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We investigate the possibility of having hair on the cosmological horizon. The cosmological horizon shares
similar properties of black hole horizons in the aspect of having hair on the horizon. For those theories
admitting haired black hole solutions, the nontrivial matter fields may reach and extend beyond the cosmo-
logical horizon. For Q stars and boson stars, the matter fields cannot reach the cosmological horizon. The no
short hair conjecture stays valid, despite the asymptotic beh&d@Sitter or anti—de Sitteof black hole
solutions. We prove the no scalar hair theorem for anti—de Sitter black holes. Using Bekenstein's identity
method, we also prove the no scalar hair theorem for de Sitter space and de Sitter black holes if the scalar
potential is convex[ S0556-282(98)00514-1

PACS numbd(s): 04.70.Bw, 04.40-b

I. INTRODUCTION called Bekenstein black hole soluti¢h3]. But the confor-
mal scalar diverges at the horizon and the solution is dy-
There are two no hair conjectures in gravitational physicsnamically unstablé14]. So Zanniag15] proved that black
Although they have not been proven rigorously, they arehole horizon cannot support the conformal scalar hair in the
often referred to as no hair theorems. One is the cosmic nsense of no hair theorem. Furthermore, Sudarsky and Zan-
hair theorenj 1], which states as follow|2]: Any solution of  nias[16] recently showed that the stress-energy tensor is ill
the Einstein equations with a positive cosmological constantlefined and the Einstein equations do not hold at the horizon.
that (i) accepts a synchronous coordinate systéimhas a  And hence the Bekenstein solution fails to represent a genu-
nonpositive three-curvaturéiii) has an energy-momentum ine black hole solution. In Ref17] Bekenstein proposed a
tensor satisfying the strong and dominant energy conditionjovel “no-scalar-hair theorem” of black holes, which rules
will become asymptotically de Sitt¢at least on patohThis  out a multicomponent scalar field dressing of any asymptoti-
would imply that the inflation of the universe is a natural cally flat, static, spherically symmetric black holes. This
phenomenon that can explain the isotropy and homogeneittheorem also holds for scalar-tensor gravity. Further Mayo
seen today in the universe. and Bekenstein[18] investigated this theorem for the
The other is the no hair theorem of black hol&$ It is  charged self-interacting scalar field coupled to an Abelian
generally believed that the collapse of a massive body wilgauge field, or nonminimally coupled to gravity. In addition,
finally lead to the formation of a black hole and the externalSudarsky19] suggested a very simple proof of the no hair
gravitational field of the black hole settles down to the Kerr-theorem in the Einstein-Higgs theory. Dez, Quevedo, and
Newman solution of the Einstein-Maxwell equations, speci-Sudarsky (NQS [10] made important progress in under-
fied by only three parameters: mass, elec{end/or mag- standing the haired black holes by showing that black holes
netic charge, and angular momentupd]. This theorem have no short hair: Under some conditions they assumed, the
indeed excludes scald[s], massive vectorgs], spinors[7], region with nontrivial structure of the nonlinear matter fields
and Abelian Higgs haitMaxwell-complex Higgs scalar$8] must extend beyond 3/2 the horizon radius of black holes.
from a stationary black hole exterior. However, this situationMore issues related to the no hair theorem and uniqueness
has been changed dramatically since the discovery of coloretieorem of black holes can be found in Rf0].

black holes in the Einstein-Yang-Mills theof®] in 1990. When a positive (negative cosmological constant is
Since then, a lot of black holes with different hair have beemresent, it is widely believed that the Kerr-Newman solution
found (see, e.g., Ref10]). to the Einstein-Maxwell equations will become the Kerr-

With the discovery of haired black holes, naturally muchNewman-anti-)de Sitter solution, whose spacetime is the
attention has been drawn to reexamine the no hair theorem akymptotically(anti-)de Sitter one. But the uniqueness theo-
black holes. de Alwig11] discussed the validity of the old rem for this solution is still lacking, contrary to the Kerr-
no hair theorem in the stringy black holes. Using a conformaNewman solution. Further the presence of a positive cosmo-
transformation, Safl2] showed the nonexistence of scalar logical constant will usually accompany the occurrence of a
hair in a large kind of theories. In the Einstein-conformalcosmological horizon. Thus the cosmological constant
scalar field theory, as is well known, there exists the sochanges greatly the asymptotic behavior and structure of

