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Recent work has emphasised the importance of vector and tensor contributions to the large scale microwave
anisotropy fluctuations produced by cosmic defects. In this paper we provide a general discussion of these
contributions, and how their magnitude is constrained by the fundamental assumptions of causality, scaling,
and statistical isotropy. We discuss an analytic model which illustrates and explains how the ratios of isotropic
and anisotropic scalar, vector and tensor stress-energy sources are determined. This provides a check of the
results from large scale numerical simulations, confirming the numerical finding that vector and tensor modes
provide substantial contributions to the large angle anisotropies. We show that the qualitative features of the
stress-energy tensor carry over to the microwave background anisotropies. This leads to a suppression of the
scalar normalization and consequently of the Doppler pd&(556-282(98)03514-0

PACS numbegps): 98.80.Cq, 11.27%:d, 98.70.Vc

I. INTRODUCTION II. CAUSALITY AND ANALYTICITY

As discussed irf5], all perturbation power spectra are

The idea that the breakdown of some fundamental symdetermined by the unequal time correlatttETC) of the
metry and the consequent field ordering might be responsibléefect source stress energy ten6yy, :
for structure formation in the universe is an attractive one.
Recently we have performed the first complete calculations
of the power spectra of perturbations in symmetry breaking
theories, including global cosmic strings, monopoles and tex-
ture[1,2]. These calculations revealed that vector and tensafherer, 7' denote conformal time, arkla comoving wave
modes give a larger contribution to the large scale anisotronumber. Note that Eq1) is real because complex conjuga-
pies than previously suspected, and that their fractional conon is equivalent to the replacemdat> — k. The correlators
tributions to the total microwave anisotropy power spectrumare invariant under this replacement because the statistical

<®ﬂu(k17)®p)\(_kiT,)>EC,uv,p)\(vaaT’) (1)

are comparable for each theory considefsee Fig. 1 Si-  ensemble is rotation invariant.
multaneous work on local string8] has produced compat- Causality means that the real space correlators of the fluc-
ible conclusions. tuating part of®,, must be zero for>r+ 7' [5]. Scal-

The main implication of the large vector and tensor con-ing dictates that in the pure matter or radiation eras
tribution on large angular scales is in reducing the normalCWlpxocdi)‘/(rr’)l’zcwm(kr,kr’), whereg, is the symme-
ization of the scalar perturbations, which are responsible fotry breaking scale and is a dimensionless scaling function.
the Doppler peaks. Once the vector and tensor contributionsinally, ® ,,, must obey the equations for stress energy con-
are properly included, the height of the Doppler peaks is lonservation with respect to the background metsee next
relative to the large angular scale Sachs-Wolfe plafg¢au  Section. These provide two linear constraints on the four

The present paper represents an analytical attempt to egcalar components of the source. Any pair determines the
plain why vector and tensor contributions are substantial ofther two up to possible integration constants. In the matter
large angular scales, using only the most fundamental propf@ the pair® and ®° [4] provides a convenient choice,

erties of the simplest defect theories, namely scaling, causa®/lowing an analytical integral solution to the linearized Ein-
ity and statistical isotropy. We illustrate the argumentsSte'n equations. But for work including the matter-radiation

through comparison with the results of numerical computa;[rans't'on[l] the paw@op and®*is better, because it results
in the correct redshifting away of all components of the

tions [1,4] source stress energy inside the horizon. In this paper we shall
use both pair® and®® in our analytical discussion of an
“incoherent” model and®,, and ®° for a numericaly
*Email address: N.G.Turok@damtp.cam.ac.uk solved “coherent” model. In the former case, we shall con-
"Email address: upen@cfa.harvard.edu strain® and ®S so that on subhorizon scales the source is
*Email address: useljak@cfa.harvard.edu negligible (see Sec. IV.
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FIG. 3. As in Fig. 2 but for global strings.

lim  (0;;(k,7)O(—Kk,7"))=Adj; 8+ B( 5k + 6 6jk)
FIG. 1. The contributions to the total anisotropy power spectrumk—0

from scalar, vector and tensor components, in the theories of global (2
strings, monopoles, texture and nontopological tex{taken from . .
Ref.%l]). P polog ¢ with A andB independent ok.

