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Hairs on the cosmological horizon
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We investigate the possibility of having hair on the cosmological horizon. The cosmological horizon shares
similar properties of black hole horizons in the aspect of having hair on the horizon. For those theories
admitting haired black hole solutions, the nontrivial matter fields may reach and extend beyond the cosmo-
logical horizon. For Q stars and boson stars, the matter fields cannot reach the cosmological horizon. The no
short hair conjecture stays valid, despite the asymptotic behavior~de Sitter or anti–de Sitter! of black hole
solutions. We prove the no scalar hair theorem for anti–de Sitter black holes. Using Bekenstein’s identity
method, we also prove the no scalar hair theorem for de Sitter space and de Sitter black holes if the scalar
potential is convex.@S0556-2821~98!00514-1#

PACS number~s!: 04.70.Bw, 04.40.2b
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I. INTRODUCTION

There are two no hair conjectures in gravitational phys
Although they have not been proven rigorously, they
often referred to as no hair theorems. One is the cosmic
hair theorem@1#, which states as follows@2#: Any solution of
the Einstein equations with a positive cosmological cons
that ~i! accepts a synchronous coordinate system,~ii ! has a
nonpositive three-curvature,~iii ! has an energy-momentum
tensor satisfying the strong and dominant energy conditio
will become asymptotically de Sitter~at least on patch!. This
would imply that the inflation of the universe is a natur
phenomenon that can explain the isotropy and homogen
seen today in the universe.

The other is the no hair theorem of black holes@3#. It is
generally believed that the collapse of a massive body
finally lead to the formation of a black hole and the exter
gravitational field of the black hole settles down to the Ke
Newman solution of the Einstein-Maxwell equations, spe
fied by only three parameters: mass, electric~and/or mag-
netic! charge, and angular momentum@4#. This theorem
indeed excludes scalars@5#, massive vectors@6#, spinors@7#,
and Abelian Higgs hair~Maxwell-complex Higgs scalars! @8#
from a stationary black hole exterior. However, this situat
has been changed dramatically since the discovery of col
black holes in the Einstein-Yang-Mills theory@9# in 1990.
Since then, a lot of black holes with different hair have be
found ~see, e.g., Ref.@10#!.

With the discovery of haired black holes, naturally mu
attention has been drawn to reexamine the no hair theore
black holes. de Alwis@11# discussed the validity of the old
no hair theorem in the stringy black holes. Using a conform
transformation, Saa@12# showed the nonexistence of scal
hair in a large kind of theories. In the Einstein-conform
scalar field theory, as is well known, there exists the
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called Bekenstein black hole solution@13#. But the confor-
mal scalar diverges at the horizon and the solution is
namically unstable@14#. So Zannias@15# proved that black
hole horizon cannot support the conformal scalar hair in
sense of no hair theorem. Furthermore, Sudarsky and Z
nias @16# recently showed that the stress-energy tensor is
defined and the Einstein equations do not hold at the horiz
And hence the Bekenstein solution fails to represent a ge
ine black hole solution. In Ref.@17# Bekenstein proposed
novel ‘‘no-scalar-hair theorem’’ of black holes, which rule
out a multicomponent scalar field dressing of any asympt
cally flat, static, spherically symmetric black holes. Th
theorem also holds for scalar-tensor gravity. Further Ma
and Bekenstein@18# investigated this theorem for th
charged self-interacting scalar field coupled to an Abel
gauge field, or nonminimally coupled to gravity. In additio
Sudarsky@19# suggested a very simple proof of the no ha
theorem in the Einstein-Higgs theory. Nu´ñez, Quevedo, and
Sudarsky~NQS! @10# made important progress in unde
standing the haired black holes by showing that black ho
have no short hair: Under some conditions they assumed
region with nontrivial structure of the nonlinear matter fiel
must extend beyond 3/2 the horizon radius of black ho
More issues related to the no hair theorem and uniquen
theorem of black holes can be found in Ref.@20#.