spacetimes. However all proofs of the no hair theorem have

been carried out on the assumption that the black hole space-
*Electronic address: cairg@ctp.snu.ac.kr time is asymptotically flat. It is therefore of some interest to
TElectronic address: jyji@phyb.snu.ac.kr investigate the effects of the cosmological constant on the no
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hair theorem and no short hair conjecture of NQS. The cosunits G=c=1 have been used. We now consider the solu-
mological horizon has many similar properties of black holetion whose metric is of the form

horizon. For example, like the black hole horizon, the cos-

mological horizon has the Hawking evaporation and the en- ds’=—u(r)e”20dt*+ u = H(r)dr2+r2dQ?, (2.2
tropy associated with the horizd21], and is classically
stable[22]. Has the cosmological horizon the similar prop-
erty in having hairs on the black hole horizon? On the other om(r) 1

hand, the regular solutions such as Q stars, boson stars, and w(r)=1— —ZAr? (2.3
gravitational solitons may be surrounded by a cosmological 3

horizon, when a positive cosmological constant is present.

. 2 .
Can these nontrivial matter fields reach and extend beyonH:(r) detnotetshthe T‘;SS fﬁnctlo_rllhadﬂl hreplr(tehs.ents the line
the cosmological horizon? In the present work we try to€'ement on the unit =-Spnere. 1hroughout this paper, we re-
make some investigations. quire that the solution is asymptotically de Sitter, when

l . . 2 .
The organization of this paper is as follows. In Sec. Il WeA>0' or anti—de Sitter forA <0.” For the metrio(2.2) we

consider the Einstein-Yang-Mills theory with a cosmological "€

constant. For the regular Bartnik-McKinn$#3] soliton so- . _ : _

lution surrounded by a cosmological horizon, we find that limm(r)=M, and lims(r)=0, 249
the nontrivial Yang-Mills field may reach and extend beyond
the cosmological horizon. As the case in the asymptoticallyvhereM is a constant. In the solutiof2.2), whend(r) and

flat spacetime, to have the required asymptotic behavior, thgy(r) vanish, the line elemen®2.2 describes the de Sitter
nontrivial Yang-Mills field also must extend beyond a criti- space A\ >0) or anti—de Sitter spaceA(0). For the de

cal point satisfyingr =3m(r), wherem(r) is a mass func-  Sitter space the future infinity is spacelike. This means that
tion in the metric. In Sec. Il we extend to discuss the hairsfor each observer moving on a timelike world line, there is
on the cosmological horizon in those theories allowingan event horizon separating the region of spacetime which
haired black holes, and investigate the effect of cosmologicahe observer can never see from the region that he can see if
constant on the no short hair conjecture of black holes. Foke waits long enough. In other words, the event horizon is
the Q stars and boson stars, however, we find that the mattefe boundary of the past of the observer's world line. This
fields cannot reach the cosmological horizon. In Sec. IV wesvent horizon is called a cosmological event horizon. It is

discuss the no scalar hair theorem for asymptoticallyjpcated at the coordinate singularity= \/3/A in the solution
(anti-)de Sitter black holes. The conclusion and discussion2 2). when 5(r)=0, m(r)=M is a constant, and >0 in

where

r—oe r—oo

are given in Sec. V. Eqg. (2.2, the solution is just the Schwarzschild-de Sitter
spacetime. If AM?< 1, the equation(r)=0 then has two
II. EINSTEIN-YANG-MILLS THEORY positive roots. The large one is just the cosmological hori-
WITH A COSMOLOGICAL CONSTANT zon, beyond whiche(r) <0, while the small one is the black

_ o _ . _ _ hole horizon. Whem <0, the cosmological horizon is ab-

It is the Einstein-Yang-Mills theory in which Bartnik and sent. For more details about the cosmological and black hole
McKinnon[23] first found the nontrivial gravitational soliton horizons, the reader is referred to REf1]. For the solution
solution and subsequently some auth@s discovered nu-  we are considering in the actid®.1), the black hole hori-
merically the first haired black hole. Here the meaning ofzons and/or a cosmological horizon of the mefc2), if
“hair” follows Ref. [10]: In a given theory, there is black exist, are regular and hence the metric functions), 5(r)
hole hair, when the spacetime metric and the configuration ofre finite on the horizons. Further we require that the matter
the other fields of a stationary black hole solution are notje|ds are also finite on the horizons.
completely specified by the conserved charges defined at For the Yang-Mills gauge potential, we take the following
asymptotic infinity. In this section we discuss the Einstein-gnsatz:

Yang-Mills theory with a cosmological constant. For a posi-
tive cosmological constant, more recently, many authors———

[24,29 have investigated the system. Due to the nontrivial , ) ] ) ) )
The authors if25] found that in the Einstein-Yang-Mills theory

asymptotic behavior, some new phenomena have been re- ” i
vealed with a positive cosmological constant, there are not only the asymp-

