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Scalar, vector, and tensor contributions to CMB anisotropies from cosmic defects
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Recent work has emphasised the importance of vector and tensor contributions to the large scale microwave
anisotropy fluctuations produced by cosmic defects. In this paper we provide a general discussion of these
contributions, and how their magnitude is constrained by the fundamental assumptions of causality, scaling,
and statistical isotropy. We discuss an analytic model which illustrates and explains how the ratios of isotropic
and anisotropic scalar, vector and tensor stress-energy sources are determined. This provides a check of the
results from large scale numerical simulations, confirming the numerical finding that vector and tensor modes
provide substantial contributions to the large angle anisotropies. We show that the qualitative features of the
stress-energy tensor carry over to the microwave background anisotropies. This leads to a suppression of the
scalar normalization and consequently of the Doppler peaks.@S0556-2821~98!03514-0#

PACS number~s!: 98.80.Cq, 11.27.1d, 98.70.Vc
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I. INTRODUCTION

The idea that the breakdown of some fundamental s
metry and the consequent field ordering might be respons
for structure formation in the universe is an attractive o
Recently we have performed the first complete calculati
of the power spectra of perturbations in symmetry break
theories, including global cosmic strings, monopoles and
ture @1,2#. These calculations revealed that vector and ten
modes give a larger contribution to the large scale aniso
pies than previously suspected, and that their fractional c
tributions to the total microwave anisotropy power spectr
are comparable for each theory considered~see Fig. 1!. Si-
multaneous work on local strings@3# has produced compat
ible conclusions.

The main implication of the large vector and tensor co
tribution on large angular scales is in reducing the norm
ization of the scalar perturbations, which are responsible
the Doppler peaks. Once the vector and tensor contribut
are properly included, the height of the Doppler peaks is l
relative to the large angular scale Sachs-Wolfe plateau@1#.

The present paper represents an analytical attempt to
plain why vector and tensor contributions are substantia
large angular scales, using only the most fundamental p
erties of the simplest defect theories, namely scaling, cau
ity and statistical isotropy. We illustrate the argumen
through comparison with the results of numerical compu
tions @1,4#.
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II. CAUSALITY AND ANALYTICITY

As discussed in@5#, all perturbation power spectra ar
determined by the unequal time correlator~UETC! of the
defect source stress energy tensorQmn :

^Qmn~k,t!Qrl~2k,t8!&[Cmn,rl~k,t,t8! ~1!

wheret, t8 denote conformal time, andk a comoving wave
number. Note that Eq.~1! is real because complex conjug
tion is equivalent to the replacementk→2k. The correlators
are invariant under this replacement because the statis
ensemble is rotation invariant.

Causality means that the real space correlators of the fl
tuating part ofQmn must be zero forr .t1t8 @5#. Scal-
ing dictates that in the pure matter or radiation e
Cmn,rl}f0

4/(tt8)1/2cmn,rl(kt,kt8), wheref0 is the symme-
try breaking scale andc is a dimensionless scaling function
Finally, Qmn must obey the equations for stress energy c
servation with respect to the background metric~see next
section!. These provide two linear constraints on the fo
scalar components of the source. Any pair determines
other two up to possible integration constants. In the ma
era the pairQ and QS @4# provides a convenient choice
allowing an analytical integral solution to the linearized Ei
stein equations. But for work including the matter-radiati
transition@1# the pairQ00 andQS is better, because it result
in the correct redshifting away of all components of t
source stress energy inside the horizon. In this paper we s
use both pairsQ and QS in our analytical discussion of an
‘‘incoherent’’ model andQ00 and QS for a numericaly
solved ‘‘coherent’’ model. In the former case, we shall co
strain Q and QS so that on subhorizon scales the source
negligible ~see Sec. IV!.
© 1998 The American Physical Society06-1
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The unequal time correlator ink space is the Fourie
transform of the real space correlator:^Q i j (k,t)Qkl
(2k,t8)&5*d3re2 ik–r^Q i j (r ,t)Qkl(0,t8)&. The integral is
finite because the real space correlator has compact sup
and it follows that the unequal time correlators are analy
in k for all finite k. They may thus be expanded as a Tay
series in the Cartesian componentski about ki50. As ki
tends to zero, isotropy and symmetry impose

FIG. 1. The contributions to the total anisotropy power spectr
from scalar, vector and tensor components, in the theories of gl
strings, monopoles, texture and nontopological texture~taken from
Ref. @1#!.

