation values itOg) are thermal, and the temperature
measured at the infinity is the Hawking temperatufe,
=(87M) 1. However, for operators that do not have this N ~(e8™Mwp_1)~1 (5.22
special form, the expectation values are not thermal. palm ' '

The definition of|Oc) gives no reason to expect that the This is the Planckian distribution in the temperatuFe
restriction of|Og) to the exterior region would be invariant =(87M)~L In particular, the number operator expectation

indeed is not invariant becomes explicit upon decomposingo ) under the Schwarzschild time translations.

For the number operator expectation value of the mode
U,oim in [Og), one finds precisely the same result agdsg),

the Boulware modefu;,} into wave packets that are local- ~ To end this subsection, we note that the above discussion
ized in the Schwarzschild time. Using the functiofts,,}  can be easily generalized to a scalar field with a positive
(3.34b, we define such packets by mass u. For eachl and m, the spectrum forw is again
continuous and consists of the entire positive real line, but
e 7 € the spectrum is now degenerate only &@r . In the non-
u = | dwh,(0)u . 5.1 . . :
paim fo po(@)Uoim (519 degenerate part,-0w<u, the eigenfunctions vanish expo-

nentially atr* —o, while atr* — —o they are asymptoti-
Us,im IS localized inw around the value, :=(p+3) e, with cally proportional to cos¢r*+4,), where 8, is a real
width €,. Whenr* is so large that the asymptotic form phase. The nondegenerate part of the spectrum thus corre-
(5.11 holds, we see as in Sec. lll B thaf ., is approxi-  sponds classically to particles that never reach infinity, and
mately localized int around two peaks, situated at the Bogoliubov transformation for these modes is qualita-
= _zweglgir*, with heights determined by the coeffi- tively similar to that of then=0 modes in Sec. Ill A. In the
cients in Eq.(5.8a, and each having width2¢, *. In fact, —degenerate part of the spectruar> u, the asymptotic solu-
the discussion is somewhat simplified by the massless natufns to the radial equati0f5.3)2at r*—oo are now linear
of the current case and by the asymptotic flatness of theombinations of  (*/M)*'*"M/P exp(+ipr*), where
geon. Takinge,<1 and proceeding as in Sec. Ill B, we find p:=+w?— 12, and the relation5.6a,b and(5.7a,H need to

be modified accordingly, but Eq&.8a,h) and(5.9) do then

1 - again define an orthonormal set of modes, and the rest of the
|0e)~ I;Im (W 20 exp—4mMw,0) discussion proceeds as in the massless case. Thus, also in the
P @ 9 massive case, expectation values of operators that couple
only to one member of each correlated Boulware mode pair
><|q);0,m|q>p<_(,),(_m)>, (5.20  are thermal in the Hawking temperatufe=(87M) ™1,
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Again, arguments similar to those of Sec. Il B show that this
is the case for any operators that only couple to the infinity-
reaching modes at large distances and at asymptotically early
or late Schwarzschild times.

C. Particle detector in the Hartle-Hawking-like vacuum

We shall now briefly consider the response of a particle
detector on thé?P® geon in the vacuunOg).

We describe the internal degrees of freedom of the detec-
tor by an idealized monopole interaction as in Sec. lll C. In
first order perturbation theory, the detector transition prob- F|G. 5. A conformal diagram for the emission and absorption
ability is given by formulag3.44) and(3.45, wherex(7) is  calculation of Sec. V D on thBP® geon. The timelike hypersurface
the detector trajectory parametrized by the proper time, angh and the spacelike hypersurfacEs and C_ are shown. The
G"(x,x') stands for the Wightman function giagram for the corresponding emission and absorption calculation
G&(X,x")=(0g| p(X) p(x")|0g). In analogy with Eq. on Kruskal is shown in Fig. 3 of Ref6].