The trace scalar, anisotropic scalar, vector and tensor
The unequal time correlator ik space is the Fourier components of a tensdf; are given by
transform of the real space correlatof®;;(k,7)0y, 1
('_.k,’T,)>:fdsreilk.%@ij(r,T)®k|(0,'T’)>. The integral is Tij(k):_ﬁijT-"—
finite because the real space correlator has compact support, 3
and it follows that the unequal time correlators are analytic

.1 . R
kikj—§5ij)TS+(kiTjV+ijiV)+T§

in k for all finite k. They may thus be expanded as a Taylor ~ T/k;= kiT;E:T?}kj:T}G =0, (©)
series in the Cartesian componettsaboutk;=0. As k;
tends to zero, isotropy and symmetry impose wherek;=k; /k. Expressing the trac&, T°, T and T} in
e terms of T;; (see e.g[4]) one finds that the only nonzero
150 ! ! b correlators consistent with statistical isotropy and homogene-

: 1 ity are(TT), (TTS), (TSTS), (TY'T}) and(T; Ty,). From Eq.
L § (2) one can compute the sm&llpower spectra of the aniso-

: . tropic scalar, vector and tensor stresses. One finds that the
equal time correlators are in the ratios

100
(1092101 :(|0] 13 =3:2:4 (4)

10+1)c,

where all indices are summed. Thus in a causal theory an-
isotropic scalar, vector and tensor stresses have white noise
components at smak with related amplitudes. A similar
argument shows that the correlat® 0;;)~Cd;; at small

k, implying that(®,s®5) vanishes likek? at smallk. Like-

wise (@0 5) vanishes likek? at smallk. So for either of the

P T B AN two choices discussed above, the two scalar source compo-

10 100 1000 nents are uncorrelated outside the horizon.
1

50

FIG. 2. The importance of the long wavelength modes in the Ill. SUPERHORIZON MODES
anisotropy power spectra from cosmic textures. The power spectra . . . .
due to scalafdotted ling, vector (dashed ling and tensor(long- In cosmic defect t_heorles, perturb_atlons are predominantly
dashed ling components of the sources are compared to thos®roduced on the horizon scale. Studies show that the unequal
where the source stress energy compon@ngsand S as well as  time correlators take the predicted white noise form Ker
the vector and tensor stresses are set to zero fokzafl5. The <5 or so, and decline strongly at largler. To the extent
upper curves show the full spectra, the lower ones the results wheitfat the horizon scale modes reflect the causality constraints
the cutoff is imposed. discussed above, the latter translate into definite relations
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between the scalar, vector and tensor perturbation power In this scheme, we deduce important relations betw@en
spectra. In Figs. 2 and 3 we show the cosmic microwaveand ®S. Equations(5) are easily integrated to obtaig in
background(CMB) anisotropy power spectra calculated in terms of ® and ®S: exchanging the order of the double
the cosmic global string and texture theories respectivelyintegral we get

with and without a cutoff where we switch off the source

stress tensor fok7>5. The figures show that in the texture 7 1 1 1
theory the effect of suppressing the sourceor-5 is rela-  Qoo=7 ° f dr'27'0+ §k27'4(7— - (0+205(7")
tively minor. For strings, there is a larger effect, but even 0 ®)
here theratios of scalar to vector to tensor anisotropies are

not much affected. We conclude that the contributions froquhere we used(7)x 72 in the matter era. But as argued, the
k<5, which we shall term superhorizon modes, are cer- ) ‘

A . . . smoothed® , is identically zero inside the horizon. It fol-
tainly important in both theories and give at the least a rough 00 y

) lows that both ther2 and 7~ 2 coefficients integrate to zero.
measure of the importance of the scalar, vector and tens :
o . ' o he former gives
contributions to the large angle anisotropies. We will discuss
the dependence on the actual cutoff vakse<5 in Sec. V.