The action of the Einstein-Yang-Mills theory with a cos- totlca_llly de Sitter solution, but also thg so-c_alled the bag of gold
. . solution and the compact regular solution with space topoBgy
mological constant is . -
depending on the cosmological constant and the node number of the
Yang-Mills amplitude. It would be a quite interesting subject to
further investigate the latter two asymptotic behaviors from the
) 2.9 point of view of the no hair conjecture. Here we restrict ourselves to
the case of the first asymptotic behavior.
2In fact, whenA <0, the so-called topological black holes, whose
whereR is the scalar curvaturey is the cosmological con- topology of event horizons is no longer the 2-sphgfe may ap-
stant,F is the SW2) Yang-Mills field strength, and is the  pear. In this paper the topology of event horizons is restricted to the
coupling constant of the field. Throughout this paper the2-sphere.

1 1
= | d*x = —9A — —TrE2
S 16 fdx\/ g(R 2A ngrF
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A=w(r)r,d0+[w(r)7m,+cot fr3]sin fd¢, (2.5

PHYSICAL REVIEW 68 024002

We note that this equation is completely identical with Eq.
(25 in Ref.[19], although our case is that a cosmological

where 7; (i=1,2,3) are three Pauli matrices. In the metric constant is present. Now we discuss two cases, respectively.

(2.2), we have equations of motion

, w2 2V(w)

m(l’):,u?'f'w, (2.6)

2W’2
5'(r=-"-, 2.7

gr

NV
rZeﬁ(Me—é /)/:#, (2.8)

where

V(w)=3(1-w?)?, (2.9

and a prime denotes derivative with respectrtoin Egs.

(2.6)—(2.8) there exist two trivial exact solutions with hori-
zons. One is the Schwarzschildnati—de Sitter solution,
when the Yang-Mills potentialv=*1. The solution in-

(i) Bartnik-McKinnon (BM) soliton surrounded by a cos-
mological horizon, say.. In this case, the cosmological
constant is positive and a cosmological horizon appears. The
origin is regular, that is, the metric functiom(r)= &(r)
=0 and the Yang-Mills potentiak=*1 at the origin. Can
the nontrivial Yang-Mills field reach and extend beyond the
cosmological horizon under certain conditions? If the non-
trivial Yang-Mills field reaches the cosmological horizon, we
then haveu(r,) =0, E(r.)=—V[w(r.)]<0 and the func-
tion Ee ? is negative semidefinite at the cosmological hori-
zon. Obviously, whem <3m(r), the right-hand sidéRHS)
of Eqg. (2.19 is always negative. Thus, to have the asymp-
totically de Sitter behavior, the nontrivial Yang-Mills field
must extend beyond the critical poing;; satisfying

I erit= 3M(T rip) -

(2.1

cludes of course theanti-)de Sitter space as a special case,otherwise, the Eqg(2.14 cannot be satisfied by a nontrivial

that is, 8(r)=0 andm(r)=0 in the Eq.(2.2. Whenw=0,
the exact solution is the Reissner-Nordetrtanti-de Sitter

spacetime. The authors [25] also gave a few other exact
solutions for a positive cosmological constant. Now we wan
to discuss the nontrivial solution with horizons. Here the

word “nontrivial” means that the Yang-Mills potentiaV is

no longer a trivial constant throughout the whole spacetime

From Eq.(2.8) and by using Eqs(2.6) and(2.7), we can
obtain

1 2V(w) aV(w)
2 " ’ _ - 3_ —
reuw”+2w’( m 3Ar o W
(2.10
Multiplying Eg. (2.10 by w', one has
1 ! 1 1 2V(w)
= e2u2 2 _ = Y _ T Ap3_
(2,urw ) +2w ( 4(,ur ) +m 3Ar o
B av(w) | 21
= w'. (2.11)
Defining
E(r)=3ur®w’?2—Vv(w), (2.12
it is easy to show
2
E'(r)=—| -E+(3m-r) w'?. (2.13
gr
Furthermore we can get the following equation
d
—(Ee 9)=—[3m(r)—r]e °w’? (2.14

dr

Yang-Mills field (that is,w is not a trivial constant Due to
the fact that the solution we are considering has only the
cosmological horizon and the black hole horizon is absent,

Ehe critical point(2.15 in fact is inside the cosmological

horizon. Indeed, the data in RgR5] showed this fact. In
other words, there is no obstacle for the nontrivial Yang-
Mills field reaching and extending beyond the cosmological
horizon. This was already showed numericallyf 25].