(5.14), we have

identical for a detector far from the hole, even if the detector

Ge(x,x') =Gy (x,x")+ Gy (x,d"(x")),  (5.23 operates at proper times that are not in the asymptotic past or

] future.
where Gy (x,x):=(0x|¢(x)$(x')[0k) is the Kruskal Finally, we note that the contribution to the renormalized
Wightman function. expectation valug0g|T,,,(x)|0g) from the second term in

Of particular interest is a detector that is in the exteriorEq_ (5.23 is manifestly finite. IfG,ﬁ(x x') satisfies the fall-

region and static with respect to the Schwarzschild tim&gt nronerties mentioned above, and if its derivatives fall off
translation Killing vector of this region. The contribution to similarly, it follows that (Og|T,,(x)|0s) approaches
’ mv

the response functiof8.45 from the first term on the right- 04|T,.(x)|0k) when the curvature radius of the pon
. X . . Y poits
hand-side of Eq(5.23 is then exactly as in Kruskal, and this ;sl§/mStoticalr)/>large, or when the poixtis taken to asymp-

contribution_indicates ,al thermal response at the H?‘?’,Vkm%tically distant future or past along a path of fixed curvature
temperaturel = (8wM) "~ [S]. The new effects on th&P"  54i,57in the exterior region. If true, this means that the
geon are due to the additional contribution from asymptotic agreement of the detector responseé8dh and

|0k) is accompanied by the asymptotic agreement of the

AGg(7,7')=Gy[x(7),d"(x(7"))]. (524 giress-energy tensors.

Unfortunately, the existing literature on the Kruskal Wight-

man functions seems to contain little information about D- Derivation of the Hawking effect from the analytic

AG{ . The points«(7) andJ“(x(7')) in Eq.(5.24 are in the properties of the Feynman propagator

opposite exterior Kruskal regions, and field theory on the In this section we derive the Hawking effect on th&?

Kruskal spacetime gives little incentive to study the Wight-geon from the analytic properties of the Feynman propagator

man functions in this domain. We therefore only offer somein the vacuun0g). The idea is to consider the probabilities

conjectural remarks. of the geon to emit and absorb particles with a given fre-
As translations in the exterior Killing time cannot be ex- quency, at late exterior times, and to reduce these probabili-

tended into globally-defined isometries of th&>® geon, ties to those of the Kruskal hole. This section is meant to be

there is no apparent symmetry that would make the detectaead in close conjunction with the Kruskal analysis of Ref.

excitation rate independent of the proper time along the traf6].

jectory. However, from the locations of the pointér) and Following Sec. IV of Ref[6], we envisage a family of

J-(x(7")) in the Kruskal spacetime, it seems likely that particle detectors located on a timelike hypersurf@ref

AGE(T, 7') tends to zero whehr+ 7’| tends to infinity, as  constant curvature radius in the exterior region of #ie?

was the case with the analogous quan{8y6)) in the Rin- geon (see Fig. 3 The detectors are assumed to measure

dler analysis oM _ . If true, this means that the responses inparticles that are purely positive frequency with respect to

|0g) and|0k) are identical for a detector that only operatesthe exterior Killing vectow, . The amplitude that a particle is

in the asymptotic past or asymptotic future. Further, it seemsletected in a modg(x'), having started in a modg(x) on

likely that G (x,x") tends to zero whenever the pointaind  some hypersurfac® that bounds a region interior ©, is

x" tend to large values of the curvature radius in the oppositgiven by Eq.(4.1) of Ref.[6],

Kruskal exterior regions, as a powee% law for a massless field

and exponentially for a massive fieldf true, this implies , B NE NS ~Fror S

that the responses iflg) and|0x) become asymptotically foda“(x )fada OOfi(x") 9,Ge(x",X) 9,hj(x). (5.29

If the mode f;(x’') is peaked at an asymptotically late
SWe thank Bob Wald for this remark. Schwarzschild time, we argue as in RE8] that O can be
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replaced by a spacelike hypersurfae of constant two- —®') andd(w+w’). The latter term is however vanishing,

sphere curvature radius in the black hole intetfofo find ~ because in it the argument of the delta-function is always

the total probability that a particle is detected, one thus needgosltive.

to compute the modulus squared of the amplit(&l&5 and These manipulations have reduced our amplitude to that

sum over a complete set of stafég} on C.. analyzed in _Ref[6]. A simillar reduction can be performed
Recall that in the future interior region on the Kruskal ©OF the amplitude for a particle to propagdtem the hyper-

spacetime, one can introduce the interior Schwarzschild casurfaceO to the hypersurfac€ _ of constant curvature ra-
ordinates {,r, 6,), in which the metric is given by Eq4.9)  dius in the past interior regiofsee Fig. 3. The relation
with 0<r<2M, the coordinate decreases toward the fu- derived in Ref[6] for the Kruskal amplitudes, from the ana-