When a positive ~negative! cosmological constant is
present, it is widely believed that the Kerr-Newman soluti
to the Einstein-Maxwell equations will become the Ke
Newman–~anti–!de Sitter solution, whose spacetime is t
asymptotically~anti–!de Sitter one. But the uniqueness the
rem for this solution is still lacking, contrary to the Ker
Newman solution. Further the presence of a positive cos
logical constant will usually accompany the occurrence o
cosmological horizon. Thus the cosmological const
changes greatly the asymptotic behavior and structure
spacetimes. However all proofs of the no hair theorem h
been carried out on the assumption that the black hole sp
time is asymptotically flat. It is therefore of some interest
investigate the effects of the cosmological constant on the
© 1998 The American Physical Society02-1
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hair theorem and no short hair conjecture of NQS. The c
mological horizon has many similar properties of black h
horizon. For example, like the black hole horizon, the c
mological horizon has the Hawking evaporation and the
tropy associated with the horizon@21#, and is classically
stable@22#. Has the cosmological horizon the similar pro
erty in having hairs on the black hole horizon? On the ot
hand, the regular solutions such as Q stars, boson stars
gravitational solitons may be surrounded by a cosmolog
horizon, when a positive cosmological constant is pres
Can these nontrivial matter fields reach and extend bey
the cosmological horizon? In the present work we try
make some investigations.

The organization of this paper is as follows. In Sec. II w
consider the Einstein-Yang-Mills theory with a cosmologic
constant. For the regular Bartnik-McKinnon@23# soliton so-
lution surrounded by a cosmological horizon, we find th
the nontrivial Yang-Mills field may reach and extend beyo
the cosmological horizon. As the case in the asymptotic
flat spacetime, to have the required asymptotic behavior,
nontrivial Yang-Mills field also must extend beyond a cri
cal point satisfyingr 53m(r ), wherem(r ) is a mass func-
tion in the metric. In Sec. III we extend to discuss the ha
on the cosmological horizon in those theories allowi
haired black holes, and investigate the effect of cosmolog
constant on the no short hair conjecture of black holes.
the Q stars and boson stars, however, we find that the m
fields cannot reach the cosmological horizon. In Sec. IV
discuss the no scalar hair theorem for asymptotica
~anti–!de Sitter black holes. The conclusion and discuss
are given in Sec. V.

II. EINSTEIN-YANG-MILLS THEORY
WITH A COSMOLOGICAL CONSTANT

It is the Einstein-Yang-Mills theory in which Bartnik an
McKinnon @23# first found the nontrivial gravitational soliton
solution and subsequently some authors@9# discovered nu-
merically the first haired black hole. Here the meaning
‘‘hair’’ follows Ref. @10#: In a given theory, there is blac
hole hair, when the spacetime metric and the configuratio
the other fields of a stationary black hole solution are
completely specified by the conserved charges define
asymptotic infinity. In this section we discuss the Einste
Yang-Mills theory with a cosmological constant. For a po
tive cosmological constant, more recently, many auth
@24,25# have investigated the system. Due to the nontriv
asymptotic behavior, some new phenomena have been
vealed.

The action of the Einstein-Yang-Mills theory with a co
mological constant is

S5
1

16pE d4xA2gS R22L2
1

g2
TrF2D , ~2.1!

whereR is the scalar curvature,L is the cosmological con
stant,F is the SU~2! Yang-Mills field strength, andg is the
coupling constant of the field. Throughout this paper
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units G5c51 have been used. We now consider the so
tion whose metric is of the form

ds252m~r !e22d~r !dt21m21~r !dr21r 2dV2, ~2.2!

where

m~r !512
2m~r !

r
2

1

3
Lr 2, ~2.3!

m(r ) denotes the mass function anddV2 represents the line
element on the unit 2-sphere. Throughout this paper, we
quire that the solution is asymptotically de Sitter, wh
L.0,1 or anti–de Sitter forL,0.2 For the metric~2.2! we
have

lim
r→`

m~r !5M , and lim
r→`

d~r !50, ~2.4!

whereM is a constant. In the solution~2.2!, whend(r ) and
m(r ) vanish, the line element~2.2! describes the de Sitte
space (L.0) or anti–de Sitter space (L,0). For the de
Sitter space the future infinity is spacelike. This means t
for each observer moving on a timelike world line, there
an event horizon separating the region of spacetime wh
the observer can never see from the region that he can s
he waits long enough. In other words, the event horizon
the boundary of the past of the observer’s world line. T
event horizon is called a cosmological event horizon. It
located at the coordinate singularityr c5A3/L in the solution
~2.2!. Whend(r )50, m(r )5M is a constant, andL.0 in
Eq. ~2.2!, the solution is just the Schwarzschild-de Sitt
spacetime. If 9LM2,1, the equationm(r )50 then has two
positive roots. The large one is just the cosmological ho
zon, beyond whichm(r ),0, while the small one is the blac
hole horizon. WhenL,0, the cosmological horizon is ab
sent. For more details about the cosmological and black h
horizons, the reader is referred to Ref.@21#. For the solution
we are considering in the action~2.1!, the black hole hori-
zons and/or a cosmological horizon of the metric~2.2!, if
exist, are regular and hence the metric functionsm(r ), d(r )
are finite on the horizons. Further we require that the ma
fields are also finite on the horizons.