(i) Colored black hole. In this case, when the cosmologi-
cal constant is positive, there may exist not only the black
hole horizon, but also the cosmological horizon, while only
the black hole horizon is present, when the cosmological
constant is negative. Inspecting ER.14), we can see
clearly that the cosmological constant does not appear ex-
plicitly. Note that the functionEe ° is still negative
semidefinite at the black hole horizéand cosmological ho-
rizon if A>0). The condition(2.15 remains unchanged in
order to have the correct asymptotic behavior of solutions.
But it should be pointed out that now the critical poft15
is outside the black hole horizon. That is, if the nontrivial
Yang-Mills field reaches the black hole horizon, then it must
extend beyond the critical poi2.15. The size of the hairo-
sphere will be discussed in the next section. Therefore, for
asymptotically(anti-)de Sitter colored black holes, the no
short hair conjecture of NQS keeps valid.

So far we have seen that for the asymptoticéyti—)de
Sitter colored black holes, the nontrivial Yang-Mills field at
the black hole horizon must extend beyond a critical point
satisfying Eq.(2.15. In fact, Eq.(2.19 is still a universal
condition for those theories allowing the haired black holes
when a cosmological constant is introduced. For Q stars and
boson stars, however, the matter fields cannot reach the cos-
mological horizon. In the next section, we will discuss the
general case.
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ll. NO SHORT HAIR CONJECTURE AND where Ry, stands for a cosmological or black hole horizon
COSMOLOGICAL CONSTANT location.
First we consider the case, where the only cosmological
horizon is present at., that is, a soliton solution surrounded
by a cosmological horizon. For all the theories allowing

On the basis of the investigation of all black holes with
hairs discovered in the different theories in recent years

Nunez, Quevedo, and Sudarsd0] have found that the re- haired black holes such as the Einstein-Yang-Mills theory,

gion with nontrivial structure of the nonlinear matter fields Einstein-Skvrme theorv. Einstein-Yana-Mills-dilaton theor
must extend beyond 3/2 the horizon radius, being indepen-. >KY Y, ang . . y
with or without an additional potential term, Einstein-Yang-

dent OJ "ﬂl otﬂer parameters |Ir: this tgeon&. further they haI\I/‘R/IiIIs—Higgs theory, Einstein-non-Abelian-Procca thedttye
argued that this is a universal lower bound for asymptotically L o2y L o :
uantity T',— T, of these theories is given in Ref10]),

flat black holes and the matter satisfying the following con-4 T
ditions: (i) The weak energy condition holdéi) The energy self-gravitating global monopolg¢&6] and gauge monopoles

densityp falls to zero faster than™4; (iii) The trace of the [27], one has

stress-energy tensor is negative. Based on this observation, T —Tt=uP 3.7)
they have put forward the no short hair conjecture to replace ' t ' '
the original no hair theorem. whereP is a positive semidefinite function of Hence all

In this section we would like to show that the presence ofpese theories satisfy the conditi¢8.6) and then Eq(3.5)
the cosmological constant does not essentially affect the ngacomes

short hair conjecture. We will still work in the spherically

symmetric metric(2.2). The Einstein equations with a cos- 5 st 13 3m
mological constant are e(e r'T,) =r 1-—|P+T. (3.9
R,,—3RQ,,+Ag,,=87T,,, (3.)  Note that the matter fields satisfy the weak energy condition

and Eq.(3.6). The functione™ °r*T", is negative semidefinite
whereT,,, represents the stress-energy tensor of the mattej; the cosmological horizon. On the other hand, note that the
fields. In the metrid2.2), Egs.(3.1) give RHS of Eq.(3.9) is negative semidefinite if<r ., where

Ay I erit=3M(T rit) 3.9
5! ( r) — (-I—'[t _ Trr), (32) crit ( Crlt) ( )
H and the functione™°r*T". must asymptotically approach
1-u zero ag — so that the solution is asymptotically de Sitter.
w' (N=r8aT\—A)+——. Therefore if the nontrivial matter fields reach the cosmologi-
r cal horizon, they must satisfy the critical point relati@9).

(33 Thus we obtain the conditiof2.15 for the general case.
E : : Because the nontrivial Yang-Mills field can reach and extend
guation(3.3) can be rewritten as . .
beyond the cosmological horizon, we have no reasons to
(1) = — 42T, (3.9 doubt that other nonlinear matters mentioned above cannot

reach the cosmological horizon. Thus we conclude that the
cosmological horizon can support the nontrivial nonlinear
Snatter fields.