ture, and the map" (4.123 reads lytic properties ofG , holds therefore also for our ampli-
tudes. We infer that the probability for thi&® geon to emit
JN(t,r,0,0)—=(—t,r,m— 6,0+ 7). (5.26  a late time particle with frequency is e 8™¢ times the

o ) ] __probability for the geon to absorb a particle in the same
The interior Schwarzschild coordinates therefore provide ifynode. This is the thermal result, at the Hawking temperature

the future interior region of the geon a set of local coordi-T—(g;M)-1,

nates with the identification t(r,6,¢)~(—t,r,7—6,¢ It should be emphasized that this derivation of the thermal
+ar). Working in this chart, we obtain a complete set of spectrum for|0g) explicitly assumes that the emitted and
states{h;} on C, by separation of variables: the states areabsorbed particles are in the distant future. By the global

proportional to time reversal invariance of the geon, the thermal result also
~ . . holds for particles that are emitted and absorbed in the dis-
r R, [e+ (—1)'e Y, (5.27 tant past. It seems more difficult to assess whether the result

5 could be extended to particles at finite values of the exterior
wherew>0 andR,, satisfies the counterpart of E¢.3) for Schwarzschild time, however. One concern with such par-

the interior region. ticles is whether one can justify the arguments for choosing
Consider now the integration overin Eq. (5.25, with O the interior hypersurfaces to @, andC_. Another con-
replaced byC. . In our coordinatest is constant orC, , cern is whether one would need to replace the energy eigen-

states(5.2) by exterior modes that are explicitly localized in
the exterior Schwarzschild time. Note that fog) neither of
these concerns arise, as there the Killing time translation
symmetry implies that the thermal result holds for particles
emitted and absorbed at arbitrary values of the exterior
Schwarzschild time.
B ~ ~ Finally, we remark that a similar emission-absorption
—f da"(x’)f dO'V(X)fi(X')&MGE(X',X)&th(X), analysis can be performed for Rindler particles in the
o C+ vacuum|0_) on M _. In this case, the necessary assump-
(528 tions about the falloff of the Feynman propagator can be
explicitly verified. For late and early Rindler times, one finds
that the vacuum emission and absorption probabilities of
Rindler particles with local frequencl¥ are related by the
thermal factore™27%E. This is the thermal result at the Rin-
dler temperaturd = (27a) 1.

and we cove€ . precisely once, up to a set of measure zero
by takingt>0 and letting the angles range over the full
two-sphere. We writ@é as in Eq.(5.149 and perform in the
second term the change of variabtes —t. The amplitude
(5.25 takes then the form

where the integration over is now over the hypersurface
C, of constant in the future interior region of th&ruskal
spacetime(see Fig. 3 of Ref[6]), and the functiorh; has
been extended into all of this region by the form#a27).
Let now the exterior mode functioiy be of the form(5.2)
with frequencyw’ >0. The invariance OGE under the Kill-
ing time translations on the Kruskal spacetime implies that
the integrals ovet andt’ in Eq. (5.28 yield a linear com-
bination of two terms, proportional respectively & We have seen that the Hartle-Hawking-like vacuifg)
on theRIP® geon has certain characteristics of a thermal bath
at the Hawking temperatur&=(87M) 1. We shall now
10 Referencd6] invoked the Killing time translation invariance of discuss whether it is possible to associate with the geon also

GE(x’,x) to argue that the contribution from a timelike hypersur- & gravitational entropy. _ _ _
face connecting a point 0@ to a point on the Kruskal counterpart ~ Consider first an observ€ in the exterior Schwarzschild

of C., can be neglected, by taking this timelike hypersurface to bJegion. The future oQ may .or may not be is_ometric toa
in the distant future. For us, this argument shows that one cah€gion of the Kruskal spacetime, but the possible differences

neglect the contribution from the first term on the right-hand side ofa"® hidden behind the black hole horizon. For any classical
Eq. (5.14. To argue that the contribution from the second term onmeans tha may employ to probe the spacetime, such as
the right-hand side of Eq5.14) can be neglected, again by taking I€tting matter fall into the black hole, the response of the
the timelike hypersurface to be in the distant future, it would bespacetime is t® indistinguishable from that of the Kruskal
sufficient to show thaGf, satisfies a slightly stronger falloff than spacetime, provide® remains outside the black hole hori-
that assumed fdB,; in Sec. V C, which seems likely to be the case. zon also in the deformed spacetime. In particulaQifs in