For the Yang-Mills gauge potential, we take the followin
ansatz:

1The authors in@25# found that in the Einstein-Yang-Mills theory
with a positive cosmological constant, there are not only the asy
totically de Sitter solution, but also the so-called the bag of g
solution and the compact regular solution with space topologyS3,
depending on the cosmological constant and the node number o
Yang-Mills amplitude. It would be a quite interesting subject
further investigate the latter two asymptotic behaviors from
point of view of the no hair conjecture. Here we restrict ourselves
the case of the first asymptotic behavior.

2In fact, whenL,0, the so-called topological black holes, who
topology of event horizons is no longer the 2-sphereS2, may ap-
pear. In this paper the topology of event horizons is restricted to
2-sphere.
2-2
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HAIRS ON THE COSMOLOGICAL HORIZON PHYSICAL REVIEW D58 024002
A5w~r !t1du1@w~r !t21cot ut3#sin udf, ~2.5!

wheret i ( i 51,2,3) are three Pauli matrices. In the met
~2.2!, we have equations of motion

m8~r !5m
w82

g2
1

2V~w!

g2r 2
, ~2.6!

d8~r !52
2w82

g2r
, ~2.7!

r 2ed~me2dw8!85
]V~w!

]w
, ~2.8!

where

V~w!5 1
4 ~12w2!2, ~2.9!

and a prime denotes derivative with respect tor . In Eqs.
~2.6!–~2.8! there exist two trivial exact solutions with hor
zons. One is the Schwarzschild-~anti–!de Sitter solution,
when the Yang-Mills potentialw561. The solution in-
cludes of course the~anti–!de Sitter space as a special ca
that is,d(r )50 andm(r )50 in the Eq.~2.2!. Whenw50,
the exact solution is the Reissner-Nordstro¨m-~anti–!de Sitter
spacetime. The authors in@25# also gave a few other exac
solutions for a positive cosmological constant. Now we w
to discuss the nontrivial solution with horizons. Here t
word ‘‘nontrivial’’ means that the Yang-Mills potentialw is
no longer a trivial constant throughout the whole spacetim

From Eq.~2.8! and by using Eqs.~2.6! and~2.7!, we can
obtain

r 2mw912w8S m2
1

3
Lr 32

2V~w!

g2r
D 5

]V~w!

]w
.

~2.10!

Multiplying Eq. ~2.10! by w8, one has

S 1

2
mr 2w82D 8

12w82S 2
1

4
~mr 2!81m2

1

3
Lr 32

2V~w!

g2r
D

5
]V~w!

]w
w8. ~2.11!

Defining

E~r !5 1
2 mr 2w822V~w!, ~2.12!

it is easy to show

E8~r !52S 2

g2r
E1~3m2r !D w82. ~2.13!

Furthermore we can get the following equation

d

dr
~Ee2d!52@3m~r !2r #e2dw82. ~2.14!
02400
,

t

e.

We note that this equation is completely identical with E
~25! in Ref. @19#, although our case is that a cosmologic
constant is present. Now we discuss two cases, respecti

~i! Bartnik-McKinnon~BM! soliton surrounded by a cos
mological horizon, sayr c . In this case, the cosmologica
constant is positive and a cosmological horizon appears.
origin is regular, that is, the metric functionm(r )5d(r )
50 and the Yang-Mills potentialw561 at the origin. Can
the nontrivial Yang-Mills field reach and extend beyond t
cosmological horizon under certain conditions? If the no
trivial Yang-Mills field reaches the cosmological horizon, w
then havem(r c)50, E(r c)52V@w(r c)#,0 and the func-
tion Ee2d is negative semidefinite at the cosmological ho
zon. Obviously, whenr ,3m(r ), the right-hand side~RHS!
of Eq. ~2.14! is always negative. Thus, to have the asym
totically de Sitter behavior, the nontrivial Yang-Mills fiel
must extend beyond the critical pointr crit satisfying

r crit53m~r crit!. ~2.15!

Otherwise, the Eq.~2.14! cannot be satisfied by a nontrivia
Yang-Mills field ~that is,w is not a trivial constant!. Due to
the fact that the solution we are considering has only
cosmological horizon and the black hole horizon is abse
the critical point ~2.15! in fact is inside the cosmologica
horizon. Indeed, the data in Ref.@25# showed this fact. In
other words, there is no obstacle for the nontrivial Yan
Mills field reaching and extending beyond the cosmologi
horizon. This was already showed numerically in@25#.