FIG. 2. The importance of the long wavelength modes in
anisotropy power spectra from cosmic textures. The power spe
due to scalar~dotted line!, vector ~dashed line! and tensor~long-
dashed line! components of the sources are compared to th
where the source stress energy componentsQ00 andQS as well as
the vector and tensor stresses are set to zero for allkt.5. The
upper curves show the full spectra, the lower ones the results w
the cutoff is imposed.
02350
ort,
c
r

lim
k→0

^Q i j ~k,t!Qkl~2k,t8!&5Ad i j dkl1B~d ikd j l 1d i l d jk!

~2!

with A andB independent ofk.
The trace scalar, anisotropic scalar, vector and ten

components of a tensorTi j are given by

Ti j ~k!5
1

3
d i j T1S k̂i k̂ j2

1

3
d i j DTS1~ k̂iTj

V1 k̂ jTi
V!1Ti j

T

Ti
Vki5kiTi j

T 5Ti j
T kj5Tj j

T 50, ~3!

where k̂i[ki /k. Expressing the traceT, TS, Ti
V and Ti j

T in
terms of Ti j ~see e.g.@4#! one finds that the only nonzer
correlators consistent with statistical isotropy and homoge
ity are ^TT&, ^TTS&, ^TSTS&, ^Ti

VTj
V& and^Ti j

T Tkl
T &. From Eq.

~2! one can compute the smallk power spectra of the aniso
tropic scalar, vector and tensor stresses. One finds tha
equal time correlators are in the ratios

^uQSu2&:^uQ i
Vu2&:^uQ i j

T u2&53:2:4 ~4!

where all indices are summed. Thus in a causal theory
isotropic scalar, vector and tensor stresses have white n
components at smallk with related amplitudes. A similar
argument shows that the correlator^Q00Q i j &;Cd i j at small
k, implying that^Q00Q

S& vanishes likek2 at smallk. Like-
wise ^QQS& vanishes likek2 at smallk. So for either of the
two choices discussed above, the two scalar source com
nents are uncorrelated outside the horizon.

III. SUPERHORIZON MODES

In cosmic defect theories, perturbations are predomina
produced on the horizon scale. Studies show that the une
time correlators take the predicted white noise form forkt
,5 or so, and decline strongly at largerkt. To the extent
that the horizon scale modes reflect the causality constra
discussed above, the latter translate into definite relati
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FIG. 3. As in Fig. 2 but for global strings.
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SCALAR, VECTOR, AND TENSOR CONTRIBUTIONS TO . . . PHYSICAL REVIEW D58 023506
between the scalar, vector and tensor perturbation po
spectra. In Figs. 2 and 3 we show the cosmic microw
background~CMB! anisotropy power spectra calculated
the cosmic global string and texture theories respectiv
with and without a cutoff where we switch off the sour
stress tensor forkt.5. The figures show that in the textur
theory the effect of suppressing the source forkt.5 is rela-
tively minor. For strings, there is a larger effect, but ev
here theratios of scalar to vector to tensor anisotropies a
not much affected. We conclude that the contributions fr
kt,5, which we shall term superhorizon modes, are c
tainly important in both theories and give at the least a rou
measure of the importance of the scalar, vector and te
contributions to the large angle anisotropies. We will disc
the dependence on the actual cutoff valuekt,5 in Sec. V.

IV. INTEGRAL CONSTRAINTS

The fact that a cutoff on subhorizon scales does
greatly affect the large angleCl spectrum has important im
plications. It means that the short distance structure of
individual defects is not important in determining the qua
tative character of the large angle anisotropies, such as
relative scalar, vector and tensor contributions.

Consider the effect of modelling the sources using
‘‘smoothed’’ Q00 tensor, one where we impose a cutoff
kt;5. We feed in the smoothedQ00 andQS into the stress
energy conservation equations:

Q̇001
ȧ

a
~Q001Q!5P, Ṗ12

ȧ

a
P52

k2

3
~Q12QS!,

~5!

whereP5] iQ0i andQ andQS are defined in the previou
section. It is straightforward to see that the solutions forP
andQ are well defined.
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In this scheme, we deduce important relations betweeQ
andQS. Equations~5! are easily integrated to obtainQ00 in
terms of Q and QS: exchanging the order of the doub
integral we get

Q005t22F E
0

t

dt82t8Q1
1

3
k2t84S 1

t8
2

1

t D ~Q12QS!~t8!G ,
~6!

where we useda(t)}t2 in the matter era. But as argued, th
smoothedQ00 is identically zero inside the horizon. It fol
lows that both thet22 andt23 coefficients integrate to zero
The former gives

E
0

`

dt8F2t8Q1
1

3
k2t83~Q12QS!~k,t8!G50, ~7!

and the latter gives

E
0

`

dt8t84~Q12QS!~k,t8!50. ~8!