1
270+ §k27'3(®+2®5)(k,7') =0, (7)

dr’
IV. INTEGRAL CONSTRAINTS fo

The fact that a cutoff on subhorizon scales does nogng the latter gives
greatly affect the large anglg, spectrum has important im-
plications. It means that the short distance structure of the o
individual defects is not important in determining the quali- f d7’ 7'4(©®+205)(k,7')=0. (8)
tative character of the large angle anisotropies, such as the 0
relative scalar, vector and tensor contributions.

Consider the effect of modelling the sources using aThis imposes a negative correlation betwérand ©%, and
“smoothed” @, tensor, one where we impose a cutoff at guarantees thdl vanishes faster thaa 2 inside the hori-

kr~5. We feed in the smoothefl,, and®S into the stress zon. The constraint§7) and (8) will turn out to be remark-
energy conservation equations: ably powerful when building models for the superhorizon

components o® and®°.
2

. a . a k
Ooot 2 (Ooo+ ©) =11, H+25H=—§(®+2®S),

® We wish to compute the large angular scale anisotropies
wherell=4,0, and® and®° are defined in the previous produced in the matter era. For this purpose we use the fol-
section. It is straightforward to see that the solutionsIfor lowing integral solution to the linearized Einstein equations
and® are well defined. in a matter dominated univer$d]:

V. PERTURBATIONS IN THE MATTER ERA

oT 1f o
?(n)|SW=—EJ'i dThij’O(T,n(TO—T))n'nJ, hij o= ;sjc’glar_'_h?/fgtor_i_ ;[}a’rz)sor

1 T/ 6 s o T/ 4
55”-(—) (©+20 )(T',k)—k'kl(—> OS(7' k)
T T

e -16n6 S e ar

: ~ ~ T T 4
hingtO’:}k) e'“X(hiokj+hy'oki),  hp=16mG f0d7'<7) 0'(n")

}fj}f"h,x)=167TGJOTdT'k3T’4[Gl(T')GZ(T)—GZ(T')GI(T)]g(T’x)

_cos(kr) B sin(k) _cos{kr) N sin(k7)

G0 T T s T

C)
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whereG; and G, are the two homogenous solutions to theturbation unequal time correlators undeintegrals using the
tensor(gravity wave equation. following formula:
The model we shall consider is one in which the compo- g
nents of®;; have the following unequal time autocorrelators: (A(PB())— 8(7— 1) d_T<A( HB(7). (14
(167G)(O(k,1)O(—Kk,7"))=0(e—kr)8(t—7") A
oSy T svT The weighting function is chosen so that the integrals
(167G)(O>"(k, 7)O(—k,7)>"") Jo'd7fg'd7" of both sides are guaranteed to be equal for all
=0(e—kr)8(7— 7 )ASVT (10) 7+. The formula is also invariant under changing variables
from 7 to any other functiori(7). The second approximation
where 6 is the Heaviside function, and we define is to use the fact that the Green’s functions in Eg§sfall off
(OT(NOT()=4(O{ (10 (7)) and (OV(r)OY(r'))  strongly with7. This means that the metric perturbations fall
E%<@i\/(7)@)i\/(7f)>' with all indices summed. off rapidly beyondkr= €, which justifies us simply setting
The sources are nonzero only on “superhorizon” scaleghem zero beyond that point.
(k7<e€) and they are uncorrelated except at equal times.
This latter property means that the model is “totally incoher- VIl. CMB ANISOTROPIES

ent,” in the terminology of Ref[6]. These correlators are .
not strictly causal—in real space they take the form [N the usual way we expand the microwave sky tempera-

r~3[sin x— xcosx] wherex= er/7—but they are small and tUrein spherica;l harmoniasT/T=2a,,Ym(6, #), and com-
oscillatory beyond ~ r for e=5. So the violations of cau- PUte Ci={|aim|*). The formula for the contribution to the
sality are small. Rotational invariance forbids any cross corintégrated Sachs-Wolfe effect from trace scalar and aniso-
relation between scalar, vector or tensor modes. There i&/OPIC scalar contributions i]