~ii ! Colored black hole. In this case, when the cosmolo
cal constant is positive, there may exist not only the bla
hole horizon, but also the cosmological horizon, while on
the black hole horizon is present, when the cosmolog
constant is negative. Inspecting Eq.~2.14!, we can see
clearly that the cosmological constant does not appear
plicitly. Note that the functionEe2d is still negative
semidefinite at the black hole horizon~and cosmological ho-
rizon if L.0). The condition~2.15! remains unchanged in
order to have the correct asymptotic behavior of solutio
But it should be pointed out that now the critical point~2.15!
is outside the black hole horizon. That is, if the nontriv
Yang-Mills field reaches the black hole horizon, then it mu
extend beyond the critical point~2.15!. The size of the hairo-
sphere will be discussed in the next section. Therefore,
asymptotically~anti–!de Sitter colored black holes, the n
short hair conjecture of NQS keeps valid.

So far we have seen that for the asymptotically~anti–!de
Sitter colored black holes, the nontrivial Yang-Mills field
the black hole horizon must extend beyond a critical po
satisfying Eq.~2.15!. In fact, Eq.~2.15! is still a universal
condition for those theories allowing the haired black ho
when a cosmological constant is introduced. For Q stars
boson stars, however, the matter fields cannot reach the
mological horizon. In the next section, we will discuss t
general case.
2-3
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III. NO SHORT HAIR CONJECTURE AND
COSMOLOGICAL CONSTANT

On the basis of the investigation of all black holes w
hairs discovered in the different theories in recent yea
Núñez, Quevedo, and Sudarsky@10# have found that the re
gion with nontrivial structure of the nonlinear matter fiel
must extend beyond 3/2 the horizon radius, being indep
dent of all other parameters in this theory. Further they h
argued that this is a universal lower bound for asymptotica
flat black holes and the matter satisfying the following co
ditions: ~i! The weak energy condition holds;~ii ! The energy
densityr falls to zero faster thanr 24; ~iii ! The trace of the
stress-energy tensor is negative. Based on this observa
they have put forward the no short hair conjecture to repl
the original no hair theorem.

In this section we would like to show that the presence
the cosmological constant does not essentially affect the
short hair conjecture. We will still work in the spherical
symmetric metric~2.2!. The Einstein equations with a cos
mological constant are

Rmn2 1
2 Rgmn1Lgmn58pTmn , ~3.1!

whereTmn represents the stress-energy tensor of the ma
fields. In the metric~2.2!, Eqs.~3.1! give

d8~r !5
4pr

m
~T t

t 2T r
r !, ~3.2!

m8~r !5r ~8pT t
t 2L!1

12m

r
.

~3.3!

Equation~3.3! can be rewritten as

m8~r !524pr 2T t
t . ~3.4!

With the help of the conservation equations of matter fie
T n;m

m 50 and Eqs.~3.2! and ~3.3!, we obtain

ed~e2dr 4T r
r !85

r 3

2m
@~3m1Lr 221!~T r

r 2T t
t !12mT#

5
r 3

m F S 12
3m

r D ~T r
r 2T t

t !1mTG , ~3.5!

whereT denotes the trace of the stress-energy tensor. N
we discuss the Eq.~3.5! under the same assumption as
Ref. @10#, that is, matter fields satisfy the weak energy co
dition, the energy density,r[2T t

t , goes to zero faster tha
r 24 and the trace of the stress-energy tensor,T, is always
negative. Here the weak energy condition implies thatr is
positive semidefinite anduT r

r u<2T t
t . From the regularity of

horizons and the finiteness of matter fields on the horizo
inspecting~3.5! we must have

T r
r 2T t

t 50 at r 5Rh , ~3.6!
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where Rh stands for a cosmological or black hole horizo
location.

First we consider the case, where the only cosmolog
horizon is present atr c , that is, a soliton solution surrounde
by a cosmological horizon. For all the theories allowin
haired black holes such as the Einstein-Yang-Mills theo
Einstein-Skyrme theory, Einstein-Yang-Mills-dilaton theo
with or without an additional potential term, Einstein-Yan
Mills-Higgs theory, Einstein-non-Abelian-Procca theory~the
quantity T r

r 2T t
t of these theories is given in Ref.@10#!,

self-gravitating global monopoles@26# and gauge monopole
@27#, one has

T r
r 2T t

t 5mP, ~3.7!

whereP is a positive semidefinite function ofr . Hence all
these theories satisfy the condition~3.6! and then Eq.~3.5!
becomes

ed~e2dr 4T r
r !85r 3F S 12

3m

r D P1TG . ~3.8!