This imposes a negative correlation betweenQ andQS, and
guarantees thatP vanishes faster thana22 inside the hori-
zon. The constraints~7! and ~8! will turn out to be remark-
ably powerful when building models for the superhoriz
components ofQ andQS.

V. PERTURBATIONS IN THE MATTER ERA

We wish to compute the large angular scale anisotrop
produced in the matter era. For this purpose we use the
lowing integral solution to the linearized Einstein equatio
in a matter dominated universe@4#:
dT

T
~n!uSW52

1

2Ei

f

dthi j ,0„t,n~t02t!…ninj , hi j ,05hi j ,0
scalar1hi j ,0

vector1hi j ,0
tensor

hi j ,0
scalar5216pG(

k
eik•xE

0

t

dt8F1

3
d i j S t8

t D 6

~Q12QS!~t8,k!2 k̂i k̂ j S t8

t D 4

QS~t8,k!G

hi j ,0
vector5(

k
eik•x~hi ,0

V k̂j1hj ,0
V k̂i !, hi ,0

V 516pGE
0

t

dt8S t8

t D 4

Q i
V~h8!

hi j ,0
tensor~t,x!516pGE

0

t

dt8k3t84@G1~t8!Ġ2~t!2G2~t8!Ġ1~t!#Q i j
T ~t8x!

G1~t!5
cos~kt!

~kt!2
2

sin~kt!

~kt!3
, G2~t!5

cos~kt!

~kt!3
1

sin~kt!

~kt!2
, ~9!
6-3
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whereG1 andG2 are the two homogenous solutions to t
tensor~gravity wave! equation.

The model we shall consider is one in which the comp
nents ofQ i j have the following unequal time autocorrelato

~16pG!2^Q~k,t!Q~2k,t8!&5u~e2kt!d~t2t8!A

~16pG!2^QS,V,T~k,t!Q~2k,t8!S,V,T&

5u~e2kt!d~t2t8!A S,V,T ~10!

where u is the Heaviside function, and we defin
^QT(t)QT(t8)&[ 1

4 ^Q i j
T (t)Q i j

T (t8)& and ^QV(t)QV(t8)&
[ 1

2 ^Q i
V(t)Q i

V(t8)&, with all indices summed.
The sources are nonzero only on ‘‘superhorizon’’ sca

(kt,e) and they are uncorrelated except at equal tim
This latter property means that the model is ‘‘totally incoh
ent,’’ in the terminology of Ref.@6#. These correlators ar
not strictly causal—in real space they take the fo
r 23@sin x2xcosx# wherex5er /t—but they are small and
oscillatory beyondr;t for e55. So the violations of cau
sality are small. Rotational invariance forbids any cross c
relation between scalar, vector or tensor modes. There
however, one more allowed cross correlator, namely that
tween the isotropic and anisotropic stresses. The argum
given in Sec. III implies that̂QQS& vanishes ask2 for small
k, but it cannot be zero because of the constraint~8!. We
choose to model it as

~16pG!2^Q~k,t!QS~2k,t8!&

5u~e2kt!d~t2t8!S kt

e D 2

AQS. ~11!

If we now compute the equal time correlator of the constra
~8!, we determine

AQS52
11

36
~A14A S!. ~12!

Similarly we compute the equal time correlator of Eq.~7!
and obtain

S 4

3
1

4

15
e21

1

63
e4DA1S 8

21
e21

4

81
e4DAQS1

4

63
e4A S50.

~13!

These equations yieldAQS522.47A S andA54.07A S for
e55. At kt55, there is a mild inconsistency with the boun
AQS,AAA S; so we shall adoptAQS522A S and A
54A S.