however, one more allowed cross correlator, namely that be-

tv_veen_the isotrqpic _and anisotropic s_tresses.zThe argument Clscalar:ijwkzdk der( Ehl(r)
given in Sec. Il implies that® ®%) vanishes ak? for smalll 27 Jo 0 3
k, but it cannot be zero because of the constré@t We 42 5
choose to model it as +h2(7)d(kA7) )j,(kAr) > (15)
(16mG)%(O(k,7)O5(—k,7"))
k7|2 where A7=1y— 7, 79 is the conformal time today and, as
=0(e—kr)8(7— Tr)(_T A9S, (11)  above(---) denotes ensemble averaging. The scalar metric
€ perturbation components are given from E(:
If we now compute the equal time correlator of the constraint _
(8), we determine h1:—167TGf dr'(7'/7)%(0+20%)(7')
AOS=— 1—1(J4+4AS) (12) -
36 ' hy=— 167ref d7'(7'/7)*05(7') (16)

Similarly we compute the equal time correlator of Ed) with k dependence implicit

and obtain The vector and tensor contributions @ are[7]

4 4 1 4 4

R S S 2, T 4|l q0s, T a4 s_ 2 e

3 15 T3 AT 1€ T | A T A0 C|V=—J’ K2dKI(l +1)

(13 /o
; 2

These equations yieldl 5= —2.474° and A=4.074° for % f OdThV(T)L[h(kAT)/kAT]
e=5. Atkr=5, there is a mild inconsistency with the bound 0 d(kAT)

A9S< JAAS: so we shall adoptd495=-24% and A
=4A5. oo L Jxkzdk(wz)!/ o dr oo s 2
I_ﬂ 0 (|_2)|\ 0 kZATZ' (T)JI( T)
VI. DELTA FUNCTION APPROXIMATION (17)

The procedure is simple in principle: the correlatk6) T 1 iTe T N
translate into correlators of the metric perturbations and thud/here(h (nh'(7'))=z(h;(7)h;;(7)) and(h*(7)h*(7"))
into correlators of the temperature perturbations, equivalerie3(hY(7)hY(")), with all indices summed.
to the anisotropy power spectru@). But in order to com- We now compute the relevant metric perturbation correla-
pute the relevant integrals analytically, we shall make twators: from Eqs(10), (12) and(16), using.A®S=—-24% and
approximations. The first is that we shall replace metric per:A=4.4° as discussed above, we obtain
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2 1 3,5 Tensor contribution
A~ — 0.03 T T T T T T T
<hl(T) > 4OT A | I T
1 i
h 2\~ 34S 4
< 2(7—) > 817— A 0.02 |
[ /—‘/ 4
) —
1 7 ]
<h1(7)h2(7')>%2_1773-/48 =
0.01 .
1
\% 2N__"_ .34V
(h(7)?) =57 7°A
0 ! |
10 100

<hT(T)2>=deT'G(T,T')2AT
0

FIG. 4. Tensor anisotropy power spectrum as computed in the

analytical model presented here.
G(7,7) =k Gy (') Gyl 7) Y P

~Ga(7)Gy(7)] (19 P f°°dx.2
C|~O.298—1.A E OFh(X)

where we have evaluated the scalar correlatoks-at5, and &3
the tensor modeG; andG, are given in Eqs(9). The tensor ~0.29—AT s+0(l173), (21
integral is straightforwardly performed, yielding w1213
T where we have used
h' 2 A 1051 2)sin(2z) — 105zcog 2
(h(1)=gaam = (1-2)sin(22) cog2z) 1 h
} . . . S o - F(l—n)F |+§+§)
+62'—14z°— 352 (19 XJr(x)x _ZHF o 2r BER (22
373

wherez=Kkr. This function is~.A77%/81 at smallkr, iden- _ o
tical to the vector expression. But for largkr it is sup- We have computed the integral for the tensor contribution

pressed, with the suppression factor being.29 atkr=5. (20) at low | using MATHEMATICA, to check that the model

The suppression is due to the oscillatory nature of the tensgfProduces the shapeldf +1)C, seen in the plots of Fig. 1.
compared to the vector response. Figure 4 confirms that this is indeed the case.