VI. ENTROPY OF THE RP® GEON?
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the asymptotically flat region, and@ deforms the hole only . ) B?
in the masgbut not in the angular momentum or chargae lk=4mM"=7¢—. (6.5
first law of black hole mechanics takes fQr the standard
form [2] Using Egs.(6.4) and(6.5) in the formula for the entropy in
1 the canonical ensembile,
AM= 3o 94 63 S=[1-B(alaB)]In Z, 6.6

. - . 1
whereA:=16wM? is the horizon area of a Kruskal hole with ON€ finds the Bekenstein-Hawking res@it= 3A.
massM. As discussed in Sec. IV BA is equal to the geon ~ When the Lorentzian thermodynamic object is the

horizon area away from the critical surface at the intersectio@€0N it sééms reasonable to choose the boundary conditions
of the past and future horizons. for the integral in Eq.(6.3) so that that the saddle point
Suppose now that the quantum statédig), and thaQ is solution is the RiemanniaRP® geon. The thermodynamics

at late exterior Schwarzschild time. We have argued ghat ©" the geon, discussed in Sec. V, then suggests introducing
then sees the black hole as being in equilibrium with a thertn® mass-temperature relatige=8=M, which geometri-

mal bath at the Hawking temperatufe= (8 M)~ L. By the ce}lly means identifyingﬁ.wit.h the “Iocallperiod’_' of the
usual argumentgl, 3,4, this leadsQ to reinterpret Eq(6.1) Riemannian Sc_hwarzschlld time on the Rz|emann|an geon. To
as the first law of thermodynamics, recover an action, we note that ti#x S? boundary pre-
scription of Ref[9] for the Riemannian Kruskal manifold is
dE=TdS 6.2 invariant under the mapR of Sec. IV B, and this prescrip-
tion therefore induces on the Riemannian geon a boundary
where S= 1A is the entropy of the geon. This entropy is prescription t_hat yields a_f|n|te_ action when the b(_)undary is
exactly the same as in the Kruskal spacetime with the samtélk.en to infinity. Proceeding via these steps, we find for the
mass. action of the geon the result
Consider then the path-integral approach. Following Refs. B2
[9,10], we assume that the thermodynamics seen by an ob- C=27M?=——, (6.7
server at infinity is described by the partition function 32m

which is half the Kruskal actiof6.5). For the entropy of the
Z(,B)Zf Dg,,, exp—1), (6.3  geon we then obtain, using Eq.4), (6.6), and (6.7), S
~A. This is only half of the Bekenstein-Hawking result for
the Kruskal hole.
whereg is the inverse temperature at infinityjs the action From the mathematical point of view, the relative facior
of the Riemannian metrig,,,, and the boundary conditions i the geon entropies obtained by the late-time thermody-
for the path integral are to encode the topology of the maninamic arguments and the path-integral method should not be
fold, the asymptotic flatness, the lack of angular momentumsyrprising. The horizon area relevant for the thermodynamic
and the value of8. We further assume that the partition arguments is that at late times along the future horizon, and
function can be estimated by the saddle point contribution, this area is exactly the same as in Kruskal. The horizon area
underlying the path-integral entropy, on the other hand, is
Z(B)~exp—1°), (6.4 that of the Riemannian horizon, and we saw in Sec. IV B that
this is only half of the area of the Riemannian Kruskal hori-
wherel € is the action of the classical solution satisfying the zon.
boundary conditions of the integral in Ef.3). Discussing Physically, however, the disagreement between the two
the validity of these assumptions at any general level fallentropies calls for an explanation. The physical framework
beyond the scope of this papdor some perspectives, see of the first derivation, via the observ€y and the classical
for example Refd.10, 41-44), but what we do wish to do is first law (6.1), is relatively clear, and it is difficult to escape
to contrast the consequences of these assumptions for tiiee conclusion that the Bekenstein-Hawking entropy must be
Kruskal black hole and th&P® geon. the correct one from the thermodynamic viewpoint of the
When the Lorentzian thermodynamic object is theobserverQ. The framework of the path-integral derivation,
Kruskal hole, the boundary conditions for the integral in Egq.however, invites more scrutiny.
(6.3) were chosen in Ref9] so that that the saddle point A first possibility is that the path-integral framework is
solution is the Riemannian section of the Kruskal manifold,simply inapplicable to the geon, for example due to the lack
and B was identified with the period of the Riemannian of sufficient symmetry in any of several aspects of our dis-
Schwarzschild time. This leads #®=8wM, which repro- cussion. Recall, for instance, that despite the fact that the
duces the Hawking temperature. To arrive at a finite actionexterior region of the spacetime is static, the restriction of
one introduces a boundary with topolo@yx S?, subtracts |Og) to this region is not. It seems likely that any state that is
from the action at this boundary a boundary term that makestatic in the exterior region of the geon must become singular
the action of flat space vanish, and then lets the boundary ggtomewhere on the horizon. Certainly, this is the case if one
to infinity. The result is attempts the following construction: Suppose that we iden-
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tify the exterior of the geon with an exterior region in unobserved exterior region. On the geon, on the other hand,
Kruskal and consider the restriction of a Feynman Green’shermal expectation values in the Hartle-Hawking-like
function G (x,x’) of some static state to this region. Such avacuum|Og) arise(for all exterior Schwarzschild timgsnly
function cannot be smoothly extended to a regular Green’§r operators that do not couple to, and hence lead to a trace
function on the geon because it will not have the right sin-over, half of the Boulware modes in the single exterior re-
gularities on the bifurcation surface. Approaching the bifur-gion. On the geon, the thermal expectation values thus in-
cation surface with two exterior poinisandx’ on opposite  Volve a trace over half as many Boulware modes as on the
sides of the two-sphere, the Green’s funct®g(x,x") will Kruskal spacetime. If the statistical entropy were somehow
have a smooth limit on the bifurcation surface. In the geor‘Fo count modes that are traced over in these expectation val-