VI. DELTA FUNCTION APPROXIMATION

The procedure is simple in principle: the correlators~10!
translate into correlators of the metric perturbations and t
into correlators of the temperature perturbations, equiva
to the anisotropy power spectrumCl . But in order to com-
pute the relevant integrals analytically, we shall make t
approximations. The first is that we shall replace metric p
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turbation unequal time correlators undert integrals using the
following formula:

^Ȧ~t!Ḃ~t8!&→d~t2t8!
d

dt
^A~t!B~t!&. ~14!

The weighting function is chosen so that the integr
*0

t fdt*0
t fdt8 of both sides are guaranteed to be equal for

t f . The formula is also invariant under changing variab
from t to any other functionf (t). The second approximation
is to use the fact that the Green’s functions in Eqs.~9! fall off
strongly witht. This means that the metric perturbations f
off rapidly beyondkt5e, which justifies us simply setting
them zero beyond that point.

VII. CMB ANISOTROPIES

In the usual way we expand the microwave sky tempe
ture in spherical harmonicsdT/T5(almYlm(u,f), and com-
pute Cl5^ualmu2&. The formula for the contribution to the
integrated Sachs-Wolfe effect from trace scalar and an
tropic scalar contributions is@7#

Cl
scalar5

1

2pE0

`

k2dkK F E
0

t0
dtS 1

3
ḣ1~t!

1ḣ2~t!
d2

d~kDt!2D j l~kDt!G2L ~15!

where Dt5t02t, t0 is the conformal time today and, a
above,̂ •••& denotes ensemble averaging. The scalar me
perturbation components are given from Eqs.~9!:

ḣ15216pGE dt8~t8/t!6~Q12QS!~t8!

ḣ25216pGE dt8~t8/t!4QS~t8! ~16!

with k dependence implicit.
The vector and tensor contributions toCl are @7#

Cl
V5

2

pE0

`

k2dkl~ l 11!

3K F E
0

t0
dtḣV~t!

d

d~kDt!
@ j l~kDt!/kDt#G2L

Cl
T5

1

2pE0

`

k2dk
~ l 12!!

~ l 22!! K F E
0

t0 dt

k2Dt2ḣT~t! j l~kDt!G2L
(17)

where^ḣT(t)ḣT(t8)&[ 1
4 ^ḣi j

T (t)ḣi j
T (t8)& and^ḣV(t)ḣV(t8)&

[1
2 ^ḣi

V(t)ḣi
V(t8)&, with all indices summed.

We now compute the relevant metric perturbation corre
tors: from Eqs.~10!, ~12! and~16!, usingAQS522A S and
A54A S as discussed above, we obtain
6-4
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^h1~t!2&'
1

40
t3A S

^h2~t!2&5
1

81
t3A S

^h1~t!h2~t!&'
1

217
t3A S

^hV~t!2&5
1

81
t3A V

^hT~t!2&5E
0

t

dt8G~t,t8!2A T

G~t,t8!5k3t84@G1~t8!G2~t!

2G2~t8!G1~t!# ~18!

where we have evaluated the scalar correlators atkt55, and
the tensor modesG1 andG2 are given in Eqs.~9!. The tensor
integral is straightforwardly performed, yielding

^hT~t!2&5
A T

60k3z6S 105

2
~12z2!sin~2z!2105zcos~2z!

16z7214z5235z3D ~19!

wherez5kt. This function is;A Tt3/81 at smallkt, iden-
tical to the vector expression. But for largerkt it is sup-
pressed, with the suppression factor being'0.29 atkt55.
The suppression is due to the oscillatory nature of the ten
compared to the vector response.

We now compute the integrals in Eqs.~17!, starting with
the tensor contributionCl

T . The delta function allows one o
thet integrations to be performed. Then we change variab
from k to x5kDt. The Heaviside function gives the upp
limit x,e(t0 /t21) or t,t0 /(11x/e). Exchanging orders
of the integrals we find

Cl
T5

1

2p

~ l 12!!

~ l 22!!

3E
0

`dx

x2 j l
2~x!E

0

t0 /~11x/e! dt

~t02t!3

d

dt
^hT~t!2&.

~20!

For largel the integral is dominated by largex, since j l(x)
;xl at smallx. But at largex, t!t0 and thet integral is
trivial. Thus one finds, at largel ,
02350
or

s

Cl
T;0.29

e3

81
A T

l 4

2pE0

`dx

x5 j l
2~x!

;0.29
e3

p
A T

2

1215l 2 1o~ l 23!, ~21!

where we have used

E dx jl
2~x!xn5

p

222n

G~12n!GS l 1
1

2
1

n

2D
GS 12

n

2D 2

GS l 1
3

2
2

n

2D . ~22!