Note that the matter fields satisfy the weak energy condit
and Eq.~3.6!. The functione2dr 4T r

r is negative semidefinite
at the cosmological horizon. On the other hand, note that
RHS of Eq.~3.8! is negative semidefinite ifr ,r crit , where

r crit53m~r crit!, ~3.9!

and the functione2dr 4T r
r must asymptotically approac

zero asr→` so that the solution is asymptotically de Sitte
Therefore if the nontrivial matter fields reach the cosmolo
cal horizon, they must satisfy the critical point relation~3.9!.
Thus we obtain the condition~2.15! for the general case
Because the nontrivial Yang-Mills field can reach and exte
beyond the cosmological horizon, we have no reasons
doubt that other nonlinear matters mentioned above can
reach the cosmological horizon. Thus we conclude that
cosmological horizon can support the nontrivial nonline
matter fields.

Equations~3.5! and ~3.7! and the property of the cosmo
logical horizon lead to the following theorem.

Theorem 1: In the spherically symmetric, asymptoticall
~anti–!de Sitter black hole spacetime with matter fields s
isfying the weak energy condition, the energy density go
to zero faster thanr 24, and the trace of stress-energy tens
being nonpositive, if the nontrivial matter configuratio
reaches the black hole horizon, it must extend beyond a
versal critical point satisfyingr crit53m(r crit), wherem(r ) is
the mass function in the metric. Or the no short hair conj
ture keeps valid for asymptotically~anti–!de Sitter black
holes.

Proof: For the asymptotically anti–de Sitter black ho
solution, we have

m~r b!50, and m~r !.0 for r .r b , ~3.10!

and d(r ) is finite at the horizon and approaches zero ar
→`, where r b denotes the black hole horizon. For th
asymptotically de Sitter solution, we have
2-4
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HAIRS ON THE COSMOLOGICAL HORIZON PHYSICAL REVIEW D58 024002
m~r b!5m~r c!50, ~3.11!

and

m~r !.0 for r b,r ,r c , and m~r !,0 for r .r c ,
~3.12!

wherer c represents the cosmological horizon. Note that
function e2dr 4T r

r is always negative semidefinite at th
black hole horizon~and cosmological horizon ifL.0) and
the cosmological constant does not appear explicitly in
~3.8!. To have the required asymptotic behavior, the funct
e2dr 4T r

r must go to zero asr→`. Therefore the nontrivial
matter fields must extend beyond the critical point~3.9!, if
they reach the black hole horizon.

Here it is worth stressing that from mathematical expr
sions, our result~3.9! is completely the same as the one
NQS. Note thatm8(r )>0 because of the positive semide
nite energy density and requiring the asymptotic flatness
spacetime, they could further write down:

r .r crit53m~r crit!.3m~r b!5 3
2 r b . ~3.13!

Therefore they can assert that the nontrivial matter fie
must extend beyond 3/2 the horizon radius of black ho
For our case, because the horizons are determined by
equationm(r )5122m/r 2Lr 2/350, we cannot obtain the
last equality in Eq.~3.13!. But in general, we can say that th
positive cosmological constant widens the hairosphere, w
the hairosphere thins for a negative cosmological const
compared to the one in the asymptotically flat black h
solutions@10#. From our result, furthermore, we can see th
the essence of the no short hair conjecture of black h
keeps valid for the asymptotically~anti–!de Sitter black
holes. In addition, we would like to point out that althoug
the cosmological constant does not come explicitly into
critical point relation~3.9!, the cosmological constant ha
effects on the black hole hairs. Adding a positive~negative!
cosmological constant corresponds to adding a repulsive~at-
tractive! force. If the cosmological constant is too large, o
would have no equilibrium configurations@25#.

In recent years, there has been considerable interest in
kinds of stars: Q stars and boson stars@28–30#. When a
positive cosmological constant is added to these theorie
is expected that these regular stars would be surrounded
cosmological horizon. Can the matter fields constructing
star reach the cosmological horizon? Note that a conse
particle number associated with the Noether current app
always in these theories. A system of self-gravitating r
massive scalar field does not admit regular static solutio
since there is no conserved current leading to particle n
ber conservation. Consider a general complex scalarF with
a self-interacting potentialU(F* F). Its Lagrangian is

Lmatter52gmn]mF* ]nF2U~F* F!, ~3.14!

which has a conserved current

j m52 iA2ggmn~F* ]nF2F]nF* !, ~3.15!

and a conserved particle number
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N5E d3x j0. ~3.16!

The Noether charge prevents the star from diffusion. Fr
Eq. ~3.14! the stress-energy tensor is

Tmn5]mF* ]nF1]mF]nF*

2gmn@gab]aF* ]bF1U~F* F!#. ~3.17!