We now compute the integrals in Eq47), starting with The vector integral is performed similarly, to obtain
the tensor contributio€] . The delta function allows one of
the 7 integrations to be performed. Then we change variables CV:i v2ld+ 1)J'wdxx2[(' (X)/%)' ]2
from k to x=kA 7. The Heaviside function gives the upper 27’4 T 0 I
limit x<e(7q/7—1) or 7<<73/(1+x/€). Exchanging orders

. . 62 €
of the integrals we find > i ;+In(1+e/x) , (23)
;1 (d+2)! . . . .
(=5 —2)1 where prime denotes differentiation with respectxtoAp-
7 ( ‘ proximating the expression in the square brackets with its
o dx oll+xie)  dr d leading largex behavior, integrating by parts and using
X jo Fjlz(x) JO e E_(hT( 7)?). Bessel's equation fof;(x), we obtain, at largé,
(20) v .y 26 .
Ci~A ero(l ). (29

For largel the integral is dominated by large sincej(x)
~x' at smallx. But at largex, 7<7, and ther integral is  The scalar contribution is evaluated using Ed<) and(16),

trivial. Thus one finds, at large again making the large approximation, giving
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| 1 (= 100
Clscaar:AS_f X2dX 3
2 0 -

63

ey L2y 2 25
X\ 12001 T g7t 17 (X)ﬁ-( )

After integration by parts and using Bessel's equations we
get

1(1+1)C,

3
Cscalar% 1 se__’_o(ra) (26)
! 1248 712 '

Now the amplitudes4 S, AY and AT are related via Eq4)

in the ratio 3:1:1. Thus in the various approximations we
have made, the ratio of the scalar to vector to tensor contri- i .
butions to the large angle anisotropies is 10 100 1000

G by b by by

lar. ~AV. ~T_ 1.
C|Sca ar-Cl :C/=1.461:0.29 (27) FIG. 5. Angular power spectrum of anisotropies generated by a

o ) ) simple “coherent” model of scaling sources, correctly incorporat-
which is our main result. The calculation demonstrates theng the superhorizon constraints on the relative importance of the

relative importance of the vector and tensor modes, ConSiSsotropic energ),(»—)oo’ anisotropic Stres@)s’ vector®Y and tensor
tent with the numerical results shown in Fig. 1. Given the®T perturbations to the source stress tensor. Each of these compo-
crude nature of the model used, the agreement is actuallyents is independent in this model, allowing us to map each family
surprisingly good. The weakest point in the model is that itonto itsC, which can then be co-added.
involves a free parametes, and theC,’s obtained are pro-
portional toe®. It seems plausible that should be the same correlators are constrained by Hé). The total contribution
for the scalar, vector and tensor stresses, but we have nof a component is basically proportional to its amplitude
found any argument as to why this should necessarily béimes its duration; so the shorter coherence would reduce the
true. scalar contribution relative to the vector and tensor. This
Let us summarize the approximations and assumptionagrees qualitatively with the observed results.
implicit in the ratio (27):
(1) We assumed that superhorizon modes VKth<5 v NUMERICAL SOLUTION OF A COHERENT MODEL
dominate, and that this cutoff is universal for each vector,
scalar and tensor. This is generally observed in the simula- As a further model we have considered the case of a com-

tions. pletely “coherent” source in which the unequal time corr-
(2) We modelled the unequal time correlators as delteelators of®y,, ©5, 07, and®V are all proportional to the
functions with a horizon scale cutoff. product of Heaviside functions, for example setting

(3) We made the approximation of pure matter domina-
tion for the background spacetime. In this approximation the (@ (K, 7)O oo =k, 7)) =(77') 20 (e—k7)O(e—k7').
C, spectra obtained are scale invariant at largevhich is (28)

accurate for the large scale anisotropies ] o

delta functions in order to perform the relevant integrationsPut as mentioned above, the cross correlator must vanish at