We have computed the integral for the tensor contribut
~20! at low l using MATHEMATICA , to check that the mode
reproduces the shape ofl ( l 11)Cl seen in the plots of Fig. 1
Figure 4 confirms that this is indeed the case.

The vector integral is performed similarly, to obtain

Cl
V5

1

27
A V

2l ~ l 11!

p E
0

`

dxx2@„j l~x!/x…8#2

3F e2

2x2 2
e

x
1 ln~11e/x!G , ~23!

where prime denotes differentiation with respect tox. Ap-
proximating the expression in the square brackets with
leading largex behavior, integrating by parts and usin
Bessel’s equation forj l(x), we obtain, at largel ,

Cl
V;A V

2e3

1215p l 2 1o~ l 23!. ~24!

The scalar contribution is evaluated using Eqs.~14! and~16!,
again making the largex approximation, giving

FIG. 4. Tensor anisotropy power spectrum as computed in
analytical model presented here.
6-5
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Cl
scalar5A S

1

2pE0

`

x2dx

3S 1

120
j l
21

1

81
j l821

4

217
j l j l9D ~x!

e3

2x3 . ~25!

After integration by parts and using Bessel’s equations
get

Cl
scalar'

1

1248
A S

e3

p l 2 1o~ l 23!. ~26!

Now the amplitudesA S, A V andA T are related via Eq.~4!
in the ratio 3:1:1. Thus in the various approximations
have made, the ratio of the scalar to vector to tensor con
butions to the large angle anisotropies is

Cl
scalar :Cl

V :Cl
T51.46:1:0.29 ~27!

which is our main result. The calculation demonstrates
relative importance of the vector and tensor modes, con
tent with the numerical results shown in Fig. 1. Given t
crude nature of the model used, the agreement is actu
surprisingly good. The weakest point in the model is tha
involves a free parametere, and theCl ’s obtained are pro-
portional toe3. It seems plausible thate should be the same
for the scalar, vector and tensor stresses, but we have
found any argument as to why this should necessarily
true.

Let us summarize the approximations and assumpt
implicit in the ratio ~27!:

~1! We assumed that superhorizon modes withkt,5
dominate, and that this cutoff is universal for each vec
scalar and tensor. This is generally observed in the sim
tions.

~2! We modelled the unequal time correlators as de
functions with a horizon scale cutoff.

~3! We made the approximation of pure matter domin
tion for the background spacetime. In this approximation
Cl spectra obtained are scale invariant at largel , which is
accurate for the large scale anisotropies

~4! We replaced certain functions with amplitudes tim
delta functions in order to perform the relevant integratio

With all of these caveats, we feel that the model provid
useful insight into the relative importance of scalar, vec
and tensor contributions to the large angle anisotropies.
model explains why vector perturbations dominate over t
sors, and why the combined vector and tensor contributio
comparable to that from scalars. The domination of vect
over scalars seen in the full defect simulations~Figs. 1–3! is
not reproduced by this simple model. Of the assumpti
stated above, the second is the weakest link. Real de
may have different coherence times for the scalar, vector
tensor modes. In the coherent eigenmode factorization@1#,
we indeed observe that scalar modes are less coherent
vector or tensor modes, while vector and tensor modes h
very similar coherence properties. Thus we would expect
vector to tensor ratio to be an accurate prediction of t
model, which is indeed observed in Fig. 2. The equal ti
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correlators are constrained by Eq.~4!. The total contribution
of a component is basically proportional to its amplitu
times its duration; so the shorter coherence would reduce
scalar contribution relative to the vector and tensor. T
agrees qualitatively with the observed results.

VIII. NUMERICAL SOLUTION OF A COHERENT MODEL

As a further model we have considered the case of a c
pletely ‘‘coherent’’ source in which the unequal time cor
elators ofQ00, QS, QT, andQV are all proportional to the
product of Heaviside functions, for example setting

^Q00~k,t!Q00~2k,t8!&5~tt8!21/2Q~e2kt!Q~e2kt8!.
~28!