For static, spherically symmetric configurations, the comp
scalar field has the formF5f(r )e2 ivt, wherev is a non-
zero constant. In the metric~2.2!, from Eq. ~3.17! we have

T r
r 2T t

t 52m~r !f8~r !212v2m~r !21e2df~r !2,
~3.18!

from which we see clearly thatT r
r 2T t

t Þ0 unlessf(r )50
at the cosmological horizon. Considering the requirem
~3.6!, we conclude that the scalar field in the boson st
cannot reach the cosmological horizon. Boson soliton s
@29# and Q stars@31# are two kinds of nontopological soliton
stars. The difference between soliton stars and general b
stars is that in the absence of gravitational field, the soli
stars reduce to nontopological solitons. For the general bo
stars the theory has no soliton solution. That is, the cho
U(F* F) is very different in the different kinds of stars. Bu
there are generally the complex scalar fields likeF in the
boson soliton stars and Q stars in order to have a conse
charge. These matter configurations in Q starts and bo
soliton stars therefore cannot reach the cosmological h
zon, either, because the potentialU(F* F) does not appea
in Eq. ~3.18!. In addition, adding other matter fields such a
fermion field, Maxwell field, etc., to these theories cann
change this result. This point can be seen from Eq.~3.18!. In
Ref. @26# Kastor and Traschen have argued the possibility
having black hole horizons inside various classical field c
figurations by using the condition~3.6! resulting from the
Oppenheimer-Volkoff equation of hydrostatic equilibrium
The Q stars and boson stars do not allow for black h
horizon inside them. Therefore it further shows that the c
mological horizon and black hole horizon share similar pro
erties from the viewpoint of having hairs on them.

IV. NO SCALAR HAIR THEOREM AND COSMOLOGICAL
CONSTANT

Nowadays there are some methods to show that for
Einstein-minimally coupled real scalar field system with
positive semidefinite potential, the static, spherically sy
metric, and asymptotically flat solution is only the Schwarz
child solution with a constant scalar field corresponding t
zero point of the potential. This just is the no scalar h
theorem of black holes@17,19,20#. In these proofs the con
dition of asymptotic flatness plays an important role. Whe
cosmological constant is present, this condition is lost. C
one still prove the no scalar hair theorem? In this section
discuss this problem.

Consider the following action:
2-5
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S5E d4xA2gS 1

16p
~R22L!2

1

2
gmn]mf]nf2V~f! D ,

~4.1!

whereV(f) is a positive semidefinite potential of the sca
field f. Varying this action, we have the equations of moti

Rmn2 1
2 gmnR1Lgmn

58p$]mf]nf2gmn@ 1
2 ~¹f!21V~f!#%, ~4.2!

¹2f5
]V~f!

]f
. ~4.3!

In the metric~2.2! the Einstein equations~4.2! reduce to

d8~r !524prf82, ~4.4!

m8~r !54pr 2@ 1
2 m~r !f821V~f!#. ~4.5!

The asymptotic condition requires that

lim
r→`

f82;O~1/r 61«!, and lim
r→`

V~f!;O~1/r 41«!,

~4.6!

where « is a positive small quantity. Comparing with th
case of asymptotic flatness@19#, we find thatf82 is required
to fall off faster than the one in asymptotically flat spacetim
The equation of motion for the scalar field~4.3! becomes

~mf8!81S 2

r
2d8Dmf85

]V

]f
. ~4.7!

Following Sudarsky@19#, we multiply Eq. ~4.7! by f8 to
obtain

F1

2
mf82G81F1

2
m81S 2

r
2d8DmGf825

]V~f!

]f
f8.

~4.8!

Let us study the behavior of solutions for the cases of
asymptotically anti–de Sitter (L,0) and the asymptotically
de Sitter (L.0), respectively.

~i! L,0. In this case, the solution is required to be a
ymptotically anti–de Sitter. We have the following theore

Theorem 2: In the Einstein-minimally coupled scalar fiel
system with a positive semidefinite scalar potential an
negative cosmological constant, the static, spherically s
metric black hole solution with a regular horizon and po
sessing asymptotically anti–de Sitter behavior is
Schwarzschild-anti–de Sitter spacetime and the scalar fie
a constant corresponding to a local extremum of this po
tial.

Proof: To prove this theorem, following@19# we define

E5 1
2 mf822V~f!. ~4.9!

it is easy to show

E8~r !52bf82, ~4.10!
02400
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where

b54prE2Lr 1
3

2r S 4

3
2

2m

r D . ~4.11!