Equations(3.5) and(3.7) and the property of the cosmo-

With the help of the conservation equations of matter field
T‘;;ﬂzo and Eqgs(3.2) and(3.3), we obtain

3 logical horizon lead to the following theorem.
ed(e T ) = r—[(3M+Af2—1)(Trr—Ttt)+2MT] T_heorem_ 1In the spherically s_ymme_tric, asymp_totically
2u (anti-)de Sitter black hole spacetime with matter fields sat-

isfying the weak energy condition, the energy density going

to zero faster than™4, and the trace of stress-energy tensor
' (3.9 being nonpositive, if the nontrivial matter configuration

reaches the black hole horizon, it must extend beyond a uni-

whereT denotes the trace of the stress-energy tensor. Nowersal critical point satisfying = 3m(r cr), wherem(r) is
we discuss the Eq3.5 under the same assumption as in the mass function in the metric. Or the no short hair conjec-
Ref.[10], that is, matter fields satisfy the weak energy con-ture keeps valid for asymptoticalljanti-)de Sitter black
dition, the energy densityy= —T%, goes to zero faster than NOI€S. _ _ ,

r=4 and the trace of the stress-energy tendorjs always Pr_oof. For the asymptotically anti—de Sitter black hole
negative. Here the weak energy condition implies thas ~ Solution, we have

positive semidefinite anid",|< —T',. From the regularity of
horizons and the finiteness of matter fields on the horizons,

rs 3m\ .,
= 1=/ (T =TY+uT

u(ry)=0, and u(r)>0 for r>ry, (3.10

inspecting(3.5 we must have and &(r) is finite at the horizon and approaches zeror as
C —oo, wherer, denotes the black hole horizon. For the
T,—T\=0 atr=Ry, (3.6 asymptotically de Sitter solution, we have
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ry)=pwp(re)=0, 3.1 )
and
w(r)>0 for ry<r<r,, and wu(r)<0 for r>r, The Noether charge prevents the star from diffusion. From
(3.12 Eq. (3.14) the stress-energy tensor is
wherer . represents the cosmological horizon. Note that the T,,=0,9%9,®+3,D3,0*

function e~ %r*T', is always negative semidefinite at the
black hole horizon(and cosmological horizon ik >0) and

the cosmological constant does not appear explicitly in Eq. . . . . .
(3.9 To have the required asymptotic behavior, the function ©" Static, spherically symmetric configurations, the complex

e °r*T'. must go to zero as— . Therefore the nontrivial scalar field has the form = g(r)e™'", wherew is a non-
matter fields must extend beyond the critical pd@19), if zero constant. In the metri@.2), from Eq.(3.17) we have
they reach the black hole horizon. Pt . ) 1252

Here it is worth stressing that from mathematical expres- Tr=T=2u(r) ¢’ (N)+2wu(r) e~ ¢(r)*,
sions, our resul{3.9) is completely the same as the one of (3.18
NQS. Note thaim’(r)=0 because of the positive semidefi- . ; "
nite energy density and requiring the asymptotic flatness offom which we see clearly that, —T',#0 unlessé(r)=0

—gM,,[g"‘B&a@*aﬁ(I)-l—U((I)*(I))]. (3.17

spacetime, they could further write down: at the cosmological horizon. Considering the requirement
(3.6, we conclude that the scalar field in the boson stars
P> = 3M(r i) >3M(ry,) =3r,. (3.13  cannot reach the cosmological horizon. Boson soliton stars

[29] and Q star$31] are two kinds of nontopological soliton

Therefore they can assert that the nontrivial matter fieldstars. The difference between soliton stars and general boson
must extend beyond 3/2 the horizon radius of black holesstars is that in the absence of gravitational field, the soliton
For our case, because the horizons are determined by thgars reduce to nontopological solitons. For the general boson
equationu(r)=1-2m/r—Ar?/3=0, we cannot obtain the stars the theory has no soliton solution. That is, the choice
last equality in Eq(3.13. But in general, we can say that the y(d* ®) is very different in the different kinds of stars. But
positive cosmological constant widens the hairosphere, whilghere are generally the complex scalar fields lkein the
the hairosphere thins for a negative cosmological constanposon soliton stars and Q stars in order to have a conserved
compared to the one in the asymptotically flat black holecharge. These matter configurations in Q starts and boson
solutions[10]. From our result, furthermore, we can see thatspliton stars therefore cannot reach the cosmological hori-
the essence of the no short hair conjecture of black holegon, ejther, because the potentif{®* &) does not appear
keeps valid for the asymptoticallfanti-)de Sitter black in Eq.(3.18. In addition, adding other matter fields such as,
holes. In addition, we would like to point out that although fermion field, Maxwell field, etc., to these theories cannot
the cosmological constant does not come explicitly into thQ:hange this result. This point can be seen from@dL9. In
critical point relation(3.9), the cosmological constant has Ref. [26] Kastor and Traschen have argued the possibility of
effects on the black hole hairs. Adding a positivegativé  having black hole horizons inside various classical field con-
cosmological constant corresponds to adding a repulsive  figurations by using the conditiof8.6) resulting from the
tractive force. If the cosmological constant is too large, onegppenheimer-Volkoff equation of hydrostatic equilibrium.
would have no equilibrium configuration&5]. ~ The Q stars and boson stars do not allow for black hole