spacetime, however, both andx’ will approach the same (ueﬁtsr’otheu%r?nnigt;%%t;%?gzgogl{gg? tn'zlfa?f ﬂrfe:](tr.u;kﬁg i
point, and the Green’s function should diverge. Py u P IS argu IS, oW

. : . ever, that the entropgA would then reflect not just the
The saddle point solutllon that was used to arrive at Eq, eometry of the geon and the properties of the 4&agp, but

6.7 ap c;:;el'll(s a_lr]ﬁ'ther gzjlect W'tth re}trlgr Igsst,hsyrlgm etry tr."’"glso the choice of a particular class of operators in the exte-
one mignt ixe. 11Is saddie point Solltion 1 the Riemannialjar region, and it seems difficult to motivate this choice on
RP° geon M™/J%, and it differs from the Riemannian geometrical grounds only.

Kruskal manifold in both its metric and topological proper- = 14 end this section, we note that an analogous discussion

ties. For example, the asymptotic region/ef?/JR does not  ¢an be carried out for the entropy associated with the Rindler
have a global Killing field, and the homotopy group of any ghserver and the acceleration horizon in the flat spacetimes
neighborhood of infinity inM /3% is 7, as opposed to the M, andM_ . The horizon areas are formally infinite, owing
trivial group. It may well be that such an asymptotic struc-to the infinite range of the coordinage but this appears to
ture does not satisfy the boundary conditions that should bpe a minor technicality: the thermodynamic discussion of
imposed in the integra6.3.* We note that this point is Sec. Ill adapts readily, if in part less explicitly, to counter-
connected to the one above as it shows that no analytic stajgirts ofM, andM _ in whichy is periodic and the horizon

on the geon can be static in the exterior region. area finite. For thg-periodized counterpart dfl , the path-

In the context of this discussion it is interesting to recallintegral approach yields for the entropy one quarter of the
that while the RiemannialRP® geon has the asymptotic horizon areg29], while for they-periodized counterpart of
structure just described, the single asymptotic region of the _ the path-integral entropy contains the additional factor
Lorentzian RPP® geon is just the familiar one, that is, the 1
asymptotic region of one Kruskal exterior. Thus, on the
geon, the structure of the Riemannian infinity is influenced
not only by the structure of the single Lorentzian infinity, but VII. SUMMARY AND DISCUSSION
also by what lies behind the Lorentzian horizons.