With the help of Eqs.~4.9!, ~4.10!, and~4.4!, we reach

d

dr
~Ee2d!5FLr 2

3

2r S 4

3
2

2m

r D Ge2df82. ~4.12!

Noting thatL,0, it is obvious that the RHS of Eq.~4.12! is
always negative forr .r b , wherer b represents the location
of the black hole horizon. Therefore the functionEe2d

should be a decreasing function forr .r b . From Eq.~4.9!
we also note that E(r b)52V@f(r b)#,0. Therefore
Ee2d(r .r b) is always more negative thanEe2d(r b). How-
ever the asymptotically anti–de Sitter solution satisfying
asymptotic behavior~4.6! requires that limr→`Ee2d50.
Hence the only solution isf850 andV(f)50 throughout
the spacetime. In fact, the constant scalar can correspond
local extremum of the potential satisfying]V(f)/]f50,
because one can absorb the extremum of the potential to
cosmological constant so that the cosmological constant i
effective one and the potential becomes an effective po
tial. Thus the above proof continues to hold. We will discu
this point later.

~ii ! L.0. This is another story due to the differe
asymptotic behavior. On the one hand, the cosmological
rizon may appear. On the other hand, obviously, the RHS
Eq. ~4.12! is positive semidefinite asr is larger than a critical
value. Thus we have no way to rule out the possibility
having scalar hairs in this method. If defining

E~r !5
1

2
mf822V~f!2

1

4p
L, ~4.13!

we have

d

dr
~Ee2d!52

3

2r S 4

3
2

2m

r De2df82. ~4.14!

The RHS of Eq.~4.14! now is always negative forr .r b .
This indicates that the functionEe2d should be a decreasin
function for r .r b . From Eq.~4.13! we note thatE(r b)5
2V@f(r b)#2L/4p,0 and E(r c)52V@f(r c)#2L/4p
,0. ThereforeEe2d(r .r b) is always negative semidefinit
for r>r b . Note that limr→`Ee2d52L/4p in contrast to
the cases of the asymptotically flat and asymptotica
anti–de Sitter spacetimes, where limr→`Ee2d50. Thus, for
asymptotically de Sitter black holes, we still have no reas
to rule out the scalar hair and hence the Sudarsky’s met
does not work. In fact, both the Bekenstein’s method prov
his novel no scalar hair theorem@17# and the scaling tech
niques@20# do not work in this case, either. But by usin
Bekenstein’s identity method@6#, we can show the following
theorem.

Theorem 3: In the Einstein-minimally coupled scalar fiel
system with a positive semidefinite, convex scalar poten
and a positive cosmological constant, the spherically sy
2-6
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metric, asymptotically de Sitter solution~with a cosmologi-
cal horizon and no black hole horizon! and the spherically
symmetric, asymptotically de Sitter black hole solution~with
a regular black hole horizon and a cosmological horizon! are
the de Sitter space and the Schwarzschild-de Sitter b
hole, respectively. And the scalar field is a constant co
sponding to the point of the minimum of this potential.

Proof: Multiplying Eq. ~4.3! by (f2f0) and integrating
from r 0 to r c , we have

r 2e2dm~r !f8~f2f0!ur 0

r c5E
r 0

r c
dr r 2e2d

3S m~r !f821~f2f0!
]V

]f D .

~4.15!

Heref0 is a constant which gives the minimum value of t
potentialV, r c denotes the cosmological horizon andr 0 rep-
resents the origin for the asymptotically de Sitter solut
and black hole horizonr b for de Sitter black holes. The
left-hand side~LHS! of Eq. ~4.15! always vanishes: For th
black hole solution, the metric functionm50 both at the
black hole and cosmological horizons; for the asymptotica
de Sitter solution,m50 at the cosmological horizon an
f850 at the origin, which comes from the regularity r
quirement. If the scalar potentialV(f) is convex, both the
two terms of integrand of Eq.~4.15! are then positive
semidefinite in the region betweenr 0<r<r c . Therefore the
only solution is f5f0, and the metrics are th
Schwarzschild-de Sitter and the de Sitter space~as a special
case of the Schwarzschild-de Sitter metric!, respectively.

When the solution is an asymptotically anti–de Sitter o
if we set that r 0 is the black hole horizon andr c is
asymptotic infinity, then the LHS of Eq.~4.15! still vanishes:
m(r )50 at the horizon andf850 at infinity. And the inte-
grand of Eq.~4.15! is still positive semidefinite. Thus th
only solution is the Schwarzschild-anti–de Sitter spacet
with a constant scalar field. In a word, the Bekenstein’s id
tity method can exclude the scalar hair of spherically sy
metric ~anti–!de Sitter black holes and the de Sitter space
the scalar potential is convex. In fact, this method can a
exclude the scalar hair for the Kerr-~anti–!de Sitter black
holes.