In recent years, there has been considerable interest in tWeyrizon inside them. Therefore it further shows that the cos-

kinds of stars: Q stars and boson stf28-30. When a  mological horizon and black hole horizon share similar prop-
positive cosmological constant is added to these theories, dties from the viewpoint of having hairs on them.

is expected that these regular stars would be surrounded by a
cosmological horizon. Can the matter fields constructing the
star reach the cosmological horizon? Note that a conserved- NO SCALAR HAIR THEOREM AND COSMOLOGICAL

particle number associated with the Noether current appears CONSTANT

always in these theories. A system of self-gravitating real Nowadays there are some methods to show that for the
massive scalar field does not admit regular static solutionsgjnstein-minimally coupled real scalar field system with a
since there is no conserved current leading to particle numyositive semidefinite potential, the static, spherically sym-
ber conservation. Consider a general complex schlavith  metric, and asymptotically flat solution is only the Schwarzs-
a self-interacting potential (®* ®). Its Lagrangian is child solution with a constant scalar field corresponding to a
Y zero point of the potential. This just is the no scalar hair
Lmatier= =979, % 9,® = U(®* D), (3.14 theorgm of black r?ole517,19,2(). IJn these proofs the con-

which has a conserved current dition of asymptotic flatness plays an important role. When a
cosmological constant is present, this condition is lost. Can
jr=—iVy-gg*"(®*9,d— D9, d*), (3.15  one still prove the no scalar hair theorem? In this section we
discuss this problem.
and a conserved particle number Consider the following action:
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1 1 where
S:f d*xV=g| ==(R—2A)— 59""d,¢3,6— V() |,
167 2 K 3

4.1 b=47rE—Ar+ —
2r

3 (4.11)

4 Zm)

whereV(¢) is a positive semidefinite potential of the scalar
field ¢. Varying this action, we have the equations of motionWith the help of Eqs(4.9), (4.10, and(4.4), we reach

RMV_ %gMVR—’_Ag/.LV

dE*‘s—A 3(4 2m\| o ., a1
gr(Ee I=[Ar—oz——]le "¢ (412
= — l 2
8m{0ub9,d=8ul2 (V)TV}, 4.2 Noting thatA <0, it is obvious that the RHS of E4.12 is
N(p) always negative for>r,, wherer represents the location
V2= _ (4.3  of the black hole horizon. Therefore the functidie °
I should be a decreasing function forr,. From Eq.(4.9

we also note thatE(r,)=—V[¢(r,)]<0. Therefore

In the metric(2.2) the Einstein equationgt.2) reduce to ) .
22 a n&t-2) Ee %(r>r,) is always more negative thde °(r,). How-

8'(r)y=—4mr¢'?, (4.4 ever the asymptotically anti—de Sitter solution satisfying the
asymptotic behavior(4.6) requires that lim .Ee °=0.
m' (r)=4mr3u(r)d'>+V(p)]. (4.5  Hence the only solution igp’=0 andV(¢)=0 throughout
the spacetime. In fact, the constant scalar can correspond to a
The asymptotic condition requires that local extremum of the potential satisfyingv(#)/d¢=0,
_ ) 6 _ . because one can absorb the extremum of the potential to the
lim ¢'>~0O(1/°"%), and limV(¢p)~O(1/r**?), cosmological constant so that the cosmological constant is an
r—e r—e effective one and the potential becomes an effective poten-

(4.6) tial. Thus the above proof continues to hold. We will discuss

where s is a positive small quantity. Comparing with the this point later. _
case of asymptotic flatne§s9], we find thate’? is required (i) A>0. This is another story due to the different

to fall off faster than the one in asymptotically flat spacetime 2Symptotic behavior. On the one hand, the cosmological ho-
The equation of motion for the scalar field.3) becomes rizon may appear. On the other hand, obviously, the RHS of
Eq.(4.12 is positive semidefinite asis larger than a critical

(2, ) value. Thus we have no way to rule out the possibility of
(ng") +| =6 |nd TS (4.7 having scalar hairs in this method. If defining