Another possibility is that the path-integral framework is  In this paper we have investigated thermal effects on the
applicable to the geon, but that the proper procedure is morBl’® geon and on a topologically analogous flat spacetime
subtle than the one outlined above. However, it is difficult toM - via a Bogoliubov transformation, a particle detector,
see what reasonable modification of the above steps woul@article emission and absorption coefficients, and stress-
lead to a result consistent with the first law. energy tensor expectation values. We fixed our attention to

A final possibility is that the path-integral framework is the Hartle-Hawking-like vacuurf0g) on the geon and to the
applicable to the geon, and our way of applying it is correct Minkowski-like vacuum|/0_) on M _. We saw that, at finite
but the resulting entropy is physically distinct from the sub-times, these states are not exactly thermal unless they are
jective thermodynamic entropy associated with the observesampled with a probe that couples to only half of the field
Q. If this is the case, the physical interpretation of the path-modes. However,0g) becomes fully thermal, at the usual
integral entropy might be found in the quantum statistics inHawking temperature, in the distant past and future in the far
the whole exterior region, rather than just the thermodynamexterior Schwarzschild region, anfi_) similarly becomes
ics of late times in the exterior region. In an operator formal-fully thermal at early and late Rindler times in its Rindler
ism, one might anticipate such an entropy to arise from tracwedge, with the usual Rindler temperature for a uniformly
ing over the degrees of freedom that are in some sensiccelerated observer. In addition, we found some evidence
unobservable. for the thermality of|Og) at the geon spatial infinity, at ar-

From the operator point of view, the factdrin the geon  bitrary values of the exterior Schwarzschild time. In the case
entropy might even appear reasonable. In the Hartleof the geon, some of these results rest on a set of plausible
Hawking vacuum on the Kruskal manifold, the thermal ex-assumptions about the asymptotic behavior of the Hartle-
pectation values for operators in one exterior region arisélawking Green’s function§(x,x") on the Kruskal mani-
from tracing over all the Boulware modes in the secondfold when x and x’ are in opposite asymptotic regions,

whereas forM _ the asymptotic behavior of the relevant

e thank Rafael Sorkin for stressing the possible importance of
the asymptotic topology even in cas@silike ourg in which the 2We thank Karel Kuchafor suggestingbut not advocatingthis
asymptotic metric would admit a global Killing symmetry. argument.
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Green’s function could be directly verified. We have alsoto adapt the Kay-Wald conditiorjg6] to the geon in a way
noted a discrepancy in the calculations for the geon entropin which it would suffice for the Killing vector to be only
via late-time thermodynamic arguments and the path-integrdpcal. On a converse note, one might seek to understand the
method, and discussed some probable resolutions. late-time thermal properties ¢B¢) in the framework of gen-
One may well ask whether it was necessary to perforneral late-time behavior in dynamical black hole spacetimes.
each of these calculations separately. As the Bogoliubolt might for example be possible to adapt the theorems of
transformations contain the full information abd@) in ~ Fredenhagen and Ha&g7] to initial conditions compatible
terms of Boulware modes, and abd0t ) in terms of the With the geon. _ o _
Rindler modes, the detector response and the particle Qur analy5|s_ of the partlt_:le emission and abs_orpnon cross
emission-absorption probabilities must already be someho ections relied in an essential way on the analytic structure of
encoded in the Bogoliubov coefficients. Understanding thi e Feynman prqtpag'ato.rs .'ﬂ‘.3> and |O*>.' AI"Eh'ough the'
encoding would be particularly useful for the geon, as On$roplagators are pertlﬁd![cﬂ:h llmagllnary gr_n$ Ina tcertaln_
would then hope to use the expressi¢hd 6 and(5.20 for ocal sense, we saw that this jocal periodicity 1S not associ-

ated with a globally-defined (@) isometry of the Riemann-
the Boulware-mode content (i) to show that the detector <o ctions of the spacetimes. The absence of such an isom-