V. CONCLUSION AND DISCUSSION

In this work we have investigated the possibility of ha
ing hairs on the cosmological horizon and the effects o
cosmological constant on the no short hair conjecture and
scalar hair theorem of black holes. From the viewpoint
having hairs on horizons, the cosmological horizon sha
similar properties of the black hole horizon. For the theor
admitting haired black hole solutions, the nontrivial mat
configurations may reach and extend beyond the cosmo
cal horizon. An explicit example is that in the Bartnik
McKinnon soliton surrounded by a cosmological horizon t
Yang-Mills field can extend beyond the cosmological ho
zon. This has been found numerically in Refs.@24,25#. For Q
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stars and boson stars, the matter fields cannot reach the
mological horizon. The no short hair conjecture of bla
holes remains valid, in spite of the different asymptotic b
haviors~de Sitter or anti–de Sitter! of black hole solutions in
the sense that the presence of the cosmological constant
not change the expression of the critical point~3.9!. But we
would like to point out that, although the NQS’s no sho
hair conjecture remains valid for asymptotically~anti–!de
Sitter black holes, we cannot say that the hair must ext
beyond 3/2 the horizon radius of black holes, since in o
case the horizons are determined by the equation
22m(r )/r 2Lr 2/350. The positive cosmological constan
widens the hairosphere, while the hairosphere thins fo
negative cosmological constant, compared to the one in
asymptotically flat black hole solutions@10#.

For a negative cosmological constant, we have sho
For the Einstein-minimally coupled scalar field system w
a positive semidefinite scalar potential, if the spacetime
static and spherically symmetric, has regular black hole
rizon, and is of the asymptotically anti–de Sitter behavi
the only solution is the Schwarzschild-anti–de Sitter spa
time and the scalar field is a constant corresponding t
local extremum of the potential. For a positive cosmologi
constant, if the scalar potential is convex, both the cosm
logical horizon and black hole horizon cannot support
scalar hair, that is, the only solution is the de Sitter space
Schwarzschild-de Sitter spacetime. Therefore the no sc
hair theorem hold not only for the asymptotically flat bla
holes, but also for the asymptotically~anti–!de Sitter black
holes.

It is a difficult task to prove no scalar hair theorem
black holes which are not necessarily spherically symmet
By now one can prove the no scalar hair theorem for asym
totically flat black holes only when the scalar potential
convex. When the scalar potential is non-negative, in or
to prove the no scalar hair theorem one must have m
conditions: The spacetime is static, spherically symmet
When the spacetime is asymptotically anti–de Sitter or
Sitter, certainly, it will become more difficult to show the n
scalar hair theorem. In Sec. IV we have proved the no sc
hair theorem of anti–de Sitter black holes in the case fo
minimally coupled scalar field with a positive semidefini
scalar potential and the metric being of form~2.2!. For the
asymptotically de Sitter solution and de Sitter black ho
however, it should be emphasized that when the scalar
tential is convex, the result is always valid, in spite
whether or not the cosmological constant is present
whether or not the spacetime is spherically symmetric.

Here it should also be stressed that ageneralscalar po-
tential which isbounded from belowcan be redefined to be
positive semidefinite by absorbing the negative value into
cosmological constant. Then our cosmological constant is
effective one and it determines the asymptotic behavior
the spacetime. So in the sense of no scalar hair theorem
have shown: In the Einstein-minimally coupled scalar fie
system with an arbitrary scalar potential, the only spherica
symmetric black hole solution is the Schwarzschild-anti–
Sitter spacetime if the effective cosmological constant
negative, or the Schwarzschild-de Sitter spacetime if the
2-7
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fective cosmological constant is positive and the effect
potential is convex. The scalar field is a trivial constant c
responding to a local extremum of the potent
@]V(f)/]f50#. Since the hair is a characteristic of blac
holes, it may be closely related to the thermodynamics
black holes@32#. Therefore it is significant to study unde
what conditions black holes have hairs, and under what c
ditions black holes have no hairs for asymptotically flat bla
holes, asymptotically~anti–!de Sitter black holes, and eve
for black holes with unusually asymptotic behavior and no
spherically topological black holes. In addition, it als
should be of interest to verify numerically that the cosm
.

no

02400
e
-
l

f

n-
k

-

-

logical horizon can support the nontrivial matter hairs
those theories admitting haired black hole solutions.
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