Following Sudarsky{19], we multiply Eq.(4.7) by ¢’ to :E 2 _i
obtain E(r=5u"?~V(#)= z-A, (413

1 ' 2 N(¢) we have

- 12 B s 12 _ ’

SHOT| Fiou'H| T 5)#% T ; e

(4.8 O o s 2 eM 50
dr(Ee )= >3 ; e °p'". (4.19

Let us study the behavior of solutions for the cases of the
asymptotically anti—de S_itterA(<0) and the asymptotically The RHS of Eq.(4.14 now is always negative for>r,,.
de Sitter (\>0), respectively. o _ This indicates that the functioe™ ? should be a decreasing
(i) A<O0. In this case, the solution is required to be aS-function for r>r,. From Eq.(4.13 we note thatE(rp) =
ymptotically anti—de Sitter. We have the following theorem. —V[(r,)]-Aldm<0 and E(rJ)=—V[(r)]—Aldm
Theorem 2In the Einstein-minimally coupled scalar field g ThereforeEe™ 5(r>ry) is always negative semidefinite
system with a positive semidefinite scalar potential and g, r=r,. Note that lim_.Ee ®=—A/4x in contrast to

negqtive cosmological constant, the static, spherically SYMhe cases of the asymptotically flat and asymptotically
metric black hole solution with a regular horizon and pos-,.ii_de Sitter spacetimes, where limEe~?=0. Thus, for

sessing asymptotically anti-de Sitter behavior is the gy mniotically de Sitter black holes, we still have no reason
Schwarzschild-anti—de Sitter spacetime and the scalar field gymP y '

. _ £ rule out the scalar hair and hence the Sudarsky’s method
a constant corresponding to a local extremum of this potengseg not work. In fact, both the Bekenstein’s method proving
tial. . . ! his novel no scalar hair theorefit7] and the scaling tech-
Proof. To prove this theorem, followinfl9] we define i e5120] do not work in this case, either. But by using
E=1ud'2—V(). 4.9 Bekenstein's identity methdd], we can show the following
theorem.
it is easy to show Theorem 3in the Einstein-minimally coupled scalar field
system with a positive semidefinite, convex scalar potential
E'(r)=—b¢'?, (4.10 and a positive cosmological constant, the spherically sym-
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metric, asymptotically de Sitter solutidwith a cosmologi- stars and boson stars, the matter fields cannot reach the cos-
cal horizon and no black hole horizoand the spherically mological horizon. The no short hair conjecture of black
symmetric, asymptotically de Sitter black hole soluti@ith ~ holes remains valid, in spite of the different asymptotic be-

a regular black hole horizon and a cosmological horjzre  haviors(de Sitter or anti—de Sittepf black hole solutions in

the de Sitter space and the Schwarzschild-de Sitter blace sense that the presence of the cosmological constant does
hole, respectively. And the scalar field is a constant correpot change the expression of the critical paidi9). But we

sponding to the point of the minimum of this potential. ~ \ould like to point out that, although the NQS’s no short
Proof. Multiplying Eq. (4.3 by (¢— ¢o) and integrating  najr conjecture remains valid for asymptoticallgnti-de
fromrgtorc, we have Sitter black holes, we cannot say that the hair must extend
. beyond 3/2 the horizon radius of black holes, since in our
Yze_‘s,u(f)¢'(¢—¢o)|:°=f dr r2e=° case the horizons are determined by the equation, 1
o Jrg —2m(r)/r—Ar?/3=0. The positive cosmological constant

widens the hairosphere, while the hairosphere thins for a

% M(r)¢’2+(¢—¢o)ﬂ . negative cosmological constant, compared to the one in the
d¢ asymptotically flat black hole solutio40].
(4.15 For a negative cosmological constant, we have shown:

For the Einstein-minimally coupled scalar field system with

Here ¢, is a constant which gives the minimum value of thea positive semidefinite scalar potential, if the spacetime is
potentialV, r. denotes the cosmological horizon angrep-  static and spherically symmetric, has regular black hole ho-
resents the origin for the asymptotically de Sitter solutionrizon, and is of the asymptotically anti—de Sitter behavior,
and black hole horizom,, for de Sitter black holes. The the only solution is the Schwarzschild-anti—de Sitter space-
left-hand side(LHS) of Eq. (4.15 always vanishes: For the time and the scalar field is a constant corresponding to a
black hole solution, the metric function=0 both at the local extremum of the potential. For a positive cosmological
black hole and cosmological horizons; for the asymptoticallyconstant, if the scalar potential is convex, both the cosmo-
de Sitter solution,u=0 at the cosmological horizon and logical horizon and black hole horizon cannot support the
¢'=0 at the origin, which comes from the regularity re- scalar hair, that is, the only solution is the de Sitter space or
quirement. If the scalar potenti®l(¢) is convex, both the Schwarzschild-de Sitter spacetime. Therefore the no scalar
two terms of integrand of Eq(4.15 are then positive hair theorem hold not only for the asymptotically flat black
semidefinite in the region betweep<r=r.. Therefore the holes, but also for the asymptoticalfgnti-)de Sitter black
only solution is ¢=d¢, and the metrics are the holes.
Schwarzschild-de Sitter and the de Sitter sp@sea special It is a difficult task to prove no scalar hair theorem of
case of the Schwarzschild-de Sitter metriespectively. black holes which are not necessarily spherically symmetric.

When the solution is an asymptotically anti—de Sitter one By now one can prove the no scalar hair theorem for asymp-
if we set thatr, is the black hole horizon and, is totically flat black holes only when the scalar potential is
asymptotic infinity, then the LHS of E@4.15) still vanishes: ~ convex. When the scalar potential is non-negative, in order
wu(r)=0 at the horizon an@’ =0 at infinity. And the inte- t0 prove the no scalar hair theorem one must have more
grand of Eq.(4.15 is still positive semidefinite. Thus the conditions: The spacetime is static, spherically symmetric.
only solution is the Schwarzschild-anti—de Sitter spacetiméVhen the spacetime is asymptotically anti—de Sitter or de
with a constant scalar field. In a word, the Bekenstein’s idenSitter, certainly, it will become more difficult to show the no
tity method can exclude the scalar hair of spherically Symscalar hair theorem. In Sec. IV we have proved the no scalar
metric (anti-)de Sitter black holes and the de Sitter space ifhair theorem of anti—de Sitter black holes in the case for a
the scalar potential is convex. In fact, this method can alséninimally coupled scalar field with a positive semidefinite

exclude the scalar hair for the Kefnti-)de Sitter black ~Scalar potential and the metric being of fo@2). For the
holes. asymptotically de Sitter solution and de Sitter black hole,

however, it should be emphasized that when the scalar po-
tential is convex, the result is always valid, in spite of
whether or not the cosmological constant is present and
In this work we have investigated the possibility of hav- whether or not the spacetime is spherically symmetric.
ing hairs on the cosmological horizon and the effects of a Here it should also be stressed thageneral scalar po-
cosmological constant on the no short hair conjecture and ntential which isbounded from belowan be redefined to be
scalar hair theorem of black holes. From the viewpoint ofpositive semidefinite by absorbing the negative value into the
having hairs on horizons, the cosmological horizon sharesosmological constant. Then our cosmological constant is an
similar properties of the black hole horizon. For the theorieseffective one and it determines the asymptotic behavior of
admitting haired black hole solutions, the nontrivial matterthe spacetime. So in the sense of no scalar hair theorem we
configurations may reach and extend beyond the cosmologhave shown: In the Einstein-minimally coupled scalar field
cal horizon. An explicit example is that in the Bartnik- system with an arbitrary scalar potential, the only spherically
McKinnon soliton surrounded by a cosmological horizon thesymmetric black hole solution is the Schwarzschild-anti—de
Yang-Mills field can extend beyond the cosmological hori-Sitter spacetime if the effective cosmological constant is
zon. This has been found numerically in R¢f4,25. For Q  negative, or the Schwarzschild-de Sitter spacetime if the ef-

V. CONCLUSION AND DISCUSSION
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fective cosmological constant is positive and the effectivdogical horizon can support the nontrivial matter hairs in
potential is convex. The scalar field is a trivial constant cor-those theories admitting haired black hole solutions.
responding to a local extremum of the potential
[dV(p)/dp=0]. Since the hair is a characteristic of black
holes, it may be closely related to the thermodynamics of
black holes[32]. Therefore it is significant to study under  This work was supported by the Center for Theoretical
what conditions black holes have hairs, and under what conPhysics(S.N.U) and by the Non-Directed Research Fund,
ditions black holes have no hairs for asymptotically flat blackKorea Research Foundation, 1996. R.G.C. would like to
holes, asymptoticallyanti9de Sitter black holes, and even thank M. Heusler for helpful correspondence and for sending
for black holes with unusually asymptotic behavior and non-the new book in Ref.20] to him, Professors S. P. Kim, C. K.
spherically topological black holes. In addition, it also Lee, K. S. Soh, and H. S. Song for a great deal of kind help,
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