With all of these caveats, we feel that the model providesmall k. So in this model we will assume thg® ®°) is
useful insight into the relative importance of scalar, vectoridentically zero, and therefore solve for thig, a.nd(E)S con-
and tensor contributions to the large angle anisotropies. Théibutions separately. This model is not strictly coherent,
model explains why vector perturbations dominate over tenSince a fully coherent model would have unit cross correla-
sors, and why the combined vector and tensor contribution i§on coefficient(® 4 ). We use quotation marks with “co-
comparable to that from scalars. The domination of vector§erent” to indicate the unequal time coherence. We define
over scalars seen in the full defect simulatighigs. 1-3is  Ci°andC} as the respectively derived power spectra. Note
not reproduced by this simple model. Of the assumptionghat with this choice of variables, the constraififs and (8)
stated above, the second is the weakest link. Real defecée automatically satisfied.
may have different coherence times for the scalar, vector and We have used this model in the full Boltzmann code de-
tensor modes. In the coherent eigenmode factorizdtign  veloped in[1] as usual withe=5. The results are shown in
we indeed observe that scalar modes are less coherent th&ig. 5. The anisotropic scalar, vector and ten€gis have
vector or tensor modes, while vector and tensor modes haveeen scaled so that the stress tensor white noise superhorizon
very similar coherence properties. Thus we would expect themplitudes are in the correct rati¢). ©° has been given
vector to tensor ratio to be an accurate prediction of thissqual normalization a®S. NeverthelessC° is a remarkably
model, which is indeed observed in Fig. 2. The equal timesmall contribution. This may be understood by solving the
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equations for stress energy conservation@qrfrom which  in our models bye, is different for the scalar, vector and
one finds that® is actually very small in the “coherent” tensor components, then th@, contributions could be
model at horizon crossingr~5, so that from Eq(9) its  strongly affected, sinc€ > e°. One could imagine a model
contribution to the anisotropy is small. where e for scalars was larger than for vectors and tensors,
The *“coherent” model provides a useful comparison to but even here one would probably not find sharp Doppler
the previous incoherent model. The broad agreement bgseaks, since increasirgis likely to increase the incoherence
tween the two models suggests that our main re@7x is  of the source and thus smooth out the Doppler pétks is
actually insensitive to the detailed nature of the source. Arapparent in Figs. 2 and).3
advantage of the “coherent” model is that we can more One could consider sources like thosd%hin which the
easily incorporate the matter-radiation transition, giving riseanisotropic stresses are by construction zero outside the ho-
to departures from scale invariance in tbespectrum quali- rizon. In such a model the superhorizon constrag#t is
tatively similar in character to those observed in realisticsatisfied with all terms being zero. In the model[5f this is
source calculations. And as seen in Fig. 5 the model gives filue because the real space stress energy master functions
reasonable impression of the main features of the realistizvere taken to bespherically symmetricclearly a special

calculations in Fig. 1, at least on large angular scales. case.
We have assumed perfect scaling of the sources and mat-
IX. CONCLUSIONS ter domination. There is some violation of scaling due to the

) ) matter-radiation transition, but this is a small effect on large

In this paper we have developed a set of physically reazngyjar scales. Stronger departures from scaling would result
sonable models for the perturbations generated on superhgym a non-minimal-coupling mass terR¢? for the Gold-
rizon scales by causal sources. We gave some rigorous arghne hosonf9]. We are currently exploring this possibility.
some approximate arguments that the large angular scale \we have assumed that the scalar, vector and tensor modes
anisotropies due to the scalar and vector plus tensor modgge equally incoherent, and have tested numerically the case
are in general similar in magnitude. The physical basis is Eqy,at they are equally “coherent.” In simulations, however,
(4), where we showed that causality and analyticity forcesye find that the vector and tensor components are about
the superhorizon stress-energy sources to be of similar magqyally coherent, while the scalar components are less coher-
nitude. If the vector and tensor contributions to the largesnt. \we would expect our results to apply to the vector and
angle anisotropies are large, the scalar normaliz_ation is lowggnsor components, and to overestimate the scalar, which is
and the Doppler peaks due to scalar perturbations are smaf{jeed observed. In order to change the qualitative results,

compared to the large angle Sachs-Wolfe plateau. one could try to design a defect model wherein the scalars
Let us close by mentioning some loopholes in the aboveye more coherent than vectors or tensors.

arguments, which make it possible to circumvent the conclu-
sion that causal sources are unlikely to have large Doppler
peaks. , , _ , ACKNOWLEDGMENTS
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