response does indeed become thermal in the asymptotic paésﬂ,y reflects the nonstaticity dDg) and |0_), and would
or futqre. Unfortunately, on]y a partial understanding of thecertainly cast doubts on simply identifying t'he local period
encoding seems to be availatks)]. _ _of the imaginary time as an inverse temperature. A similar
What our results do strongly suggest is that an essentiglrgyment in another context was made in RR48]. It should
part of the information in the Bogoliubov transformation re- therefore be emphasized that we used the local periodicity in
sides in the phase correlations between the alpha and bgfaginary time only as a mathematical device in the calcu-
coefficients:* We saw that the Boulware-mode occupation|ation of a genuinely Lorentzian observable quantity,
number expectation values do not distinguish between thgamely, the ratio of the emission and absorption cross sec-
vacuum|Og) on the geon and the Hartle-Hawking vacuumtions at late times. The thermal conclusion was drawn from
|0x) on the Kruskal spacetime, despite the fact f8gd is  this ratio.
static in the exterior region whiltg) is not. The number  For a class of operators that only couple to a judiciously-
expectation values are determined by the absolute values ghosen half of the field modes, the expectation valué8h
the beta coefficients, and these carry no information abouind|0_) were seen to be thermal for all times, and not just
the phases of the coefficients. To see eXp|ICIt|y where th% the limit of ear'y or late times. One may ask whether
phases enter, we observe that the géémodes(5.15 are  detectors with such couplings could be built of matter whose
not invariant, not even up to an overall phase, under exteriofinderlying Lagrangian has reasonable properties, including
Schwarzschild time translations, because such translationfeneral covariance and, in the caseMf , local Lorentz
would turn the phases of the two terms in E§.19 in the jnvariance'* While it is likely that this can be achieved with
opposite directions: these two terms in turn determine theyfficiently complicated composite detectors, at least in an
alpha and beta coefficients, and thus encode into the phasggproximate sense over a range of the field modes, we expect
of the coefficients the fact that the spacetime has a distinthe answer to be negative for detectors that couple locally to
guished value of the exterior Schwarzschild time. In contrasthe field at finite positions and times.
the W-modes on Kruskal are invariant up to an overall phase For developing a geometrical understanding of the ther-
under Schwarzschild time translations, because the tWﬁ]a| properties of our Spacetimes, and for testing those con-
terms in the Kruskal counterpart of E(p.19 live in oppo-  clusions that rested in part on an unverified assumption about
site exterior region$5]. Analogous considerations hold for the Hartle-Hawking Green's function on the Kruskal space-
M_ . One might speculate on whether a continued study ofime, it would be useful to have at hand more examples of
the these spacetimes would shed further light on the connegpacetimes with similar properties. One example of interest
tion between Bogoliubov coefficients and other measures gk the spacetimeM . :=M/J., where M is Minkowski

thermal behavior. _ spacetime and the mal. reads, in the notation of Sec. Il A,
We have characterizef®s) and|0_) as states that are
induced by well-studied states on the universal covering J, (t,x,y,2)—(t,—x,y,z+a). (7.1

spacetimes, as states with certain analytic properties, and as

the no-particle states for modes that are positive frequenclf is easily seen that the spacetirv, introduced in Sec.
with respect to the horizon generator affine parameters. Onk A is a double cover oM ., , and thatM .. provides another
might ask whether other, perhaps better and more geometrilat analogue of théRI’® geon, distinct fromM _ . In fact,

cal, characterizations of these states could be given. Ond . is in its isometry structure even more closely analogous
might also seek unigueness theorems that would single oti¢ the geon tharM _: the two-dimensional conformal dia-
these states, in the same way that) is selected on the gram forM, is as in Fig. 2, but, unlike foM_, the bound-
Kruskal manifold or the Minkowski vacuum is selected onary of the diagram ax=0 now depicts a set iM, that is
Minkowski spacetimé¢8]. For example, it might be possible geometrically distinguished in terms of the orbits of the

Bwe thank Bei-Lok Hu for stressing this point to us. e thank Karel Kuchafor raising this question.
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isometry group, in analogy with the boundaXy=0 in the Our most intriguing result is probably the factbrin the
geon diagram in Fig. 4. All our results fod _ adapt toM |, path-integral-approach entropy of the geon, compared with
with conclusions that are qualitatively similar but exhibit the Bekenstein-Hawking entropy of a Kruskal hole with the
some quantitative differences. In particular,Jasleaves the same mass. While we argued that this result is mathemati-
coordinatey invariant, the counterpart of E¢3.40 displays  cally understandable in view of the complexified geometry
no correlations between different valuesypfand the coun-  of the geon, its physical significance, or indeed physical cor-
terpart of Eq.(3.51) does not involvey,. M. is globally  rectness, remains unclear. It should prove interesting to see

hyperbolic, but not space orientable: its spatial topolody is \hether this factor might arise within any state-counting
times the open Moius strip. We have focused the presentapnroach to the geon entropy.

paper onM _ in favor of M, in order to allay the suspicion
that nonorientability might have been a factor in the results.
Another spacetime with similar properties arises from tak-
ing the quotient of de Sitter space with respect 6, asom-
etry group in such a way that the spatial topology becomes We would like to thank John Friedman for teaching us the
RPS- Explicitly, if we realize de Sitter space as the hyperbo-geometry of theRP® geon and asking whether this spacetime
loid has a Hawking temperature. We have also benefited from
discussions and correspondence with numerous other col-
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