Note that we need to model the white noiseQS contribution,
but as mentioned above, the cross correlator must vanis
small k. So in this model we will assume that^Q00Q

S& is
identically zero, and therefore solve for theQ00 andQS con-
tributions separately. This model is not strictly cohere
since a fully coherent model would have unit cross corre
tion coefficient̂ Q00Q

S&. We use quotation marks with ‘‘co
herent’’ to indicate the unequal time coherence. We defi
Cl

00 andCl
S as the respectively derived power spectra. N

that with this choice of variables, the constraints~7! and~8!
are automatically satisfied.

We have used this model in the full Boltzmann code d
veloped in@1# as usual withe55. The results are shown in
Fig. 5. The anisotropic scalar, vector and tensorCl ’s have
been scaled so that the stress tensor white noise superho
amplitudes are in the correct ratios~4!. Q00 has been given
equal normalization asQS. Nevertheless,Cl

00 is a remarkably
small contribution. This may be understood by solving t

FIG. 5. Angular power spectrum of anisotropies generated b
simple ‘‘coherent’’ model of scaling sources, correctly incorpor
ing the superhorizon constraints on the relative importance of
isotropic energyQ00, anisotropic stressQS, vectorQV and tensor
QT perturbations to the source stress tensor. Each of these co
nents is independent in this model, allowing us to map each fam
onto itsCl which can then be co-added.
6-6
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SCALAR, VECTOR, AND TENSOR CONTRIBUTIONS TO . . . PHYSICAL REVIEW D58 023506
equations for stress energy conservation forQ, from which
one finds thatQ is actually very small in the ‘‘coherent’
model at horizon crossingkt;5, so that from Eq.~9! its
contribution to the anisotropy is small.

The ‘‘coherent’’ model provides a useful comparison
the previous incoherent model. The broad agreement
tween the two models suggests that our main result~27! is
actually insensitive to the detailed nature of the source.
advantage of the ‘‘coherent’’ model is that we can mo
easily incorporate the matter-radiation transition, giving r
to departures from scale invariance in theCl spectrum quali-
tatively similar in character to those observed in realis
source calculations. And as seen in Fig. 5 the model give
reasonable impression of the main features of the real
calculations in Fig. 1, at least on large angular scales.

IX. CONCLUSIONS

In this paper we have developed a set of physically r
sonable models for the perturbations generated on supe
rizon scales by causal sources. We gave some rigorous
some approximate arguments that the large angular s
anisotropies due to the scalar and vector plus tensor m
are in general similar in magnitude. The physical basis is
~4!, where we showed that causality and analyticity forc
the superhorizon stress-energy sources to be of similar m
nitude. If the vector and tensor contributions to the lar
angle anisotropies are large, the scalar normalization is lo
and the Doppler peaks due to scalar perturbations are s
compared to the large angle Sachs-Wolfe plateau.

Let us close by mentioning some loopholes in the ab
arguments, which make it possible to circumvent the conc
sion that causal sources are unlikely to have large Dop
peaks.

If subhorizon modes withkt.5 dominate the anisotro
pies, then our arguments do not apply. Sources in this
egory have been explored by Durrer and Sakellariadou@8#.

If the shape of the unequal time correlators, parametri
l-
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in our models bye, is different for the scalar, vector an
tensor components, then theCl contributions could be
strongly affected, sinceCl}e3. One could imagine a mode
wheree for scalars was larger than for vectors and tenso
but even here one would probably not find sharp Dopp
peaks, since increasinge is likely to increase the incoherenc
of the source and thus smooth out the Doppler peaks~this is
apparent in Figs. 2 and 3!.

One could consider sources like those in@5# in which the
anisotropic stresses are by construction zero outside the
rizon. In such a model the superhorizon constraint~4! is
satisfied with all terms being zero. In the model of@5# this is
true because the real space stress energy master func
were taken to bespherically symmetric, clearly a special
case.

We have assumed perfect scaling of the sources and
ter domination. There is some violation of scaling due to
matter-radiation transition, but this is a small effect on lar
angular scales. Stronger departures from scaling would re
from a non-minimal-coupling mass termRu2 for the Gold-
stone bosons@9#. We are currently exploring this possibility

We have assumed that the scalar, vector and tensor m
are equally incoherent, and have tested numerically the c
that they are equally ‘‘coherent.’’ In simulations, howeve
we find that the vector and tensor components are ab
equally coherent, while the scalar components are less co
ent. We would expect our results to apply to the vector a
tensor components, and to overestimate the scalar, whic
indeed observed. In order to change the qualitative res
one could try to design a defect model wherein the sca
are more coherent than vectors or tensors.
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